1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
96
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 static struct workqueue_struct *btree_io_wq;
103
104 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105
106
write_block(struct btree * b)107 static inline struct bset *write_block(struct btree *b)
108 {
109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111
bch_btree_init_next(struct btree * b)112 static void bch_btree_init_next(struct btree *b)
113 {
114 /* If not a leaf node, always sort */
115 if (b->level && b->keys.nsets)
116 bch_btree_sort(&b->keys, &b->c->sort);
117 else
118 bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120 if (b->written < btree_blocks(b))
121 bch_bset_init_next(&b->keys, write_block(b),
122 bset_magic(&b->c->cache->sb));
123
124 }
125
126 /* Btree key manipulation */
127
bkey_put(struct cache_set * c,struct bkey * k)128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130 unsigned int i;
131
132 for (i = 0; i < KEY_PTRS(k); i++)
133 if (ptr_available(c, k, i))
134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136
137 /* Btree IO */
138
btree_csum_set(struct btree * b,struct bset * i)139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141 uint64_t crc = b->key.ptr[0];
142 void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144 crc = crc64_be(crc, data, end - data);
145 return crc ^ 0xffffffffffffffffULL;
146 }
147
bch_btree_node_read_done(struct btree * b)148 void bch_btree_node_read_done(struct btree *b)
149 {
150 const char *err = "bad btree header";
151 struct bset *i = btree_bset_first(b);
152 struct btree_iter *iter;
153
154 /*
155 * c->fill_iter can allocate an iterator with more memory space
156 * than static MAX_BSETS.
157 * See the comment arount cache_set->fill_iter.
158 */
159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 iter->used = 0;
162
163 #ifdef CONFIG_BCACHE_DEBUG
164 iter->b = &b->keys;
165 #endif
166
167 if (!i->seq)
168 goto err;
169
170 for (;
171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 i = write_block(b)) {
173 err = "unsupported bset version";
174 if (i->version > BCACHE_BSET_VERSION)
175 goto err;
176
177 err = "bad btree header";
178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 btree_blocks(b))
180 goto err;
181
182 err = "bad magic";
183 if (i->magic != bset_magic(&b->c->cache->sb))
184 goto err;
185
186 err = "bad checksum";
187 switch (i->version) {
188 case 0:
189 if (i->csum != csum_set(i))
190 goto err;
191 break;
192 case BCACHE_BSET_VERSION:
193 if (i->csum != btree_csum_set(b, i))
194 goto err;
195 break;
196 }
197
198 err = "empty set";
199 if (i != b->keys.set[0].data && !i->keys)
200 goto err;
201
202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204 b->written += set_blocks(i, block_bytes(b->c->cache));
205 }
206
207 err = "corrupted btree";
208 for (i = write_block(b);
209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 i = ((void *) i) + block_bytes(b->c->cache))
211 if (i->seq == b->keys.set[0].data->seq)
212 goto err;
213
214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216 i = b->keys.set[0].data;
217 err = "short btree key";
218 if (b->keys.set[0].size &&
219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 goto err;
221
222 if (b->written < btree_blocks(b))
223 bch_bset_init_next(&b->keys, write_block(b),
224 bset_magic(&b->c->cache->sb));
225 out:
226 mempool_free(iter, &b->c->fill_iter);
227 return;
228 err:
229 set_btree_node_io_error(b);
230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 bset_block_offset(b, i), i->keys);
233 goto out;
234 }
235
btree_node_read_endio(struct bio * bio)236 static void btree_node_read_endio(struct bio *bio)
237 {
238 struct closure *cl = bio->bi_private;
239
240 closure_put(cl);
241 }
242
bch_btree_node_read(struct btree * b)243 static void bch_btree_node_read(struct btree *b)
244 {
245 uint64_t start_time = local_clock();
246 struct closure cl;
247 struct bio *bio;
248
249 trace_bcache_btree_read(b);
250
251 closure_init_stack(&cl);
252
253 bio = bch_bbio_alloc(b->c);
254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 bio->bi_end_io = btree_node_read_endio;
256 bio->bi_private = &cl;
257 bio->bi_opf = REQ_OP_READ | REQ_META;
258
259 bch_bio_map(bio, b->keys.set[0].data);
260
261 bch_submit_bbio(bio, b->c, &b->key, 0);
262 closure_sync(&cl);
263
264 if (bio->bi_status)
265 set_btree_node_io_error(b);
266
267 bch_bbio_free(bio, b->c);
268
269 if (btree_node_io_error(b))
270 goto err;
271
272 bch_btree_node_read_done(b);
273 bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275 return;
276 err:
277 bch_cache_set_error(b->c, "io error reading bucket %zu",
278 PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280
btree_complete_write(struct btree * b,struct btree_write * w)281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283 if (w->prio_blocked &&
284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 wake_up_allocators(b->c);
286
287 if (w->journal) {
288 atomic_dec_bug(w->journal);
289 __closure_wake_up(&b->c->journal.wait);
290 }
291
292 w->prio_blocked = 0;
293 w->journal = NULL;
294 }
295
btree_node_write_unlock(struct closure * cl)296 static void btree_node_write_unlock(struct closure *cl)
297 {
298 struct btree *b = container_of(cl, struct btree, io);
299
300 up(&b->io_mutex);
301 }
302
__btree_node_write_done(struct closure * cl)303 static void __btree_node_write_done(struct closure *cl)
304 {
305 struct btree *b = container_of(cl, struct btree, io);
306 struct btree_write *w = btree_prev_write(b);
307
308 bch_bbio_free(b->bio, b->c);
309 b->bio = NULL;
310 btree_complete_write(b, w);
311
312 if (btree_node_dirty(b))
313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315 closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317
btree_node_write_done(struct closure * cl)318 static void btree_node_write_done(struct closure *cl)
319 {
320 struct btree *b = container_of(cl, struct btree, io);
321
322 bio_free_pages(b->bio);
323 __btree_node_write_done(cl);
324 }
325
btree_node_write_endio(struct bio * bio)326 static void btree_node_write_endio(struct bio *bio)
327 {
328 struct closure *cl = bio->bi_private;
329 struct btree *b = container_of(cl, struct btree, io);
330
331 if (bio->bi_status)
332 set_btree_node_io_error(b);
333
334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 closure_put(cl);
336 }
337
do_btree_node_write(struct btree * b)338 static void do_btree_node_write(struct btree *b)
339 {
340 struct closure *cl = &b->io;
341 struct bset *i = btree_bset_last(b);
342 BKEY_PADDED(key) k;
343
344 i->version = BCACHE_BSET_VERSION;
345 i->csum = btree_csum_set(b, i);
346
347 BUG_ON(b->bio);
348 b->bio = bch_bbio_alloc(b->c);
349
350 b->bio->bi_end_io = btree_node_write_endio;
351 b->bio->bi_private = cl;
352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
354 bch_bio_map(b->bio, i);
355
356 /*
357 * If we're appending to a leaf node, we don't technically need FUA -
358 * this write just needs to be persisted before the next journal write,
359 * which will be marked FLUSH|FUA.
360 *
361 * Similarly if we're writing a new btree root - the pointer is going to
362 * be in the next journal entry.
363 *
364 * But if we're writing a new btree node (that isn't a root) or
365 * appending to a non leaf btree node, we need either FUA or a flush
366 * when we write the parent with the new pointer. FUA is cheaper than a
367 * flush, and writes appending to leaf nodes aren't blocking anything so
368 * just make all btree node writes FUA to keep things sane.
369 */
370
371 bkey_copy(&k.key, &b->key);
372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 bset_sector_offset(&b->keys, i));
374
375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 struct bio_vec *bv;
377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 struct bvec_iter_all iter_all;
379
380 bio_for_each_segment_all(bv, b->bio, iter_all) {
381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 addr += PAGE_SIZE;
383 }
384
385 bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387 continue_at(cl, btree_node_write_done, NULL);
388 } else {
389 /*
390 * No problem for multipage bvec since the bio is
391 * just allocated
392 */
393 b->bio->bi_vcnt = 0;
394 bch_bio_map(b->bio, i);
395
396 bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398 closure_sync(cl);
399 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 }
401 }
402
__bch_btree_node_write(struct btree * b,struct closure * parent)403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405 struct bset *i = btree_bset_last(b);
406
407 lockdep_assert_held(&b->write_lock);
408
409 trace_bcache_btree_write(b);
410
411 BUG_ON(current->bio_list);
412 BUG_ON(b->written >= btree_blocks(b));
413 BUG_ON(b->written && !i->keys);
414 BUG_ON(btree_bset_first(b)->seq != i->seq);
415 bch_check_keys(&b->keys, "writing");
416
417 cancel_delayed_work(&b->work);
418
419 /* If caller isn't waiting for write, parent refcount is cache set */
420 down(&b->io_mutex);
421 closure_init(&b->io, parent ?: &b->c->cl);
422
423 clear_bit(BTREE_NODE_dirty, &b->flags);
424 change_bit(BTREE_NODE_write_idx, &b->flags);
425
426 do_btree_node_write(b);
427
428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 &b->c->cache->btree_sectors_written);
430
431 b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433
bch_btree_node_write(struct btree * b,struct closure * parent)434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436 unsigned int nsets = b->keys.nsets;
437
438 lockdep_assert_held(&b->lock);
439
440 __bch_btree_node_write(b, parent);
441
442 /*
443 * do verify if there was more than one set initially (i.e. we did a
444 * sort) and we sorted down to a single set:
445 */
446 if (nsets && !b->keys.nsets)
447 bch_btree_verify(b);
448
449 bch_btree_init_next(b);
450 }
451
bch_btree_node_write_sync(struct btree * b)452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454 struct closure cl;
455
456 closure_init_stack(&cl);
457
458 mutex_lock(&b->write_lock);
459 bch_btree_node_write(b, &cl);
460 mutex_unlock(&b->write_lock);
461
462 closure_sync(&cl);
463 }
464
btree_node_write_work(struct work_struct * w)465 static void btree_node_write_work(struct work_struct *w)
466 {
467 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469 mutex_lock(&b->write_lock);
470 if (btree_node_dirty(b))
471 __bch_btree_node_write(b, NULL);
472 mutex_unlock(&b->write_lock);
473 }
474
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477 struct bset *i = btree_bset_last(b);
478 struct btree_write *w = btree_current_write(b);
479
480 lockdep_assert_held(&b->write_lock);
481
482 BUG_ON(!b->written);
483 BUG_ON(!i->keys);
484
485 if (!btree_node_dirty(b))
486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488 set_btree_node_dirty(b);
489
490 /*
491 * w->journal is always the oldest journal pin of all bkeys
492 * in the leaf node, to make sure the oldest jset seq won't
493 * be increased before this btree node is flushed.
494 */
495 if (journal_ref) {
496 if (w->journal &&
497 journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 atomic_dec_bug(w->journal);
499 w->journal = NULL;
500 }
501
502 if (!w->journal) {
503 w->journal = journal_ref;
504 atomic_inc(w->journal);
505 }
506 }
507
508 /* Force write if set is too big */
509 if (set_bytes(i) > PAGE_SIZE - 48 &&
510 !current->bio_list)
511 bch_btree_node_write(b, NULL);
512 }
513
514 /*
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
517 */
518
519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c) \
522 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
mca_data_free(struct btree * b)524 static void mca_data_free(struct btree *b)
525 {
526 BUG_ON(b->io_mutex.count != 1);
527
528 bch_btree_keys_free(&b->keys);
529
530 b->c->btree_cache_used--;
531 list_move(&b->list, &b->c->btree_cache_freed);
532 }
533
mca_bucket_free(struct btree * b)534 static void mca_bucket_free(struct btree *b)
535 {
536 BUG_ON(btree_node_dirty(b));
537
538 b->key.ptr[0] = 0;
539 hlist_del_init_rcu(&b->hash);
540 list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542
btree_order(struct bkey * k)543 static unsigned int btree_order(struct bkey *k)
544 {
545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550 if (!bch_btree_keys_alloc(&b->keys,
551 max_t(unsigned int,
552 ilog2(b->c->btree_pages),
553 btree_order(k)),
554 gfp)) {
555 b->c->btree_cache_used++;
556 list_move(&b->list, &b->c->btree_cache);
557 } else {
558 list_move(&b->list, &b->c->btree_cache_freed);
559 }
560 }
561
562 #define cmp_int(l, r) ((l > r) - (l < r))
563
564 #ifdef CONFIG_PROVE_LOCKING
btree_lock_cmp_fn(const struct lockdep_map * _a,const struct lockdep_map * _b)565 static int btree_lock_cmp_fn(const struct lockdep_map *_a,
566 const struct lockdep_map *_b)
567 {
568 const struct btree *a = container_of(_a, struct btree, lock.dep_map);
569 const struct btree *b = container_of(_b, struct btree, lock.dep_map);
570
571 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key);
572 }
573
btree_lock_print_fn(const struct lockdep_map * map)574 static void btree_lock_print_fn(const struct lockdep_map *map)
575 {
576 const struct btree *b = container_of(map, struct btree, lock.dep_map);
577
578 printk(KERN_CONT " l=%u %llu:%llu", b->level,
579 KEY_INODE(&b->key), KEY_OFFSET(&b->key));
580 }
581 #endif
582
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)583 static struct btree *mca_bucket_alloc(struct cache_set *c,
584 struct bkey *k, gfp_t gfp)
585 {
586 /*
587 * kzalloc() is necessary here for initialization,
588 * see code comments in bch_btree_keys_init().
589 */
590 struct btree *b = kzalloc(sizeof(struct btree), gfp);
591
592 if (!b)
593 return NULL;
594
595 init_rwsem(&b->lock);
596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn);
597 mutex_init(&b->write_lock);
598 lockdep_set_novalidate_class(&b->write_lock);
599 INIT_LIST_HEAD(&b->list);
600 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
601 b->c = c;
602 sema_init(&b->io_mutex, 1);
603
604 mca_data_alloc(b, k, gfp);
605 return b;
606 }
607
mca_reap(struct btree * b,unsigned int min_order,bool flush)608 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
609 {
610 struct closure cl;
611
612 closure_init_stack(&cl);
613 lockdep_assert_held(&b->c->bucket_lock);
614
615 if (!down_write_trylock(&b->lock))
616 return -ENOMEM;
617
618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
619
620 if (b->keys.page_order < min_order)
621 goto out_unlock;
622
623 if (!flush) {
624 if (btree_node_dirty(b))
625 goto out_unlock;
626
627 if (down_trylock(&b->io_mutex))
628 goto out_unlock;
629 up(&b->io_mutex);
630 }
631
632 retry:
633 /*
634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
635 * __bch_btree_node_write(). To avoid an extra flush, acquire
636 * b->write_lock before checking BTREE_NODE_dirty bit.
637 */
638 mutex_lock(&b->write_lock);
639 /*
640 * If this btree node is selected in btree_flush_write() by journal
641 * code, delay and retry until the node is flushed by journal code
642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
643 */
644 if (btree_node_journal_flush(b)) {
645 pr_debug("bnode %p is flushing by journal, retry\n", b);
646 mutex_unlock(&b->write_lock);
647 udelay(1);
648 goto retry;
649 }
650
651 if (btree_node_dirty(b))
652 __bch_btree_node_write(b, &cl);
653 mutex_unlock(&b->write_lock);
654
655 closure_sync(&cl);
656
657 /* wait for any in flight btree write */
658 down(&b->io_mutex);
659 up(&b->io_mutex);
660
661 return 0;
662 out_unlock:
663 rw_unlock(true, b);
664 return -ENOMEM;
665 }
666
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)667 static unsigned long bch_mca_scan(struct shrinker *shrink,
668 struct shrink_control *sc)
669 {
670 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
671 struct btree *b, *t;
672 unsigned long i, nr = sc->nr_to_scan;
673 unsigned long freed = 0;
674 unsigned int btree_cache_used;
675
676 if (c->shrinker_disabled)
677 return SHRINK_STOP;
678
679 if (c->btree_cache_alloc_lock)
680 return SHRINK_STOP;
681
682 /* Return -1 if we can't do anything right now */
683 if (sc->gfp_mask & __GFP_IO)
684 mutex_lock(&c->bucket_lock);
685 else if (!mutex_trylock(&c->bucket_lock))
686 return -1;
687
688 /*
689 * It's _really_ critical that we don't free too many btree nodes - we
690 * have to always leave ourselves a reserve. The reserve is how we
691 * guarantee that allocating memory for a new btree node can always
692 * succeed, so that inserting keys into the btree can always succeed and
693 * IO can always make forward progress:
694 */
695 nr /= c->btree_pages;
696 if (nr == 0)
697 nr = 1;
698 nr = min_t(unsigned long, nr, mca_can_free(c));
699
700 i = 0;
701 btree_cache_used = c->btree_cache_used;
702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
703 if (nr <= 0)
704 goto out;
705
706 if (!mca_reap(b, 0, false)) {
707 mca_data_free(b);
708 rw_unlock(true, b);
709 freed++;
710 }
711 nr--;
712 i++;
713 }
714
715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
716 if (nr <= 0 || i >= btree_cache_used)
717 goto out;
718
719 if (!mca_reap(b, 0, false)) {
720 mca_bucket_free(b);
721 mca_data_free(b);
722 rw_unlock(true, b);
723 freed++;
724 }
725
726 nr--;
727 i++;
728 }
729 out:
730 mutex_unlock(&c->bucket_lock);
731 return freed * c->btree_pages;
732 }
733
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)734 static unsigned long bch_mca_count(struct shrinker *shrink,
735 struct shrink_control *sc)
736 {
737 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
738
739 if (c->shrinker_disabled)
740 return 0;
741
742 if (c->btree_cache_alloc_lock)
743 return 0;
744
745 return mca_can_free(c) * c->btree_pages;
746 }
747
bch_btree_cache_free(struct cache_set * c)748 void bch_btree_cache_free(struct cache_set *c)
749 {
750 struct btree *b;
751 struct closure cl;
752
753 closure_init_stack(&cl);
754
755 if (c->shrink.list.next)
756 unregister_shrinker(&c->shrink);
757
758 mutex_lock(&c->bucket_lock);
759
760 #ifdef CONFIG_BCACHE_DEBUG
761 if (c->verify_data)
762 list_move(&c->verify_data->list, &c->btree_cache);
763
764 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
765 #endif
766
767 list_splice(&c->btree_cache_freeable,
768 &c->btree_cache);
769
770 while (!list_empty(&c->btree_cache)) {
771 b = list_first_entry(&c->btree_cache, struct btree, list);
772
773 /*
774 * This function is called by cache_set_free(), no I/O
775 * request on cache now, it is unnecessary to acquire
776 * b->write_lock before clearing BTREE_NODE_dirty anymore.
777 */
778 if (btree_node_dirty(b)) {
779 btree_complete_write(b, btree_current_write(b));
780 clear_bit(BTREE_NODE_dirty, &b->flags);
781 }
782 mca_data_free(b);
783 }
784
785 while (!list_empty(&c->btree_cache_freed)) {
786 b = list_first_entry(&c->btree_cache_freed,
787 struct btree, list);
788 list_del(&b->list);
789 cancel_delayed_work_sync(&b->work);
790 kfree(b);
791 }
792
793 mutex_unlock(&c->bucket_lock);
794 }
795
bch_btree_cache_alloc(struct cache_set * c)796 int bch_btree_cache_alloc(struct cache_set *c)
797 {
798 unsigned int i;
799
800 for (i = 0; i < mca_reserve(c); i++)
801 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
802 return -ENOMEM;
803
804 list_splice_init(&c->btree_cache,
805 &c->btree_cache_freeable);
806
807 #ifdef CONFIG_BCACHE_DEBUG
808 mutex_init(&c->verify_lock);
809
810 c->verify_ondisk = (void *)
811 __get_free_pages(GFP_KERNEL|__GFP_COMP,
812 ilog2(meta_bucket_pages(&c->cache->sb)));
813 if (!c->verify_ondisk) {
814 /*
815 * Don't worry about the mca_rereserve buckets
816 * allocated in previous for-loop, they will be
817 * handled properly in bch_cache_set_unregister().
818 */
819 return -ENOMEM;
820 }
821
822 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
823
824 if (c->verify_data &&
825 c->verify_data->keys.set->data)
826 list_del_init(&c->verify_data->list);
827 else
828 c->verify_data = NULL;
829 #endif
830
831 c->shrink.count_objects = bch_mca_count;
832 c->shrink.scan_objects = bch_mca_scan;
833 c->shrink.seeks = 4;
834 c->shrink.batch = c->btree_pages * 2;
835
836 if (register_shrinker(&c->shrink, "md-bcache:%pU", c->set_uuid))
837 pr_warn("bcache: %s: could not register shrinker\n",
838 __func__);
839
840 return 0;
841 }
842
843 /* Btree in memory cache - hash table */
844
mca_hash(struct cache_set * c,struct bkey * k)845 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
846 {
847 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
848 }
849
mca_find(struct cache_set * c,struct bkey * k)850 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
851 {
852 struct btree *b;
853
854 rcu_read_lock();
855 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
856 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
857 goto out;
858 b = NULL;
859 out:
860 rcu_read_unlock();
861 return b;
862 }
863
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)864 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
865 {
866 spin_lock(&c->btree_cannibalize_lock);
867 if (likely(c->btree_cache_alloc_lock == NULL)) {
868 c->btree_cache_alloc_lock = current;
869 } else if (c->btree_cache_alloc_lock != current) {
870 if (op)
871 prepare_to_wait(&c->btree_cache_wait, &op->wait,
872 TASK_UNINTERRUPTIBLE);
873 spin_unlock(&c->btree_cannibalize_lock);
874 return -EINTR;
875 }
876 spin_unlock(&c->btree_cannibalize_lock);
877
878 return 0;
879 }
880
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)881 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
882 struct bkey *k)
883 {
884 struct btree *b;
885
886 trace_bcache_btree_cache_cannibalize(c);
887
888 if (mca_cannibalize_lock(c, op))
889 return ERR_PTR(-EINTR);
890
891 list_for_each_entry_reverse(b, &c->btree_cache, list)
892 if (!mca_reap(b, btree_order(k), false))
893 return b;
894
895 list_for_each_entry_reverse(b, &c->btree_cache, list)
896 if (!mca_reap(b, btree_order(k), true))
897 return b;
898
899 WARN(1, "btree cache cannibalize failed\n");
900 return ERR_PTR(-ENOMEM);
901 }
902
903 /*
904 * We can only have one thread cannibalizing other cached btree nodes at a time,
905 * or we'll deadlock. We use an open coded mutex to ensure that, which a
906 * cannibalize_bucket() will take. This means every time we unlock the root of
907 * the btree, we need to release this lock if we have it held.
908 */
bch_cannibalize_unlock(struct cache_set * c)909 void bch_cannibalize_unlock(struct cache_set *c)
910 {
911 spin_lock(&c->btree_cannibalize_lock);
912 if (c->btree_cache_alloc_lock == current) {
913 c->btree_cache_alloc_lock = NULL;
914 wake_up(&c->btree_cache_wait);
915 }
916 spin_unlock(&c->btree_cannibalize_lock);
917 }
918
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)919 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
920 struct bkey *k, int level)
921 {
922 struct btree *b;
923
924 BUG_ON(current->bio_list);
925
926 lockdep_assert_held(&c->bucket_lock);
927
928 if (mca_find(c, k))
929 return NULL;
930
931 /* btree_free() doesn't free memory; it sticks the node on the end of
932 * the list. Check if there's any freed nodes there:
933 */
934 list_for_each_entry(b, &c->btree_cache_freeable, list)
935 if (!mca_reap(b, btree_order(k), false))
936 goto out;
937
938 /* We never free struct btree itself, just the memory that holds the on
939 * disk node. Check the freed list before allocating a new one:
940 */
941 list_for_each_entry(b, &c->btree_cache_freed, list)
942 if (!mca_reap(b, 0, false)) {
943 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
944 if (!b->keys.set[0].data)
945 goto err;
946 else
947 goto out;
948 }
949
950 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
951 if (!b)
952 goto err;
953
954 BUG_ON(!down_write_trylock(&b->lock));
955 if (!b->keys.set->data)
956 goto err;
957 out:
958 BUG_ON(b->io_mutex.count != 1);
959
960 bkey_copy(&b->key, k);
961 list_move(&b->list, &c->btree_cache);
962 hlist_del_init_rcu(&b->hash);
963 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
964
965 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
966 b->parent = (void *) ~0UL;
967 b->flags = 0;
968 b->written = 0;
969 b->level = level;
970
971 if (!b->level)
972 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
973 &b->c->expensive_debug_checks);
974 else
975 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
976 &b->c->expensive_debug_checks);
977
978 return b;
979 err:
980 if (b)
981 rw_unlock(true, b);
982
983 b = mca_cannibalize(c, op, k);
984 if (!IS_ERR(b))
985 goto out;
986
987 return b;
988 }
989
990 /*
991 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
992 * in from disk if necessary.
993 *
994 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
995 *
996 * The btree node will have either a read or a write lock held, depending on
997 * level and op->lock.
998 *
999 * Note: Only error code or btree pointer will be returned, it is unncessary
1000 * for callers to check NULL pointer.
1001 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)1002 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1003 struct bkey *k, int level, bool write,
1004 struct btree *parent)
1005 {
1006 int i = 0;
1007 struct btree *b;
1008
1009 BUG_ON(level < 0);
1010 retry:
1011 b = mca_find(c, k);
1012
1013 if (!b) {
1014 if (current->bio_list)
1015 return ERR_PTR(-EAGAIN);
1016
1017 mutex_lock(&c->bucket_lock);
1018 b = mca_alloc(c, op, k, level);
1019 mutex_unlock(&c->bucket_lock);
1020
1021 if (!b)
1022 goto retry;
1023 if (IS_ERR(b))
1024 return b;
1025
1026 bch_btree_node_read(b);
1027
1028 if (!write)
1029 downgrade_write(&b->lock);
1030 } else {
1031 rw_lock(write, b, level);
1032 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1033 rw_unlock(write, b);
1034 goto retry;
1035 }
1036 BUG_ON(b->level != level);
1037 }
1038
1039 if (btree_node_io_error(b)) {
1040 rw_unlock(write, b);
1041 return ERR_PTR(-EIO);
1042 }
1043
1044 BUG_ON(!b->written);
1045
1046 b->parent = parent;
1047
1048 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1049 prefetch(b->keys.set[i].tree);
1050 prefetch(b->keys.set[i].data);
1051 }
1052
1053 for (; i <= b->keys.nsets; i++)
1054 prefetch(b->keys.set[i].data);
1055
1056 return b;
1057 }
1058
btree_node_prefetch(struct btree * parent,struct bkey * k)1059 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1060 {
1061 struct btree *b;
1062
1063 mutex_lock(&parent->c->bucket_lock);
1064 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1065 mutex_unlock(&parent->c->bucket_lock);
1066
1067 if (!IS_ERR_OR_NULL(b)) {
1068 b->parent = parent;
1069 bch_btree_node_read(b);
1070 rw_unlock(true, b);
1071 }
1072 }
1073
1074 /* Btree alloc */
1075
btree_node_free(struct btree * b)1076 static void btree_node_free(struct btree *b)
1077 {
1078 trace_bcache_btree_node_free(b);
1079
1080 BUG_ON(b == b->c->root);
1081
1082 retry:
1083 mutex_lock(&b->write_lock);
1084 /*
1085 * If the btree node is selected and flushing in btree_flush_write(),
1086 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1087 * then it is safe to free the btree node here. Otherwise this btree
1088 * node will be in race condition.
1089 */
1090 if (btree_node_journal_flush(b)) {
1091 mutex_unlock(&b->write_lock);
1092 pr_debug("bnode %p journal_flush set, retry\n", b);
1093 udelay(1);
1094 goto retry;
1095 }
1096
1097 if (btree_node_dirty(b)) {
1098 btree_complete_write(b, btree_current_write(b));
1099 clear_bit(BTREE_NODE_dirty, &b->flags);
1100 }
1101
1102 mutex_unlock(&b->write_lock);
1103
1104 cancel_delayed_work(&b->work);
1105
1106 mutex_lock(&b->c->bucket_lock);
1107 bch_bucket_free(b->c, &b->key);
1108 mca_bucket_free(b);
1109 mutex_unlock(&b->c->bucket_lock);
1110 }
1111
1112 /*
1113 * Only error code or btree pointer will be returned, it is unncessary for
1114 * callers to check NULL pointer.
1115 */
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1116 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1117 int level, bool wait,
1118 struct btree *parent)
1119 {
1120 BKEY_PADDED(key) k;
1121 struct btree *b;
1122
1123 mutex_lock(&c->bucket_lock);
1124 retry:
1125 /* return ERR_PTR(-EAGAIN) when it fails */
1126 b = ERR_PTR(-EAGAIN);
1127 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1128 goto err;
1129
1130 bkey_put(c, &k.key);
1131 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1132
1133 b = mca_alloc(c, op, &k.key, level);
1134 if (IS_ERR(b))
1135 goto err_free;
1136
1137 if (!b) {
1138 cache_bug(c,
1139 "Tried to allocate bucket that was in btree cache");
1140 goto retry;
1141 }
1142
1143 b->parent = parent;
1144 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1145
1146 mutex_unlock(&c->bucket_lock);
1147
1148 trace_bcache_btree_node_alloc(b);
1149 return b;
1150 err_free:
1151 bch_bucket_free(c, &k.key);
1152 err:
1153 mutex_unlock(&c->bucket_lock);
1154
1155 trace_bcache_btree_node_alloc_fail(c);
1156 return b;
1157 }
1158
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1159 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1160 struct btree_op *op, int level,
1161 struct btree *parent)
1162 {
1163 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1164 }
1165
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1166 static struct btree *btree_node_alloc_replacement(struct btree *b,
1167 struct btree_op *op)
1168 {
1169 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1170
1171 if (!IS_ERR(n)) {
1172 mutex_lock(&n->write_lock);
1173 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1174 bkey_copy_key(&n->key, &b->key);
1175 mutex_unlock(&n->write_lock);
1176 }
1177
1178 return n;
1179 }
1180
make_btree_freeing_key(struct btree * b,struct bkey * k)1181 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1182 {
1183 unsigned int i;
1184
1185 mutex_lock(&b->c->bucket_lock);
1186
1187 atomic_inc(&b->c->prio_blocked);
1188
1189 bkey_copy(k, &b->key);
1190 bkey_copy_key(k, &ZERO_KEY);
1191
1192 for (i = 0; i < KEY_PTRS(k); i++)
1193 SET_PTR_GEN(k, i,
1194 bch_inc_gen(b->c->cache,
1195 PTR_BUCKET(b->c, &b->key, i)));
1196
1197 mutex_unlock(&b->c->bucket_lock);
1198 }
1199
btree_check_reserve(struct btree * b,struct btree_op * op)1200 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1201 {
1202 struct cache_set *c = b->c;
1203 struct cache *ca = c->cache;
1204 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1205
1206 mutex_lock(&c->bucket_lock);
1207
1208 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1209 if (op)
1210 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1211 TASK_UNINTERRUPTIBLE);
1212 mutex_unlock(&c->bucket_lock);
1213 return -EINTR;
1214 }
1215
1216 mutex_unlock(&c->bucket_lock);
1217
1218 return mca_cannibalize_lock(b->c, op);
1219 }
1220
1221 /* Garbage collection */
1222
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1223 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1224 struct bkey *k)
1225 {
1226 uint8_t stale = 0;
1227 unsigned int i;
1228 struct bucket *g;
1229
1230 /*
1231 * ptr_invalid() can't return true for the keys that mark btree nodes as
1232 * freed, but since ptr_bad() returns true we'll never actually use them
1233 * for anything and thus we don't want mark their pointers here
1234 */
1235 if (!bkey_cmp(k, &ZERO_KEY))
1236 return stale;
1237
1238 for (i = 0; i < KEY_PTRS(k); i++) {
1239 if (!ptr_available(c, k, i))
1240 continue;
1241
1242 g = PTR_BUCKET(c, k, i);
1243
1244 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1245 g->last_gc = PTR_GEN(k, i);
1246
1247 if (ptr_stale(c, k, i)) {
1248 stale = max(stale, ptr_stale(c, k, i));
1249 continue;
1250 }
1251
1252 cache_bug_on(GC_MARK(g) &&
1253 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1254 c, "inconsistent ptrs: mark = %llu, level = %i",
1255 GC_MARK(g), level);
1256
1257 if (level)
1258 SET_GC_MARK(g, GC_MARK_METADATA);
1259 else if (KEY_DIRTY(k))
1260 SET_GC_MARK(g, GC_MARK_DIRTY);
1261 else if (!GC_MARK(g))
1262 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1263
1264 /* guard against overflow */
1265 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1266 GC_SECTORS_USED(g) + KEY_SIZE(k),
1267 MAX_GC_SECTORS_USED));
1268
1269 BUG_ON(!GC_SECTORS_USED(g));
1270 }
1271
1272 return stale;
1273 }
1274
1275 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1276
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1277 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1278 {
1279 unsigned int i;
1280
1281 for (i = 0; i < KEY_PTRS(k); i++)
1282 if (ptr_available(c, k, i) &&
1283 !ptr_stale(c, k, i)) {
1284 struct bucket *b = PTR_BUCKET(c, k, i);
1285
1286 b->gen = PTR_GEN(k, i);
1287
1288 if (level && bkey_cmp(k, &ZERO_KEY))
1289 b->prio = BTREE_PRIO;
1290 else if (!level && b->prio == BTREE_PRIO)
1291 b->prio = INITIAL_PRIO;
1292 }
1293
1294 __bch_btree_mark_key(c, level, k);
1295 }
1296
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1297 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1298 {
1299 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1300 }
1301
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1302 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1303 {
1304 uint8_t stale = 0;
1305 unsigned int keys = 0, good_keys = 0;
1306 struct bkey *k;
1307 struct btree_iter_stack iter;
1308 struct bset_tree *t;
1309
1310 gc->nodes++;
1311
1312 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1313 stale = max(stale, btree_mark_key(b, k));
1314 keys++;
1315
1316 if (bch_ptr_bad(&b->keys, k))
1317 continue;
1318
1319 gc->key_bytes += bkey_u64s(k);
1320 gc->nkeys++;
1321 good_keys++;
1322
1323 gc->data += KEY_SIZE(k);
1324 }
1325
1326 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1327 btree_bug_on(t->size &&
1328 bset_written(&b->keys, t) &&
1329 bkey_cmp(&b->key, &t->end) < 0,
1330 b, "found short btree key in gc");
1331
1332 if (b->c->gc_always_rewrite)
1333 return true;
1334
1335 if (stale > 10)
1336 return true;
1337
1338 if ((keys - good_keys) * 2 > keys)
1339 return true;
1340
1341 return false;
1342 }
1343
1344 #define GC_MERGE_NODES 4U
1345
1346 struct gc_merge_info {
1347 struct btree *b;
1348 unsigned int keys;
1349 };
1350
1351 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1352 struct keylist *insert_keys,
1353 atomic_t *journal_ref,
1354 struct bkey *replace_key);
1355
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1356 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1357 struct gc_stat *gc, struct gc_merge_info *r)
1358 {
1359 unsigned int i, nodes = 0, keys = 0, blocks;
1360 struct btree *new_nodes[GC_MERGE_NODES];
1361 struct keylist keylist;
1362 struct closure cl;
1363 struct bkey *k;
1364
1365 bch_keylist_init(&keylist);
1366
1367 if (btree_check_reserve(b, NULL))
1368 return 0;
1369
1370 memset(new_nodes, 0, sizeof(new_nodes));
1371 closure_init_stack(&cl);
1372
1373 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1374 keys += r[nodes++].keys;
1375
1376 blocks = btree_default_blocks(b->c) * 2 / 3;
1377
1378 if (nodes < 2 ||
1379 __set_blocks(b->keys.set[0].data, keys,
1380 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1381 return 0;
1382
1383 for (i = 0; i < nodes; i++) {
1384 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1385 if (IS_ERR(new_nodes[i]))
1386 goto out_nocoalesce;
1387 }
1388
1389 /*
1390 * We have to check the reserve here, after we've allocated our new
1391 * nodes, to make sure the insert below will succeed - we also check
1392 * before as an optimization to potentially avoid a bunch of expensive
1393 * allocs/sorts
1394 */
1395 if (btree_check_reserve(b, NULL))
1396 goto out_nocoalesce;
1397
1398 for (i = 0; i < nodes; i++)
1399 mutex_lock(&new_nodes[i]->write_lock);
1400
1401 for (i = nodes - 1; i > 0; --i) {
1402 struct bset *n1 = btree_bset_first(new_nodes[i]);
1403 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1404 struct bkey *k, *last = NULL;
1405
1406 keys = 0;
1407
1408 if (i > 1) {
1409 for (k = n2->start;
1410 k < bset_bkey_last(n2);
1411 k = bkey_next(k)) {
1412 if (__set_blocks(n1, n1->keys + keys +
1413 bkey_u64s(k),
1414 block_bytes(b->c->cache)) > blocks)
1415 break;
1416
1417 last = k;
1418 keys += bkey_u64s(k);
1419 }
1420 } else {
1421 /*
1422 * Last node we're not getting rid of - we're getting
1423 * rid of the node at r[0]. Have to try and fit all of
1424 * the remaining keys into this node; we can't ensure
1425 * they will always fit due to rounding and variable
1426 * length keys (shouldn't be possible in practice,
1427 * though)
1428 */
1429 if (__set_blocks(n1, n1->keys + n2->keys,
1430 block_bytes(b->c->cache)) >
1431 btree_blocks(new_nodes[i]))
1432 goto out_unlock_nocoalesce;
1433
1434 keys = n2->keys;
1435 /* Take the key of the node we're getting rid of */
1436 last = &r->b->key;
1437 }
1438
1439 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1440 btree_blocks(new_nodes[i]));
1441
1442 if (last)
1443 bkey_copy_key(&new_nodes[i]->key, last);
1444
1445 memcpy(bset_bkey_last(n1),
1446 n2->start,
1447 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1448
1449 n1->keys += keys;
1450 r[i].keys = n1->keys;
1451
1452 memmove(n2->start,
1453 bset_bkey_idx(n2, keys),
1454 (void *) bset_bkey_last(n2) -
1455 (void *) bset_bkey_idx(n2, keys));
1456
1457 n2->keys -= keys;
1458
1459 if (__bch_keylist_realloc(&keylist,
1460 bkey_u64s(&new_nodes[i]->key)))
1461 goto out_unlock_nocoalesce;
1462
1463 bch_btree_node_write(new_nodes[i], &cl);
1464 bch_keylist_add(&keylist, &new_nodes[i]->key);
1465 }
1466
1467 for (i = 0; i < nodes; i++)
1468 mutex_unlock(&new_nodes[i]->write_lock);
1469
1470 closure_sync(&cl);
1471
1472 /* We emptied out this node */
1473 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1474 btree_node_free(new_nodes[0]);
1475 rw_unlock(true, new_nodes[0]);
1476 new_nodes[0] = NULL;
1477
1478 for (i = 0; i < nodes; i++) {
1479 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1480 goto out_nocoalesce;
1481
1482 make_btree_freeing_key(r[i].b, keylist.top);
1483 bch_keylist_push(&keylist);
1484 }
1485
1486 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1487 BUG_ON(!bch_keylist_empty(&keylist));
1488
1489 for (i = 0; i < nodes; i++) {
1490 btree_node_free(r[i].b);
1491 rw_unlock(true, r[i].b);
1492
1493 r[i].b = new_nodes[i];
1494 }
1495
1496 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1497 r[nodes - 1].b = ERR_PTR(-EINTR);
1498
1499 trace_bcache_btree_gc_coalesce(nodes);
1500 gc->nodes--;
1501
1502 bch_keylist_free(&keylist);
1503
1504 /* Invalidated our iterator */
1505 return -EINTR;
1506
1507 out_unlock_nocoalesce:
1508 for (i = 0; i < nodes; i++)
1509 mutex_unlock(&new_nodes[i]->write_lock);
1510
1511 out_nocoalesce:
1512 closure_sync(&cl);
1513
1514 while ((k = bch_keylist_pop(&keylist)))
1515 if (!bkey_cmp(k, &ZERO_KEY))
1516 atomic_dec(&b->c->prio_blocked);
1517 bch_keylist_free(&keylist);
1518
1519 for (i = 0; i < nodes; i++)
1520 if (!IS_ERR_OR_NULL(new_nodes[i])) {
1521 btree_node_free(new_nodes[i]);
1522 rw_unlock(true, new_nodes[i]);
1523 }
1524 return 0;
1525 }
1526
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1527 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1528 struct btree *replace)
1529 {
1530 struct keylist keys;
1531 struct btree *n;
1532
1533 if (btree_check_reserve(b, NULL))
1534 return 0;
1535
1536 n = btree_node_alloc_replacement(replace, NULL);
1537 if (IS_ERR(n))
1538 return 0;
1539
1540 /* recheck reserve after allocating replacement node */
1541 if (btree_check_reserve(b, NULL)) {
1542 btree_node_free(n);
1543 rw_unlock(true, n);
1544 return 0;
1545 }
1546
1547 bch_btree_node_write_sync(n);
1548
1549 bch_keylist_init(&keys);
1550 bch_keylist_add(&keys, &n->key);
1551
1552 make_btree_freeing_key(replace, keys.top);
1553 bch_keylist_push(&keys);
1554
1555 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1556 BUG_ON(!bch_keylist_empty(&keys));
1557
1558 btree_node_free(replace);
1559 rw_unlock(true, n);
1560
1561 /* Invalidated our iterator */
1562 return -EINTR;
1563 }
1564
btree_gc_count_keys(struct btree * b)1565 static unsigned int btree_gc_count_keys(struct btree *b)
1566 {
1567 struct bkey *k;
1568 struct btree_iter_stack iter;
1569 unsigned int ret = 0;
1570
1571 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1572 ret += bkey_u64s(k);
1573
1574 return ret;
1575 }
1576
btree_gc_min_nodes(struct cache_set * c)1577 static size_t btree_gc_min_nodes(struct cache_set *c)
1578 {
1579 size_t min_nodes;
1580
1581 /*
1582 * Since incremental GC would stop 100ms when front
1583 * side I/O comes, so when there are many btree nodes,
1584 * if GC only processes constant (100) nodes each time,
1585 * GC would last a long time, and the front side I/Os
1586 * would run out of the buckets (since no new bucket
1587 * can be allocated during GC), and be blocked again.
1588 * So GC should not process constant nodes, but varied
1589 * nodes according to the number of btree nodes, which
1590 * realized by dividing GC into constant(100) times,
1591 * so when there are many btree nodes, GC can process
1592 * more nodes each time, otherwise, GC will process less
1593 * nodes each time (but no less than MIN_GC_NODES)
1594 */
1595 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1596 if (min_nodes < MIN_GC_NODES)
1597 min_nodes = MIN_GC_NODES;
1598
1599 return min_nodes;
1600 }
1601
1602
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1603 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1604 struct closure *writes, struct gc_stat *gc)
1605 {
1606 int ret = 0;
1607 bool should_rewrite;
1608 struct bkey *k;
1609 struct btree_iter_stack iter;
1610 struct gc_merge_info r[GC_MERGE_NODES];
1611 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1612
1613 bch_btree_iter_stack_init(&b->keys, &iter, &b->c->gc_done);
1614
1615 for (i = r; i < r + ARRAY_SIZE(r); i++)
1616 i->b = ERR_PTR(-EINTR);
1617
1618 while (1) {
1619 k = bch_btree_iter_next_filter(&iter.iter, &b->keys,
1620 bch_ptr_bad);
1621 if (k) {
1622 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1623 true, b);
1624 if (IS_ERR(r->b)) {
1625 ret = PTR_ERR(r->b);
1626 break;
1627 }
1628
1629 r->keys = btree_gc_count_keys(r->b);
1630
1631 ret = btree_gc_coalesce(b, op, gc, r);
1632 if (ret)
1633 break;
1634 }
1635
1636 if (!last->b)
1637 break;
1638
1639 if (!IS_ERR(last->b)) {
1640 should_rewrite = btree_gc_mark_node(last->b, gc);
1641 if (should_rewrite) {
1642 ret = btree_gc_rewrite_node(b, op, last->b);
1643 if (ret)
1644 break;
1645 }
1646
1647 if (last->b->level) {
1648 ret = btree_gc_recurse(last->b, op, writes, gc);
1649 if (ret)
1650 break;
1651 }
1652
1653 bkey_copy_key(&b->c->gc_done, &last->b->key);
1654
1655 /*
1656 * Must flush leaf nodes before gc ends, since replace
1657 * operations aren't journalled
1658 */
1659 mutex_lock(&last->b->write_lock);
1660 if (btree_node_dirty(last->b))
1661 bch_btree_node_write(last->b, writes);
1662 mutex_unlock(&last->b->write_lock);
1663 rw_unlock(true, last->b);
1664 }
1665
1666 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1667 r->b = NULL;
1668
1669 if (atomic_read(&b->c->search_inflight) &&
1670 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1671 gc->nodes_pre = gc->nodes;
1672 ret = -EAGAIN;
1673 break;
1674 }
1675
1676 if (need_resched()) {
1677 ret = -EAGAIN;
1678 break;
1679 }
1680 }
1681
1682 for (i = r; i < r + ARRAY_SIZE(r); i++)
1683 if (!IS_ERR_OR_NULL(i->b)) {
1684 mutex_lock(&i->b->write_lock);
1685 if (btree_node_dirty(i->b))
1686 bch_btree_node_write(i->b, writes);
1687 mutex_unlock(&i->b->write_lock);
1688 rw_unlock(true, i->b);
1689 }
1690
1691 return ret;
1692 }
1693
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1694 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1695 struct closure *writes, struct gc_stat *gc)
1696 {
1697 struct btree *n = NULL;
1698 int ret = 0;
1699 bool should_rewrite;
1700
1701 should_rewrite = btree_gc_mark_node(b, gc);
1702 if (should_rewrite) {
1703 n = btree_node_alloc_replacement(b, NULL);
1704
1705 if (!IS_ERR(n)) {
1706 bch_btree_node_write_sync(n);
1707
1708 bch_btree_set_root(n);
1709 btree_node_free(b);
1710 rw_unlock(true, n);
1711
1712 return -EINTR;
1713 }
1714 }
1715
1716 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1717
1718 if (b->level) {
1719 ret = btree_gc_recurse(b, op, writes, gc);
1720 if (ret)
1721 return ret;
1722 }
1723
1724 bkey_copy_key(&b->c->gc_done, &b->key);
1725
1726 return ret;
1727 }
1728
btree_gc_start(struct cache_set * c)1729 static void btree_gc_start(struct cache_set *c)
1730 {
1731 struct cache *ca;
1732 struct bucket *b;
1733
1734 if (!c->gc_mark_valid)
1735 return;
1736
1737 mutex_lock(&c->bucket_lock);
1738
1739 c->gc_mark_valid = 0;
1740 c->gc_done = ZERO_KEY;
1741
1742 ca = c->cache;
1743 for_each_bucket(b, ca) {
1744 b->last_gc = b->gen;
1745 if (!atomic_read(&b->pin)) {
1746 SET_GC_MARK(b, 0);
1747 SET_GC_SECTORS_USED(b, 0);
1748 }
1749 }
1750
1751 mutex_unlock(&c->bucket_lock);
1752 }
1753
bch_btree_gc_finish(struct cache_set * c)1754 static void bch_btree_gc_finish(struct cache_set *c)
1755 {
1756 struct bucket *b;
1757 struct cache *ca;
1758 unsigned int i, j;
1759 uint64_t *k;
1760
1761 mutex_lock(&c->bucket_lock);
1762
1763 set_gc_sectors(c);
1764 c->gc_mark_valid = 1;
1765 c->need_gc = 0;
1766
1767 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1768 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1769 GC_MARK_METADATA);
1770
1771 /* don't reclaim buckets to which writeback keys point */
1772 rcu_read_lock();
1773 for (i = 0; i < c->devices_max_used; i++) {
1774 struct bcache_device *d = c->devices[i];
1775 struct cached_dev *dc;
1776 struct keybuf_key *w, *n;
1777
1778 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1779 continue;
1780 dc = container_of(d, struct cached_dev, disk);
1781
1782 spin_lock(&dc->writeback_keys.lock);
1783 rbtree_postorder_for_each_entry_safe(w, n,
1784 &dc->writeback_keys.keys, node)
1785 for (j = 0; j < KEY_PTRS(&w->key); j++)
1786 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1787 GC_MARK_DIRTY);
1788 spin_unlock(&dc->writeback_keys.lock);
1789 }
1790 rcu_read_unlock();
1791
1792 c->avail_nbuckets = 0;
1793
1794 ca = c->cache;
1795 ca->invalidate_needs_gc = 0;
1796
1797 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1798 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1799
1800 for (k = ca->prio_buckets;
1801 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1802 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1803
1804 for_each_bucket(b, ca) {
1805 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1806
1807 if (atomic_read(&b->pin))
1808 continue;
1809
1810 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1811
1812 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1813 c->avail_nbuckets++;
1814 }
1815
1816 mutex_unlock(&c->bucket_lock);
1817 }
1818
bch_btree_gc(struct cache_set * c)1819 static void bch_btree_gc(struct cache_set *c)
1820 {
1821 int ret;
1822 struct gc_stat stats;
1823 struct closure writes;
1824 struct btree_op op;
1825 uint64_t start_time = local_clock();
1826
1827 trace_bcache_gc_start(c);
1828
1829 memset(&stats, 0, sizeof(struct gc_stat));
1830 closure_init_stack(&writes);
1831 bch_btree_op_init(&op, SHRT_MAX);
1832
1833 btree_gc_start(c);
1834
1835 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1836 do {
1837 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1838 closure_sync(&writes);
1839 cond_resched();
1840
1841 if (ret == -EAGAIN)
1842 schedule_timeout_interruptible(msecs_to_jiffies
1843 (GC_SLEEP_MS));
1844 else if (ret)
1845 pr_warn("gc failed!\n");
1846 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1847
1848 bch_btree_gc_finish(c);
1849 wake_up_allocators(c);
1850
1851 bch_time_stats_update(&c->btree_gc_time, start_time);
1852
1853 stats.key_bytes *= sizeof(uint64_t);
1854 stats.data <<= 9;
1855 bch_update_bucket_in_use(c, &stats);
1856 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1857
1858 trace_bcache_gc_end(c);
1859
1860 bch_moving_gc(c);
1861 }
1862
gc_should_run(struct cache_set * c)1863 static bool gc_should_run(struct cache_set *c)
1864 {
1865 struct cache *ca = c->cache;
1866
1867 if (ca->invalidate_needs_gc)
1868 return true;
1869
1870 if (atomic_read(&c->sectors_to_gc) < 0)
1871 return true;
1872
1873 return false;
1874 }
1875
bch_gc_thread(void * arg)1876 static int bch_gc_thread(void *arg)
1877 {
1878 struct cache_set *c = arg;
1879
1880 while (1) {
1881 wait_event_interruptible(c->gc_wait,
1882 kthread_should_stop() ||
1883 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1884 gc_should_run(c));
1885
1886 if (kthread_should_stop() ||
1887 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1888 break;
1889
1890 set_gc_sectors(c);
1891 bch_btree_gc(c);
1892 }
1893
1894 wait_for_kthread_stop();
1895 return 0;
1896 }
1897
bch_gc_thread_start(struct cache_set * c)1898 int bch_gc_thread_start(struct cache_set *c)
1899 {
1900 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1901 return PTR_ERR_OR_ZERO(c->gc_thread);
1902 }
1903
1904 /* Initial partial gc */
1905
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1906 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1907 {
1908 int ret = 0;
1909 struct bkey *k, *p = NULL;
1910 struct btree_iter_stack iter;
1911
1912 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1913 bch_initial_mark_key(b->c, b->level, k);
1914
1915 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1916
1917 if (b->level) {
1918 bch_btree_iter_stack_init(&b->keys, &iter, NULL);
1919
1920 do {
1921 k = bch_btree_iter_next_filter(&iter.iter, &b->keys,
1922 bch_ptr_bad);
1923 if (k) {
1924 btree_node_prefetch(b, k);
1925 /*
1926 * initiallize c->gc_stats.nodes
1927 * for incremental GC
1928 */
1929 b->c->gc_stats.nodes++;
1930 }
1931
1932 if (p)
1933 ret = bcache_btree(check_recurse, p, b, op);
1934
1935 p = k;
1936 } while (p && !ret);
1937 }
1938
1939 return ret;
1940 }
1941
1942
bch_btree_check_thread(void * arg)1943 static int bch_btree_check_thread(void *arg)
1944 {
1945 int ret;
1946 struct btree_check_info *info = arg;
1947 struct btree_check_state *check_state = info->state;
1948 struct cache_set *c = check_state->c;
1949 struct btree_iter_stack iter;
1950 struct bkey *k, *p;
1951 int cur_idx, prev_idx, skip_nr;
1952
1953 k = p = NULL;
1954 cur_idx = prev_idx = 0;
1955 ret = 0;
1956
1957 /* root node keys are checked before thread created */
1958 bch_btree_iter_stack_init(&c->root->keys, &iter, NULL);
1959 k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad);
1960 BUG_ON(!k);
1961
1962 p = k;
1963 while (k) {
1964 /*
1965 * Fetch a root node key index, skip the keys which
1966 * should be fetched by other threads, then check the
1967 * sub-tree indexed by the fetched key.
1968 */
1969 spin_lock(&check_state->idx_lock);
1970 cur_idx = check_state->key_idx;
1971 check_state->key_idx++;
1972 spin_unlock(&check_state->idx_lock);
1973
1974 skip_nr = cur_idx - prev_idx;
1975
1976 while (skip_nr) {
1977 k = bch_btree_iter_next_filter(&iter.iter,
1978 &c->root->keys,
1979 bch_ptr_bad);
1980 if (k)
1981 p = k;
1982 else {
1983 /*
1984 * No more keys to check in root node,
1985 * current checking threads are enough,
1986 * stop creating more.
1987 */
1988 atomic_set(&check_state->enough, 1);
1989 /* Update check_state->enough earlier */
1990 smp_mb__after_atomic();
1991 goto out;
1992 }
1993 skip_nr--;
1994 cond_resched();
1995 }
1996
1997 if (p) {
1998 struct btree_op op;
1999
2000 btree_node_prefetch(c->root, p);
2001 c->gc_stats.nodes++;
2002 bch_btree_op_init(&op, 0);
2003 ret = bcache_btree(check_recurse, p, c->root, &op);
2004 /*
2005 * The op may be added to cache_set's btree_cache_wait
2006 * in mca_cannibalize(), must ensure it is removed from
2007 * the list and release btree_cache_alloc_lock before
2008 * free op memory.
2009 * Otherwise, the btree_cache_wait will be damaged.
2010 */
2011 bch_cannibalize_unlock(c);
2012 finish_wait(&c->btree_cache_wait, &(&op)->wait);
2013 if (ret)
2014 goto out;
2015 }
2016 p = NULL;
2017 prev_idx = cur_idx;
2018 cond_resched();
2019 }
2020
2021 out:
2022 info->result = ret;
2023 /* update check_state->started among all CPUs */
2024 smp_mb__before_atomic();
2025 if (atomic_dec_and_test(&check_state->started))
2026 wake_up(&check_state->wait);
2027
2028 return ret;
2029 }
2030
2031
2032
bch_btree_chkthread_nr(void)2033 static int bch_btree_chkthread_nr(void)
2034 {
2035 int n = num_online_cpus()/2;
2036
2037 if (n == 0)
2038 n = 1;
2039 else if (n > BCH_BTR_CHKTHREAD_MAX)
2040 n = BCH_BTR_CHKTHREAD_MAX;
2041
2042 return n;
2043 }
2044
bch_btree_check(struct cache_set * c)2045 int bch_btree_check(struct cache_set *c)
2046 {
2047 int ret = 0;
2048 int i;
2049 struct bkey *k = NULL;
2050 struct btree_iter_stack iter;
2051 struct btree_check_state check_state;
2052
2053 /* check and mark root node keys */
2054 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2055 bch_initial_mark_key(c, c->root->level, k);
2056
2057 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2058
2059 if (c->root->level == 0)
2060 return 0;
2061
2062 memset(&check_state, 0, sizeof(struct btree_check_state));
2063 check_state.c = c;
2064 check_state.total_threads = bch_btree_chkthread_nr();
2065 check_state.key_idx = 0;
2066 spin_lock_init(&check_state.idx_lock);
2067 atomic_set(&check_state.started, 0);
2068 atomic_set(&check_state.enough, 0);
2069 init_waitqueue_head(&check_state.wait);
2070
2071 rw_lock(0, c->root, c->root->level);
2072 /*
2073 * Run multiple threads to check btree nodes in parallel,
2074 * if check_state.enough is non-zero, it means current
2075 * running check threads are enough, unncessary to create
2076 * more.
2077 */
2078 for (i = 0; i < check_state.total_threads; i++) {
2079 /* fetch latest check_state.enough earlier */
2080 smp_mb__before_atomic();
2081 if (atomic_read(&check_state.enough))
2082 break;
2083
2084 check_state.infos[i].result = 0;
2085 check_state.infos[i].state = &check_state;
2086
2087 check_state.infos[i].thread =
2088 kthread_run(bch_btree_check_thread,
2089 &check_state.infos[i],
2090 "bch_btrchk[%d]", i);
2091 if (IS_ERR(check_state.infos[i].thread)) {
2092 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2093 for (--i; i >= 0; i--)
2094 kthread_stop(check_state.infos[i].thread);
2095 ret = -ENOMEM;
2096 goto out;
2097 }
2098 atomic_inc(&check_state.started);
2099 }
2100
2101 /*
2102 * Must wait for all threads to stop.
2103 */
2104 wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2105
2106 for (i = 0; i < check_state.total_threads; i++) {
2107 if (check_state.infos[i].result) {
2108 ret = check_state.infos[i].result;
2109 goto out;
2110 }
2111 }
2112
2113 out:
2114 rw_unlock(0, c->root);
2115 return ret;
2116 }
2117
bch_initial_gc_finish(struct cache_set * c)2118 void bch_initial_gc_finish(struct cache_set *c)
2119 {
2120 struct cache *ca = c->cache;
2121 struct bucket *b;
2122
2123 bch_btree_gc_finish(c);
2124
2125 mutex_lock(&c->bucket_lock);
2126
2127 /*
2128 * We need to put some unused buckets directly on the prio freelist in
2129 * order to get the allocator thread started - it needs freed buckets in
2130 * order to rewrite the prios and gens, and it needs to rewrite prios
2131 * and gens in order to free buckets.
2132 *
2133 * This is only safe for buckets that have no live data in them, which
2134 * there should always be some of.
2135 */
2136 for_each_bucket(b, ca) {
2137 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2138 fifo_full(&ca->free[RESERVE_BTREE]))
2139 break;
2140
2141 if (bch_can_invalidate_bucket(ca, b) &&
2142 !GC_MARK(b)) {
2143 __bch_invalidate_one_bucket(ca, b);
2144 if (!fifo_push(&ca->free[RESERVE_PRIO],
2145 b - ca->buckets))
2146 fifo_push(&ca->free[RESERVE_BTREE],
2147 b - ca->buckets);
2148 }
2149 }
2150
2151 mutex_unlock(&c->bucket_lock);
2152 }
2153
2154 /* Btree insertion */
2155
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)2156 static bool btree_insert_key(struct btree *b, struct bkey *k,
2157 struct bkey *replace_key)
2158 {
2159 unsigned int status;
2160
2161 BUG_ON(bkey_cmp(k, &b->key) > 0);
2162
2163 status = bch_btree_insert_key(&b->keys, k, replace_key);
2164 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2165 bch_check_keys(&b->keys, "%u for %s", status,
2166 replace_key ? "replace" : "insert");
2167
2168 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2169 status);
2170 return true;
2171 } else
2172 return false;
2173 }
2174
insert_u64s_remaining(struct btree * b)2175 static size_t insert_u64s_remaining(struct btree *b)
2176 {
2177 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2178
2179 /*
2180 * Might land in the middle of an existing extent and have to split it
2181 */
2182 if (b->keys.ops->is_extents)
2183 ret -= KEY_MAX_U64S;
2184
2185 return max(ret, 0L);
2186 }
2187
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2188 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2189 struct keylist *insert_keys,
2190 struct bkey *replace_key)
2191 {
2192 bool ret = false;
2193 int oldsize = bch_count_data(&b->keys);
2194
2195 while (!bch_keylist_empty(insert_keys)) {
2196 struct bkey *k = insert_keys->keys;
2197
2198 if (bkey_u64s(k) > insert_u64s_remaining(b))
2199 break;
2200
2201 if (bkey_cmp(k, &b->key) <= 0) {
2202 if (!b->level)
2203 bkey_put(b->c, k);
2204
2205 ret |= btree_insert_key(b, k, replace_key);
2206 bch_keylist_pop_front(insert_keys);
2207 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2208 BKEY_PADDED(key) temp;
2209 bkey_copy(&temp.key, insert_keys->keys);
2210
2211 bch_cut_back(&b->key, &temp.key);
2212 bch_cut_front(&b->key, insert_keys->keys);
2213
2214 ret |= btree_insert_key(b, &temp.key, replace_key);
2215 break;
2216 } else {
2217 break;
2218 }
2219 }
2220
2221 if (!ret)
2222 op->insert_collision = true;
2223
2224 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2225
2226 BUG_ON(bch_count_data(&b->keys) < oldsize);
2227 return ret;
2228 }
2229
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2230 static int btree_split(struct btree *b, struct btree_op *op,
2231 struct keylist *insert_keys,
2232 struct bkey *replace_key)
2233 {
2234 bool split;
2235 struct btree *n1, *n2 = NULL, *n3 = NULL;
2236 uint64_t start_time = local_clock();
2237 struct closure cl;
2238 struct keylist parent_keys;
2239
2240 closure_init_stack(&cl);
2241 bch_keylist_init(&parent_keys);
2242
2243 if (btree_check_reserve(b, op)) {
2244 if (!b->level)
2245 return -EINTR;
2246 else
2247 WARN(1, "insufficient reserve for split\n");
2248 }
2249
2250 n1 = btree_node_alloc_replacement(b, op);
2251 if (IS_ERR(n1))
2252 goto err;
2253
2254 split = set_blocks(btree_bset_first(n1),
2255 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2256
2257 if (split) {
2258 unsigned int keys = 0;
2259
2260 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2261
2262 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2263 if (IS_ERR(n2))
2264 goto err_free1;
2265
2266 if (!b->parent) {
2267 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2268 if (IS_ERR(n3))
2269 goto err_free2;
2270 }
2271
2272 mutex_lock(&n1->write_lock);
2273 mutex_lock(&n2->write_lock);
2274
2275 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2276
2277 /*
2278 * Has to be a linear search because we don't have an auxiliary
2279 * search tree yet
2280 */
2281
2282 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2283 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2284 keys));
2285
2286 bkey_copy_key(&n1->key,
2287 bset_bkey_idx(btree_bset_first(n1), keys));
2288 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2289
2290 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2291 btree_bset_first(n1)->keys = keys;
2292
2293 memcpy(btree_bset_first(n2)->start,
2294 bset_bkey_last(btree_bset_first(n1)),
2295 btree_bset_first(n2)->keys * sizeof(uint64_t));
2296
2297 bkey_copy_key(&n2->key, &b->key);
2298
2299 bch_keylist_add(&parent_keys, &n2->key);
2300 bch_btree_node_write(n2, &cl);
2301 mutex_unlock(&n2->write_lock);
2302 rw_unlock(true, n2);
2303 } else {
2304 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2305
2306 mutex_lock(&n1->write_lock);
2307 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2308 }
2309
2310 bch_keylist_add(&parent_keys, &n1->key);
2311 bch_btree_node_write(n1, &cl);
2312 mutex_unlock(&n1->write_lock);
2313
2314 if (n3) {
2315 /* Depth increases, make a new root */
2316 mutex_lock(&n3->write_lock);
2317 bkey_copy_key(&n3->key, &MAX_KEY);
2318 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2319 bch_btree_node_write(n3, &cl);
2320 mutex_unlock(&n3->write_lock);
2321
2322 closure_sync(&cl);
2323 bch_btree_set_root(n3);
2324 rw_unlock(true, n3);
2325 } else if (!b->parent) {
2326 /* Root filled up but didn't need to be split */
2327 closure_sync(&cl);
2328 bch_btree_set_root(n1);
2329 } else {
2330 /* Split a non root node */
2331 closure_sync(&cl);
2332 make_btree_freeing_key(b, parent_keys.top);
2333 bch_keylist_push(&parent_keys);
2334
2335 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2336 BUG_ON(!bch_keylist_empty(&parent_keys));
2337 }
2338
2339 btree_node_free(b);
2340 rw_unlock(true, n1);
2341
2342 bch_time_stats_update(&b->c->btree_split_time, start_time);
2343
2344 return 0;
2345 err_free2:
2346 bkey_put(b->c, &n2->key);
2347 btree_node_free(n2);
2348 rw_unlock(true, n2);
2349 err_free1:
2350 bkey_put(b->c, &n1->key);
2351 btree_node_free(n1);
2352 rw_unlock(true, n1);
2353 err:
2354 WARN(1, "bcache: btree split failed (level %u)", b->level);
2355
2356 if (n3 == ERR_PTR(-EAGAIN) ||
2357 n2 == ERR_PTR(-EAGAIN) ||
2358 n1 == ERR_PTR(-EAGAIN))
2359 return -EAGAIN;
2360
2361 return -ENOMEM;
2362 }
2363
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2364 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2365 struct keylist *insert_keys,
2366 atomic_t *journal_ref,
2367 struct bkey *replace_key)
2368 {
2369 struct closure cl;
2370
2371 BUG_ON(b->level && replace_key);
2372
2373 closure_init_stack(&cl);
2374
2375 mutex_lock(&b->write_lock);
2376
2377 if (write_block(b) != btree_bset_last(b) &&
2378 b->keys.last_set_unwritten)
2379 bch_btree_init_next(b); /* just wrote a set */
2380
2381 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2382 mutex_unlock(&b->write_lock);
2383 goto split;
2384 }
2385
2386 BUG_ON(write_block(b) != btree_bset_last(b));
2387
2388 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2389 if (!b->level)
2390 bch_btree_leaf_dirty(b, journal_ref);
2391 else
2392 bch_btree_node_write(b, &cl);
2393 }
2394
2395 mutex_unlock(&b->write_lock);
2396
2397 /* wait for btree node write if necessary, after unlock */
2398 closure_sync(&cl);
2399
2400 return 0;
2401 split:
2402 if (current->bio_list) {
2403 op->lock = b->c->root->level + 1;
2404 return -EAGAIN;
2405 } else if (op->lock <= b->c->root->level) {
2406 op->lock = b->c->root->level + 1;
2407 return -EINTR;
2408 } else {
2409 /* Invalidated all iterators */
2410 int ret = btree_split(b, op, insert_keys, replace_key);
2411
2412 if (bch_keylist_empty(insert_keys))
2413 return 0;
2414 else if (!ret)
2415 return -EINTR;
2416 return ret;
2417 }
2418 }
2419
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2420 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2421 struct bkey *check_key)
2422 {
2423 int ret = -EINTR;
2424 uint64_t btree_ptr = b->key.ptr[0];
2425 unsigned long seq = b->seq;
2426 struct keylist insert;
2427 bool upgrade = op->lock == -1;
2428
2429 bch_keylist_init(&insert);
2430
2431 if (upgrade) {
2432 rw_unlock(false, b);
2433 rw_lock(true, b, b->level);
2434
2435 if (b->key.ptr[0] != btree_ptr ||
2436 b->seq != seq + 1) {
2437 op->lock = b->level;
2438 goto out;
2439 }
2440 }
2441
2442 SET_KEY_PTRS(check_key, 1);
2443 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2444
2445 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2446
2447 bch_keylist_add(&insert, check_key);
2448
2449 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2450
2451 BUG_ON(!ret && !bch_keylist_empty(&insert));
2452 out:
2453 if (upgrade)
2454 downgrade_write(&b->lock);
2455 return ret;
2456 }
2457
2458 struct btree_insert_op {
2459 struct btree_op op;
2460 struct keylist *keys;
2461 atomic_t *journal_ref;
2462 struct bkey *replace_key;
2463 };
2464
btree_insert_fn(struct btree_op * b_op,struct btree * b)2465 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2466 {
2467 struct btree_insert_op *op = container_of(b_op,
2468 struct btree_insert_op, op);
2469
2470 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2471 op->journal_ref, op->replace_key);
2472 if (ret && !bch_keylist_empty(op->keys))
2473 return ret;
2474 else
2475 return MAP_DONE;
2476 }
2477
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2478 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2479 atomic_t *journal_ref, struct bkey *replace_key)
2480 {
2481 struct btree_insert_op op;
2482 int ret = 0;
2483
2484 BUG_ON(current->bio_list);
2485 BUG_ON(bch_keylist_empty(keys));
2486
2487 bch_btree_op_init(&op.op, 0);
2488 op.keys = keys;
2489 op.journal_ref = journal_ref;
2490 op.replace_key = replace_key;
2491
2492 while (!ret && !bch_keylist_empty(keys)) {
2493 op.op.lock = 0;
2494 ret = bch_btree_map_leaf_nodes(&op.op, c,
2495 &START_KEY(keys->keys),
2496 btree_insert_fn);
2497 }
2498
2499 if (ret) {
2500 struct bkey *k;
2501
2502 pr_err("error %i\n", ret);
2503
2504 while ((k = bch_keylist_pop(keys)))
2505 bkey_put(c, k);
2506 } else if (op.op.insert_collision)
2507 ret = -ESRCH;
2508
2509 return ret;
2510 }
2511
bch_btree_set_root(struct btree * b)2512 void bch_btree_set_root(struct btree *b)
2513 {
2514 unsigned int i;
2515 struct closure cl;
2516
2517 closure_init_stack(&cl);
2518
2519 trace_bcache_btree_set_root(b);
2520
2521 BUG_ON(!b->written);
2522
2523 for (i = 0; i < KEY_PTRS(&b->key); i++)
2524 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2525
2526 mutex_lock(&b->c->bucket_lock);
2527 list_del_init(&b->list);
2528 mutex_unlock(&b->c->bucket_lock);
2529
2530 b->c->root = b;
2531
2532 bch_journal_meta(b->c, &cl);
2533 closure_sync(&cl);
2534 }
2535
2536 /* Map across nodes or keys */
2537
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2538 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2539 struct bkey *from,
2540 btree_map_nodes_fn *fn, int flags)
2541 {
2542 int ret = MAP_CONTINUE;
2543
2544 if (b->level) {
2545 struct bkey *k;
2546 struct btree_iter_stack iter;
2547
2548 bch_btree_iter_stack_init(&b->keys, &iter, from);
2549
2550 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys,
2551 bch_ptr_bad))) {
2552 ret = bcache_btree(map_nodes_recurse, k, b,
2553 op, from, fn, flags);
2554 from = NULL;
2555
2556 if (ret != MAP_CONTINUE)
2557 return ret;
2558 }
2559 }
2560
2561 if (!b->level || flags == MAP_ALL_NODES)
2562 ret = fn(op, b);
2563
2564 return ret;
2565 }
2566
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2567 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2568 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2569 {
2570 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2571 }
2572
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2573 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2574 struct bkey *from, btree_map_keys_fn *fn,
2575 int flags)
2576 {
2577 int ret = MAP_CONTINUE;
2578 struct bkey *k;
2579 struct btree_iter_stack iter;
2580
2581 bch_btree_iter_stack_init(&b->keys, &iter, from);
2582
2583 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys,
2584 bch_ptr_bad))) {
2585 ret = !b->level
2586 ? fn(op, b, k)
2587 : bcache_btree(map_keys_recurse, k,
2588 b, op, from, fn, flags);
2589 from = NULL;
2590
2591 if (ret != MAP_CONTINUE)
2592 return ret;
2593 }
2594
2595 if (!b->level && (flags & MAP_END_KEY))
2596 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2597 KEY_OFFSET(&b->key), 0));
2598
2599 return ret;
2600 }
2601
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2602 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2603 struct bkey *from, btree_map_keys_fn *fn, int flags)
2604 {
2605 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2606 }
2607
2608 /* Keybuf code */
2609
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2610 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2611 {
2612 /* Overlapping keys compare equal */
2613 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2614 return -1;
2615 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2616 return 1;
2617 return 0;
2618 }
2619
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2620 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2621 struct keybuf_key *r)
2622 {
2623 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2624 }
2625
2626 struct refill {
2627 struct btree_op op;
2628 unsigned int nr_found;
2629 struct keybuf *buf;
2630 struct bkey *end;
2631 keybuf_pred_fn *pred;
2632 };
2633
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2634 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2635 struct bkey *k)
2636 {
2637 struct refill *refill = container_of(op, struct refill, op);
2638 struct keybuf *buf = refill->buf;
2639 int ret = MAP_CONTINUE;
2640
2641 if (bkey_cmp(k, refill->end) > 0) {
2642 ret = MAP_DONE;
2643 goto out;
2644 }
2645
2646 if (!KEY_SIZE(k)) /* end key */
2647 goto out;
2648
2649 if (refill->pred(buf, k)) {
2650 struct keybuf_key *w;
2651
2652 spin_lock(&buf->lock);
2653
2654 w = array_alloc(&buf->freelist);
2655 if (!w) {
2656 spin_unlock(&buf->lock);
2657 return MAP_DONE;
2658 }
2659
2660 w->private = NULL;
2661 bkey_copy(&w->key, k);
2662
2663 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2664 array_free(&buf->freelist, w);
2665 else
2666 refill->nr_found++;
2667
2668 if (array_freelist_empty(&buf->freelist))
2669 ret = MAP_DONE;
2670
2671 spin_unlock(&buf->lock);
2672 }
2673 out:
2674 buf->last_scanned = *k;
2675 return ret;
2676 }
2677
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2678 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2679 struct bkey *end, keybuf_pred_fn *pred)
2680 {
2681 struct bkey start = buf->last_scanned;
2682 struct refill refill;
2683
2684 cond_resched();
2685
2686 bch_btree_op_init(&refill.op, -1);
2687 refill.nr_found = 0;
2688 refill.buf = buf;
2689 refill.end = end;
2690 refill.pred = pred;
2691
2692 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2693 refill_keybuf_fn, MAP_END_KEY);
2694
2695 trace_bcache_keyscan(refill.nr_found,
2696 KEY_INODE(&start), KEY_OFFSET(&start),
2697 KEY_INODE(&buf->last_scanned),
2698 KEY_OFFSET(&buf->last_scanned));
2699
2700 spin_lock(&buf->lock);
2701
2702 if (!RB_EMPTY_ROOT(&buf->keys)) {
2703 struct keybuf_key *w;
2704
2705 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2706 buf->start = START_KEY(&w->key);
2707
2708 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2709 buf->end = w->key;
2710 } else {
2711 buf->start = MAX_KEY;
2712 buf->end = MAX_KEY;
2713 }
2714
2715 spin_unlock(&buf->lock);
2716 }
2717
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2718 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2719 {
2720 rb_erase(&w->node, &buf->keys);
2721 array_free(&buf->freelist, w);
2722 }
2723
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2724 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2725 {
2726 spin_lock(&buf->lock);
2727 __bch_keybuf_del(buf, w);
2728 spin_unlock(&buf->lock);
2729 }
2730
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2731 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2732 struct bkey *end)
2733 {
2734 bool ret = false;
2735 struct keybuf_key *p, *w, s;
2736
2737 s.key = *start;
2738
2739 if (bkey_cmp(end, &buf->start) <= 0 ||
2740 bkey_cmp(start, &buf->end) >= 0)
2741 return false;
2742
2743 spin_lock(&buf->lock);
2744 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2745
2746 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2747 p = w;
2748 w = RB_NEXT(w, node);
2749
2750 if (p->private)
2751 ret = true;
2752 else
2753 __bch_keybuf_del(buf, p);
2754 }
2755
2756 spin_unlock(&buf->lock);
2757 return ret;
2758 }
2759
bch_keybuf_next(struct keybuf * buf)2760 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2761 {
2762 struct keybuf_key *w;
2763
2764 spin_lock(&buf->lock);
2765
2766 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2767
2768 while (w && w->private)
2769 w = RB_NEXT(w, node);
2770
2771 if (w)
2772 w->private = ERR_PTR(-EINTR);
2773
2774 spin_unlock(&buf->lock);
2775 return w;
2776 }
2777
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2778 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2779 struct keybuf *buf,
2780 struct bkey *end,
2781 keybuf_pred_fn *pred)
2782 {
2783 struct keybuf_key *ret;
2784
2785 while (1) {
2786 ret = bch_keybuf_next(buf);
2787 if (ret)
2788 break;
2789
2790 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2791 pr_debug("scan finished\n");
2792 break;
2793 }
2794
2795 bch_refill_keybuf(c, buf, end, pred);
2796 }
2797
2798 return ret;
2799 }
2800
bch_keybuf_init(struct keybuf * buf)2801 void bch_keybuf_init(struct keybuf *buf)
2802 {
2803 buf->last_scanned = MAX_KEY;
2804 buf->keys = RB_ROOT;
2805
2806 spin_lock_init(&buf->lock);
2807 array_allocator_init(&buf->freelist);
2808 }
2809
bch_btree_exit(void)2810 void bch_btree_exit(void)
2811 {
2812 if (btree_io_wq)
2813 destroy_workqueue(btree_io_wq);
2814 }
2815
bch_btree_init(void)2816 int __init bch_btree_init(void)
2817 {
2818 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2819 if (!btree_io_wq)
2820 return -ENOMEM;
2821
2822 return 0;
2823 }
2824