1 #ifndef _BCACHE_BSET_H 2 #define _BCACHE_BSET_H 3 4 #include <linux/bcache.h> 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 8 #include "util.h" /* for time_stats */ 9 10 /* 11 * BKEYS: 12 * 13 * A bkey contains a key, a size field, a variable number of pointers, and some 14 * ancillary flag bits. 15 * 16 * We use two different functions for validating bkeys, bch_ptr_invalid and 17 * bch_ptr_bad(). 18 * 19 * bch_ptr_invalid() primarily filters out keys and pointers that would be 20 * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and 21 * pointer that occur in normal practice but don't point to real data. 22 * 23 * The one exception to the rule that ptr_invalid() filters out invalid keys is 24 * that it also filters out keys of size 0 - these are keys that have been 25 * completely overwritten. It'd be safe to delete these in memory while leaving 26 * them on disk, just unnecessary work - so we filter them out when resorting 27 * instead. 28 * 29 * We can't filter out stale keys when we're resorting, because garbage 30 * collection needs to find them to ensure bucket gens don't wrap around - 31 * unless we're rewriting the btree node those stale keys still exist on disk. 32 * 33 * We also implement functions here for removing some number of sectors from the 34 * front or the back of a bkey - this is mainly used for fixing overlapping 35 * extents, by removing the overlapping sectors from the older key. 36 * 37 * BSETS: 38 * 39 * A bset is an array of bkeys laid out contiguously in memory in sorted order, 40 * along with a header. A btree node is made up of a number of these, written at 41 * different times. 42 * 43 * There could be many of them on disk, but we never allow there to be more than 44 * 4 in memory - we lazily resort as needed. 45 * 46 * We implement code here for creating and maintaining auxiliary search trees 47 * (described below) for searching an individial bset, and on top of that we 48 * implement a btree iterator. 49 * 50 * BTREE ITERATOR: 51 * 52 * Most of the code in bcache doesn't care about an individual bset - it needs 53 * to search entire btree nodes and iterate over them in sorted order. 54 * 55 * The btree iterator code serves both functions; it iterates through the keys 56 * in a btree node in sorted order, starting from either keys after a specific 57 * point (if you pass it a search key) or the start of the btree node. 58 * 59 * AUXILIARY SEARCH TREES: 60 * 61 * Since keys are variable length, we can't use a binary search on a bset - we 62 * wouldn't be able to find the start of the next key. But binary searches are 63 * slow anyways, due to terrible cache behaviour; bcache originally used binary 64 * searches and that code topped out at under 50k lookups/second. 65 * 66 * So we need to construct some sort of lookup table. Since we only insert keys 67 * into the last (unwritten) set, most of the keys within a given btree node are 68 * usually in sets that are mostly constant. We use two different types of 69 * lookup tables to take advantage of this. 70 * 71 * Both lookup tables share in common that they don't index every key in the 72 * set; they index one key every BSET_CACHELINE bytes, and then a linear search 73 * is used for the rest. 74 * 75 * For sets that have been written to disk and are no longer being inserted 76 * into, we construct a binary search tree in an array - traversing a binary 77 * search tree in an array gives excellent locality of reference and is very 78 * fast, since both children of any node are adjacent to each other in memory 79 * (and their grandchildren, and great grandchildren...) - this means 80 * prefetching can be used to great effect. 81 * 82 * It's quite useful performance wise to keep these nodes small - not just 83 * because they're more likely to be in L2, but also because we can prefetch 84 * more nodes on a single cacheline and thus prefetch more iterations in advance 85 * when traversing this tree. 86 * 87 * Nodes in the auxiliary search tree must contain both a key to compare against 88 * (we don't want to fetch the key from the set, that would defeat the purpose), 89 * and a pointer to the key. We use a few tricks to compress both of these. 90 * 91 * To compress the pointer, we take advantage of the fact that one node in the 92 * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have 93 * a function (to_inorder()) that takes the index of a node in a binary tree and 94 * returns what its index would be in an inorder traversal, so we only have to 95 * store the low bits of the offset. 96 * 97 * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To 98 * compress that, we take advantage of the fact that when we're traversing the 99 * search tree at every iteration we know that both our search key and the key 100 * we're looking for lie within some range - bounded by our previous 101 * comparisons. (We special case the start of a search so that this is true even 102 * at the root of the tree). 103 * 104 * So we know the key we're looking for is between a and b, and a and b don't 105 * differ higher than bit 50, we don't need to check anything higher than bit 106 * 50. 107 * 108 * We don't usually need the rest of the bits, either; we only need enough bits 109 * to partition the key range we're currently checking. Consider key n - the 110 * key our auxiliary search tree node corresponds to, and key p, the key 111 * immediately preceding n. The lowest bit we need to store in the auxiliary 112 * search tree is the highest bit that differs between n and p. 113 * 114 * Note that this could be bit 0 - we might sometimes need all 80 bits to do the 115 * comparison. But we'd really like our nodes in the auxiliary search tree to be 116 * of fixed size. 117 * 118 * The solution is to make them fixed size, and when we're constructing a node 119 * check if p and n differed in the bits we needed them to. If they don't we 120 * flag that node, and when doing lookups we fallback to comparing against the 121 * real key. As long as this doesn't happen to often (and it seems to reliably 122 * happen a bit less than 1% of the time), we win - even on failures, that key 123 * is then more likely to be in cache than if we were doing binary searches all 124 * the way, since we're touching so much less memory. 125 * 126 * The keys in the auxiliary search tree are stored in (software) floating 127 * point, with an exponent and a mantissa. The exponent needs to be big enough 128 * to address all the bits in the original key, but the number of bits in the 129 * mantissa is somewhat arbitrary; more bits just gets us fewer failures. 130 * 131 * We need 7 bits for the exponent and 3 bits for the key's offset (since keys 132 * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes. 133 * We need one node per 128 bytes in the btree node, which means the auxiliary 134 * search trees take up 3% as much memory as the btree itself. 135 * 136 * Constructing these auxiliary search trees is moderately expensive, and we 137 * don't want to be constantly rebuilding the search tree for the last set 138 * whenever we insert another key into it. For the unwritten set, we use a much 139 * simpler lookup table - it's just a flat array, so index i in the lookup table 140 * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing 141 * within each byte range works the same as with the auxiliary search trees. 142 * 143 * These are much easier to keep up to date when we insert a key - we do it 144 * somewhat lazily; when we shift a key up we usually just increment the pointer 145 * to it, only when it would overflow do we go to the trouble of finding the 146 * first key in that range of bytes again. 147 */ 148 149 struct btree_keys; 150 struct btree_iter; 151 struct btree_iter_set; 152 struct bkey_float; 153 154 #define MAX_BSETS 4U 155 156 struct bset_tree { 157 /* 158 * We construct a binary tree in an array as if the array 159 * started at 1, so that things line up on the same cachelines 160 * better: see comments in bset.c at cacheline_to_bkey() for 161 * details 162 */ 163 164 /* size of the binary tree and prev array */ 165 unsigned size; 166 167 /* function of size - precalculated for to_inorder() */ 168 unsigned extra; 169 170 /* copy of the last key in the set */ 171 struct bkey end; 172 struct bkey_float *tree; 173 174 /* 175 * The nodes in the bset tree point to specific keys - this 176 * array holds the sizes of the previous key. 177 * 178 * Conceptually it's a member of struct bkey_float, but we want 179 * to keep bkey_float to 4 bytes and prev isn't used in the fast 180 * path. 181 */ 182 uint8_t *prev; 183 184 /* The actual btree node, with pointers to each sorted set */ 185 struct bset *data; 186 }; 187 188 struct btree_keys_ops { 189 bool (*sort_cmp)(struct btree_iter_set, 190 struct btree_iter_set); 191 struct bkey *(*sort_fixup)(struct btree_iter *, struct bkey *); 192 bool (*insert_fixup)(struct btree_keys *, struct bkey *, 193 struct btree_iter *, struct bkey *); 194 bool (*key_invalid)(struct btree_keys *, 195 const struct bkey *); 196 bool (*key_bad)(struct btree_keys *, const struct bkey *); 197 bool (*key_merge)(struct btree_keys *, 198 struct bkey *, struct bkey *); 199 void (*key_to_text)(char *, size_t, const struct bkey *); 200 void (*key_dump)(struct btree_keys *, const struct bkey *); 201 202 /* 203 * Only used for deciding whether to use START_KEY(k) or just the key 204 * itself in a couple places 205 */ 206 bool is_extents; 207 }; 208 209 struct btree_keys { 210 const struct btree_keys_ops *ops; 211 uint8_t page_order; 212 uint8_t nsets; 213 unsigned last_set_unwritten:1; 214 bool *expensive_debug_checks; 215 216 /* 217 * Sets of sorted keys - the real btree node - plus a binary search tree 218 * 219 * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point 220 * to the memory we have allocated for this btree node. Additionally, 221 * set[0]->data points to the entire btree node as it exists on disk. 222 */ 223 struct bset_tree set[MAX_BSETS]; 224 }; 225 226 static inline struct bset_tree *bset_tree_last(struct btree_keys *b) 227 { 228 return b->set + b->nsets; 229 } 230 231 static inline bool bset_written(struct btree_keys *b, struct bset_tree *t) 232 { 233 return t <= b->set + b->nsets - b->last_set_unwritten; 234 } 235 236 static inline bool bkey_written(struct btree_keys *b, struct bkey *k) 237 { 238 return !b->last_set_unwritten || k < b->set[b->nsets].data->start; 239 } 240 241 static inline unsigned bset_byte_offset(struct btree_keys *b, struct bset *i) 242 { 243 return ((size_t) i) - ((size_t) b->set->data); 244 } 245 246 static inline unsigned bset_sector_offset(struct btree_keys *b, struct bset *i) 247 { 248 return bset_byte_offset(b, i) >> 9; 249 } 250 251 #define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t)) 252 #define set_bytes(i) __set_bytes(i, i->keys) 253 254 #define __set_blocks(i, k, block_bytes) \ 255 DIV_ROUND_UP(__set_bytes(i, k), block_bytes) 256 #define set_blocks(i, block_bytes) \ 257 __set_blocks(i, (i)->keys, block_bytes) 258 259 static inline size_t bch_btree_keys_u64s_remaining(struct btree_keys *b) 260 { 261 struct bset_tree *t = bset_tree_last(b); 262 263 BUG_ON((PAGE_SIZE << b->page_order) < 264 (bset_byte_offset(b, t->data) + set_bytes(t->data))); 265 266 if (!b->last_set_unwritten) 267 return 0; 268 269 return ((PAGE_SIZE << b->page_order) - 270 (bset_byte_offset(b, t->data) + set_bytes(t->data))) / 271 sizeof(u64); 272 } 273 274 static inline struct bset *bset_next_set(struct btree_keys *b, 275 unsigned block_bytes) 276 { 277 struct bset *i = bset_tree_last(b)->data; 278 279 return ((void *) i) + roundup(set_bytes(i), block_bytes); 280 } 281 282 void bch_btree_keys_free(struct btree_keys *); 283 int bch_btree_keys_alloc(struct btree_keys *, unsigned, gfp_t); 284 void bch_btree_keys_init(struct btree_keys *, const struct btree_keys_ops *, 285 bool *); 286 287 void bch_bset_init_next(struct btree_keys *, struct bset *, uint64_t); 288 void bch_bset_build_written_tree(struct btree_keys *); 289 void bch_bset_fix_invalidated_key(struct btree_keys *, struct bkey *); 290 bool bch_bkey_try_merge(struct btree_keys *, struct bkey *, struct bkey *); 291 void bch_bset_insert(struct btree_keys *, struct bkey *, struct bkey *); 292 unsigned bch_btree_insert_key(struct btree_keys *, struct bkey *, 293 struct bkey *); 294 295 enum { 296 BTREE_INSERT_STATUS_NO_INSERT = 0, 297 BTREE_INSERT_STATUS_INSERT, 298 BTREE_INSERT_STATUS_BACK_MERGE, 299 BTREE_INSERT_STATUS_OVERWROTE, 300 BTREE_INSERT_STATUS_FRONT_MERGE, 301 }; 302 303 /* Btree key iteration */ 304 305 struct btree_iter { 306 size_t size, used; 307 #ifdef CONFIG_BCACHE_DEBUG 308 struct btree_keys *b; 309 #endif 310 struct btree_iter_set { 311 struct bkey *k, *end; 312 } data[MAX_BSETS]; 313 }; 314 315 typedef bool (*ptr_filter_fn)(struct btree_keys *, const struct bkey *); 316 317 struct bkey *bch_btree_iter_next(struct btree_iter *); 318 struct bkey *bch_btree_iter_next_filter(struct btree_iter *, 319 struct btree_keys *, ptr_filter_fn); 320 321 void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *); 322 struct bkey *bch_btree_iter_init(struct btree_keys *, struct btree_iter *, 323 struct bkey *); 324 325 struct bkey *__bch_bset_search(struct btree_keys *, struct bset_tree *, 326 const struct bkey *); 327 328 /* 329 * Returns the first key that is strictly greater than search 330 */ 331 static inline struct bkey *bch_bset_search(struct btree_keys *b, 332 struct bset_tree *t, 333 const struct bkey *search) 334 { 335 return search ? __bch_bset_search(b, t, search) : t->data->start; 336 } 337 338 #define for_each_key_filter(b, k, iter, filter) \ 339 for (bch_btree_iter_init((b), (iter), NULL); \ 340 ((k) = bch_btree_iter_next_filter((iter), (b), filter));) 341 342 #define for_each_key(b, k, iter) \ 343 for (bch_btree_iter_init((b), (iter), NULL); \ 344 ((k) = bch_btree_iter_next(iter));) 345 346 /* Sorting */ 347 348 struct bset_sort_state { 349 mempool_t *pool; 350 351 unsigned page_order; 352 unsigned crit_factor; 353 354 struct time_stats time; 355 }; 356 357 void bch_bset_sort_state_free(struct bset_sort_state *); 358 int bch_bset_sort_state_init(struct bset_sort_state *, unsigned); 359 void bch_btree_sort_lazy(struct btree_keys *, struct bset_sort_state *); 360 void bch_btree_sort_into(struct btree_keys *, struct btree_keys *, 361 struct bset_sort_state *); 362 void bch_btree_sort_and_fix_extents(struct btree_keys *, struct btree_iter *, 363 struct bset_sort_state *); 364 void bch_btree_sort_partial(struct btree_keys *, unsigned, 365 struct bset_sort_state *); 366 367 static inline void bch_btree_sort(struct btree_keys *b, 368 struct bset_sort_state *state) 369 { 370 bch_btree_sort_partial(b, 0, state); 371 } 372 373 struct bset_stats { 374 size_t sets_written, sets_unwritten; 375 size_t bytes_written, bytes_unwritten; 376 size_t floats, failed; 377 }; 378 379 void bch_btree_keys_stats(struct btree_keys *, struct bset_stats *); 380 381 /* Bkey utility code */ 382 383 #define bset_bkey_last(i) bkey_idx((struct bkey *) (i)->d, (i)->keys) 384 385 static inline struct bkey *bset_bkey_idx(struct bset *i, unsigned idx) 386 { 387 return bkey_idx(i->start, idx); 388 } 389 390 static inline void bkey_init(struct bkey *k) 391 { 392 *k = ZERO_KEY; 393 } 394 395 static __always_inline int64_t bkey_cmp(const struct bkey *l, 396 const struct bkey *r) 397 { 398 return unlikely(KEY_INODE(l) != KEY_INODE(r)) 399 ? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r) 400 : (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r); 401 } 402 403 void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *, 404 unsigned); 405 bool __bch_cut_front(const struct bkey *, struct bkey *); 406 bool __bch_cut_back(const struct bkey *, struct bkey *); 407 408 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k) 409 { 410 BUG_ON(bkey_cmp(where, k) > 0); 411 return __bch_cut_front(where, k); 412 } 413 414 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k) 415 { 416 BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0); 417 return __bch_cut_back(where, k); 418 } 419 420 #define PRECEDING_KEY(_k) \ 421 ({ \ 422 struct bkey *_ret = NULL; \ 423 \ 424 if (KEY_INODE(_k) || KEY_OFFSET(_k)) { \ 425 _ret = &KEY(KEY_INODE(_k), KEY_OFFSET(_k), 0); \ 426 \ 427 if (!_ret->low) \ 428 _ret->high--; \ 429 _ret->low--; \ 430 } \ 431 \ 432 _ret; \ 433 }) 434 435 static inline bool bch_ptr_invalid(struct btree_keys *b, const struct bkey *k) 436 { 437 return b->ops->key_invalid(b, k); 438 } 439 440 static inline bool bch_ptr_bad(struct btree_keys *b, const struct bkey *k) 441 { 442 return b->ops->key_bad(b, k); 443 } 444 445 static inline void bch_bkey_to_text(struct btree_keys *b, char *buf, 446 size_t size, const struct bkey *k) 447 { 448 return b->ops->key_to_text(buf, size, k); 449 } 450 451 static inline bool bch_bkey_equal_header(const struct bkey *l, 452 const struct bkey *r) 453 { 454 return (KEY_DIRTY(l) == KEY_DIRTY(r) && 455 KEY_PTRS(l) == KEY_PTRS(r) && 456 KEY_CSUM(l) == KEY_CSUM(r)); 457 } 458 459 /* Keylists */ 460 461 struct keylist { 462 union { 463 struct bkey *keys; 464 uint64_t *keys_p; 465 }; 466 union { 467 struct bkey *top; 468 uint64_t *top_p; 469 }; 470 471 /* Enough room for btree_split's keys without realloc */ 472 #define KEYLIST_INLINE 16 473 uint64_t inline_keys[KEYLIST_INLINE]; 474 }; 475 476 static inline void bch_keylist_init(struct keylist *l) 477 { 478 l->top_p = l->keys_p = l->inline_keys; 479 } 480 481 static inline void bch_keylist_init_single(struct keylist *l, struct bkey *k) 482 { 483 l->keys = k; 484 l->top = bkey_next(k); 485 } 486 487 static inline void bch_keylist_push(struct keylist *l) 488 { 489 l->top = bkey_next(l->top); 490 } 491 492 static inline void bch_keylist_add(struct keylist *l, struct bkey *k) 493 { 494 bkey_copy(l->top, k); 495 bch_keylist_push(l); 496 } 497 498 static inline bool bch_keylist_empty(struct keylist *l) 499 { 500 return l->top == l->keys; 501 } 502 503 static inline void bch_keylist_reset(struct keylist *l) 504 { 505 l->top = l->keys; 506 } 507 508 static inline void bch_keylist_free(struct keylist *l) 509 { 510 if (l->keys_p != l->inline_keys) 511 kfree(l->keys_p); 512 } 513 514 static inline size_t bch_keylist_nkeys(struct keylist *l) 515 { 516 return l->top_p - l->keys_p; 517 } 518 519 static inline size_t bch_keylist_bytes(struct keylist *l) 520 { 521 return bch_keylist_nkeys(l) * sizeof(uint64_t); 522 } 523 524 struct bkey *bch_keylist_pop(struct keylist *); 525 void bch_keylist_pop_front(struct keylist *); 526 int __bch_keylist_realloc(struct keylist *, unsigned); 527 528 /* Debug stuff */ 529 530 #ifdef CONFIG_BCACHE_DEBUG 531 532 int __bch_count_data(struct btree_keys *); 533 void __bch_check_keys(struct btree_keys *, const char *, ...); 534 void bch_dump_bset(struct btree_keys *, struct bset *, unsigned); 535 void bch_dump_bucket(struct btree_keys *); 536 537 #else 538 539 static inline int __bch_count_data(struct btree_keys *b) { return -1; } 540 static inline void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) {} 541 static inline void bch_dump_bucket(struct btree_keys *b) {} 542 void bch_dump_bset(struct btree_keys *, struct bset *, unsigned); 543 544 #endif 545 546 static inline bool btree_keys_expensive_checks(struct btree_keys *b) 547 { 548 #ifdef CONFIG_BCACHE_DEBUG 549 return *b->expensive_debug_checks; 550 #else 551 return false; 552 #endif 553 } 554 555 static inline int bch_count_data(struct btree_keys *b) 556 { 557 return btree_keys_expensive_checks(b) ? __bch_count_data(b) : -1; 558 } 559 560 #define bch_check_keys(b, ...) \ 561 do { \ 562 if (btree_keys_expensive_checks(b)) \ 563 __bch_check_keys(b, __VA_ARGS__); \ 564 } while (0) 565 566 #endif 567