xref: /openbmc/linux/drivers/md/bcache/bset.h (revision 12eb4683)
1 #ifndef _BCACHE_BSET_H
2 #define _BCACHE_BSET_H
3 
4 #include <linux/slab.h>
5 
6 /*
7  * BKEYS:
8  *
9  * A bkey contains a key, a size field, a variable number of pointers, and some
10  * ancillary flag bits.
11  *
12  * We use two different functions for validating bkeys, bch_ptr_invalid and
13  * bch_ptr_bad().
14  *
15  * bch_ptr_invalid() primarily filters out keys and pointers that would be
16  * invalid due to some sort of bug, whereas bch_ptr_bad() filters out keys and
17  * pointer that occur in normal practice but don't point to real data.
18  *
19  * The one exception to the rule that ptr_invalid() filters out invalid keys is
20  * that it also filters out keys of size 0 - these are keys that have been
21  * completely overwritten. It'd be safe to delete these in memory while leaving
22  * them on disk, just unnecessary work - so we filter them out when resorting
23  * instead.
24  *
25  * We can't filter out stale keys when we're resorting, because garbage
26  * collection needs to find them to ensure bucket gens don't wrap around -
27  * unless we're rewriting the btree node those stale keys still exist on disk.
28  *
29  * We also implement functions here for removing some number of sectors from the
30  * front or the back of a bkey - this is mainly used for fixing overlapping
31  * extents, by removing the overlapping sectors from the older key.
32  *
33  * BSETS:
34  *
35  * A bset is an array of bkeys laid out contiguously in memory in sorted order,
36  * along with a header. A btree node is made up of a number of these, written at
37  * different times.
38  *
39  * There could be many of them on disk, but we never allow there to be more than
40  * 4 in memory - we lazily resort as needed.
41  *
42  * We implement code here for creating and maintaining auxiliary search trees
43  * (described below) for searching an individial bset, and on top of that we
44  * implement a btree iterator.
45  *
46  * BTREE ITERATOR:
47  *
48  * Most of the code in bcache doesn't care about an individual bset - it needs
49  * to search entire btree nodes and iterate over them in sorted order.
50  *
51  * The btree iterator code serves both functions; it iterates through the keys
52  * in a btree node in sorted order, starting from either keys after a specific
53  * point (if you pass it a search key) or the start of the btree node.
54  *
55  * AUXILIARY SEARCH TREES:
56  *
57  * Since keys are variable length, we can't use a binary search on a bset - we
58  * wouldn't be able to find the start of the next key. But binary searches are
59  * slow anyways, due to terrible cache behaviour; bcache originally used binary
60  * searches and that code topped out at under 50k lookups/second.
61  *
62  * So we need to construct some sort of lookup table. Since we only insert keys
63  * into the last (unwritten) set, most of the keys within a given btree node are
64  * usually in sets that are mostly constant. We use two different types of
65  * lookup tables to take advantage of this.
66  *
67  * Both lookup tables share in common that they don't index every key in the
68  * set; they index one key every BSET_CACHELINE bytes, and then a linear search
69  * is used for the rest.
70  *
71  * For sets that have been written to disk and are no longer being inserted
72  * into, we construct a binary search tree in an array - traversing a binary
73  * search tree in an array gives excellent locality of reference and is very
74  * fast, since both children of any node are adjacent to each other in memory
75  * (and their grandchildren, and great grandchildren...) - this means
76  * prefetching can be used to great effect.
77  *
78  * It's quite useful performance wise to keep these nodes small - not just
79  * because they're more likely to be in L2, but also because we can prefetch
80  * more nodes on a single cacheline and thus prefetch more iterations in advance
81  * when traversing this tree.
82  *
83  * Nodes in the auxiliary search tree must contain both a key to compare against
84  * (we don't want to fetch the key from the set, that would defeat the purpose),
85  * and a pointer to the key. We use a few tricks to compress both of these.
86  *
87  * To compress the pointer, we take advantage of the fact that one node in the
88  * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have
89  * a function (to_inorder()) that takes the index of a node in a binary tree and
90  * returns what its index would be in an inorder traversal, so we only have to
91  * store the low bits of the offset.
92  *
93  * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To
94  * compress that,  we take advantage of the fact that when we're traversing the
95  * search tree at every iteration we know that both our search key and the key
96  * we're looking for lie within some range - bounded by our previous
97  * comparisons. (We special case the start of a search so that this is true even
98  * at the root of the tree).
99  *
100  * So we know the key we're looking for is between a and b, and a and b don't
101  * differ higher than bit 50, we don't need to check anything higher than bit
102  * 50.
103  *
104  * We don't usually need the rest of the bits, either; we only need enough bits
105  * to partition the key range we're currently checking.  Consider key n - the
106  * key our auxiliary search tree node corresponds to, and key p, the key
107  * immediately preceding n.  The lowest bit we need to store in the auxiliary
108  * search tree is the highest bit that differs between n and p.
109  *
110  * Note that this could be bit 0 - we might sometimes need all 80 bits to do the
111  * comparison. But we'd really like our nodes in the auxiliary search tree to be
112  * of fixed size.
113  *
114  * The solution is to make them fixed size, and when we're constructing a node
115  * check if p and n differed in the bits we needed them to. If they don't we
116  * flag that node, and when doing lookups we fallback to comparing against the
117  * real key. As long as this doesn't happen to often (and it seems to reliably
118  * happen a bit less than 1% of the time), we win - even on failures, that key
119  * is then more likely to be in cache than if we were doing binary searches all
120  * the way, since we're touching so much less memory.
121  *
122  * The keys in the auxiliary search tree are stored in (software) floating
123  * point, with an exponent and a mantissa. The exponent needs to be big enough
124  * to address all the bits in the original key, but the number of bits in the
125  * mantissa is somewhat arbitrary; more bits just gets us fewer failures.
126  *
127  * We need 7 bits for the exponent and 3 bits for the key's offset (since keys
128  * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes.
129  * We need one node per 128 bytes in the btree node, which means the auxiliary
130  * search trees take up 3% as much memory as the btree itself.
131  *
132  * Constructing these auxiliary search trees is moderately expensive, and we
133  * don't want to be constantly rebuilding the search tree for the last set
134  * whenever we insert another key into it. For the unwritten set, we use a much
135  * simpler lookup table - it's just a flat array, so index i in the lookup table
136  * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing
137  * within each byte range works the same as with the auxiliary search trees.
138  *
139  * These are much easier to keep up to date when we insert a key - we do it
140  * somewhat lazily; when we shift a key up we usually just increment the pointer
141  * to it, only when it would overflow do we go to the trouble of finding the
142  * first key in that range of bytes again.
143  */
144 
145 /* Btree key comparison/iteration */
146 
147 #define MAX_BSETS		4U
148 
149 struct btree_iter {
150 	size_t size, used;
151 #ifdef CONFIG_BCACHE_DEBUG
152 	struct btree *b;
153 #endif
154 	struct btree_iter_set {
155 		struct bkey *k, *end;
156 	} data[MAX_BSETS];
157 };
158 
159 struct bset_tree {
160 	/*
161 	 * We construct a binary tree in an array as if the array
162 	 * started at 1, so that things line up on the same cachelines
163 	 * better: see comments in bset.c at cacheline_to_bkey() for
164 	 * details
165 	 */
166 
167 	/* size of the binary tree and prev array */
168 	unsigned	size;
169 
170 	/* function of size - precalculated for to_inorder() */
171 	unsigned	extra;
172 
173 	/* copy of the last key in the set */
174 	struct bkey	end;
175 	struct bkey_float *tree;
176 
177 	/*
178 	 * The nodes in the bset tree point to specific keys - this
179 	 * array holds the sizes of the previous key.
180 	 *
181 	 * Conceptually it's a member of struct bkey_float, but we want
182 	 * to keep bkey_float to 4 bytes and prev isn't used in the fast
183 	 * path.
184 	 */
185 	uint8_t		*prev;
186 
187 	/* The actual btree node, with pointers to each sorted set */
188 	struct bset	*data;
189 };
190 
191 static __always_inline int64_t bkey_cmp(const struct bkey *l,
192 					const struct bkey *r)
193 {
194 	return unlikely(KEY_INODE(l) != KEY_INODE(r))
195 		? (int64_t) KEY_INODE(l) - (int64_t) KEY_INODE(r)
196 		: (int64_t) KEY_OFFSET(l) - (int64_t) KEY_OFFSET(r);
197 }
198 
199 /* Keylists */
200 
201 struct keylist {
202 	union {
203 		struct bkey		*keys;
204 		uint64_t		*keys_p;
205 	};
206 	union {
207 		struct bkey		*top;
208 		uint64_t		*top_p;
209 	};
210 
211 	/* Enough room for btree_split's keys without realloc */
212 #define KEYLIST_INLINE		16
213 	uint64_t		inline_keys[KEYLIST_INLINE];
214 };
215 
216 static inline void bch_keylist_init(struct keylist *l)
217 {
218 	l->top_p = l->keys_p = l->inline_keys;
219 }
220 
221 static inline void bch_keylist_push(struct keylist *l)
222 {
223 	l->top = bkey_next(l->top);
224 }
225 
226 static inline void bch_keylist_add(struct keylist *l, struct bkey *k)
227 {
228 	bkey_copy(l->top, k);
229 	bch_keylist_push(l);
230 }
231 
232 static inline bool bch_keylist_empty(struct keylist *l)
233 {
234 	return l->top == l->keys;
235 }
236 
237 static inline void bch_keylist_reset(struct keylist *l)
238 {
239 	l->top = l->keys;
240 }
241 
242 static inline void bch_keylist_free(struct keylist *l)
243 {
244 	if (l->keys_p != l->inline_keys)
245 		kfree(l->keys_p);
246 }
247 
248 static inline size_t bch_keylist_nkeys(struct keylist *l)
249 {
250 	return l->top_p - l->keys_p;
251 }
252 
253 static inline size_t bch_keylist_bytes(struct keylist *l)
254 {
255 	return bch_keylist_nkeys(l) * sizeof(uint64_t);
256 }
257 
258 struct bkey *bch_keylist_pop(struct keylist *);
259 void bch_keylist_pop_front(struct keylist *);
260 int bch_keylist_realloc(struct keylist *, int, struct cache_set *);
261 
262 void bch_bkey_copy_single_ptr(struct bkey *, const struct bkey *,
263 			      unsigned);
264 bool __bch_cut_front(const struct bkey *, struct bkey *);
265 bool __bch_cut_back(const struct bkey *, struct bkey *);
266 
267 static inline bool bch_cut_front(const struct bkey *where, struct bkey *k)
268 {
269 	BUG_ON(bkey_cmp(where, k) > 0);
270 	return __bch_cut_front(where, k);
271 }
272 
273 static inline bool bch_cut_back(const struct bkey *where, struct bkey *k)
274 {
275 	BUG_ON(bkey_cmp(where, &START_KEY(k)) < 0);
276 	return __bch_cut_back(where, k);
277 }
278 
279 const char *bch_ptr_status(struct cache_set *, const struct bkey *);
280 bool bch_btree_ptr_invalid(struct cache_set *, const struct bkey *);
281 bool bch_extent_ptr_invalid(struct cache_set *, const struct bkey *);
282 
283 bool bch_ptr_bad(struct btree *, const struct bkey *);
284 
285 static inline uint8_t gen_after(uint8_t a, uint8_t b)
286 {
287 	uint8_t r = a - b;
288 	return r > 128U ? 0 : r;
289 }
290 
291 static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
292 				unsigned i)
293 {
294 	return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
295 }
296 
297 static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
298 				 unsigned i)
299 {
300 	return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
301 }
302 
303 
304 typedef bool (*ptr_filter_fn)(struct btree *, const struct bkey *);
305 
306 struct bkey *bch_btree_iter_next(struct btree_iter *);
307 struct bkey *bch_btree_iter_next_filter(struct btree_iter *,
308 					struct btree *, ptr_filter_fn);
309 
310 void bch_btree_iter_push(struct btree_iter *, struct bkey *, struct bkey *);
311 struct bkey *__bch_btree_iter_init(struct btree *, struct btree_iter *,
312 				   struct bkey *, struct bset_tree *);
313 
314 /* 32 bits total: */
315 #define BKEY_MID_BITS		3
316 #define BKEY_EXPONENT_BITS	7
317 #define BKEY_MANTISSA_BITS	22
318 #define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
319 
320 struct bkey_float {
321 	unsigned	exponent:BKEY_EXPONENT_BITS;
322 	unsigned	m:BKEY_MID_BITS;
323 	unsigned	mantissa:BKEY_MANTISSA_BITS;
324 } __packed;
325 
326 /*
327  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
328  * it used to be 64, but I realized the lookup code would touch slightly less
329  * memory if it was 128.
330  *
331  * It definites the number of bytes (in struct bset) per struct bkey_float in
332  * the auxiliar search tree - when we're done searching the bset_float tree we
333  * have this many bytes left that we do a linear search over.
334  *
335  * Since (after level 5) every level of the bset_tree is on a new cacheline,
336  * we're touching one fewer cacheline in the bset tree in exchange for one more
337  * cacheline in the linear search - but the linear search might stop before it
338  * gets to the second cacheline.
339  */
340 
341 #define BSET_CACHELINE		128
342 #define bset_tree_space(b)	(btree_data_space(b) / BSET_CACHELINE)
343 
344 #define bset_tree_bytes(b)	(bset_tree_space(b) * sizeof(struct bkey_float))
345 #define bset_prev_bytes(b)	(bset_tree_space(b) * sizeof(uint8_t))
346 
347 void bch_bset_init_next(struct btree *);
348 
349 void bch_bset_fix_invalidated_key(struct btree *, struct bkey *);
350 void bch_bset_fix_lookup_table(struct btree *, struct bkey *);
351 
352 struct bkey *__bch_bset_search(struct btree *, struct bset_tree *,
353 			   const struct bkey *);
354 
355 /*
356  * Returns the first key that is strictly greater than search
357  */
358 static inline struct bkey *bch_bset_search(struct btree *b, struct bset_tree *t,
359 					   const struct bkey *search)
360 {
361 	return search ? __bch_bset_search(b, t, search) : t->data->start;
362 }
363 
364 #define PRECEDING_KEY(_k)					\
365 ({								\
366 	struct bkey *_ret = NULL;				\
367 								\
368 	if (KEY_INODE(_k) || KEY_OFFSET(_k)) {			\
369 		_ret = &KEY(KEY_INODE(_k), KEY_OFFSET(_k), 0);	\
370 								\
371 		if (!_ret->low)					\
372 			_ret->high--;				\
373 		_ret->low--;					\
374 	}							\
375 								\
376 	_ret;							\
377 })
378 
379 bool bch_bkey_try_merge(struct btree *, struct bkey *, struct bkey *);
380 void bch_btree_sort_lazy(struct btree *);
381 void bch_btree_sort_into(struct btree *, struct btree *);
382 void bch_btree_sort_and_fix_extents(struct btree *, struct btree_iter *);
383 void bch_btree_sort_partial(struct btree *, unsigned);
384 
385 static inline void bch_btree_sort(struct btree *b)
386 {
387 	bch_btree_sort_partial(b, 0);
388 }
389 
390 int bch_bset_print_stats(struct cache_set *, char *);
391 
392 #endif
393