1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Code for working with individual keys, and sorted sets of keys with in a 4 * btree node 5 * 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) "bcache: %s() " fmt, __func__ 10 11 #include "util.h" 12 #include "bset.h" 13 14 #include <linux/console.h> 15 #include <linux/sched/clock.h> 16 #include <linux/random.h> 17 #include <linux/prefetch.h> 18 19 #ifdef CONFIG_BCACHE_DEBUG 20 21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set) 22 { 23 struct bkey *k, *next; 24 25 for (k = i->start; k < bset_bkey_last(i); k = next) { 26 next = bkey_next(k); 27 28 pr_err("block %u key %u/%u: ", set, 29 (unsigned int) ((u64 *) k - i->d), i->keys); 30 31 if (b->ops->key_dump) 32 b->ops->key_dump(b, k); 33 else 34 pr_cont("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k)); 35 36 if (next < bset_bkey_last(i) && 37 bkey_cmp(k, b->ops->is_extents ? 38 &START_KEY(next) : next) > 0) 39 pr_err("Key skipped backwards\n"); 40 } 41 } 42 43 void bch_dump_bucket(struct btree_keys *b) 44 { 45 unsigned int i; 46 47 console_lock(); 48 for (i = 0; i <= b->nsets; i++) 49 bch_dump_bset(b, b->set[i].data, 50 bset_sector_offset(b, b->set[i].data)); 51 console_unlock(); 52 } 53 54 int __bch_count_data(struct btree_keys *b) 55 { 56 unsigned int ret = 0; 57 struct btree_iter iter; 58 struct bkey *k; 59 60 if (b->ops->is_extents) 61 for_each_key(b, k, &iter) 62 ret += KEY_SIZE(k); 63 return ret; 64 } 65 66 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) 67 { 68 va_list args; 69 struct bkey *k, *p = NULL; 70 struct btree_iter iter; 71 const char *err; 72 73 for_each_key(b, k, &iter) { 74 if (b->ops->is_extents) { 75 err = "Keys out of order"; 76 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0) 77 goto bug; 78 79 if (bch_ptr_invalid(b, k)) 80 continue; 81 82 err = "Overlapping keys"; 83 if (p && bkey_cmp(p, &START_KEY(k)) > 0) 84 goto bug; 85 } else { 86 if (bch_ptr_bad(b, k)) 87 continue; 88 89 err = "Duplicate keys"; 90 if (p && !bkey_cmp(p, k)) 91 goto bug; 92 } 93 p = k; 94 } 95 #if 0 96 err = "Key larger than btree node key"; 97 if (p && bkey_cmp(p, &b->key) > 0) 98 goto bug; 99 #endif 100 return; 101 bug: 102 bch_dump_bucket(b); 103 104 va_start(args, fmt); 105 vprintk(fmt, args); 106 va_end(args); 107 108 panic("bch_check_keys error: %s:\n", err); 109 } 110 111 static void bch_btree_iter_next_check(struct btree_iter *iter) 112 { 113 struct bkey *k = iter->data->k, *next = bkey_next(k); 114 115 if (next < iter->data->end && 116 bkey_cmp(k, iter->b->ops->is_extents ? 117 &START_KEY(next) : next) > 0) { 118 bch_dump_bucket(iter->b); 119 panic("Key skipped backwards\n"); 120 } 121 } 122 123 #else 124 125 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {} 126 127 #endif 128 129 /* Keylists */ 130 131 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s) 132 { 133 size_t oldsize = bch_keylist_nkeys(l); 134 size_t newsize = oldsize + u64s; 135 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; 136 uint64_t *new_keys; 137 138 newsize = roundup_pow_of_two(newsize); 139 140 if (newsize <= KEYLIST_INLINE || 141 roundup_pow_of_two(oldsize) == newsize) 142 return 0; 143 144 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); 145 146 if (!new_keys) 147 return -ENOMEM; 148 149 if (!old_keys) 150 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); 151 152 l->keys_p = new_keys; 153 l->top_p = new_keys + oldsize; 154 155 return 0; 156 } 157 158 /* Pop the top key of keylist by pointing l->top to its previous key */ 159 struct bkey *bch_keylist_pop(struct keylist *l) 160 { 161 struct bkey *k = l->keys; 162 163 if (k == l->top) 164 return NULL; 165 166 while (bkey_next(k) != l->top) 167 k = bkey_next(k); 168 169 return l->top = k; 170 } 171 172 /* Pop the bottom key of keylist and update l->top_p */ 173 void bch_keylist_pop_front(struct keylist *l) 174 { 175 l->top_p -= bkey_u64s(l->keys); 176 177 memmove(l->keys, 178 bkey_next(l->keys), 179 bch_keylist_bytes(l)); 180 } 181 182 /* Key/pointer manipulation */ 183 184 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, 185 unsigned int i) 186 { 187 BUG_ON(i > KEY_PTRS(src)); 188 189 /* Only copy the header, key, and one pointer. */ 190 memcpy(dest, src, 2 * sizeof(uint64_t)); 191 dest->ptr[0] = src->ptr[i]; 192 SET_KEY_PTRS(dest, 1); 193 /* We didn't copy the checksum so clear that bit. */ 194 SET_KEY_CSUM(dest, 0); 195 } 196 197 bool __bch_cut_front(const struct bkey *where, struct bkey *k) 198 { 199 unsigned int i, len = 0; 200 201 if (bkey_cmp(where, &START_KEY(k)) <= 0) 202 return false; 203 204 if (bkey_cmp(where, k) < 0) 205 len = KEY_OFFSET(k) - KEY_OFFSET(where); 206 else 207 bkey_copy_key(k, where); 208 209 for (i = 0; i < KEY_PTRS(k); i++) 210 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); 211 212 BUG_ON(len > KEY_SIZE(k)); 213 SET_KEY_SIZE(k, len); 214 return true; 215 } 216 217 bool __bch_cut_back(const struct bkey *where, struct bkey *k) 218 { 219 unsigned int len = 0; 220 221 if (bkey_cmp(where, k) >= 0) 222 return false; 223 224 BUG_ON(KEY_INODE(where) != KEY_INODE(k)); 225 226 if (bkey_cmp(where, &START_KEY(k)) > 0) 227 len = KEY_OFFSET(where) - KEY_START(k); 228 229 bkey_copy_key(k, where); 230 231 BUG_ON(len > KEY_SIZE(k)); 232 SET_KEY_SIZE(k, len); 233 return true; 234 } 235 236 /* Auxiliary search trees */ 237 238 /* 32 bits total: */ 239 #define BKEY_MID_BITS 3 240 #define BKEY_EXPONENT_BITS 7 241 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS) 242 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1) 243 244 struct bkey_float { 245 unsigned int exponent:BKEY_EXPONENT_BITS; 246 unsigned int m:BKEY_MID_BITS; 247 unsigned int mantissa:BKEY_MANTISSA_BITS; 248 } __packed; 249 250 /* 251 * BSET_CACHELINE was originally intended to match the hardware cacheline size - 252 * it used to be 64, but I realized the lookup code would touch slightly less 253 * memory if it was 128. 254 * 255 * It definites the number of bytes (in struct bset) per struct bkey_float in 256 * the auxiliar search tree - when we're done searching the bset_float tree we 257 * have this many bytes left that we do a linear search over. 258 * 259 * Since (after level 5) every level of the bset_tree is on a new cacheline, 260 * we're touching one fewer cacheline in the bset tree in exchange for one more 261 * cacheline in the linear search - but the linear search might stop before it 262 * gets to the second cacheline. 263 */ 264 265 #define BSET_CACHELINE 128 266 267 /* Space required for the btree node keys */ 268 static inline size_t btree_keys_bytes(struct btree_keys *b) 269 { 270 return PAGE_SIZE << b->page_order; 271 } 272 273 static inline size_t btree_keys_cachelines(struct btree_keys *b) 274 { 275 return btree_keys_bytes(b) / BSET_CACHELINE; 276 } 277 278 /* Space required for the auxiliary search trees */ 279 static inline size_t bset_tree_bytes(struct btree_keys *b) 280 { 281 return btree_keys_cachelines(b) * sizeof(struct bkey_float); 282 } 283 284 /* Space required for the prev pointers */ 285 static inline size_t bset_prev_bytes(struct btree_keys *b) 286 { 287 return btree_keys_cachelines(b) * sizeof(uint8_t); 288 } 289 290 /* Memory allocation */ 291 292 void bch_btree_keys_free(struct btree_keys *b) 293 { 294 struct bset_tree *t = b->set; 295 296 if (bset_prev_bytes(b) < PAGE_SIZE) 297 kfree(t->prev); 298 else 299 free_pages((unsigned long) t->prev, 300 get_order(bset_prev_bytes(b))); 301 302 if (bset_tree_bytes(b) < PAGE_SIZE) 303 kfree(t->tree); 304 else 305 free_pages((unsigned long) t->tree, 306 get_order(bset_tree_bytes(b))); 307 308 free_pages((unsigned long) t->data, b->page_order); 309 310 t->prev = NULL; 311 t->tree = NULL; 312 t->data = NULL; 313 } 314 315 int bch_btree_keys_alloc(struct btree_keys *b, 316 unsigned int page_order, 317 gfp_t gfp) 318 { 319 struct bset_tree *t = b->set; 320 321 BUG_ON(t->data); 322 323 b->page_order = page_order; 324 325 t->data = (void *) __get_free_pages(__GFP_COMP|gfp, b->page_order); 326 if (!t->data) 327 goto err; 328 329 t->tree = bset_tree_bytes(b) < PAGE_SIZE 330 ? kmalloc(bset_tree_bytes(b), gfp) 331 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); 332 if (!t->tree) 333 goto err; 334 335 t->prev = bset_prev_bytes(b) < PAGE_SIZE 336 ? kmalloc(bset_prev_bytes(b), gfp) 337 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); 338 if (!t->prev) 339 goto err; 340 341 return 0; 342 err: 343 bch_btree_keys_free(b); 344 return -ENOMEM; 345 } 346 347 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, 348 bool *expensive_debug_checks) 349 { 350 b->ops = ops; 351 b->expensive_debug_checks = expensive_debug_checks; 352 b->nsets = 0; 353 b->last_set_unwritten = 0; 354 355 /* 356 * struct btree_keys in embedded in struct btree, and struct 357 * bset_tree is embedded into struct btree_keys. They are all 358 * initialized as 0 by kzalloc() in mca_bucket_alloc(), and 359 * b->set[0].data is allocated in bch_btree_keys_alloc(), so we 360 * don't have to initiate b->set[].size and b->set[].data here 361 * any more. 362 */ 363 } 364 365 /* Binary tree stuff for auxiliary search trees */ 366 367 /* 368 * return array index next to j when does in-order traverse 369 * of a binary tree which is stored in a linear array 370 */ 371 static unsigned int inorder_next(unsigned int j, unsigned int size) 372 { 373 if (j * 2 + 1 < size) { 374 j = j * 2 + 1; 375 376 while (j * 2 < size) 377 j *= 2; 378 } else 379 j >>= ffz(j) + 1; 380 381 return j; 382 } 383 384 /* 385 * return array index previous to j when does in-order traverse 386 * of a binary tree which is stored in a linear array 387 */ 388 static unsigned int inorder_prev(unsigned int j, unsigned int size) 389 { 390 if (j * 2 < size) { 391 j = j * 2; 392 393 while (j * 2 + 1 < size) 394 j = j * 2 + 1; 395 } else 396 j >>= ffs(j); 397 398 return j; 399 } 400 401 /* 402 * I have no idea why this code works... and I'm the one who wrote it 403 * 404 * However, I do know what it does: 405 * Given a binary tree constructed in an array (i.e. how you normally implement 406 * a heap), it converts a node in the tree - referenced by array index - to the 407 * index it would have if you did an inorder traversal. 408 * 409 * Also tested for every j, size up to size somewhere around 6 million. 410 * 411 * The binary tree starts at array index 1, not 0 412 * extra is a function of size: 413 * extra = (size - rounddown_pow_of_two(size - 1)) << 1; 414 */ 415 static unsigned int __to_inorder(unsigned int j, 416 unsigned int size, 417 unsigned int extra) 418 { 419 unsigned int b = fls(j); 420 unsigned int shift = fls(size - 1) - b; 421 422 j ^= 1U << (b - 1); 423 j <<= 1; 424 j |= 1; 425 j <<= shift; 426 427 if (j > extra) 428 j -= (j - extra) >> 1; 429 430 return j; 431 } 432 433 /* 434 * Return the cacheline index in bset_tree->data, where j is index 435 * from a linear array which stores the auxiliar binary tree 436 */ 437 static unsigned int to_inorder(unsigned int j, struct bset_tree *t) 438 { 439 return __to_inorder(j, t->size, t->extra); 440 } 441 442 static unsigned int __inorder_to_tree(unsigned int j, 443 unsigned int size, 444 unsigned int extra) 445 { 446 unsigned int shift; 447 448 if (j > extra) 449 j += j - extra; 450 451 shift = ffs(j); 452 453 j >>= shift; 454 j |= roundup_pow_of_two(size) >> shift; 455 456 return j; 457 } 458 459 /* 460 * Return an index from a linear array which stores the auxiliar binary 461 * tree, j is the cacheline index of t->data. 462 */ 463 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t) 464 { 465 return __inorder_to_tree(j, t->size, t->extra); 466 } 467 468 #if 0 469 void inorder_test(void) 470 { 471 unsigned long done = 0; 472 ktime_t start = ktime_get(); 473 474 for (unsigned int size = 2; 475 size < 65536000; 476 size++) { 477 unsigned int extra = 478 (size - rounddown_pow_of_two(size - 1)) << 1; 479 unsigned int i = 1, j = rounddown_pow_of_two(size - 1); 480 481 if (!(size % 4096)) 482 pr_notice("loop %u, %llu per us\n", size, 483 done / ktime_us_delta(ktime_get(), start)); 484 485 while (1) { 486 if (__inorder_to_tree(i, size, extra) != j) 487 panic("size %10u j %10u i %10u", size, j, i); 488 489 if (__to_inorder(j, size, extra) != i) 490 panic("size %10u j %10u i %10u", size, j, i); 491 492 if (j == rounddown_pow_of_two(size) - 1) 493 break; 494 495 BUG_ON(inorder_prev(inorder_next(j, size), size) != j); 496 497 j = inorder_next(j, size); 498 i++; 499 } 500 501 done += size - 1; 502 } 503 } 504 #endif 505 506 /* 507 * Cacheline/offset <-> bkey pointer arithmetic: 508 * 509 * t->tree is a binary search tree in an array; each node corresponds to a key 510 * in one cacheline in t->set (BSET_CACHELINE bytes). 511 * 512 * This means we don't have to store the full index of the key that a node in 513 * the binary tree points to; to_inorder() gives us the cacheline, and then 514 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. 515 * 516 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 517 * make this work. 518 * 519 * To construct the bfloat for an arbitrary key we need to know what the key 520 * immediately preceding it is: we have to check if the two keys differ in the 521 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 522 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 523 */ 524 525 static struct bkey *cacheline_to_bkey(struct bset_tree *t, 526 unsigned int cacheline, 527 unsigned int offset) 528 { 529 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; 530 } 531 532 static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k) 533 { 534 return ((void *) k - (void *) t->data) / BSET_CACHELINE; 535 } 536 537 static unsigned int bkey_to_cacheline_offset(struct bset_tree *t, 538 unsigned int cacheline, 539 struct bkey *k) 540 { 541 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0); 542 } 543 544 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j) 545 { 546 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); 547 } 548 549 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j) 550 { 551 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); 552 } 553 554 /* 555 * For the write set - the one we're currently inserting keys into - we don't 556 * maintain a full search tree, we just keep a simple lookup table in t->prev. 557 */ 558 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline) 559 { 560 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); 561 } 562 563 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) 564 { 565 low >>= shift; 566 low |= (high << 1) << (63U - shift); 567 return low; 568 } 569 570 /* 571 * Calculate mantissa value for struct bkey_float. 572 * If most significant bit of f->exponent is not set, then 573 * - f->exponent >> 6 is 0 574 * - p[0] points to bkey->low 575 * - p[-1] borrows bits from KEY_INODE() of bkey->high 576 * if most isgnificant bits of f->exponent is set, then 577 * - f->exponent >> 6 is 1 578 * - p[0] points to bits from KEY_INODE() of bkey->high 579 * - p[-1] points to other bits from KEY_INODE() of 580 * bkey->high too. 581 * See make_bfloat() to check when most significant bit of f->exponent 582 * is set or not. 583 */ 584 static inline unsigned int bfloat_mantissa(const struct bkey *k, 585 struct bkey_float *f) 586 { 587 const uint64_t *p = &k->low - (f->exponent >> 6); 588 589 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; 590 } 591 592 static void make_bfloat(struct bset_tree *t, unsigned int j) 593 { 594 struct bkey_float *f = &t->tree[j]; 595 struct bkey *m = tree_to_bkey(t, j); 596 struct bkey *p = tree_to_prev_bkey(t, j); 597 598 struct bkey *l = is_power_of_2(j) 599 ? t->data->start 600 : tree_to_prev_bkey(t, j >> ffs(j)); 601 602 struct bkey *r = is_power_of_2(j + 1) 603 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end)) 604 : tree_to_bkey(t, j >> (ffz(j) + 1)); 605 606 BUG_ON(m < l || m > r); 607 BUG_ON(bkey_next(p) != m); 608 609 /* 610 * If l and r have different KEY_INODE values (different backing 611 * device), f->exponent records how many least significant bits 612 * are different in KEY_INODE values and sets most significant 613 * bits to 1 (by +64). 614 * If l and r have same KEY_INODE value, f->exponent records 615 * how many different bits in least significant bits of bkey->low. 616 * See bfloat_mantiss() how the most significant bit of 617 * f->exponent is used to calculate bfloat mantissa value. 618 */ 619 if (KEY_INODE(l) != KEY_INODE(r)) 620 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; 621 else 622 f->exponent = fls64(r->low ^ l->low); 623 624 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); 625 626 /* 627 * Setting f->exponent = 127 flags this node as failed, and causes the 628 * lookup code to fall back to comparing against the original key. 629 */ 630 631 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) 632 f->mantissa = bfloat_mantissa(m, f) - 1; 633 else 634 f->exponent = 127; 635 } 636 637 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t) 638 { 639 if (t != b->set) { 640 unsigned int j = roundup(t[-1].size, 641 64 / sizeof(struct bkey_float)); 642 643 t->tree = t[-1].tree + j; 644 t->prev = t[-1].prev + j; 645 } 646 647 while (t < b->set + MAX_BSETS) 648 t++->size = 0; 649 } 650 651 static void bch_bset_build_unwritten_tree(struct btree_keys *b) 652 { 653 struct bset_tree *t = bset_tree_last(b); 654 655 BUG_ON(b->last_set_unwritten); 656 b->last_set_unwritten = 1; 657 658 bset_alloc_tree(b, t); 659 660 if (t->tree != b->set->tree + btree_keys_cachelines(b)) { 661 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start); 662 t->size = 1; 663 } 664 } 665 666 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic) 667 { 668 if (i != b->set->data) { 669 b->set[++b->nsets].data = i; 670 i->seq = b->set->data->seq; 671 } else 672 get_random_bytes(&i->seq, sizeof(uint64_t)); 673 674 i->magic = magic; 675 i->version = 0; 676 i->keys = 0; 677 678 bch_bset_build_unwritten_tree(b); 679 } 680 681 /* 682 * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to 683 * accelerate bkey search in a btree node (pointed by bset_tree->data in 684 * memory). After search in the auxiliar tree by calling bset_search_tree(), 685 * a struct bset_search_iter is returned which indicates range [l, r] from 686 * bset_tree->data where the searching bkey might be inside. Then a followed 687 * linear comparison does the exact search, see __bch_bset_search() for how 688 * the auxiliary tree is used. 689 */ 690 void bch_bset_build_written_tree(struct btree_keys *b) 691 { 692 struct bset_tree *t = bset_tree_last(b); 693 struct bkey *prev = NULL, *k = t->data->start; 694 unsigned int j, cacheline = 1; 695 696 b->last_set_unwritten = 0; 697 698 bset_alloc_tree(b, t); 699 700 t->size = min_t(unsigned int, 701 bkey_to_cacheline(t, bset_bkey_last(t->data)), 702 b->set->tree + btree_keys_cachelines(b) - t->tree); 703 704 if (t->size < 2) { 705 t->size = 0; 706 return; 707 } 708 709 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 710 711 /* First we figure out where the first key in each cacheline is */ 712 for (j = inorder_next(0, t->size); 713 j; 714 j = inorder_next(j, t->size)) { 715 while (bkey_to_cacheline(t, k) < cacheline) { 716 prev = k; 717 k = bkey_next(k); 718 } 719 720 t->prev[j] = bkey_u64s(prev); 721 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); 722 } 723 724 while (bkey_next(k) != bset_bkey_last(t->data)) 725 k = bkey_next(k); 726 727 t->end = *k; 728 729 /* Then we build the tree */ 730 for (j = inorder_next(0, t->size); 731 j; 732 j = inorder_next(j, t->size)) 733 make_bfloat(t, j); 734 } 735 736 /* Insert */ 737 738 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k) 739 { 740 struct bset_tree *t; 741 unsigned int inorder, j = 1; 742 743 for (t = b->set; t <= bset_tree_last(b); t++) 744 if (k < bset_bkey_last(t->data)) 745 goto found_set; 746 747 BUG(); 748 found_set: 749 if (!t->size || !bset_written(b, t)) 750 return; 751 752 inorder = bkey_to_cacheline(t, k); 753 754 if (k == t->data->start) 755 goto fix_left; 756 757 if (bkey_next(k) == bset_bkey_last(t->data)) { 758 t->end = *k; 759 goto fix_right; 760 } 761 762 j = inorder_to_tree(inorder, t); 763 764 if (j && 765 j < t->size && 766 k == tree_to_bkey(t, j)) 767 fix_left: do { 768 make_bfloat(t, j); 769 j = j * 2; 770 } while (j < t->size); 771 772 j = inorder_to_tree(inorder + 1, t); 773 774 if (j && 775 j < t->size && 776 k == tree_to_prev_bkey(t, j)) 777 fix_right: do { 778 make_bfloat(t, j); 779 j = j * 2 + 1; 780 } while (j < t->size); 781 } 782 783 static void bch_bset_fix_lookup_table(struct btree_keys *b, 784 struct bset_tree *t, 785 struct bkey *k) 786 { 787 unsigned int shift = bkey_u64s(k); 788 unsigned int j = bkey_to_cacheline(t, k); 789 790 /* We're getting called from btree_split() or btree_gc, just bail out */ 791 if (!t->size) 792 return; 793 794 /* 795 * k is the key we just inserted; we need to find the entry in the 796 * lookup table for the first key that is strictly greater than k: 797 * it's either k's cacheline or the next one 798 */ 799 while (j < t->size && 800 table_to_bkey(t, j) <= k) 801 j++; 802 803 /* 804 * Adjust all the lookup table entries, and find a new key for any that 805 * have gotten too big 806 */ 807 for (; j < t->size; j++) { 808 t->prev[j] += shift; 809 810 if (t->prev[j] > 7) { 811 k = table_to_bkey(t, j - 1); 812 813 while (k < cacheline_to_bkey(t, j, 0)) 814 k = bkey_next(k); 815 816 t->prev[j] = bkey_to_cacheline_offset(t, j, k); 817 } 818 } 819 820 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree) 821 return; 822 823 /* Possibly add a new entry to the end of the lookup table */ 824 825 for (k = table_to_bkey(t, t->size - 1); 826 k != bset_bkey_last(t->data); 827 k = bkey_next(k)) 828 if (t->size == bkey_to_cacheline(t, k)) { 829 t->prev[t->size] = 830 bkey_to_cacheline_offset(t, t->size, k); 831 t->size++; 832 } 833 } 834 835 /* 836 * Tries to merge l and r: l should be lower than r 837 * Returns true if we were able to merge. If we did merge, l will be the merged 838 * key, r will be untouched. 839 */ 840 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r) 841 { 842 if (!b->ops->key_merge) 843 return false; 844 845 /* 846 * Generic header checks 847 * Assumes left and right are in order 848 * Left and right must be exactly aligned 849 */ 850 if (!bch_bkey_equal_header(l, r) || 851 bkey_cmp(l, &START_KEY(r))) 852 return false; 853 854 return b->ops->key_merge(b, l, r); 855 } 856 857 void bch_bset_insert(struct btree_keys *b, struct bkey *where, 858 struct bkey *insert) 859 { 860 struct bset_tree *t = bset_tree_last(b); 861 862 BUG_ON(!b->last_set_unwritten); 863 BUG_ON(bset_byte_offset(b, t->data) + 864 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) > 865 PAGE_SIZE << b->page_order); 866 867 memmove((uint64_t *) where + bkey_u64s(insert), 868 where, 869 (void *) bset_bkey_last(t->data) - (void *) where); 870 871 t->data->keys += bkey_u64s(insert); 872 bkey_copy(where, insert); 873 bch_bset_fix_lookup_table(b, t, where); 874 } 875 876 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k, 877 struct bkey *replace_key) 878 { 879 unsigned int status = BTREE_INSERT_STATUS_NO_INSERT; 880 struct bset *i = bset_tree_last(b)->data; 881 struct bkey *m, *prev = NULL; 882 struct btree_iter iter; 883 struct bkey preceding_key_on_stack = ZERO_KEY; 884 struct bkey *preceding_key_p = &preceding_key_on_stack; 885 886 BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); 887 888 /* 889 * If k has preceding key, preceding_key_p will be set to address 890 * of k's preceding key; otherwise preceding_key_p will be set 891 * to NULL inside preceding_key(). 892 */ 893 if (b->ops->is_extents) 894 preceding_key(&START_KEY(k), &preceding_key_p); 895 else 896 preceding_key(k, &preceding_key_p); 897 898 m = bch_btree_iter_init(b, &iter, preceding_key_p); 899 900 if (b->ops->insert_fixup(b, k, &iter, replace_key)) 901 return status; 902 903 status = BTREE_INSERT_STATUS_INSERT; 904 905 while (m != bset_bkey_last(i) && 906 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) { 907 prev = m; 908 m = bkey_next(m); 909 } 910 911 /* prev is in the tree, if we merge we're done */ 912 status = BTREE_INSERT_STATUS_BACK_MERGE; 913 if (prev && 914 bch_bkey_try_merge(b, prev, k)) 915 goto merged; 916 #if 0 917 status = BTREE_INSERT_STATUS_OVERWROTE; 918 if (m != bset_bkey_last(i) && 919 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) 920 goto copy; 921 #endif 922 status = BTREE_INSERT_STATUS_FRONT_MERGE; 923 if (m != bset_bkey_last(i) && 924 bch_bkey_try_merge(b, k, m)) 925 goto copy; 926 927 bch_bset_insert(b, m, k); 928 copy: bkey_copy(m, k); 929 merged: 930 return status; 931 } 932 933 /* Lookup */ 934 935 struct bset_search_iter { 936 struct bkey *l, *r; 937 }; 938 939 static struct bset_search_iter bset_search_write_set(struct bset_tree *t, 940 const struct bkey *search) 941 { 942 unsigned int li = 0, ri = t->size; 943 944 while (li + 1 != ri) { 945 unsigned int m = (li + ri) >> 1; 946 947 if (bkey_cmp(table_to_bkey(t, m), search) > 0) 948 ri = m; 949 else 950 li = m; 951 } 952 953 return (struct bset_search_iter) { 954 table_to_bkey(t, li), 955 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data) 956 }; 957 } 958 959 static struct bset_search_iter bset_search_tree(struct bset_tree *t, 960 const struct bkey *search) 961 { 962 struct bkey *l, *r; 963 struct bkey_float *f; 964 unsigned int inorder, j, n = 1; 965 966 do { 967 unsigned int p = n << 4; 968 969 if (p < t->size) 970 prefetch(&t->tree[p]); 971 972 j = n; 973 f = &t->tree[j]; 974 975 if (likely(f->exponent != 127)) { 976 if (f->mantissa >= bfloat_mantissa(search, f)) 977 n = j * 2; 978 else 979 n = j * 2 + 1; 980 } else { 981 if (bkey_cmp(tree_to_bkey(t, j), search) > 0) 982 n = j * 2; 983 else 984 n = j * 2 + 1; 985 } 986 } while (n < t->size); 987 988 inorder = to_inorder(j, t); 989 990 /* 991 * n would have been the node we recursed to - the low bit tells us if 992 * we recursed left or recursed right. 993 */ 994 if (n & 1) { 995 l = cacheline_to_bkey(t, inorder, f->m); 996 997 if (++inorder != t->size) { 998 f = &t->tree[inorder_next(j, t->size)]; 999 r = cacheline_to_bkey(t, inorder, f->m); 1000 } else 1001 r = bset_bkey_last(t->data); 1002 } else { 1003 r = cacheline_to_bkey(t, inorder, f->m); 1004 1005 if (--inorder) { 1006 f = &t->tree[inorder_prev(j, t->size)]; 1007 l = cacheline_to_bkey(t, inorder, f->m); 1008 } else 1009 l = t->data->start; 1010 } 1011 1012 return (struct bset_search_iter) {l, r}; 1013 } 1014 1015 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, 1016 const struct bkey *search) 1017 { 1018 struct bset_search_iter i; 1019 1020 /* 1021 * First, we search for a cacheline, then lastly we do a linear search 1022 * within that cacheline. 1023 * 1024 * To search for the cacheline, there's three different possibilities: 1025 * * The set is too small to have a search tree, so we just do a linear 1026 * search over the whole set. 1027 * * The set is the one we're currently inserting into; keeping a full 1028 * auxiliary search tree up to date would be too expensive, so we 1029 * use a much simpler lookup table to do a binary search - 1030 * bset_search_write_set(). 1031 * * Or we use the auxiliary search tree we constructed earlier - 1032 * bset_search_tree() 1033 */ 1034 1035 if (unlikely(!t->size)) { 1036 i.l = t->data->start; 1037 i.r = bset_bkey_last(t->data); 1038 } else if (bset_written(b, t)) { 1039 /* 1040 * Each node in the auxiliary search tree covers a certain range 1041 * of bits, and keys above and below the set it covers might 1042 * differ outside those bits - so we have to special case the 1043 * start and end - handle that here: 1044 */ 1045 1046 if (unlikely(bkey_cmp(search, &t->end) >= 0)) 1047 return bset_bkey_last(t->data); 1048 1049 if (unlikely(bkey_cmp(search, t->data->start) < 0)) 1050 return t->data->start; 1051 1052 i = bset_search_tree(t, search); 1053 } else { 1054 BUG_ON(!b->nsets && 1055 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data))); 1056 1057 i = bset_search_write_set(t, search); 1058 } 1059 1060 if (btree_keys_expensive_checks(b)) { 1061 BUG_ON(bset_written(b, t) && 1062 i.l != t->data->start && 1063 bkey_cmp(tree_to_prev_bkey(t, 1064 inorder_to_tree(bkey_to_cacheline(t, i.l), t)), 1065 search) > 0); 1066 1067 BUG_ON(i.r != bset_bkey_last(t->data) && 1068 bkey_cmp(i.r, search) <= 0); 1069 } 1070 1071 while (likely(i.l != i.r) && 1072 bkey_cmp(i.l, search) <= 0) 1073 i.l = bkey_next(i.l); 1074 1075 return i.l; 1076 } 1077 1078 /* Btree iterator */ 1079 1080 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set, 1081 struct btree_iter_set); 1082 1083 static inline bool btree_iter_cmp(struct btree_iter_set l, 1084 struct btree_iter_set r) 1085 { 1086 return bkey_cmp(l.k, r.k) > 0; 1087 } 1088 1089 static inline bool btree_iter_end(struct btree_iter *iter) 1090 { 1091 return !iter->used; 1092 } 1093 1094 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, 1095 struct bkey *end) 1096 { 1097 if (k != end) 1098 BUG_ON(!heap_add(iter, 1099 ((struct btree_iter_set) { k, end }), 1100 btree_iter_cmp)); 1101 } 1102 1103 static struct bkey *__bch_btree_iter_init(struct btree_keys *b, 1104 struct btree_iter *iter, 1105 struct bkey *search, 1106 struct bset_tree *start) 1107 { 1108 struct bkey *ret = NULL; 1109 1110 iter->size = ARRAY_SIZE(iter->data); 1111 iter->used = 0; 1112 1113 #ifdef CONFIG_BCACHE_DEBUG 1114 iter->b = b; 1115 #endif 1116 1117 for (; start <= bset_tree_last(b); start++) { 1118 ret = bch_bset_search(b, start, search); 1119 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data)); 1120 } 1121 1122 return ret; 1123 } 1124 1125 struct bkey *bch_btree_iter_init(struct btree_keys *b, 1126 struct btree_iter *iter, 1127 struct bkey *search) 1128 { 1129 return __bch_btree_iter_init(b, iter, search, b->set); 1130 } 1131 1132 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, 1133 btree_iter_cmp_fn *cmp) 1134 { 1135 struct btree_iter_set b __maybe_unused; 1136 struct bkey *ret = NULL; 1137 1138 if (!btree_iter_end(iter)) { 1139 bch_btree_iter_next_check(iter); 1140 1141 ret = iter->data->k; 1142 iter->data->k = bkey_next(iter->data->k); 1143 1144 if (iter->data->k > iter->data->end) { 1145 WARN_ONCE(1, "bset was corrupt!\n"); 1146 iter->data->k = iter->data->end; 1147 } 1148 1149 if (iter->data->k == iter->data->end) 1150 heap_pop(iter, b, cmp); 1151 else 1152 heap_sift(iter, 0, cmp); 1153 } 1154 1155 return ret; 1156 } 1157 1158 struct bkey *bch_btree_iter_next(struct btree_iter *iter) 1159 { 1160 return __bch_btree_iter_next(iter, btree_iter_cmp); 1161 1162 } 1163 1164 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, 1165 struct btree_keys *b, ptr_filter_fn fn) 1166 { 1167 struct bkey *ret; 1168 1169 do { 1170 ret = bch_btree_iter_next(iter); 1171 } while (ret && fn(b, ret)); 1172 1173 return ret; 1174 } 1175 1176 /* Mergesort */ 1177 1178 void bch_bset_sort_state_free(struct bset_sort_state *state) 1179 { 1180 mempool_exit(&state->pool); 1181 } 1182 1183 int bch_bset_sort_state_init(struct bset_sort_state *state, 1184 unsigned int page_order) 1185 { 1186 spin_lock_init(&state->time.lock); 1187 1188 state->page_order = page_order; 1189 state->crit_factor = int_sqrt(1 << page_order); 1190 1191 return mempool_init_page_pool(&state->pool, 1, page_order); 1192 } 1193 1194 static void btree_mergesort(struct btree_keys *b, struct bset *out, 1195 struct btree_iter *iter, 1196 bool fixup, bool remove_stale) 1197 { 1198 int i; 1199 struct bkey *k, *last = NULL; 1200 BKEY_PADDED(k) tmp; 1201 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale 1202 ? bch_ptr_bad 1203 : bch_ptr_invalid; 1204 1205 /* Heapify the iterator, using our comparison function */ 1206 for (i = iter->used / 2 - 1; i >= 0; --i) 1207 heap_sift(iter, i, b->ops->sort_cmp); 1208 1209 while (!btree_iter_end(iter)) { 1210 if (b->ops->sort_fixup && fixup) 1211 k = b->ops->sort_fixup(iter, &tmp.k); 1212 else 1213 k = NULL; 1214 1215 if (!k) 1216 k = __bch_btree_iter_next(iter, b->ops->sort_cmp); 1217 1218 if (bad(b, k)) 1219 continue; 1220 1221 if (!last) { 1222 last = out->start; 1223 bkey_copy(last, k); 1224 } else if (!bch_bkey_try_merge(b, last, k)) { 1225 last = bkey_next(last); 1226 bkey_copy(last, k); 1227 } 1228 } 1229 1230 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; 1231 1232 pr_debug("sorted %i keys\n", out->keys); 1233 } 1234 1235 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter, 1236 unsigned int start, unsigned int order, bool fixup, 1237 struct bset_sort_state *state) 1238 { 1239 uint64_t start_time; 1240 bool used_mempool = false; 1241 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, 1242 order); 1243 if (!out) { 1244 struct page *outp; 1245 1246 BUG_ON(order > state->page_order); 1247 1248 outp = mempool_alloc(&state->pool, GFP_NOIO); 1249 out = page_address(outp); 1250 used_mempool = true; 1251 order = state->page_order; 1252 } 1253 1254 start_time = local_clock(); 1255 1256 btree_mergesort(b, out, iter, fixup, false); 1257 b->nsets = start; 1258 1259 if (!start && order == b->page_order) { 1260 /* 1261 * Our temporary buffer is the same size as the btree node's 1262 * buffer, we can just swap buffers instead of doing a big 1263 * memcpy() 1264 * 1265 * Don't worry event 'out' is allocated from mempool, it can 1266 * still be swapped here. Because state->pool is a page mempool 1267 * created by mempool_init_page_pool(), which allocates 1268 * pages by alloc_pages() indeed. 1269 */ 1270 1271 out->magic = b->set->data->magic; 1272 out->seq = b->set->data->seq; 1273 out->version = b->set->data->version; 1274 swap(out, b->set->data); 1275 } else { 1276 b->set[start].data->keys = out->keys; 1277 memcpy(b->set[start].data->start, out->start, 1278 (void *) bset_bkey_last(out) - (void *) out->start); 1279 } 1280 1281 if (used_mempool) 1282 mempool_free(virt_to_page(out), &state->pool); 1283 else 1284 free_pages((unsigned long) out, order); 1285 1286 bch_bset_build_written_tree(b); 1287 1288 if (!start) 1289 bch_time_stats_update(&state->time, start_time); 1290 } 1291 1292 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start, 1293 struct bset_sort_state *state) 1294 { 1295 size_t order = b->page_order, keys = 0; 1296 struct btree_iter iter; 1297 int oldsize = bch_count_data(b); 1298 1299 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]); 1300 1301 if (start) { 1302 unsigned int i; 1303 1304 for (i = start; i <= b->nsets; i++) 1305 keys += b->set[i].data->keys; 1306 1307 order = get_order(__set_bytes(b->set->data, keys)); 1308 } 1309 1310 __btree_sort(b, &iter, start, order, false, state); 1311 1312 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); 1313 } 1314 1315 void bch_btree_sort_and_fix_extents(struct btree_keys *b, 1316 struct btree_iter *iter, 1317 struct bset_sort_state *state) 1318 { 1319 __btree_sort(b, iter, 0, b->page_order, true, state); 1320 } 1321 1322 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, 1323 struct bset_sort_state *state) 1324 { 1325 uint64_t start_time = local_clock(); 1326 struct btree_iter iter; 1327 1328 bch_btree_iter_init(b, &iter, NULL); 1329 1330 btree_mergesort(b, new->set->data, &iter, false, true); 1331 1332 bch_time_stats_update(&state->time, start_time); 1333 1334 new->set->size = 0; // XXX: why? 1335 } 1336 1337 #define SORT_CRIT (4096 / sizeof(uint64_t)) 1338 1339 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state) 1340 { 1341 unsigned int crit = SORT_CRIT; 1342 int i; 1343 1344 /* Don't sort if nothing to do */ 1345 if (!b->nsets) 1346 goto out; 1347 1348 for (i = b->nsets - 1; i >= 0; --i) { 1349 crit *= state->crit_factor; 1350 1351 if (b->set[i].data->keys < crit) { 1352 bch_btree_sort_partial(b, i, state); 1353 return; 1354 } 1355 } 1356 1357 /* Sort if we'd overflow */ 1358 if (b->nsets + 1 == MAX_BSETS) { 1359 bch_btree_sort(b, state); 1360 return; 1361 } 1362 1363 out: 1364 bch_bset_build_written_tree(b); 1365 } 1366 1367 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats) 1368 { 1369 unsigned int i; 1370 1371 for (i = 0; i <= b->nsets; i++) { 1372 struct bset_tree *t = &b->set[i]; 1373 size_t bytes = t->data->keys * sizeof(uint64_t); 1374 size_t j; 1375 1376 if (bset_written(b, t)) { 1377 stats->sets_written++; 1378 stats->bytes_written += bytes; 1379 1380 stats->floats += t->size - 1; 1381 1382 for (j = 1; j < t->size; j++) 1383 if (t->tree[j].exponent == 127) 1384 stats->failed++; 1385 } else { 1386 stats->sets_unwritten++; 1387 stats->bytes_unwritten += bytes; 1388 } 1389 } 1390 } 1391