1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Code for working with individual keys, and sorted sets of keys with in a 4 * btree node 5 * 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ 10 11 #include "util.h" 12 #include "bset.h" 13 14 #include <linux/console.h> 15 #include <linux/sched/clock.h> 16 #include <linux/random.h> 17 #include <linux/prefetch.h> 18 19 #ifdef CONFIG_BCACHE_DEBUG 20 21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set) 22 { 23 struct bkey *k, *next; 24 25 for (k = i->start; k < bset_bkey_last(i); k = next) { 26 next = bkey_next(k); 27 28 printk(KERN_ERR "block %u key %u/%u: ", set, 29 (unsigned) ((u64 *) k - i->d), i->keys); 30 31 if (b->ops->key_dump) 32 b->ops->key_dump(b, k); 33 else 34 printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k)); 35 36 if (next < bset_bkey_last(i) && 37 bkey_cmp(k, b->ops->is_extents ? 38 &START_KEY(next) : next) > 0) 39 printk(KERN_ERR "Key skipped backwards\n"); 40 } 41 } 42 43 void bch_dump_bucket(struct btree_keys *b) 44 { 45 unsigned i; 46 47 console_lock(); 48 for (i = 0; i <= b->nsets; i++) 49 bch_dump_bset(b, b->set[i].data, 50 bset_sector_offset(b, b->set[i].data)); 51 console_unlock(); 52 } 53 54 int __bch_count_data(struct btree_keys *b) 55 { 56 unsigned ret = 0; 57 struct btree_iter iter; 58 struct bkey *k; 59 60 if (b->ops->is_extents) 61 for_each_key(b, k, &iter) 62 ret += KEY_SIZE(k); 63 return ret; 64 } 65 66 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) 67 { 68 va_list args; 69 struct bkey *k, *p = NULL; 70 struct btree_iter iter; 71 const char *err; 72 73 for_each_key(b, k, &iter) { 74 if (b->ops->is_extents) { 75 err = "Keys out of order"; 76 if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0) 77 goto bug; 78 79 if (bch_ptr_invalid(b, k)) 80 continue; 81 82 err = "Overlapping keys"; 83 if (p && bkey_cmp(p, &START_KEY(k)) > 0) 84 goto bug; 85 } else { 86 if (bch_ptr_bad(b, k)) 87 continue; 88 89 err = "Duplicate keys"; 90 if (p && !bkey_cmp(p, k)) 91 goto bug; 92 } 93 p = k; 94 } 95 #if 0 96 err = "Key larger than btree node key"; 97 if (p && bkey_cmp(p, &b->key) > 0) 98 goto bug; 99 #endif 100 return; 101 bug: 102 bch_dump_bucket(b); 103 104 va_start(args, fmt); 105 vprintk(fmt, args); 106 va_end(args); 107 108 panic("bch_check_keys error: %s:\n", err); 109 } 110 111 static void bch_btree_iter_next_check(struct btree_iter *iter) 112 { 113 struct bkey *k = iter->data->k, *next = bkey_next(k); 114 115 if (next < iter->data->end && 116 bkey_cmp(k, iter->b->ops->is_extents ? 117 &START_KEY(next) : next) > 0) { 118 bch_dump_bucket(iter->b); 119 panic("Key skipped backwards\n"); 120 } 121 } 122 123 #else 124 125 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {} 126 127 #endif 128 129 /* Keylists */ 130 131 int __bch_keylist_realloc(struct keylist *l, unsigned u64s) 132 { 133 size_t oldsize = bch_keylist_nkeys(l); 134 size_t newsize = oldsize + u64s; 135 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; 136 uint64_t *new_keys; 137 138 newsize = roundup_pow_of_two(newsize); 139 140 if (newsize <= KEYLIST_INLINE || 141 roundup_pow_of_two(oldsize) == newsize) 142 return 0; 143 144 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); 145 146 if (!new_keys) 147 return -ENOMEM; 148 149 if (!old_keys) 150 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); 151 152 l->keys_p = new_keys; 153 l->top_p = new_keys + oldsize; 154 155 return 0; 156 } 157 158 struct bkey *bch_keylist_pop(struct keylist *l) 159 { 160 struct bkey *k = l->keys; 161 162 if (k == l->top) 163 return NULL; 164 165 while (bkey_next(k) != l->top) 166 k = bkey_next(k); 167 168 return l->top = k; 169 } 170 171 void bch_keylist_pop_front(struct keylist *l) 172 { 173 l->top_p -= bkey_u64s(l->keys); 174 175 memmove(l->keys, 176 bkey_next(l->keys), 177 bch_keylist_bytes(l)); 178 } 179 180 /* Key/pointer manipulation */ 181 182 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, 183 unsigned i) 184 { 185 BUG_ON(i > KEY_PTRS(src)); 186 187 /* Only copy the header, key, and one pointer. */ 188 memcpy(dest, src, 2 * sizeof(uint64_t)); 189 dest->ptr[0] = src->ptr[i]; 190 SET_KEY_PTRS(dest, 1); 191 /* We didn't copy the checksum so clear that bit. */ 192 SET_KEY_CSUM(dest, 0); 193 } 194 195 bool __bch_cut_front(const struct bkey *where, struct bkey *k) 196 { 197 unsigned i, len = 0; 198 199 if (bkey_cmp(where, &START_KEY(k)) <= 0) 200 return false; 201 202 if (bkey_cmp(where, k) < 0) 203 len = KEY_OFFSET(k) - KEY_OFFSET(where); 204 else 205 bkey_copy_key(k, where); 206 207 for (i = 0; i < KEY_PTRS(k); i++) 208 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); 209 210 BUG_ON(len > KEY_SIZE(k)); 211 SET_KEY_SIZE(k, len); 212 return true; 213 } 214 215 bool __bch_cut_back(const struct bkey *where, struct bkey *k) 216 { 217 unsigned len = 0; 218 219 if (bkey_cmp(where, k) >= 0) 220 return false; 221 222 BUG_ON(KEY_INODE(where) != KEY_INODE(k)); 223 224 if (bkey_cmp(where, &START_KEY(k)) > 0) 225 len = KEY_OFFSET(where) - KEY_START(k); 226 227 bkey_copy_key(k, where); 228 229 BUG_ON(len > KEY_SIZE(k)); 230 SET_KEY_SIZE(k, len); 231 return true; 232 } 233 234 /* Auxiliary search trees */ 235 236 /* 32 bits total: */ 237 #define BKEY_MID_BITS 3 238 #define BKEY_EXPONENT_BITS 7 239 #define BKEY_MANTISSA_BITS (32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS) 240 #define BKEY_MANTISSA_MASK ((1 << BKEY_MANTISSA_BITS) - 1) 241 242 struct bkey_float { 243 unsigned exponent:BKEY_EXPONENT_BITS; 244 unsigned m:BKEY_MID_BITS; 245 unsigned mantissa:BKEY_MANTISSA_BITS; 246 } __packed; 247 248 /* 249 * BSET_CACHELINE was originally intended to match the hardware cacheline size - 250 * it used to be 64, but I realized the lookup code would touch slightly less 251 * memory if it was 128. 252 * 253 * It definites the number of bytes (in struct bset) per struct bkey_float in 254 * the auxiliar search tree - when we're done searching the bset_float tree we 255 * have this many bytes left that we do a linear search over. 256 * 257 * Since (after level 5) every level of the bset_tree is on a new cacheline, 258 * we're touching one fewer cacheline in the bset tree in exchange for one more 259 * cacheline in the linear search - but the linear search might stop before it 260 * gets to the second cacheline. 261 */ 262 263 #define BSET_CACHELINE 128 264 265 /* Space required for the btree node keys */ 266 static inline size_t btree_keys_bytes(struct btree_keys *b) 267 { 268 return PAGE_SIZE << b->page_order; 269 } 270 271 static inline size_t btree_keys_cachelines(struct btree_keys *b) 272 { 273 return btree_keys_bytes(b) / BSET_CACHELINE; 274 } 275 276 /* Space required for the auxiliary search trees */ 277 static inline size_t bset_tree_bytes(struct btree_keys *b) 278 { 279 return btree_keys_cachelines(b) * sizeof(struct bkey_float); 280 } 281 282 /* Space required for the prev pointers */ 283 static inline size_t bset_prev_bytes(struct btree_keys *b) 284 { 285 return btree_keys_cachelines(b) * sizeof(uint8_t); 286 } 287 288 /* Memory allocation */ 289 290 void bch_btree_keys_free(struct btree_keys *b) 291 { 292 struct bset_tree *t = b->set; 293 294 if (bset_prev_bytes(b) < PAGE_SIZE) 295 kfree(t->prev); 296 else 297 free_pages((unsigned long) t->prev, 298 get_order(bset_prev_bytes(b))); 299 300 if (bset_tree_bytes(b) < PAGE_SIZE) 301 kfree(t->tree); 302 else 303 free_pages((unsigned long) t->tree, 304 get_order(bset_tree_bytes(b))); 305 306 free_pages((unsigned long) t->data, b->page_order); 307 308 t->prev = NULL; 309 t->tree = NULL; 310 t->data = NULL; 311 } 312 EXPORT_SYMBOL(bch_btree_keys_free); 313 314 int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp) 315 { 316 struct bset_tree *t = b->set; 317 318 BUG_ON(t->data); 319 320 b->page_order = page_order; 321 322 t->data = (void *) __get_free_pages(gfp, b->page_order); 323 if (!t->data) 324 goto err; 325 326 t->tree = bset_tree_bytes(b) < PAGE_SIZE 327 ? kmalloc(bset_tree_bytes(b), gfp) 328 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); 329 if (!t->tree) 330 goto err; 331 332 t->prev = bset_prev_bytes(b) < PAGE_SIZE 333 ? kmalloc(bset_prev_bytes(b), gfp) 334 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); 335 if (!t->prev) 336 goto err; 337 338 return 0; 339 err: 340 bch_btree_keys_free(b); 341 return -ENOMEM; 342 } 343 EXPORT_SYMBOL(bch_btree_keys_alloc); 344 345 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, 346 bool *expensive_debug_checks) 347 { 348 unsigned i; 349 350 b->ops = ops; 351 b->expensive_debug_checks = expensive_debug_checks; 352 b->nsets = 0; 353 b->last_set_unwritten = 0; 354 355 /* XXX: shouldn't be needed */ 356 for (i = 0; i < MAX_BSETS; i++) 357 b->set[i].size = 0; 358 /* 359 * Second loop starts at 1 because b->keys[0]->data is the memory we 360 * allocated 361 */ 362 for (i = 1; i < MAX_BSETS; i++) 363 b->set[i].data = NULL; 364 } 365 EXPORT_SYMBOL(bch_btree_keys_init); 366 367 /* Binary tree stuff for auxiliary search trees */ 368 369 static unsigned inorder_next(unsigned j, unsigned size) 370 { 371 if (j * 2 + 1 < size) { 372 j = j * 2 + 1; 373 374 while (j * 2 < size) 375 j *= 2; 376 } else 377 j >>= ffz(j) + 1; 378 379 return j; 380 } 381 382 static unsigned inorder_prev(unsigned j, unsigned size) 383 { 384 if (j * 2 < size) { 385 j = j * 2; 386 387 while (j * 2 + 1 < size) 388 j = j * 2 + 1; 389 } else 390 j >>= ffs(j); 391 392 return j; 393 } 394 395 /* I have no idea why this code works... and I'm the one who wrote it 396 * 397 * However, I do know what it does: 398 * Given a binary tree constructed in an array (i.e. how you normally implement 399 * a heap), it converts a node in the tree - referenced by array index - to the 400 * index it would have if you did an inorder traversal. 401 * 402 * Also tested for every j, size up to size somewhere around 6 million. 403 * 404 * The binary tree starts at array index 1, not 0 405 * extra is a function of size: 406 * extra = (size - rounddown_pow_of_two(size - 1)) << 1; 407 */ 408 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) 409 { 410 unsigned b = fls(j); 411 unsigned shift = fls(size - 1) - b; 412 413 j ^= 1U << (b - 1); 414 j <<= 1; 415 j |= 1; 416 j <<= shift; 417 418 if (j > extra) 419 j -= (j - extra) >> 1; 420 421 return j; 422 } 423 424 static unsigned to_inorder(unsigned j, struct bset_tree *t) 425 { 426 return __to_inorder(j, t->size, t->extra); 427 } 428 429 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) 430 { 431 unsigned shift; 432 433 if (j > extra) 434 j += j - extra; 435 436 shift = ffs(j); 437 438 j >>= shift; 439 j |= roundup_pow_of_two(size) >> shift; 440 441 return j; 442 } 443 444 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) 445 { 446 return __inorder_to_tree(j, t->size, t->extra); 447 } 448 449 #if 0 450 void inorder_test(void) 451 { 452 unsigned long done = 0; 453 ktime_t start = ktime_get(); 454 455 for (unsigned size = 2; 456 size < 65536000; 457 size++) { 458 unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; 459 unsigned i = 1, j = rounddown_pow_of_two(size - 1); 460 461 if (!(size % 4096)) 462 printk(KERN_NOTICE "loop %u, %llu per us\n", size, 463 done / ktime_us_delta(ktime_get(), start)); 464 465 while (1) { 466 if (__inorder_to_tree(i, size, extra) != j) 467 panic("size %10u j %10u i %10u", size, j, i); 468 469 if (__to_inorder(j, size, extra) != i) 470 panic("size %10u j %10u i %10u", size, j, i); 471 472 if (j == rounddown_pow_of_two(size) - 1) 473 break; 474 475 BUG_ON(inorder_prev(inorder_next(j, size), size) != j); 476 477 j = inorder_next(j, size); 478 i++; 479 } 480 481 done += size - 1; 482 } 483 } 484 #endif 485 486 /* 487 * Cacheline/offset <-> bkey pointer arithmetic: 488 * 489 * t->tree is a binary search tree in an array; each node corresponds to a key 490 * in one cacheline in t->set (BSET_CACHELINE bytes). 491 * 492 * This means we don't have to store the full index of the key that a node in 493 * the binary tree points to; to_inorder() gives us the cacheline, and then 494 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. 495 * 496 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 497 * make this work. 498 * 499 * To construct the bfloat for an arbitrary key we need to know what the key 500 * immediately preceding it is: we have to check if the two keys differ in the 501 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 502 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 503 */ 504 505 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, 506 unsigned offset) 507 { 508 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; 509 } 510 511 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) 512 { 513 return ((void *) k - (void *) t->data) / BSET_CACHELINE; 514 } 515 516 static unsigned bkey_to_cacheline_offset(struct bset_tree *t, 517 unsigned cacheline, 518 struct bkey *k) 519 { 520 return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0); 521 } 522 523 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) 524 { 525 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); 526 } 527 528 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) 529 { 530 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); 531 } 532 533 /* 534 * For the write set - the one we're currently inserting keys into - we don't 535 * maintain a full search tree, we just keep a simple lookup table in t->prev. 536 */ 537 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) 538 { 539 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); 540 } 541 542 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) 543 { 544 low >>= shift; 545 low |= (high << 1) << (63U - shift); 546 return low; 547 } 548 549 static inline unsigned bfloat_mantissa(const struct bkey *k, 550 struct bkey_float *f) 551 { 552 const uint64_t *p = &k->low - (f->exponent >> 6); 553 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; 554 } 555 556 static void make_bfloat(struct bset_tree *t, unsigned j) 557 { 558 struct bkey_float *f = &t->tree[j]; 559 struct bkey *m = tree_to_bkey(t, j); 560 struct bkey *p = tree_to_prev_bkey(t, j); 561 562 struct bkey *l = is_power_of_2(j) 563 ? t->data->start 564 : tree_to_prev_bkey(t, j >> ffs(j)); 565 566 struct bkey *r = is_power_of_2(j + 1) 567 ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end)) 568 : tree_to_bkey(t, j >> (ffz(j) + 1)); 569 570 BUG_ON(m < l || m > r); 571 BUG_ON(bkey_next(p) != m); 572 573 if (KEY_INODE(l) != KEY_INODE(r)) 574 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; 575 else 576 f->exponent = fls64(r->low ^ l->low); 577 578 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); 579 580 /* 581 * Setting f->exponent = 127 flags this node as failed, and causes the 582 * lookup code to fall back to comparing against the original key. 583 */ 584 585 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) 586 f->mantissa = bfloat_mantissa(m, f) - 1; 587 else 588 f->exponent = 127; 589 } 590 591 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t) 592 { 593 if (t != b->set) { 594 unsigned j = roundup(t[-1].size, 595 64 / sizeof(struct bkey_float)); 596 597 t->tree = t[-1].tree + j; 598 t->prev = t[-1].prev + j; 599 } 600 601 while (t < b->set + MAX_BSETS) 602 t++->size = 0; 603 } 604 605 static void bch_bset_build_unwritten_tree(struct btree_keys *b) 606 { 607 struct bset_tree *t = bset_tree_last(b); 608 609 BUG_ON(b->last_set_unwritten); 610 b->last_set_unwritten = 1; 611 612 bset_alloc_tree(b, t); 613 614 if (t->tree != b->set->tree + btree_keys_cachelines(b)) { 615 t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start); 616 t->size = 1; 617 } 618 } 619 620 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic) 621 { 622 if (i != b->set->data) { 623 b->set[++b->nsets].data = i; 624 i->seq = b->set->data->seq; 625 } else 626 get_random_bytes(&i->seq, sizeof(uint64_t)); 627 628 i->magic = magic; 629 i->version = 0; 630 i->keys = 0; 631 632 bch_bset_build_unwritten_tree(b); 633 } 634 EXPORT_SYMBOL(bch_bset_init_next); 635 636 void bch_bset_build_written_tree(struct btree_keys *b) 637 { 638 struct bset_tree *t = bset_tree_last(b); 639 struct bkey *prev = NULL, *k = t->data->start; 640 unsigned j, cacheline = 1; 641 642 b->last_set_unwritten = 0; 643 644 bset_alloc_tree(b, t); 645 646 t->size = min_t(unsigned, 647 bkey_to_cacheline(t, bset_bkey_last(t->data)), 648 b->set->tree + btree_keys_cachelines(b) - t->tree); 649 650 if (t->size < 2) { 651 t->size = 0; 652 return; 653 } 654 655 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 656 657 /* First we figure out where the first key in each cacheline is */ 658 for (j = inorder_next(0, t->size); 659 j; 660 j = inorder_next(j, t->size)) { 661 while (bkey_to_cacheline(t, k) < cacheline) 662 prev = k, k = bkey_next(k); 663 664 t->prev[j] = bkey_u64s(prev); 665 t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); 666 } 667 668 while (bkey_next(k) != bset_bkey_last(t->data)) 669 k = bkey_next(k); 670 671 t->end = *k; 672 673 /* Then we build the tree */ 674 for (j = inorder_next(0, t->size); 675 j; 676 j = inorder_next(j, t->size)) 677 make_bfloat(t, j); 678 } 679 EXPORT_SYMBOL(bch_bset_build_written_tree); 680 681 /* Insert */ 682 683 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k) 684 { 685 struct bset_tree *t; 686 unsigned inorder, j = 1; 687 688 for (t = b->set; t <= bset_tree_last(b); t++) 689 if (k < bset_bkey_last(t->data)) 690 goto found_set; 691 692 BUG(); 693 found_set: 694 if (!t->size || !bset_written(b, t)) 695 return; 696 697 inorder = bkey_to_cacheline(t, k); 698 699 if (k == t->data->start) 700 goto fix_left; 701 702 if (bkey_next(k) == bset_bkey_last(t->data)) { 703 t->end = *k; 704 goto fix_right; 705 } 706 707 j = inorder_to_tree(inorder, t); 708 709 if (j && 710 j < t->size && 711 k == tree_to_bkey(t, j)) 712 fix_left: do { 713 make_bfloat(t, j); 714 j = j * 2; 715 } while (j < t->size); 716 717 j = inorder_to_tree(inorder + 1, t); 718 719 if (j && 720 j < t->size && 721 k == tree_to_prev_bkey(t, j)) 722 fix_right: do { 723 make_bfloat(t, j); 724 j = j * 2 + 1; 725 } while (j < t->size); 726 } 727 EXPORT_SYMBOL(bch_bset_fix_invalidated_key); 728 729 static void bch_bset_fix_lookup_table(struct btree_keys *b, 730 struct bset_tree *t, 731 struct bkey *k) 732 { 733 unsigned shift = bkey_u64s(k); 734 unsigned j = bkey_to_cacheline(t, k); 735 736 /* We're getting called from btree_split() or btree_gc, just bail out */ 737 if (!t->size) 738 return; 739 740 /* k is the key we just inserted; we need to find the entry in the 741 * lookup table for the first key that is strictly greater than k: 742 * it's either k's cacheline or the next one 743 */ 744 while (j < t->size && 745 table_to_bkey(t, j) <= k) 746 j++; 747 748 /* Adjust all the lookup table entries, and find a new key for any that 749 * have gotten too big 750 */ 751 for (; j < t->size; j++) { 752 t->prev[j] += shift; 753 754 if (t->prev[j] > 7) { 755 k = table_to_bkey(t, j - 1); 756 757 while (k < cacheline_to_bkey(t, j, 0)) 758 k = bkey_next(k); 759 760 t->prev[j] = bkey_to_cacheline_offset(t, j, k); 761 } 762 } 763 764 if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree) 765 return; 766 767 /* Possibly add a new entry to the end of the lookup table */ 768 769 for (k = table_to_bkey(t, t->size - 1); 770 k != bset_bkey_last(t->data); 771 k = bkey_next(k)) 772 if (t->size == bkey_to_cacheline(t, k)) { 773 t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k); 774 t->size++; 775 } 776 } 777 778 /* 779 * Tries to merge l and r: l should be lower than r 780 * Returns true if we were able to merge. If we did merge, l will be the merged 781 * key, r will be untouched. 782 */ 783 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r) 784 { 785 if (!b->ops->key_merge) 786 return false; 787 788 /* 789 * Generic header checks 790 * Assumes left and right are in order 791 * Left and right must be exactly aligned 792 */ 793 if (!bch_bkey_equal_header(l, r) || 794 bkey_cmp(l, &START_KEY(r))) 795 return false; 796 797 return b->ops->key_merge(b, l, r); 798 } 799 EXPORT_SYMBOL(bch_bkey_try_merge); 800 801 void bch_bset_insert(struct btree_keys *b, struct bkey *where, 802 struct bkey *insert) 803 { 804 struct bset_tree *t = bset_tree_last(b); 805 806 BUG_ON(!b->last_set_unwritten); 807 BUG_ON(bset_byte_offset(b, t->data) + 808 __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) > 809 PAGE_SIZE << b->page_order); 810 811 memmove((uint64_t *) where + bkey_u64s(insert), 812 where, 813 (void *) bset_bkey_last(t->data) - (void *) where); 814 815 t->data->keys += bkey_u64s(insert); 816 bkey_copy(where, insert); 817 bch_bset_fix_lookup_table(b, t, where); 818 } 819 EXPORT_SYMBOL(bch_bset_insert); 820 821 unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k, 822 struct bkey *replace_key) 823 { 824 unsigned status = BTREE_INSERT_STATUS_NO_INSERT; 825 struct bset *i = bset_tree_last(b)->data; 826 struct bkey *m, *prev = NULL; 827 struct btree_iter iter; 828 829 BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); 830 831 m = bch_btree_iter_init(b, &iter, b->ops->is_extents 832 ? PRECEDING_KEY(&START_KEY(k)) 833 : PRECEDING_KEY(k)); 834 835 if (b->ops->insert_fixup(b, k, &iter, replace_key)) 836 return status; 837 838 status = BTREE_INSERT_STATUS_INSERT; 839 840 while (m != bset_bkey_last(i) && 841 bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) 842 prev = m, m = bkey_next(m); 843 844 /* prev is in the tree, if we merge we're done */ 845 status = BTREE_INSERT_STATUS_BACK_MERGE; 846 if (prev && 847 bch_bkey_try_merge(b, prev, k)) 848 goto merged; 849 #if 0 850 status = BTREE_INSERT_STATUS_OVERWROTE; 851 if (m != bset_bkey_last(i) && 852 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) 853 goto copy; 854 #endif 855 status = BTREE_INSERT_STATUS_FRONT_MERGE; 856 if (m != bset_bkey_last(i) && 857 bch_bkey_try_merge(b, k, m)) 858 goto copy; 859 860 bch_bset_insert(b, m, k); 861 copy: bkey_copy(m, k); 862 merged: 863 return status; 864 } 865 EXPORT_SYMBOL(bch_btree_insert_key); 866 867 /* Lookup */ 868 869 struct bset_search_iter { 870 struct bkey *l, *r; 871 }; 872 873 static struct bset_search_iter bset_search_write_set(struct bset_tree *t, 874 const struct bkey *search) 875 { 876 unsigned li = 0, ri = t->size; 877 878 while (li + 1 != ri) { 879 unsigned m = (li + ri) >> 1; 880 881 if (bkey_cmp(table_to_bkey(t, m), search) > 0) 882 ri = m; 883 else 884 li = m; 885 } 886 887 return (struct bset_search_iter) { 888 table_to_bkey(t, li), 889 ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data) 890 }; 891 } 892 893 static struct bset_search_iter bset_search_tree(struct bset_tree *t, 894 const struct bkey *search) 895 { 896 struct bkey *l, *r; 897 struct bkey_float *f; 898 unsigned inorder, j, n = 1; 899 900 do { 901 unsigned p = n << 4; 902 p &= ((int) (p - t->size)) >> 31; 903 904 prefetch(&t->tree[p]); 905 906 j = n; 907 f = &t->tree[j]; 908 909 /* 910 * n = (f->mantissa > bfloat_mantissa()) 911 * ? j * 2 912 * : j * 2 + 1; 913 * 914 * We need to subtract 1 from f->mantissa for the sign bit trick 915 * to work - that's done in make_bfloat() 916 */ 917 if (likely(f->exponent != 127)) 918 n = j * 2 + (((unsigned) 919 (f->mantissa - 920 bfloat_mantissa(search, f))) >> 31); 921 else 922 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) 923 ? j * 2 924 : j * 2 + 1; 925 } while (n < t->size); 926 927 inorder = to_inorder(j, t); 928 929 /* 930 * n would have been the node we recursed to - the low bit tells us if 931 * we recursed left or recursed right. 932 */ 933 if (n & 1) { 934 l = cacheline_to_bkey(t, inorder, f->m); 935 936 if (++inorder != t->size) { 937 f = &t->tree[inorder_next(j, t->size)]; 938 r = cacheline_to_bkey(t, inorder, f->m); 939 } else 940 r = bset_bkey_last(t->data); 941 } else { 942 r = cacheline_to_bkey(t, inorder, f->m); 943 944 if (--inorder) { 945 f = &t->tree[inorder_prev(j, t->size)]; 946 l = cacheline_to_bkey(t, inorder, f->m); 947 } else 948 l = t->data->start; 949 } 950 951 return (struct bset_search_iter) {l, r}; 952 } 953 954 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, 955 const struct bkey *search) 956 { 957 struct bset_search_iter i; 958 959 /* 960 * First, we search for a cacheline, then lastly we do a linear search 961 * within that cacheline. 962 * 963 * To search for the cacheline, there's three different possibilities: 964 * * The set is too small to have a search tree, so we just do a linear 965 * search over the whole set. 966 * * The set is the one we're currently inserting into; keeping a full 967 * auxiliary search tree up to date would be too expensive, so we 968 * use a much simpler lookup table to do a binary search - 969 * bset_search_write_set(). 970 * * Or we use the auxiliary search tree we constructed earlier - 971 * bset_search_tree() 972 */ 973 974 if (unlikely(!t->size)) { 975 i.l = t->data->start; 976 i.r = bset_bkey_last(t->data); 977 } else if (bset_written(b, t)) { 978 /* 979 * Each node in the auxiliary search tree covers a certain range 980 * of bits, and keys above and below the set it covers might 981 * differ outside those bits - so we have to special case the 982 * start and end - handle that here: 983 */ 984 985 if (unlikely(bkey_cmp(search, &t->end) >= 0)) 986 return bset_bkey_last(t->data); 987 988 if (unlikely(bkey_cmp(search, t->data->start) < 0)) 989 return t->data->start; 990 991 i = bset_search_tree(t, search); 992 } else { 993 BUG_ON(!b->nsets && 994 t->size < bkey_to_cacheline(t, bset_bkey_last(t->data))); 995 996 i = bset_search_write_set(t, search); 997 } 998 999 if (btree_keys_expensive_checks(b)) { 1000 BUG_ON(bset_written(b, t) && 1001 i.l != t->data->start && 1002 bkey_cmp(tree_to_prev_bkey(t, 1003 inorder_to_tree(bkey_to_cacheline(t, i.l), t)), 1004 search) > 0); 1005 1006 BUG_ON(i.r != bset_bkey_last(t->data) && 1007 bkey_cmp(i.r, search) <= 0); 1008 } 1009 1010 while (likely(i.l != i.r) && 1011 bkey_cmp(i.l, search) <= 0) 1012 i.l = bkey_next(i.l); 1013 1014 return i.l; 1015 } 1016 EXPORT_SYMBOL(__bch_bset_search); 1017 1018 /* Btree iterator */ 1019 1020 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set, 1021 struct btree_iter_set); 1022 1023 static inline bool btree_iter_cmp(struct btree_iter_set l, 1024 struct btree_iter_set r) 1025 { 1026 return bkey_cmp(l.k, r.k) > 0; 1027 } 1028 1029 static inline bool btree_iter_end(struct btree_iter *iter) 1030 { 1031 return !iter->used; 1032 } 1033 1034 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, 1035 struct bkey *end) 1036 { 1037 if (k != end) 1038 BUG_ON(!heap_add(iter, 1039 ((struct btree_iter_set) { k, end }), 1040 btree_iter_cmp)); 1041 } 1042 1043 static struct bkey *__bch_btree_iter_init(struct btree_keys *b, 1044 struct btree_iter *iter, 1045 struct bkey *search, 1046 struct bset_tree *start) 1047 { 1048 struct bkey *ret = NULL; 1049 iter->size = ARRAY_SIZE(iter->data); 1050 iter->used = 0; 1051 1052 #ifdef CONFIG_BCACHE_DEBUG 1053 iter->b = b; 1054 #endif 1055 1056 for (; start <= bset_tree_last(b); start++) { 1057 ret = bch_bset_search(b, start, search); 1058 bch_btree_iter_push(iter, ret, bset_bkey_last(start->data)); 1059 } 1060 1061 return ret; 1062 } 1063 1064 struct bkey *bch_btree_iter_init(struct btree_keys *b, 1065 struct btree_iter *iter, 1066 struct bkey *search) 1067 { 1068 return __bch_btree_iter_init(b, iter, search, b->set); 1069 } 1070 EXPORT_SYMBOL(bch_btree_iter_init); 1071 1072 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, 1073 btree_iter_cmp_fn *cmp) 1074 { 1075 struct btree_iter_set unused; 1076 struct bkey *ret = NULL; 1077 1078 if (!btree_iter_end(iter)) { 1079 bch_btree_iter_next_check(iter); 1080 1081 ret = iter->data->k; 1082 iter->data->k = bkey_next(iter->data->k); 1083 1084 if (iter->data->k > iter->data->end) { 1085 WARN_ONCE(1, "bset was corrupt!\n"); 1086 iter->data->k = iter->data->end; 1087 } 1088 1089 if (iter->data->k == iter->data->end) 1090 heap_pop(iter, unused, cmp); 1091 else 1092 heap_sift(iter, 0, cmp); 1093 } 1094 1095 return ret; 1096 } 1097 1098 struct bkey *bch_btree_iter_next(struct btree_iter *iter) 1099 { 1100 return __bch_btree_iter_next(iter, btree_iter_cmp); 1101 1102 } 1103 EXPORT_SYMBOL(bch_btree_iter_next); 1104 1105 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, 1106 struct btree_keys *b, ptr_filter_fn fn) 1107 { 1108 struct bkey *ret; 1109 1110 do { 1111 ret = bch_btree_iter_next(iter); 1112 } while (ret && fn(b, ret)); 1113 1114 return ret; 1115 } 1116 1117 /* Mergesort */ 1118 1119 void bch_bset_sort_state_free(struct bset_sort_state *state) 1120 { 1121 if (state->pool) 1122 mempool_destroy(state->pool); 1123 } 1124 1125 int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order) 1126 { 1127 spin_lock_init(&state->time.lock); 1128 1129 state->page_order = page_order; 1130 state->crit_factor = int_sqrt(1 << page_order); 1131 1132 state->pool = mempool_create_page_pool(1, page_order); 1133 if (!state->pool) 1134 return -ENOMEM; 1135 1136 return 0; 1137 } 1138 EXPORT_SYMBOL(bch_bset_sort_state_init); 1139 1140 static void btree_mergesort(struct btree_keys *b, struct bset *out, 1141 struct btree_iter *iter, 1142 bool fixup, bool remove_stale) 1143 { 1144 int i; 1145 struct bkey *k, *last = NULL; 1146 BKEY_PADDED(k) tmp; 1147 bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale 1148 ? bch_ptr_bad 1149 : bch_ptr_invalid; 1150 1151 /* Heapify the iterator, using our comparison function */ 1152 for (i = iter->used / 2 - 1; i >= 0; --i) 1153 heap_sift(iter, i, b->ops->sort_cmp); 1154 1155 while (!btree_iter_end(iter)) { 1156 if (b->ops->sort_fixup && fixup) 1157 k = b->ops->sort_fixup(iter, &tmp.k); 1158 else 1159 k = NULL; 1160 1161 if (!k) 1162 k = __bch_btree_iter_next(iter, b->ops->sort_cmp); 1163 1164 if (bad(b, k)) 1165 continue; 1166 1167 if (!last) { 1168 last = out->start; 1169 bkey_copy(last, k); 1170 } else if (!bch_bkey_try_merge(b, last, k)) { 1171 last = bkey_next(last); 1172 bkey_copy(last, k); 1173 } 1174 } 1175 1176 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; 1177 1178 pr_debug("sorted %i keys", out->keys); 1179 } 1180 1181 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter, 1182 unsigned start, unsigned order, bool fixup, 1183 struct bset_sort_state *state) 1184 { 1185 uint64_t start_time; 1186 bool used_mempool = false; 1187 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, 1188 order); 1189 if (!out) { 1190 struct page *outp; 1191 1192 BUG_ON(order > state->page_order); 1193 1194 outp = mempool_alloc(state->pool, GFP_NOIO); 1195 out = page_address(outp); 1196 used_mempool = true; 1197 order = state->page_order; 1198 } 1199 1200 start_time = local_clock(); 1201 1202 btree_mergesort(b, out, iter, fixup, false); 1203 b->nsets = start; 1204 1205 if (!start && order == b->page_order) { 1206 /* 1207 * Our temporary buffer is the same size as the btree node's 1208 * buffer, we can just swap buffers instead of doing a big 1209 * memcpy() 1210 */ 1211 1212 out->magic = b->set->data->magic; 1213 out->seq = b->set->data->seq; 1214 out->version = b->set->data->version; 1215 swap(out, b->set->data); 1216 } else { 1217 b->set[start].data->keys = out->keys; 1218 memcpy(b->set[start].data->start, out->start, 1219 (void *) bset_bkey_last(out) - (void *) out->start); 1220 } 1221 1222 if (used_mempool) 1223 mempool_free(virt_to_page(out), state->pool); 1224 else 1225 free_pages((unsigned long) out, order); 1226 1227 bch_bset_build_written_tree(b); 1228 1229 if (!start) 1230 bch_time_stats_update(&state->time, start_time); 1231 } 1232 1233 void bch_btree_sort_partial(struct btree_keys *b, unsigned start, 1234 struct bset_sort_state *state) 1235 { 1236 size_t order = b->page_order, keys = 0; 1237 struct btree_iter iter; 1238 int oldsize = bch_count_data(b); 1239 1240 __bch_btree_iter_init(b, &iter, NULL, &b->set[start]); 1241 1242 if (start) { 1243 unsigned i; 1244 1245 for (i = start; i <= b->nsets; i++) 1246 keys += b->set[i].data->keys; 1247 1248 order = get_order(__set_bytes(b->set->data, keys)); 1249 } 1250 1251 __btree_sort(b, &iter, start, order, false, state); 1252 1253 EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); 1254 } 1255 EXPORT_SYMBOL(bch_btree_sort_partial); 1256 1257 void bch_btree_sort_and_fix_extents(struct btree_keys *b, 1258 struct btree_iter *iter, 1259 struct bset_sort_state *state) 1260 { 1261 __btree_sort(b, iter, 0, b->page_order, true, state); 1262 } 1263 1264 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, 1265 struct bset_sort_state *state) 1266 { 1267 uint64_t start_time = local_clock(); 1268 1269 struct btree_iter iter; 1270 bch_btree_iter_init(b, &iter, NULL); 1271 1272 btree_mergesort(b, new->set->data, &iter, false, true); 1273 1274 bch_time_stats_update(&state->time, start_time); 1275 1276 new->set->size = 0; // XXX: why? 1277 } 1278 1279 #define SORT_CRIT (4096 / sizeof(uint64_t)) 1280 1281 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state) 1282 { 1283 unsigned crit = SORT_CRIT; 1284 int i; 1285 1286 /* Don't sort if nothing to do */ 1287 if (!b->nsets) 1288 goto out; 1289 1290 for (i = b->nsets - 1; i >= 0; --i) { 1291 crit *= state->crit_factor; 1292 1293 if (b->set[i].data->keys < crit) { 1294 bch_btree_sort_partial(b, i, state); 1295 return; 1296 } 1297 } 1298 1299 /* Sort if we'd overflow */ 1300 if (b->nsets + 1 == MAX_BSETS) { 1301 bch_btree_sort(b, state); 1302 return; 1303 } 1304 1305 out: 1306 bch_bset_build_written_tree(b); 1307 } 1308 EXPORT_SYMBOL(bch_btree_sort_lazy); 1309 1310 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats) 1311 { 1312 unsigned i; 1313 1314 for (i = 0; i <= b->nsets; i++) { 1315 struct bset_tree *t = &b->set[i]; 1316 size_t bytes = t->data->keys * sizeof(uint64_t); 1317 size_t j; 1318 1319 if (bset_written(b, t)) { 1320 stats->sets_written++; 1321 stats->bytes_written += bytes; 1322 1323 stats->floats += t->size - 1; 1324 1325 for (j = 1; j < t->size; j++) 1326 if (t->tree[j].exponent == 127) 1327 stats->failed++; 1328 } else { 1329 stats->sets_unwritten++; 1330 stats->bytes_unwritten += bytes; 1331 } 1332 } 1333 } 1334