xref: /openbmc/linux/drivers/md/bcache/bset.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
10 
11 #include "util.h"
12 #include "bset.h"
13 
14 #include <linux/console.h>
15 #include <linux/sched/clock.h>
16 #include <linux/random.h>
17 #include <linux/prefetch.h>
18 
19 #ifdef CONFIG_BCACHE_DEBUG
20 
21 void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set)
22 {
23 	struct bkey *k, *next;
24 
25 	for (k = i->start; k < bset_bkey_last(i); k = next) {
26 		next = bkey_next(k);
27 
28 		pr_err("block %u key %u/%u: ", set,
29 		       (unsigned int) ((u64 *) k - i->d), i->keys);
30 
31 		if (b->ops->key_dump)
32 			b->ops->key_dump(b, k);
33 		else
34 			pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
35 
36 		if (next < bset_bkey_last(i) &&
37 		    bkey_cmp(k, b->ops->is_extents ?
38 			     &START_KEY(next) : next) > 0)
39 			pr_err("Key skipped backwards\n");
40 	}
41 }
42 
43 void bch_dump_bucket(struct btree_keys *b)
44 {
45 	unsigned int i;
46 
47 	console_lock();
48 	for (i = 0; i <= b->nsets; i++)
49 		bch_dump_bset(b, b->set[i].data,
50 			      bset_sector_offset(b, b->set[i].data));
51 	console_unlock();
52 }
53 
54 int __bch_count_data(struct btree_keys *b)
55 {
56 	unsigned int ret = 0;
57 	struct btree_iter iter;
58 	struct bkey *k;
59 
60 	if (b->ops->is_extents)
61 		for_each_key(b, k, &iter)
62 			ret += KEY_SIZE(k);
63 	return ret;
64 }
65 
66 void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
67 {
68 	va_list args;
69 	struct bkey *k, *p = NULL;
70 	struct btree_iter iter;
71 	const char *err;
72 
73 	for_each_key(b, k, &iter) {
74 		if (b->ops->is_extents) {
75 			err = "Keys out of order";
76 			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
77 				goto bug;
78 
79 			if (bch_ptr_invalid(b, k))
80 				continue;
81 
82 			err =  "Overlapping keys";
83 			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
84 				goto bug;
85 		} else {
86 			if (bch_ptr_bad(b, k))
87 				continue;
88 
89 			err = "Duplicate keys";
90 			if (p && !bkey_cmp(p, k))
91 				goto bug;
92 		}
93 		p = k;
94 	}
95 #if 0
96 	err = "Key larger than btree node key";
97 	if (p && bkey_cmp(p, &b->key) > 0)
98 		goto bug;
99 #endif
100 	return;
101 bug:
102 	bch_dump_bucket(b);
103 
104 	va_start(args, fmt);
105 	vprintk(fmt, args);
106 	va_end(args);
107 
108 	panic("bch_check_keys error:  %s:\n", err);
109 }
110 
111 static void bch_btree_iter_next_check(struct btree_iter *iter)
112 {
113 	struct bkey *k = iter->data->k, *next = bkey_next(k);
114 
115 	if (next < iter->data->end &&
116 	    bkey_cmp(k, iter->b->ops->is_extents ?
117 		     &START_KEY(next) : next) > 0) {
118 		bch_dump_bucket(iter->b);
119 		panic("Key skipped backwards\n");
120 	}
121 }
122 
123 #else
124 
125 static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
126 
127 #endif
128 
129 /* Keylists */
130 
131 int __bch_keylist_realloc(struct keylist *l, unsigned int u64s)
132 {
133 	size_t oldsize = bch_keylist_nkeys(l);
134 	size_t newsize = oldsize + u64s;
135 	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
136 	uint64_t *new_keys;
137 
138 	newsize = roundup_pow_of_two(newsize);
139 
140 	if (newsize <= KEYLIST_INLINE ||
141 	    roundup_pow_of_two(oldsize) == newsize)
142 		return 0;
143 
144 	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
145 
146 	if (!new_keys)
147 		return -ENOMEM;
148 
149 	if (!old_keys)
150 		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
151 
152 	l->keys_p = new_keys;
153 	l->top_p = new_keys + oldsize;
154 
155 	return 0;
156 }
157 
158 struct bkey *bch_keylist_pop(struct keylist *l)
159 {
160 	struct bkey *k = l->keys;
161 
162 	if (k == l->top)
163 		return NULL;
164 
165 	while (bkey_next(k) != l->top)
166 		k = bkey_next(k);
167 
168 	return l->top = k;
169 }
170 
171 void bch_keylist_pop_front(struct keylist *l)
172 {
173 	l->top_p -= bkey_u64s(l->keys);
174 
175 	memmove(l->keys,
176 		bkey_next(l->keys),
177 		bch_keylist_bytes(l));
178 }
179 
180 /* Key/pointer manipulation */
181 
182 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
183 			      unsigned int i)
184 {
185 	BUG_ON(i > KEY_PTRS(src));
186 
187 	/* Only copy the header, key, and one pointer. */
188 	memcpy(dest, src, 2 * sizeof(uint64_t));
189 	dest->ptr[0] = src->ptr[i];
190 	SET_KEY_PTRS(dest, 1);
191 	/* We didn't copy the checksum so clear that bit. */
192 	SET_KEY_CSUM(dest, 0);
193 }
194 
195 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
196 {
197 	unsigned int i, len = 0;
198 
199 	if (bkey_cmp(where, &START_KEY(k)) <= 0)
200 		return false;
201 
202 	if (bkey_cmp(where, k) < 0)
203 		len = KEY_OFFSET(k) - KEY_OFFSET(where);
204 	else
205 		bkey_copy_key(k, where);
206 
207 	for (i = 0; i < KEY_PTRS(k); i++)
208 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
209 
210 	BUG_ON(len > KEY_SIZE(k));
211 	SET_KEY_SIZE(k, len);
212 	return true;
213 }
214 
215 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
216 {
217 	unsigned int len = 0;
218 
219 	if (bkey_cmp(where, k) >= 0)
220 		return false;
221 
222 	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
223 
224 	if (bkey_cmp(where, &START_KEY(k)) > 0)
225 		len = KEY_OFFSET(where) - KEY_START(k);
226 
227 	bkey_copy_key(k, where);
228 
229 	BUG_ON(len > KEY_SIZE(k));
230 	SET_KEY_SIZE(k, len);
231 	return true;
232 }
233 
234 /* Auxiliary search trees */
235 
236 /* 32 bits total: */
237 #define BKEY_MID_BITS		3
238 #define BKEY_EXPONENT_BITS	7
239 #define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
240 #define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
241 
242 struct bkey_float {
243 	unsigned int	exponent:BKEY_EXPONENT_BITS;
244 	unsigned int	m:BKEY_MID_BITS;
245 	unsigned int	mantissa:BKEY_MANTISSA_BITS;
246 } __packed;
247 
248 /*
249  * BSET_CACHELINE was originally intended to match the hardware cacheline size -
250  * it used to be 64, but I realized the lookup code would touch slightly less
251  * memory if it was 128.
252  *
253  * It definites the number of bytes (in struct bset) per struct bkey_float in
254  * the auxiliar search tree - when we're done searching the bset_float tree we
255  * have this many bytes left that we do a linear search over.
256  *
257  * Since (after level 5) every level of the bset_tree is on a new cacheline,
258  * we're touching one fewer cacheline in the bset tree in exchange for one more
259  * cacheline in the linear search - but the linear search might stop before it
260  * gets to the second cacheline.
261  */
262 
263 #define BSET_CACHELINE		128
264 
265 /* Space required for the btree node keys */
266 static inline size_t btree_keys_bytes(struct btree_keys *b)
267 {
268 	return PAGE_SIZE << b->page_order;
269 }
270 
271 static inline size_t btree_keys_cachelines(struct btree_keys *b)
272 {
273 	return btree_keys_bytes(b) / BSET_CACHELINE;
274 }
275 
276 /* Space required for the auxiliary search trees */
277 static inline size_t bset_tree_bytes(struct btree_keys *b)
278 {
279 	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
280 }
281 
282 /* Space required for the prev pointers */
283 static inline size_t bset_prev_bytes(struct btree_keys *b)
284 {
285 	return btree_keys_cachelines(b) * sizeof(uint8_t);
286 }
287 
288 /* Memory allocation */
289 
290 void bch_btree_keys_free(struct btree_keys *b)
291 {
292 	struct bset_tree *t = b->set;
293 
294 	if (bset_prev_bytes(b) < PAGE_SIZE)
295 		kfree(t->prev);
296 	else
297 		free_pages((unsigned long) t->prev,
298 			   get_order(bset_prev_bytes(b)));
299 
300 	if (bset_tree_bytes(b) < PAGE_SIZE)
301 		kfree(t->tree);
302 	else
303 		free_pages((unsigned long) t->tree,
304 			   get_order(bset_tree_bytes(b)));
305 
306 	free_pages((unsigned long) t->data, b->page_order);
307 
308 	t->prev = NULL;
309 	t->tree = NULL;
310 	t->data = NULL;
311 }
312 EXPORT_SYMBOL(bch_btree_keys_free);
313 
314 int bch_btree_keys_alloc(struct btree_keys *b,
315 			 unsigned int page_order,
316 			 gfp_t gfp)
317 {
318 	struct bset_tree *t = b->set;
319 
320 	BUG_ON(t->data);
321 
322 	b->page_order = page_order;
323 
324 	t->data = (void *) __get_free_pages(gfp, b->page_order);
325 	if (!t->data)
326 		goto err;
327 
328 	t->tree = bset_tree_bytes(b) < PAGE_SIZE
329 		? kmalloc(bset_tree_bytes(b), gfp)
330 		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
331 	if (!t->tree)
332 		goto err;
333 
334 	t->prev = bset_prev_bytes(b) < PAGE_SIZE
335 		? kmalloc(bset_prev_bytes(b), gfp)
336 		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
337 	if (!t->prev)
338 		goto err;
339 
340 	return 0;
341 err:
342 	bch_btree_keys_free(b);
343 	return -ENOMEM;
344 }
345 EXPORT_SYMBOL(bch_btree_keys_alloc);
346 
347 void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
348 			 bool *expensive_debug_checks)
349 {
350 	unsigned int i;
351 
352 	b->ops = ops;
353 	b->expensive_debug_checks = expensive_debug_checks;
354 	b->nsets = 0;
355 	b->last_set_unwritten = 0;
356 
357 	/* XXX: shouldn't be needed */
358 	for (i = 0; i < MAX_BSETS; i++)
359 		b->set[i].size = 0;
360 	/*
361 	 * Second loop starts at 1 because b->keys[0]->data is the memory we
362 	 * allocated
363 	 */
364 	for (i = 1; i < MAX_BSETS; i++)
365 		b->set[i].data = NULL;
366 }
367 EXPORT_SYMBOL(bch_btree_keys_init);
368 
369 /* Binary tree stuff for auxiliary search trees */
370 
371 /*
372  * return array index next to j when does in-order traverse
373  * of a binary tree which is stored in a linear array
374  */
375 static unsigned int inorder_next(unsigned int j, unsigned int size)
376 {
377 	if (j * 2 + 1 < size) {
378 		j = j * 2 + 1;
379 
380 		while (j * 2 < size)
381 			j *= 2;
382 	} else
383 		j >>= ffz(j) + 1;
384 
385 	return j;
386 }
387 
388 /*
389  * return array index previous to j when does in-order traverse
390  * of a binary tree which is stored in a linear array
391  */
392 static unsigned int inorder_prev(unsigned int j, unsigned int size)
393 {
394 	if (j * 2 < size) {
395 		j = j * 2;
396 
397 		while (j * 2 + 1 < size)
398 			j = j * 2 + 1;
399 	} else
400 		j >>= ffs(j);
401 
402 	return j;
403 }
404 
405 /*
406  * I have no idea why this code works... and I'm the one who wrote it
407  *
408  * However, I do know what it does:
409  * Given a binary tree constructed in an array (i.e. how you normally implement
410  * a heap), it converts a node in the tree - referenced by array index - to the
411  * index it would have if you did an inorder traversal.
412  *
413  * Also tested for every j, size up to size somewhere around 6 million.
414  *
415  * The binary tree starts at array index 1, not 0
416  * extra is a function of size:
417  *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
418  */
419 static unsigned int __to_inorder(unsigned int j,
420 				  unsigned int size,
421 				  unsigned int extra)
422 {
423 	unsigned int b = fls(j);
424 	unsigned int shift = fls(size - 1) - b;
425 
426 	j  ^= 1U << (b - 1);
427 	j <<= 1;
428 	j  |= 1;
429 	j <<= shift;
430 
431 	if (j > extra)
432 		j -= (j - extra) >> 1;
433 
434 	return j;
435 }
436 
437 /*
438  * Return the cacheline index in bset_tree->data, where j is index
439  * from a linear array which stores the auxiliar binary tree
440  */
441 static unsigned int to_inorder(unsigned int j, struct bset_tree *t)
442 {
443 	return __to_inorder(j, t->size, t->extra);
444 }
445 
446 static unsigned int __inorder_to_tree(unsigned int j,
447 				      unsigned int size,
448 				      unsigned int extra)
449 {
450 	unsigned int shift;
451 
452 	if (j > extra)
453 		j += j - extra;
454 
455 	shift = ffs(j);
456 
457 	j >>= shift;
458 	j  |= roundup_pow_of_two(size) >> shift;
459 
460 	return j;
461 }
462 
463 /*
464  * Return an index from a linear array which stores the auxiliar binary
465  * tree, j is the cacheline index of t->data.
466  */
467 static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t)
468 {
469 	return __inorder_to_tree(j, t->size, t->extra);
470 }
471 
472 #if 0
473 void inorder_test(void)
474 {
475 	unsigned long done = 0;
476 	ktime_t start = ktime_get();
477 
478 	for (unsigned int size = 2;
479 	     size < 65536000;
480 	     size++) {
481 		unsigned int extra =
482 			(size - rounddown_pow_of_two(size - 1)) << 1;
483 		unsigned int i = 1, j = rounddown_pow_of_two(size - 1);
484 
485 		if (!(size % 4096))
486 			pr_notice("loop %u, %llu per us\n", size,
487 			       done / ktime_us_delta(ktime_get(), start));
488 
489 		while (1) {
490 			if (__inorder_to_tree(i, size, extra) != j)
491 				panic("size %10u j %10u i %10u", size, j, i);
492 
493 			if (__to_inorder(j, size, extra) != i)
494 				panic("size %10u j %10u i %10u", size, j, i);
495 
496 			if (j == rounddown_pow_of_two(size) - 1)
497 				break;
498 
499 			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
500 
501 			j = inorder_next(j, size);
502 			i++;
503 		}
504 
505 		done += size - 1;
506 	}
507 }
508 #endif
509 
510 /*
511  * Cacheline/offset <-> bkey pointer arithmetic:
512  *
513  * t->tree is a binary search tree in an array; each node corresponds to a key
514  * in one cacheline in t->set (BSET_CACHELINE bytes).
515  *
516  * This means we don't have to store the full index of the key that a node in
517  * the binary tree points to; to_inorder() gives us the cacheline, and then
518  * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
519  *
520  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
521  * make this work.
522  *
523  * To construct the bfloat for an arbitrary key we need to know what the key
524  * immediately preceding it is: we have to check if the two keys differ in the
525  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
526  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
527  */
528 
529 static struct bkey *cacheline_to_bkey(struct bset_tree *t,
530 				      unsigned int cacheline,
531 				      unsigned int offset)
532 {
533 	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
534 }
535 
536 static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
537 {
538 	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
539 }
540 
541 static unsigned int bkey_to_cacheline_offset(struct bset_tree *t,
542 					 unsigned int cacheline,
543 					 struct bkey *k)
544 {
545 	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
546 }
547 
548 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j)
549 {
550 	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
551 }
552 
553 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j)
554 {
555 	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
556 }
557 
558 /*
559  * For the write set - the one we're currently inserting keys into - we don't
560  * maintain a full search tree, we just keep a simple lookup table in t->prev.
561  */
562 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline)
563 {
564 	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
565 }
566 
567 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
568 {
569 	low >>= shift;
570 	low  |= (high << 1) << (63U - shift);
571 	return low;
572 }
573 
574 /*
575  * Calculate mantissa value for struct bkey_float.
576  * If most significant bit of f->exponent is not set, then
577  *  - f->exponent >> 6 is 0
578  *  - p[0] points to bkey->low
579  *  - p[-1] borrows bits from KEY_INODE() of bkey->high
580  * if most isgnificant bits of f->exponent is set, then
581  *  - f->exponent >> 6 is 1
582  *  - p[0] points to bits from KEY_INODE() of bkey->high
583  *  - p[-1] points to other bits from KEY_INODE() of
584  *    bkey->high too.
585  * See make_bfloat() to check when most significant bit of f->exponent
586  * is set or not.
587  */
588 static inline unsigned int bfloat_mantissa(const struct bkey *k,
589 				       struct bkey_float *f)
590 {
591 	const uint64_t *p = &k->low - (f->exponent >> 6);
592 
593 	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
594 }
595 
596 static void make_bfloat(struct bset_tree *t, unsigned int j)
597 {
598 	struct bkey_float *f = &t->tree[j];
599 	struct bkey *m = tree_to_bkey(t, j);
600 	struct bkey *p = tree_to_prev_bkey(t, j);
601 
602 	struct bkey *l = is_power_of_2(j)
603 		? t->data->start
604 		: tree_to_prev_bkey(t, j >> ffs(j));
605 
606 	struct bkey *r = is_power_of_2(j + 1)
607 		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
608 		: tree_to_bkey(t, j >> (ffz(j) + 1));
609 
610 	BUG_ON(m < l || m > r);
611 	BUG_ON(bkey_next(p) != m);
612 
613 	/*
614 	 * If l and r have different KEY_INODE values (different backing
615 	 * device), f->exponent records how many least significant bits
616 	 * are different in KEY_INODE values and sets most significant
617 	 * bits to 1 (by +64).
618 	 * If l and r have same KEY_INODE value, f->exponent records
619 	 * how many different bits in least significant bits of bkey->low.
620 	 * See bfloat_mantiss() how the most significant bit of
621 	 * f->exponent is used to calculate bfloat mantissa value.
622 	 */
623 	if (KEY_INODE(l) != KEY_INODE(r))
624 		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
625 	else
626 		f->exponent = fls64(r->low ^ l->low);
627 
628 	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
629 
630 	/*
631 	 * Setting f->exponent = 127 flags this node as failed, and causes the
632 	 * lookup code to fall back to comparing against the original key.
633 	 */
634 
635 	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
636 		f->mantissa = bfloat_mantissa(m, f) - 1;
637 	else
638 		f->exponent = 127;
639 }
640 
641 static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
642 {
643 	if (t != b->set) {
644 		unsigned int j = roundup(t[-1].size,
645 				     64 / sizeof(struct bkey_float));
646 
647 		t->tree = t[-1].tree + j;
648 		t->prev = t[-1].prev + j;
649 	}
650 
651 	while (t < b->set + MAX_BSETS)
652 		t++->size = 0;
653 }
654 
655 static void bch_bset_build_unwritten_tree(struct btree_keys *b)
656 {
657 	struct bset_tree *t = bset_tree_last(b);
658 
659 	BUG_ON(b->last_set_unwritten);
660 	b->last_set_unwritten = 1;
661 
662 	bset_alloc_tree(b, t);
663 
664 	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
665 		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
666 		t->size = 1;
667 	}
668 }
669 
670 void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
671 {
672 	if (i != b->set->data) {
673 		b->set[++b->nsets].data = i;
674 		i->seq = b->set->data->seq;
675 	} else
676 		get_random_bytes(&i->seq, sizeof(uint64_t));
677 
678 	i->magic	= magic;
679 	i->version	= 0;
680 	i->keys		= 0;
681 
682 	bch_bset_build_unwritten_tree(b);
683 }
684 EXPORT_SYMBOL(bch_bset_init_next);
685 
686 /*
687  * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to
688  * accelerate bkey search in a btree node (pointed by bset_tree->data in
689  * memory). After search in the auxiliar tree by calling bset_search_tree(),
690  * a struct bset_search_iter is returned which indicates range [l, r] from
691  * bset_tree->data where the searching bkey might be inside. Then a followed
692  * linear comparison does the exact search, see __bch_bset_search() for how
693  * the auxiliary tree is used.
694  */
695 void bch_bset_build_written_tree(struct btree_keys *b)
696 {
697 	struct bset_tree *t = bset_tree_last(b);
698 	struct bkey *prev = NULL, *k = t->data->start;
699 	unsigned int j, cacheline = 1;
700 
701 	b->last_set_unwritten = 0;
702 
703 	bset_alloc_tree(b, t);
704 
705 	t->size = min_t(unsigned int,
706 			bkey_to_cacheline(t, bset_bkey_last(t->data)),
707 			b->set->tree + btree_keys_cachelines(b) - t->tree);
708 
709 	if (t->size < 2) {
710 		t->size = 0;
711 		return;
712 	}
713 
714 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
715 
716 	/* First we figure out where the first key in each cacheline is */
717 	for (j = inorder_next(0, t->size);
718 	     j;
719 	     j = inorder_next(j, t->size)) {
720 		while (bkey_to_cacheline(t, k) < cacheline)
721 			prev = k, k = bkey_next(k);
722 
723 		t->prev[j] = bkey_u64s(prev);
724 		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
725 	}
726 
727 	while (bkey_next(k) != bset_bkey_last(t->data))
728 		k = bkey_next(k);
729 
730 	t->end = *k;
731 
732 	/* Then we build the tree */
733 	for (j = inorder_next(0, t->size);
734 	     j;
735 	     j = inorder_next(j, t->size))
736 		make_bfloat(t, j);
737 }
738 EXPORT_SYMBOL(bch_bset_build_written_tree);
739 
740 /* Insert */
741 
742 void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
743 {
744 	struct bset_tree *t;
745 	unsigned int inorder, j = 1;
746 
747 	for (t = b->set; t <= bset_tree_last(b); t++)
748 		if (k < bset_bkey_last(t->data))
749 			goto found_set;
750 
751 	BUG();
752 found_set:
753 	if (!t->size || !bset_written(b, t))
754 		return;
755 
756 	inorder = bkey_to_cacheline(t, k);
757 
758 	if (k == t->data->start)
759 		goto fix_left;
760 
761 	if (bkey_next(k) == bset_bkey_last(t->data)) {
762 		t->end = *k;
763 		goto fix_right;
764 	}
765 
766 	j = inorder_to_tree(inorder, t);
767 
768 	if (j &&
769 	    j < t->size &&
770 	    k == tree_to_bkey(t, j))
771 fix_left:	do {
772 			make_bfloat(t, j);
773 			j = j * 2;
774 		} while (j < t->size);
775 
776 	j = inorder_to_tree(inorder + 1, t);
777 
778 	if (j &&
779 	    j < t->size &&
780 	    k == tree_to_prev_bkey(t, j))
781 fix_right:	do {
782 			make_bfloat(t, j);
783 			j = j * 2 + 1;
784 		} while (j < t->size);
785 }
786 EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
787 
788 static void bch_bset_fix_lookup_table(struct btree_keys *b,
789 				      struct bset_tree *t,
790 				      struct bkey *k)
791 {
792 	unsigned int shift = bkey_u64s(k);
793 	unsigned int j = bkey_to_cacheline(t, k);
794 
795 	/* We're getting called from btree_split() or btree_gc, just bail out */
796 	if (!t->size)
797 		return;
798 
799 	/*
800 	 * k is the key we just inserted; we need to find the entry in the
801 	 * lookup table for the first key that is strictly greater than k:
802 	 * it's either k's cacheline or the next one
803 	 */
804 	while (j < t->size &&
805 	       table_to_bkey(t, j) <= k)
806 		j++;
807 
808 	/*
809 	 * Adjust all the lookup table entries, and find a new key for any that
810 	 * have gotten too big
811 	 */
812 	for (; j < t->size; j++) {
813 		t->prev[j] += shift;
814 
815 		if (t->prev[j] > 7) {
816 			k = table_to_bkey(t, j - 1);
817 
818 			while (k < cacheline_to_bkey(t, j, 0))
819 				k = bkey_next(k);
820 
821 			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
822 		}
823 	}
824 
825 	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
826 		return;
827 
828 	/* Possibly add a new entry to the end of the lookup table */
829 
830 	for (k = table_to_bkey(t, t->size - 1);
831 	     k != bset_bkey_last(t->data);
832 	     k = bkey_next(k))
833 		if (t->size == bkey_to_cacheline(t, k)) {
834 			t->prev[t->size] =
835 				bkey_to_cacheline_offset(t, t->size, k);
836 			t->size++;
837 		}
838 }
839 
840 /*
841  * Tries to merge l and r: l should be lower than r
842  * Returns true if we were able to merge. If we did merge, l will be the merged
843  * key, r will be untouched.
844  */
845 bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
846 {
847 	if (!b->ops->key_merge)
848 		return false;
849 
850 	/*
851 	 * Generic header checks
852 	 * Assumes left and right are in order
853 	 * Left and right must be exactly aligned
854 	 */
855 	if (!bch_bkey_equal_header(l, r) ||
856 	     bkey_cmp(l, &START_KEY(r)))
857 		return false;
858 
859 	return b->ops->key_merge(b, l, r);
860 }
861 EXPORT_SYMBOL(bch_bkey_try_merge);
862 
863 void bch_bset_insert(struct btree_keys *b, struct bkey *where,
864 		     struct bkey *insert)
865 {
866 	struct bset_tree *t = bset_tree_last(b);
867 
868 	BUG_ON(!b->last_set_unwritten);
869 	BUG_ON(bset_byte_offset(b, t->data) +
870 	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
871 	       PAGE_SIZE << b->page_order);
872 
873 	memmove((uint64_t *) where + bkey_u64s(insert),
874 		where,
875 		(void *) bset_bkey_last(t->data) - (void *) where);
876 
877 	t->data->keys += bkey_u64s(insert);
878 	bkey_copy(where, insert);
879 	bch_bset_fix_lookup_table(b, t, where);
880 }
881 EXPORT_SYMBOL(bch_bset_insert);
882 
883 unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
884 			      struct bkey *replace_key)
885 {
886 	unsigned int status = BTREE_INSERT_STATUS_NO_INSERT;
887 	struct bset *i = bset_tree_last(b)->data;
888 	struct bkey *m, *prev = NULL;
889 	struct btree_iter iter;
890 
891 	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
892 
893 	m = bch_btree_iter_init(b, &iter, b->ops->is_extents
894 				? PRECEDING_KEY(&START_KEY(k))
895 				: PRECEDING_KEY(k));
896 
897 	if (b->ops->insert_fixup(b, k, &iter, replace_key))
898 		return status;
899 
900 	status = BTREE_INSERT_STATUS_INSERT;
901 
902 	while (m != bset_bkey_last(i) &&
903 	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
904 		prev = m, m = bkey_next(m);
905 
906 	/* prev is in the tree, if we merge we're done */
907 	status = BTREE_INSERT_STATUS_BACK_MERGE;
908 	if (prev &&
909 	    bch_bkey_try_merge(b, prev, k))
910 		goto merged;
911 #if 0
912 	status = BTREE_INSERT_STATUS_OVERWROTE;
913 	if (m != bset_bkey_last(i) &&
914 	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
915 		goto copy;
916 #endif
917 	status = BTREE_INSERT_STATUS_FRONT_MERGE;
918 	if (m != bset_bkey_last(i) &&
919 	    bch_bkey_try_merge(b, k, m))
920 		goto copy;
921 
922 	bch_bset_insert(b, m, k);
923 copy:	bkey_copy(m, k);
924 merged:
925 	return status;
926 }
927 EXPORT_SYMBOL(bch_btree_insert_key);
928 
929 /* Lookup */
930 
931 struct bset_search_iter {
932 	struct bkey *l, *r;
933 };
934 
935 static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
936 						     const struct bkey *search)
937 {
938 	unsigned int li = 0, ri = t->size;
939 
940 	while (li + 1 != ri) {
941 		unsigned int m = (li + ri) >> 1;
942 
943 		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
944 			ri = m;
945 		else
946 			li = m;
947 	}
948 
949 	return (struct bset_search_iter) {
950 		table_to_bkey(t, li),
951 		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
952 	};
953 }
954 
955 static struct bset_search_iter bset_search_tree(struct bset_tree *t,
956 						const struct bkey *search)
957 {
958 	struct bkey *l, *r;
959 	struct bkey_float *f;
960 	unsigned int inorder, j, n = 1;
961 
962 	do {
963 		/*
964 		 * A bit trick here.
965 		 * If p < t->size, (int)(p - t->size) is a minus value and
966 		 * the most significant bit is set, right shifting 31 bits
967 		 * gets 1. If p >= t->size, the most significant bit is
968 		 * not set, right shifting 31 bits gets 0.
969 		 * So the following 2 lines equals to
970 		 *	if (p >= t->size)
971 		 *		p = 0;
972 		 * but a branch instruction is avoided.
973 		 */
974 		unsigned int p = n << 4;
975 
976 		p &= ((int) (p - t->size)) >> 31;
977 
978 		prefetch(&t->tree[p]);
979 
980 		j = n;
981 		f = &t->tree[j];
982 
983 		/*
984 		 * Similar bit trick, use subtract operation to avoid a branch
985 		 * instruction.
986 		 *
987 		 * n = (f->mantissa > bfloat_mantissa())
988 		 *	? j * 2
989 		 *	: j * 2 + 1;
990 		 *
991 		 * We need to subtract 1 from f->mantissa for the sign bit trick
992 		 * to work  - that's done in make_bfloat()
993 		 */
994 		if (likely(f->exponent != 127))
995 			n = j * 2 + (((unsigned int)
996 				      (f->mantissa -
997 				       bfloat_mantissa(search, f))) >> 31);
998 		else
999 			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
1000 				? j * 2
1001 				: j * 2 + 1;
1002 	} while (n < t->size);
1003 
1004 	inorder = to_inorder(j, t);
1005 
1006 	/*
1007 	 * n would have been the node we recursed to - the low bit tells us if
1008 	 * we recursed left or recursed right.
1009 	 */
1010 	if (n & 1) {
1011 		l = cacheline_to_bkey(t, inorder, f->m);
1012 
1013 		if (++inorder != t->size) {
1014 			f = &t->tree[inorder_next(j, t->size)];
1015 			r = cacheline_to_bkey(t, inorder, f->m);
1016 		} else
1017 			r = bset_bkey_last(t->data);
1018 	} else {
1019 		r = cacheline_to_bkey(t, inorder, f->m);
1020 
1021 		if (--inorder) {
1022 			f = &t->tree[inorder_prev(j, t->size)];
1023 			l = cacheline_to_bkey(t, inorder, f->m);
1024 		} else
1025 			l = t->data->start;
1026 	}
1027 
1028 	return (struct bset_search_iter) {l, r};
1029 }
1030 
1031 struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
1032 			       const struct bkey *search)
1033 {
1034 	struct bset_search_iter i;
1035 
1036 	/*
1037 	 * First, we search for a cacheline, then lastly we do a linear search
1038 	 * within that cacheline.
1039 	 *
1040 	 * To search for the cacheline, there's three different possibilities:
1041 	 *  * The set is too small to have a search tree, so we just do a linear
1042 	 *    search over the whole set.
1043 	 *  * The set is the one we're currently inserting into; keeping a full
1044 	 *    auxiliary search tree up to date would be too expensive, so we
1045 	 *    use a much simpler lookup table to do a binary search -
1046 	 *    bset_search_write_set().
1047 	 *  * Or we use the auxiliary search tree we constructed earlier -
1048 	 *    bset_search_tree()
1049 	 */
1050 
1051 	if (unlikely(!t->size)) {
1052 		i.l = t->data->start;
1053 		i.r = bset_bkey_last(t->data);
1054 	} else if (bset_written(b, t)) {
1055 		/*
1056 		 * Each node in the auxiliary search tree covers a certain range
1057 		 * of bits, and keys above and below the set it covers might
1058 		 * differ outside those bits - so we have to special case the
1059 		 * start and end - handle that here:
1060 		 */
1061 
1062 		if (unlikely(bkey_cmp(search, &t->end) >= 0))
1063 			return bset_bkey_last(t->data);
1064 
1065 		if (unlikely(bkey_cmp(search, t->data->start) < 0))
1066 			return t->data->start;
1067 
1068 		i = bset_search_tree(t, search);
1069 	} else {
1070 		BUG_ON(!b->nsets &&
1071 		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
1072 
1073 		i = bset_search_write_set(t, search);
1074 	}
1075 
1076 	if (btree_keys_expensive_checks(b)) {
1077 		BUG_ON(bset_written(b, t) &&
1078 		       i.l != t->data->start &&
1079 		       bkey_cmp(tree_to_prev_bkey(t,
1080 			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1081 				search) > 0);
1082 
1083 		BUG_ON(i.r != bset_bkey_last(t->data) &&
1084 		       bkey_cmp(i.r, search) <= 0);
1085 	}
1086 
1087 	while (likely(i.l != i.r) &&
1088 	       bkey_cmp(i.l, search) <= 0)
1089 		i.l = bkey_next(i.l);
1090 
1091 	return i.l;
1092 }
1093 EXPORT_SYMBOL(__bch_bset_search);
1094 
1095 /* Btree iterator */
1096 
1097 typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1098 				 struct btree_iter_set);
1099 
1100 static inline bool btree_iter_cmp(struct btree_iter_set l,
1101 				  struct btree_iter_set r)
1102 {
1103 	return bkey_cmp(l.k, r.k) > 0;
1104 }
1105 
1106 static inline bool btree_iter_end(struct btree_iter *iter)
1107 {
1108 	return !iter->used;
1109 }
1110 
1111 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1112 			 struct bkey *end)
1113 {
1114 	if (k != end)
1115 		BUG_ON(!heap_add(iter,
1116 				 ((struct btree_iter_set) { k, end }),
1117 				 btree_iter_cmp));
1118 }
1119 
1120 static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1121 					  struct btree_iter *iter,
1122 					  struct bkey *search,
1123 					  struct bset_tree *start)
1124 {
1125 	struct bkey *ret = NULL;
1126 
1127 	iter->size = ARRAY_SIZE(iter->data);
1128 	iter->used = 0;
1129 
1130 #ifdef CONFIG_BCACHE_DEBUG
1131 	iter->b = b;
1132 #endif
1133 
1134 	for (; start <= bset_tree_last(b); start++) {
1135 		ret = bch_bset_search(b, start, search);
1136 		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1137 	}
1138 
1139 	return ret;
1140 }
1141 
1142 struct bkey *bch_btree_iter_init(struct btree_keys *b,
1143 				 struct btree_iter *iter,
1144 				 struct bkey *search)
1145 {
1146 	return __bch_btree_iter_init(b, iter, search, b->set);
1147 }
1148 EXPORT_SYMBOL(bch_btree_iter_init);
1149 
1150 static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1151 						 btree_iter_cmp_fn *cmp)
1152 {
1153 	struct btree_iter_set b __maybe_unused;
1154 	struct bkey *ret = NULL;
1155 
1156 	if (!btree_iter_end(iter)) {
1157 		bch_btree_iter_next_check(iter);
1158 
1159 		ret = iter->data->k;
1160 		iter->data->k = bkey_next(iter->data->k);
1161 
1162 		if (iter->data->k > iter->data->end) {
1163 			WARN_ONCE(1, "bset was corrupt!\n");
1164 			iter->data->k = iter->data->end;
1165 		}
1166 
1167 		if (iter->data->k == iter->data->end)
1168 			heap_pop(iter, b, cmp);
1169 		else
1170 			heap_sift(iter, 0, cmp);
1171 	}
1172 
1173 	return ret;
1174 }
1175 
1176 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1177 {
1178 	return __bch_btree_iter_next(iter, btree_iter_cmp);
1179 
1180 }
1181 EXPORT_SYMBOL(bch_btree_iter_next);
1182 
1183 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1184 					struct btree_keys *b, ptr_filter_fn fn)
1185 {
1186 	struct bkey *ret;
1187 
1188 	do {
1189 		ret = bch_btree_iter_next(iter);
1190 	} while (ret && fn(b, ret));
1191 
1192 	return ret;
1193 }
1194 
1195 /* Mergesort */
1196 
1197 void bch_bset_sort_state_free(struct bset_sort_state *state)
1198 {
1199 	mempool_exit(&state->pool);
1200 }
1201 
1202 int bch_bset_sort_state_init(struct bset_sort_state *state,
1203 			     unsigned int page_order)
1204 {
1205 	spin_lock_init(&state->time.lock);
1206 
1207 	state->page_order = page_order;
1208 	state->crit_factor = int_sqrt(1 << page_order);
1209 
1210 	return mempool_init_page_pool(&state->pool, 1, page_order);
1211 }
1212 EXPORT_SYMBOL(bch_bset_sort_state_init);
1213 
1214 static void btree_mergesort(struct btree_keys *b, struct bset *out,
1215 			    struct btree_iter *iter,
1216 			    bool fixup, bool remove_stale)
1217 {
1218 	int i;
1219 	struct bkey *k, *last = NULL;
1220 	BKEY_PADDED(k) tmp;
1221 	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1222 		? bch_ptr_bad
1223 		: bch_ptr_invalid;
1224 
1225 	/* Heapify the iterator, using our comparison function */
1226 	for (i = iter->used / 2 - 1; i >= 0; --i)
1227 		heap_sift(iter, i, b->ops->sort_cmp);
1228 
1229 	while (!btree_iter_end(iter)) {
1230 		if (b->ops->sort_fixup && fixup)
1231 			k = b->ops->sort_fixup(iter, &tmp.k);
1232 		else
1233 			k = NULL;
1234 
1235 		if (!k)
1236 			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1237 
1238 		if (bad(b, k))
1239 			continue;
1240 
1241 		if (!last) {
1242 			last = out->start;
1243 			bkey_copy(last, k);
1244 		} else if (!bch_bkey_try_merge(b, last, k)) {
1245 			last = bkey_next(last);
1246 			bkey_copy(last, k);
1247 		}
1248 	}
1249 
1250 	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1251 
1252 	pr_debug("sorted %i keys", out->keys);
1253 }
1254 
1255 static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1256 			 unsigned int start, unsigned int order, bool fixup,
1257 			 struct bset_sort_state *state)
1258 {
1259 	uint64_t start_time;
1260 	bool used_mempool = false;
1261 	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1262 						     order);
1263 	if (!out) {
1264 		struct page *outp;
1265 
1266 		BUG_ON(order > state->page_order);
1267 
1268 		outp = mempool_alloc(&state->pool, GFP_NOIO);
1269 		out = page_address(outp);
1270 		used_mempool = true;
1271 		order = state->page_order;
1272 	}
1273 
1274 	start_time = local_clock();
1275 
1276 	btree_mergesort(b, out, iter, fixup, false);
1277 	b->nsets = start;
1278 
1279 	if (!start && order == b->page_order) {
1280 		/*
1281 		 * Our temporary buffer is the same size as the btree node's
1282 		 * buffer, we can just swap buffers instead of doing a big
1283 		 * memcpy()
1284 		 */
1285 
1286 		out->magic	= b->set->data->magic;
1287 		out->seq	= b->set->data->seq;
1288 		out->version	= b->set->data->version;
1289 		swap(out, b->set->data);
1290 	} else {
1291 		b->set[start].data->keys = out->keys;
1292 		memcpy(b->set[start].data->start, out->start,
1293 		       (void *) bset_bkey_last(out) - (void *) out->start);
1294 	}
1295 
1296 	if (used_mempool)
1297 		mempool_free(virt_to_page(out), &state->pool);
1298 	else
1299 		free_pages((unsigned long) out, order);
1300 
1301 	bch_bset_build_written_tree(b);
1302 
1303 	if (!start)
1304 		bch_time_stats_update(&state->time, start_time);
1305 }
1306 
1307 void bch_btree_sort_partial(struct btree_keys *b, unsigned int start,
1308 			    struct bset_sort_state *state)
1309 {
1310 	size_t order = b->page_order, keys = 0;
1311 	struct btree_iter iter;
1312 	int oldsize = bch_count_data(b);
1313 
1314 	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1315 
1316 	if (start) {
1317 		unsigned int i;
1318 
1319 		for (i = start; i <= b->nsets; i++)
1320 			keys += b->set[i].data->keys;
1321 
1322 		order = get_order(__set_bytes(b->set->data, keys));
1323 	}
1324 
1325 	__btree_sort(b, &iter, start, order, false, state);
1326 
1327 	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1328 }
1329 EXPORT_SYMBOL(bch_btree_sort_partial);
1330 
1331 void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1332 				    struct btree_iter *iter,
1333 				    struct bset_sort_state *state)
1334 {
1335 	__btree_sort(b, iter, 0, b->page_order, true, state);
1336 }
1337 
1338 void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1339 			 struct bset_sort_state *state)
1340 {
1341 	uint64_t start_time = local_clock();
1342 	struct btree_iter iter;
1343 
1344 	bch_btree_iter_init(b, &iter, NULL);
1345 
1346 	btree_mergesort(b, new->set->data, &iter, false, true);
1347 
1348 	bch_time_stats_update(&state->time, start_time);
1349 
1350 	new->set->size = 0; // XXX: why?
1351 }
1352 
1353 #define SORT_CRIT	(4096 / sizeof(uint64_t))
1354 
1355 void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1356 {
1357 	unsigned int crit = SORT_CRIT;
1358 	int i;
1359 
1360 	/* Don't sort if nothing to do */
1361 	if (!b->nsets)
1362 		goto out;
1363 
1364 	for (i = b->nsets - 1; i >= 0; --i) {
1365 		crit *= state->crit_factor;
1366 
1367 		if (b->set[i].data->keys < crit) {
1368 			bch_btree_sort_partial(b, i, state);
1369 			return;
1370 		}
1371 	}
1372 
1373 	/* Sort if we'd overflow */
1374 	if (b->nsets + 1 == MAX_BSETS) {
1375 		bch_btree_sort(b, state);
1376 		return;
1377 	}
1378 
1379 out:
1380 	bch_bset_build_written_tree(b);
1381 }
1382 EXPORT_SYMBOL(bch_btree_sort_lazy);
1383 
1384 void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1385 {
1386 	unsigned int i;
1387 
1388 	for (i = 0; i <= b->nsets; i++) {
1389 		struct bset_tree *t = &b->set[i];
1390 		size_t bytes = t->data->keys * sizeof(uint64_t);
1391 		size_t j;
1392 
1393 		if (bset_written(b, t)) {
1394 			stats->sets_written++;
1395 			stats->bytes_written += bytes;
1396 
1397 			stats->floats += t->size - 1;
1398 
1399 			for (j = 1; j < t->size; j++)
1400 				if (t->tree[j].exponent == 127)
1401 					stats->failed++;
1402 		} else {
1403 			stats->sets_unwritten++;
1404 			stats->bytes_unwritten += bytes;
1405 		}
1406 	}
1407 }
1408