xref: /openbmc/linux/drivers/md/bcache/bset.c (revision 930beb5a)
1 /*
2  * Code for working with individual keys, and sorted sets of keys with in a
3  * btree node
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 
12 #include <linux/random.h>
13 #include <linux/prefetch.h>
14 
15 /* Keylists */
16 
17 int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c)
18 {
19 	size_t oldsize = bch_keylist_nkeys(l);
20 	size_t newsize = oldsize + 2 + nptrs;
21 	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
22 	uint64_t *new_keys;
23 
24 	/* The journalling code doesn't handle the case where the keys to insert
25 	 * is bigger than an empty write: If we just return -ENOMEM here,
26 	 * bio_insert() and bio_invalidate() will insert the keys created so far
27 	 * and finish the rest when the keylist is empty.
28 	 */
29 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
30 		return -ENOMEM;
31 
32 	newsize = roundup_pow_of_two(newsize);
33 
34 	if (newsize <= KEYLIST_INLINE ||
35 	    roundup_pow_of_two(oldsize) == newsize)
36 		return 0;
37 
38 	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
39 
40 	if (!new_keys)
41 		return -ENOMEM;
42 
43 	if (!old_keys)
44 		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
45 
46 	l->keys_p = new_keys;
47 	l->top_p = new_keys + oldsize;
48 
49 	return 0;
50 }
51 
52 struct bkey *bch_keylist_pop(struct keylist *l)
53 {
54 	struct bkey *k = l->keys;
55 
56 	if (k == l->top)
57 		return NULL;
58 
59 	while (bkey_next(k) != l->top)
60 		k = bkey_next(k);
61 
62 	return l->top = k;
63 }
64 
65 void bch_keylist_pop_front(struct keylist *l)
66 {
67 	l->top_p -= bkey_u64s(l->keys);
68 
69 	memmove(l->keys,
70 		bkey_next(l->keys),
71 		bch_keylist_bytes(l));
72 }
73 
74 /* Pointer validation */
75 
76 static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
77 {
78 	unsigned i;
79 
80 	for (i = 0; i < KEY_PTRS(k); i++)
81 		if (ptr_available(c, k, i)) {
82 			struct cache *ca = PTR_CACHE(c, k, i);
83 			size_t bucket = PTR_BUCKET_NR(c, k, i);
84 			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
85 
86 			if (KEY_SIZE(k) + r > c->sb.bucket_size ||
87 			    bucket <  ca->sb.first_bucket ||
88 			    bucket >= ca->sb.nbuckets)
89 				return true;
90 		}
91 
92 	return false;
93 }
94 
95 bool bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
96 {
97 	char buf[80];
98 
99 	if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
100 		goto bad;
101 
102 	if (__ptr_invalid(c, k))
103 		goto bad;
104 
105 	return false;
106 bad:
107 	bch_bkey_to_text(buf, sizeof(buf), k);
108 	cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
109 	return true;
110 }
111 
112 bool bch_extent_ptr_invalid(struct cache_set *c, const struct bkey *k)
113 {
114 	char buf[80];
115 
116 	if (!KEY_SIZE(k))
117 		return true;
118 
119 	if (KEY_SIZE(k) > KEY_OFFSET(k))
120 		goto bad;
121 
122 	if (__ptr_invalid(c, k))
123 		goto bad;
124 
125 	return false;
126 bad:
127 	bch_bkey_to_text(buf, sizeof(buf), k);
128 	cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
129 	return true;
130 }
131 
132 static bool ptr_bad_expensive_checks(struct btree *b, const struct bkey *k,
133 				     unsigned ptr)
134 {
135 	struct bucket *g = PTR_BUCKET(b->c, k, ptr);
136 	char buf[80];
137 
138 	if (mutex_trylock(&b->c->bucket_lock)) {
139 		if (b->level) {
140 			if (KEY_DIRTY(k) ||
141 			    g->prio != BTREE_PRIO ||
142 			    (b->c->gc_mark_valid &&
143 			     GC_MARK(g) != GC_MARK_METADATA))
144 				goto err;
145 
146 		} else {
147 			if (g->prio == BTREE_PRIO)
148 				goto err;
149 
150 			if (KEY_DIRTY(k) &&
151 			    b->c->gc_mark_valid &&
152 			    GC_MARK(g) != GC_MARK_DIRTY)
153 				goto err;
154 		}
155 		mutex_unlock(&b->c->bucket_lock);
156 	}
157 
158 	return false;
159 err:
160 	mutex_unlock(&b->c->bucket_lock);
161 	bch_bkey_to_text(buf, sizeof(buf), k);
162 	btree_bug(b,
163 "inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i",
164 		  buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
165 		  g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen);
166 	return true;
167 }
168 
169 bool bch_ptr_bad(struct btree *b, const struct bkey *k)
170 {
171 	struct bucket *g;
172 	unsigned i, stale;
173 
174 	if (!bkey_cmp(k, &ZERO_KEY) ||
175 	    !KEY_PTRS(k) ||
176 	    bch_ptr_invalid(b, k))
177 		return true;
178 
179 	for (i = 0; i < KEY_PTRS(k); i++) {
180 		if (!ptr_available(b->c, k, i))
181 			return true;
182 
183 		g = PTR_BUCKET(b->c, k, i);
184 		stale = ptr_stale(b->c, k, i);
185 
186 		btree_bug_on(stale > 96, b,
187 			     "key too stale: %i, need_gc %u",
188 			     stale, b->c->need_gc);
189 
190 		btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
191 			     b, "stale dirty pointer");
192 
193 		if (stale)
194 			return true;
195 
196 		if (expensive_debug_checks(b->c) &&
197 		    ptr_bad_expensive_checks(b, k, i))
198 			return true;
199 	}
200 
201 	return false;
202 }
203 
204 /* Key/pointer manipulation */
205 
206 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
207 			      unsigned i)
208 {
209 	BUG_ON(i > KEY_PTRS(src));
210 
211 	/* Only copy the header, key, and one pointer. */
212 	memcpy(dest, src, 2 * sizeof(uint64_t));
213 	dest->ptr[0] = src->ptr[i];
214 	SET_KEY_PTRS(dest, 1);
215 	/* We didn't copy the checksum so clear that bit. */
216 	SET_KEY_CSUM(dest, 0);
217 }
218 
219 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
220 {
221 	unsigned i, len = 0;
222 
223 	if (bkey_cmp(where, &START_KEY(k)) <= 0)
224 		return false;
225 
226 	if (bkey_cmp(where, k) < 0)
227 		len = KEY_OFFSET(k) - KEY_OFFSET(where);
228 	else
229 		bkey_copy_key(k, where);
230 
231 	for (i = 0; i < KEY_PTRS(k); i++)
232 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
233 
234 	BUG_ON(len > KEY_SIZE(k));
235 	SET_KEY_SIZE(k, len);
236 	return true;
237 }
238 
239 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
240 {
241 	unsigned len = 0;
242 
243 	if (bkey_cmp(where, k) >= 0)
244 		return false;
245 
246 	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
247 
248 	if (bkey_cmp(where, &START_KEY(k)) > 0)
249 		len = KEY_OFFSET(where) - KEY_START(k);
250 
251 	bkey_copy_key(k, where);
252 
253 	BUG_ON(len > KEY_SIZE(k));
254 	SET_KEY_SIZE(k, len);
255 	return true;
256 }
257 
258 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
259 {
260 	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
261 		~((uint64_t)1 << 63);
262 }
263 
264 /* Tries to merge l and r: l should be lower than r
265  * Returns true if we were able to merge. If we did merge, l will be the merged
266  * key, r will be untouched.
267  */
268 bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r)
269 {
270 	unsigned i;
271 
272 	if (key_merging_disabled(b->c))
273 		return false;
274 
275 	if (KEY_PTRS(l) != KEY_PTRS(r) ||
276 	    KEY_DIRTY(l) != KEY_DIRTY(r) ||
277 	    bkey_cmp(l, &START_KEY(r)))
278 		return false;
279 
280 	for (i = 0; i < KEY_PTRS(l); i++)
281 		if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
282 		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
283 			return false;
284 
285 	/* Keys with no pointers aren't restricted to one bucket and could
286 	 * overflow KEY_SIZE
287 	 */
288 	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
289 		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
290 		SET_KEY_SIZE(l, USHRT_MAX);
291 
292 		bch_cut_front(l, r);
293 		return false;
294 	}
295 
296 	if (KEY_CSUM(l)) {
297 		if (KEY_CSUM(r))
298 			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
299 		else
300 			SET_KEY_CSUM(l, 0);
301 	}
302 
303 	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
304 	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
305 
306 	return true;
307 }
308 
309 /* Binary tree stuff for auxiliary search trees */
310 
311 static unsigned inorder_next(unsigned j, unsigned size)
312 {
313 	if (j * 2 + 1 < size) {
314 		j = j * 2 + 1;
315 
316 		while (j * 2 < size)
317 			j *= 2;
318 	} else
319 		j >>= ffz(j) + 1;
320 
321 	return j;
322 }
323 
324 static unsigned inorder_prev(unsigned j, unsigned size)
325 {
326 	if (j * 2 < size) {
327 		j = j * 2;
328 
329 		while (j * 2 + 1 < size)
330 			j = j * 2 + 1;
331 	} else
332 		j >>= ffs(j);
333 
334 	return j;
335 }
336 
337 /* I have no idea why this code works... and I'm the one who wrote it
338  *
339  * However, I do know what it does:
340  * Given a binary tree constructed in an array (i.e. how you normally implement
341  * a heap), it converts a node in the tree - referenced by array index - to the
342  * index it would have if you did an inorder traversal.
343  *
344  * Also tested for every j, size up to size somewhere around 6 million.
345  *
346  * The binary tree starts at array index 1, not 0
347  * extra is a function of size:
348  *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
349  */
350 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
351 {
352 	unsigned b = fls(j);
353 	unsigned shift = fls(size - 1) - b;
354 
355 	j  ^= 1U << (b - 1);
356 	j <<= 1;
357 	j  |= 1;
358 	j <<= shift;
359 
360 	if (j > extra)
361 		j -= (j - extra) >> 1;
362 
363 	return j;
364 }
365 
366 static unsigned to_inorder(unsigned j, struct bset_tree *t)
367 {
368 	return __to_inorder(j, t->size, t->extra);
369 }
370 
371 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
372 {
373 	unsigned shift;
374 
375 	if (j > extra)
376 		j += j - extra;
377 
378 	shift = ffs(j);
379 
380 	j >>= shift;
381 	j  |= roundup_pow_of_two(size) >> shift;
382 
383 	return j;
384 }
385 
386 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
387 {
388 	return __inorder_to_tree(j, t->size, t->extra);
389 }
390 
391 #if 0
392 void inorder_test(void)
393 {
394 	unsigned long done = 0;
395 	ktime_t start = ktime_get();
396 
397 	for (unsigned size = 2;
398 	     size < 65536000;
399 	     size++) {
400 		unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
401 		unsigned i = 1, j = rounddown_pow_of_two(size - 1);
402 
403 		if (!(size % 4096))
404 			printk(KERN_NOTICE "loop %u, %llu per us\n", size,
405 			       done / ktime_us_delta(ktime_get(), start));
406 
407 		while (1) {
408 			if (__inorder_to_tree(i, size, extra) != j)
409 				panic("size %10u j %10u i %10u", size, j, i);
410 
411 			if (__to_inorder(j, size, extra) != i)
412 				panic("size %10u j %10u i %10u", size, j, i);
413 
414 			if (j == rounddown_pow_of_two(size) - 1)
415 				break;
416 
417 			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
418 
419 			j = inorder_next(j, size);
420 			i++;
421 		}
422 
423 		done += size - 1;
424 	}
425 }
426 #endif
427 
428 /*
429  * Cacheline/offset <-> bkey pointer arithmetic:
430  *
431  * t->tree is a binary search tree in an array; each node corresponds to a key
432  * in one cacheline in t->set (BSET_CACHELINE bytes).
433  *
434  * This means we don't have to store the full index of the key that a node in
435  * the binary tree points to; to_inorder() gives us the cacheline, and then
436  * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
437  *
438  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
439  * make this work.
440  *
441  * To construct the bfloat for an arbitrary key we need to know what the key
442  * immediately preceding it is: we have to check if the two keys differ in the
443  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
444  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
445  */
446 
447 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
448 				      unsigned offset)
449 {
450 	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
451 }
452 
453 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
454 {
455 	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
456 }
457 
458 static unsigned bkey_to_cacheline_offset(struct bkey *k)
459 {
460 	return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t);
461 }
462 
463 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
464 {
465 	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
466 }
467 
468 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
469 {
470 	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
471 }
472 
473 /*
474  * For the write set - the one we're currently inserting keys into - we don't
475  * maintain a full search tree, we just keep a simple lookup table in t->prev.
476  */
477 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
478 {
479 	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
480 }
481 
482 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
483 {
484 	low >>= shift;
485 	low  |= (high << 1) << (63U - shift);
486 	return low;
487 }
488 
489 static inline unsigned bfloat_mantissa(const struct bkey *k,
490 				       struct bkey_float *f)
491 {
492 	const uint64_t *p = &k->low - (f->exponent >> 6);
493 	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
494 }
495 
496 static void make_bfloat(struct bset_tree *t, unsigned j)
497 {
498 	struct bkey_float *f = &t->tree[j];
499 	struct bkey *m = tree_to_bkey(t, j);
500 	struct bkey *p = tree_to_prev_bkey(t, j);
501 
502 	struct bkey *l = is_power_of_2(j)
503 		? t->data->start
504 		: tree_to_prev_bkey(t, j >> ffs(j));
505 
506 	struct bkey *r = is_power_of_2(j + 1)
507 		? node(t->data, t->data->keys - bkey_u64s(&t->end))
508 		: tree_to_bkey(t, j >> (ffz(j) + 1));
509 
510 	BUG_ON(m < l || m > r);
511 	BUG_ON(bkey_next(p) != m);
512 
513 	if (KEY_INODE(l) != KEY_INODE(r))
514 		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
515 	else
516 		f->exponent = fls64(r->low ^ l->low);
517 
518 	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
519 
520 	/*
521 	 * Setting f->exponent = 127 flags this node as failed, and causes the
522 	 * lookup code to fall back to comparing against the original key.
523 	 */
524 
525 	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
526 		f->mantissa = bfloat_mantissa(m, f) - 1;
527 	else
528 		f->exponent = 127;
529 }
530 
531 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
532 {
533 	if (t != b->sets) {
534 		unsigned j = roundup(t[-1].size,
535 				     64 / sizeof(struct bkey_float));
536 
537 		t->tree = t[-1].tree + j;
538 		t->prev = t[-1].prev + j;
539 	}
540 
541 	while (t < b->sets + MAX_BSETS)
542 		t++->size = 0;
543 }
544 
545 static void bset_build_unwritten_tree(struct btree *b)
546 {
547 	struct bset_tree *t = b->sets + b->nsets;
548 
549 	bset_alloc_tree(b, t);
550 
551 	if (t->tree != b->sets->tree + bset_tree_space(b)) {
552 		t->prev[0] = bkey_to_cacheline_offset(t->data->start);
553 		t->size = 1;
554 	}
555 }
556 
557 static void bset_build_written_tree(struct btree *b)
558 {
559 	struct bset_tree *t = b->sets + b->nsets;
560 	struct bkey *k = t->data->start;
561 	unsigned j, cacheline = 1;
562 
563 	bset_alloc_tree(b, t);
564 
565 	t->size = min_t(unsigned,
566 			bkey_to_cacheline(t, end(t->data)),
567 			b->sets->tree + bset_tree_space(b) - t->tree);
568 
569 	if (t->size < 2) {
570 		t->size = 0;
571 		return;
572 	}
573 
574 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
575 
576 	/* First we figure out where the first key in each cacheline is */
577 	for (j = inorder_next(0, t->size);
578 	     j;
579 	     j = inorder_next(j, t->size)) {
580 		while (bkey_to_cacheline(t, k) != cacheline)
581 			k = bkey_next(k);
582 
583 		t->prev[j] = bkey_u64s(k);
584 		k = bkey_next(k);
585 		cacheline++;
586 		t->tree[j].m = bkey_to_cacheline_offset(k);
587 	}
588 
589 	while (bkey_next(k) != end(t->data))
590 		k = bkey_next(k);
591 
592 	t->end = *k;
593 
594 	/* Then we build the tree */
595 	for (j = inorder_next(0, t->size);
596 	     j;
597 	     j = inorder_next(j, t->size))
598 		make_bfloat(t, j);
599 }
600 
601 void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k)
602 {
603 	struct bset_tree *t;
604 	unsigned inorder, j = 1;
605 
606 	for (t = b->sets; t <= &b->sets[b->nsets]; t++)
607 		if (k < end(t->data))
608 			goto found_set;
609 
610 	BUG();
611 found_set:
612 	if (!t->size || !bset_written(b, t))
613 		return;
614 
615 	inorder = bkey_to_cacheline(t, k);
616 
617 	if (k == t->data->start)
618 		goto fix_left;
619 
620 	if (bkey_next(k) == end(t->data)) {
621 		t->end = *k;
622 		goto fix_right;
623 	}
624 
625 	j = inorder_to_tree(inorder, t);
626 
627 	if (j &&
628 	    j < t->size &&
629 	    k == tree_to_bkey(t, j))
630 fix_left:	do {
631 			make_bfloat(t, j);
632 			j = j * 2;
633 		} while (j < t->size);
634 
635 	j = inorder_to_tree(inorder + 1, t);
636 
637 	if (j &&
638 	    j < t->size &&
639 	    k == tree_to_prev_bkey(t, j))
640 fix_right:	do {
641 			make_bfloat(t, j);
642 			j = j * 2 + 1;
643 		} while (j < t->size);
644 }
645 
646 void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k)
647 {
648 	struct bset_tree *t = &b->sets[b->nsets];
649 	unsigned shift = bkey_u64s(k);
650 	unsigned j = bkey_to_cacheline(t, k);
651 
652 	/* We're getting called from btree_split() or btree_gc, just bail out */
653 	if (!t->size)
654 		return;
655 
656 	/* k is the key we just inserted; we need to find the entry in the
657 	 * lookup table for the first key that is strictly greater than k:
658 	 * it's either k's cacheline or the next one
659 	 */
660 	if (j < t->size &&
661 	    table_to_bkey(t, j) <= k)
662 		j++;
663 
664 	/* Adjust all the lookup table entries, and find a new key for any that
665 	 * have gotten too big
666 	 */
667 	for (; j < t->size; j++) {
668 		t->prev[j] += shift;
669 
670 		if (t->prev[j] > 7) {
671 			k = table_to_bkey(t, j - 1);
672 
673 			while (k < cacheline_to_bkey(t, j, 0))
674 				k = bkey_next(k);
675 
676 			t->prev[j] = bkey_to_cacheline_offset(k);
677 		}
678 	}
679 
680 	if (t->size == b->sets->tree + bset_tree_space(b) - t->tree)
681 		return;
682 
683 	/* Possibly add a new entry to the end of the lookup table */
684 
685 	for (k = table_to_bkey(t, t->size - 1);
686 	     k != end(t->data);
687 	     k = bkey_next(k))
688 		if (t->size == bkey_to_cacheline(t, k)) {
689 			t->prev[t->size] = bkey_to_cacheline_offset(k);
690 			t->size++;
691 		}
692 }
693 
694 void bch_bset_init_next(struct btree *b)
695 {
696 	struct bset *i = write_block(b);
697 
698 	if (i != b->sets[0].data) {
699 		b->sets[++b->nsets].data = i;
700 		i->seq = b->sets[0].data->seq;
701 	} else
702 		get_random_bytes(&i->seq, sizeof(uint64_t));
703 
704 	i->magic	= bset_magic(&b->c->sb);
705 	i->version	= 0;
706 	i->keys		= 0;
707 
708 	bset_build_unwritten_tree(b);
709 }
710 
711 struct bset_search_iter {
712 	struct bkey *l, *r;
713 };
714 
715 static struct bset_search_iter bset_search_write_set(struct btree *b,
716 						     struct bset_tree *t,
717 						     const struct bkey *search)
718 {
719 	unsigned li = 0, ri = t->size;
720 
721 	BUG_ON(!b->nsets &&
722 	       t->size < bkey_to_cacheline(t, end(t->data)));
723 
724 	while (li + 1 != ri) {
725 		unsigned m = (li + ri) >> 1;
726 
727 		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
728 			ri = m;
729 		else
730 			li = m;
731 	}
732 
733 	return (struct bset_search_iter) {
734 		table_to_bkey(t, li),
735 		ri < t->size ? table_to_bkey(t, ri) : end(t->data)
736 	};
737 }
738 
739 static struct bset_search_iter bset_search_tree(struct btree *b,
740 						struct bset_tree *t,
741 						const struct bkey *search)
742 {
743 	struct bkey *l, *r;
744 	struct bkey_float *f;
745 	unsigned inorder, j, n = 1;
746 
747 	do {
748 		unsigned p = n << 4;
749 		p &= ((int) (p - t->size)) >> 31;
750 
751 		prefetch(&t->tree[p]);
752 
753 		j = n;
754 		f = &t->tree[j];
755 
756 		/*
757 		 * n = (f->mantissa > bfloat_mantissa())
758 		 *	? j * 2
759 		 *	: j * 2 + 1;
760 		 *
761 		 * We need to subtract 1 from f->mantissa for the sign bit trick
762 		 * to work  - that's done in make_bfloat()
763 		 */
764 		if (likely(f->exponent != 127))
765 			n = j * 2 + (((unsigned)
766 				      (f->mantissa -
767 				       bfloat_mantissa(search, f))) >> 31);
768 		else
769 			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
770 				? j * 2
771 				: j * 2 + 1;
772 	} while (n < t->size);
773 
774 	inorder = to_inorder(j, t);
775 
776 	/*
777 	 * n would have been the node we recursed to - the low bit tells us if
778 	 * we recursed left or recursed right.
779 	 */
780 	if (n & 1) {
781 		l = cacheline_to_bkey(t, inorder, f->m);
782 
783 		if (++inorder != t->size) {
784 			f = &t->tree[inorder_next(j, t->size)];
785 			r = cacheline_to_bkey(t, inorder, f->m);
786 		} else
787 			r = end(t->data);
788 	} else {
789 		r = cacheline_to_bkey(t, inorder, f->m);
790 
791 		if (--inorder) {
792 			f = &t->tree[inorder_prev(j, t->size)];
793 			l = cacheline_to_bkey(t, inorder, f->m);
794 		} else
795 			l = t->data->start;
796 	}
797 
798 	return (struct bset_search_iter) {l, r};
799 }
800 
801 struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t,
802 			       const struct bkey *search)
803 {
804 	struct bset_search_iter i;
805 
806 	/*
807 	 * First, we search for a cacheline, then lastly we do a linear search
808 	 * within that cacheline.
809 	 *
810 	 * To search for the cacheline, there's three different possibilities:
811 	 *  * The set is too small to have a search tree, so we just do a linear
812 	 *    search over the whole set.
813 	 *  * The set is the one we're currently inserting into; keeping a full
814 	 *    auxiliary search tree up to date would be too expensive, so we
815 	 *    use a much simpler lookup table to do a binary search -
816 	 *    bset_search_write_set().
817 	 *  * Or we use the auxiliary search tree we constructed earlier -
818 	 *    bset_search_tree()
819 	 */
820 
821 	if (unlikely(!t->size)) {
822 		i.l = t->data->start;
823 		i.r = end(t->data);
824 	} else if (bset_written(b, t)) {
825 		/*
826 		 * Each node in the auxiliary search tree covers a certain range
827 		 * of bits, and keys above and below the set it covers might
828 		 * differ outside those bits - so we have to special case the
829 		 * start and end - handle that here:
830 		 */
831 
832 		if (unlikely(bkey_cmp(search, &t->end) >= 0))
833 			return end(t->data);
834 
835 		if (unlikely(bkey_cmp(search, t->data->start) < 0))
836 			return t->data->start;
837 
838 		i = bset_search_tree(b, t, search);
839 	} else
840 		i = bset_search_write_set(b, t, search);
841 
842 	if (expensive_debug_checks(b->c)) {
843 		BUG_ON(bset_written(b, t) &&
844 		       i.l != t->data->start &&
845 		       bkey_cmp(tree_to_prev_bkey(t,
846 			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
847 				search) > 0);
848 
849 		BUG_ON(i.r != end(t->data) &&
850 		       bkey_cmp(i.r, search) <= 0);
851 	}
852 
853 	while (likely(i.l != i.r) &&
854 	       bkey_cmp(i.l, search) <= 0)
855 		i.l = bkey_next(i.l);
856 
857 	return i.l;
858 }
859 
860 /* Btree iterator */
861 
862 /*
863  * Returns true if l > r - unless l == r, in which case returns true if l is
864  * older than r.
865  *
866  * Necessary for btree_sort_fixup() - if there are multiple keys that compare
867  * equal in different sets, we have to process them newest to oldest.
868  */
869 static inline bool btree_iter_cmp(struct btree_iter_set l,
870 				  struct btree_iter_set r)
871 {
872 	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
873 
874 	return c ? c > 0 : l.k < r.k;
875 }
876 
877 static inline bool btree_iter_end(struct btree_iter *iter)
878 {
879 	return !iter->used;
880 }
881 
882 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
883 			 struct bkey *end)
884 {
885 	if (k != end)
886 		BUG_ON(!heap_add(iter,
887 				 ((struct btree_iter_set) { k, end }),
888 				 btree_iter_cmp));
889 }
890 
891 struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter,
892 				   struct bkey *search, struct bset_tree *start)
893 {
894 	struct bkey *ret = NULL;
895 	iter->size = ARRAY_SIZE(iter->data);
896 	iter->used = 0;
897 
898 #ifdef CONFIG_BCACHE_DEBUG
899 	iter->b = b;
900 #endif
901 
902 	for (; start <= &b->sets[b->nsets]; start++) {
903 		ret = bch_bset_search(b, start, search);
904 		bch_btree_iter_push(iter, ret, end(start->data));
905 	}
906 
907 	return ret;
908 }
909 
910 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
911 {
912 	struct btree_iter_set unused;
913 	struct bkey *ret = NULL;
914 
915 	if (!btree_iter_end(iter)) {
916 		bch_btree_iter_next_check(iter);
917 
918 		ret = iter->data->k;
919 		iter->data->k = bkey_next(iter->data->k);
920 
921 		if (iter->data->k > iter->data->end) {
922 			WARN_ONCE(1, "bset was corrupt!\n");
923 			iter->data->k = iter->data->end;
924 		}
925 
926 		if (iter->data->k == iter->data->end)
927 			heap_pop(iter, unused, btree_iter_cmp);
928 		else
929 			heap_sift(iter, 0, btree_iter_cmp);
930 	}
931 
932 	return ret;
933 }
934 
935 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
936 					struct btree *b, ptr_filter_fn fn)
937 {
938 	struct bkey *ret;
939 
940 	do {
941 		ret = bch_btree_iter_next(iter);
942 	} while (ret && fn(b, ret));
943 
944 	return ret;
945 }
946 
947 /* Mergesort */
948 
949 static void sort_key_next(struct btree_iter *iter,
950 			  struct btree_iter_set *i)
951 {
952 	i->k = bkey_next(i->k);
953 
954 	if (i->k == i->end)
955 		*i = iter->data[--iter->used];
956 }
957 
958 static void btree_sort_fixup(struct btree_iter *iter)
959 {
960 	while (iter->used > 1) {
961 		struct btree_iter_set *top = iter->data, *i = top + 1;
962 
963 		if (iter->used > 2 &&
964 		    btree_iter_cmp(i[0], i[1]))
965 			i++;
966 
967 		if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
968 			break;
969 
970 		if (!KEY_SIZE(i->k)) {
971 			sort_key_next(iter, i);
972 			heap_sift(iter, i - top, btree_iter_cmp);
973 			continue;
974 		}
975 
976 		if (top->k > i->k) {
977 			if (bkey_cmp(top->k, i->k) >= 0)
978 				sort_key_next(iter, i);
979 			else
980 				bch_cut_front(top->k, i->k);
981 
982 			heap_sift(iter, i - top, btree_iter_cmp);
983 		} else {
984 			/* can't happen because of comparison func */
985 			BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
986 			bch_cut_back(&START_KEY(i->k), top->k);
987 		}
988 	}
989 }
990 
991 static void btree_mergesort(struct btree *b, struct bset *out,
992 			    struct btree_iter *iter,
993 			    bool fixup, bool remove_stale)
994 {
995 	struct bkey *k, *last = NULL;
996 	bool (*bad)(struct btree *, const struct bkey *) = remove_stale
997 		? bch_ptr_bad
998 		: bch_ptr_invalid;
999 
1000 	while (!btree_iter_end(iter)) {
1001 		if (fixup && !b->level)
1002 			btree_sort_fixup(iter);
1003 
1004 		k = bch_btree_iter_next(iter);
1005 		if (bad(b, k))
1006 			continue;
1007 
1008 		if (!last) {
1009 			last = out->start;
1010 			bkey_copy(last, k);
1011 		} else if (b->level ||
1012 			   !bch_bkey_try_merge(b, last, k)) {
1013 			last = bkey_next(last);
1014 			bkey_copy(last, k);
1015 		}
1016 	}
1017 
1018 	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1019 
1020 	pr_debug("sorted %i keys", out->keys);
1021 }
1022 
1023 static void __btree_sort(struct btree *b, struct btree_iter *iter,
1024 			 unsigned start, unsigned order, bool fixup)
1025 {
1026 	uint64_t start_time;
1027 	bool remove_stale = !b->written;
1028 	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO,
1029 						     order);
1030 	if (!out) {
1031 		mutex_lock(&b->c->sort_lock);
1032 		out = b->c->sort;
1033 		order = ilog2(bucket_pages(b->c));
1034 	}
1035 
1036 	start_time = local_clock();
1037 
1038 	btree_mergesort(b, out, iter, fixup, remove_stale);
1039 	b->nsets = start;
1040 
1041 	if (!fixup && !start && b->written)
1042 		bch_btree_verify(b, out);
1043 
1044 	if (!start && order == b->page_order) {
1045 		/*
1046 		 * Our temporary buffer is the same size as the btree node's
1047 		 * buffer, we can just swap buffers instead of doing a big
1048 		 * memcpy()
1049 		 */
1050 
1051 		out->magic	= bset_magic(&b->c->sb);
1052 		out->seq	= b->sets[0].data->seq;
1053 		out->version	= b->sets[0].data->version;
1054 		swap(out, b->sets[0].data);
1055 
1056 		if (b->c->sort == b->sets[0].data)
1057 			b->c->sort = out;
1058 	} else {
1059 		b->sets[start].data->keys = out->keys;
1060 		memcpy(b->sets[start].data->start, out->start,
1061 		       (void *) end(out) - (void *) out->start);
1062 	}
1063 
1064 	if (out == b->c->sort)
1065 		mutex_unlock(&b->c->sort_lock);
1066 	else
1067 		free_pages((unsigned long) out, order);
1068 
1069 	if (b->written)
1070 		bset_build_written_tree(b);
1071 
1072 	if (!start)
1073 		bch_time_stats_update(&b->c->sort_time, start_time);
1074 }
1075 
1076 void bch_btree_sort_partial(struct btree *b, unsigned start)
1077 {
1078 	size_t order = b->page_order, keys = 0;
1079 	struct btree_iter iter;
1080 	int oldsize = bch_count_data(b);
1081 
1082 	__bch_btree_iter_init(b, &iter, NULL, &b->sets[start]);
1083 
1084 	BUG_ON(b->sets[b->nsets].data == write_block(b) &&
1085 	       (b->sets[b->nsets].size || b->nsets));
1086 
1087 
1088 	if (start) {
1089 		unsigned i;
1090 
1091 		for (i = start; i <= b->nsets; i++)
1092 			keys += b->sets[i].data->keys;
1093 
1094 		order = roundup_pow_of_two(__set_bytes(b->sets->data,
1095 						       keys)) / PAGE_SIZE;
1096 		if (order)
1097 			order = ilog2(order);
1098 	}
1099 
1100 	__btree_sort(b, &iter, start, order, false);
1101 
1102 	EBUG_ON(b->written && oldsize >= 0 && bch_count_data(b) != oldsize);
1103 }
1104 
1105 void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter)
1106 {
1107 	BUG_ON(!b->written);
1108 	__btree_sort(b, iter, 0, b->page_order, true);
1109 }
1110 
1111 void bch_btree_sort_into(struct btree *b, struct btree *new)
1112 {
1113 	uint64_t start_time = local_clock();
1114 
1115 	struct btree_iter iter;
1116 	bch_btree_iter_init(b, &iter, NULL);
1117 
1118 	btree_mergesort(b, new->sets->data, &iter, false, true);
1119 
1120 	bch_time_stats_update(&b->c->sort_time, start_time);
1121 
1122 	bkey_copy_key(&new->key, &b->key);
1123 	new->sets->size = 0;
1124 }
1125 
1126 #define SORT_CRIT	(4096 / sizeof(uint64_t))
1127 
1128 void bch_btree_sort_lazy(struct btree *b)
1129 {
1130 	unsigned crit = SORT_CRIT;
1131 	int i;
1132 
1133 	/* Don't sort if nothing to do */
1134 	if (!b->nsets)
1135 		goto out;
1136 
1137 	/* If not a leaf node, always sort */
1138 	if (b->level) {
1139 		bch_btree_sort(b);
1140 		return;
1141 	}
1142 
1143 	for (i = b->nsets - 1; i >= 0; --i) {
1144 		crit *= b->c->sort_crit_factor;
1145 
1146 		if (b->sets[i].data->keys < crit) {
1147 			bch_btree_sort_partial(b, i);
1148 			return;
1149 		}
1150 	}
1151 
1152 	/* Sort if we'd overflow */
1153 	if (b->nsets + 1 == MAX_BSETS) {
1154 		bch_btree_sort(b);
1155 		return;
1156 	}
1157 
1158 out:
1159 	bset_build_written_tree(b);
1160 }
1161 
1162 /* Sysfs stuff */
1163 
1164 struct bset_stats {
1165 	struct btree_op op;
1166 	size_t nodes;
1167 	size_t sets_written, sets_unwritten;
1168 	size_t bytes_written, bytes_unwritten;
1169 	size_t floats, failed;
1170 };
1171 
1172 static int btree_bset_stats(struct btree_op *op, struct btree *b)
1173 {
1174 	struct bset_stats *stats = container_of(op, struct bset_stats, op);
1175 	unsigned i;
1176 
1177 	stats->nodes++;
1178 
1179 	for (i = 0; i <= b->nsets; i++) {
1180 		struct bset_tree *t = &b->sets[i];
1181 		size_t bytes = t->data->keys * sizeof(uint64_t);
1182 		size_t j;
1183 
1184 		if (bset_written(b, t)) {
1185 			stats->sets_written++;
1186 			stats->bytes_written += bytes;
1187 
1188 			stats->floats += t->size - 1;
1189 
1190 			for (j = 1; j < t->size; j++)
1191 				if (t->tree[j].exponent == 127)
1192 					stats->failed++;
1193 		} else {
1194 			stats->sets_unwritten++;
1195 			stats->bytes_unwritten += bytes;
1196 		}
1197 	}
1198 
1199 	return MAP_CONTINUE;
1200 }
1201 
1202 int bch_bset_print_stats(struct cache_set *c, char *buf)
1203 {
1204 	struct bset_stats t;
1205 	int ret;
1206 
1207 	memset(&t, 0, sizeof(struct bset_stats));
1208 	bch_btree_op_init(&t.op, -1);
1209 
1210 	ret = bch_btree_map_nodes(&t.op, c, &ZERO_KEY, btree_bset_stats);
1211 	if (ret < 0)
1212 		return ret;
1213 
1214 	return snprintf(buf, PAGE_SIZE,
1215 			"btree nodes:		%zu\n"
1216 			"written sets:		%zu\n"
1217 			"unwritten sets:		%zu\n"
1218 			"written key bytes:	%zu\n"
1219 			"unwritten key bytes:	%zu\n"
1220 			"floats:			%zu\n"
1221 			"failed:			%zu\n",
1222 			t.nodes,
1223 			t.sets_written, t.sets_unwritten,
1224 			t.bytes_written, t.bytes_unwritten,
1225 			t.floats, t.failed);
1226 }
1227