xref: /openbmc/linux/drivers/md/bcache/bset.c (revision 80ecbd24)
1 /*
2  * Code for working with individual keys, and sorted sets of keys with in a
3  * btree node
4  *
5  * Copyright 2012 Google, Inc.
6  */
7 
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 
12 #include <linux/random.h>
13 #include <linux/prefetch.h>
14 
15 /* Keylists */
16 
17 void bch_keylist_copy(struct keylist *dest, struct keylist *src)
18 {
19 	*dest = *src;
20 
21 	if (src->list == src->d) {
22 		size_t n = (uint64_t *) src->top - src->d;
23 		dest->top = (struct bkey *) &dest->d[n];
24 		dest->list = dest->d;
25 	}
26 }
27 
28 int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c)
29 {
30 	unsigned oldsize = (uint64_t *) l->top - l->list;
31 	unsigned newsize = oldsize + 2 + nptrs;
32 	uint64_t *new;
33 
34 	/* The journalling code doesn't handle the case where the keys to insert
35 	 * is bigger than an empty write: If we just return -ENOMEM here,
36 	 * bio_insert() and bio_invalidate() will insert the keys created so far
37 	 * and finish the rest when the keylist is empty.
38 	 */
39 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
40 		return -ENOMEM;
41 
42 	newsize = roundup_pow_of_two(newsize);
43 
44 	if (newsize <= KEYLIST_INLINE ||
45 	    roundup_pow_of_two(oldsize) == newsize)
46 		return 0;
47 
48 	new = krealloc(l->list == l->d ? NULL : l->list,
49 		       sizeof(uint64_t) * newsize, GFP_NOIO);
50 
51 	if (!new)
52 		return -ENOMEM;
53 
54 	if (l->list == l->d)
55 		memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE);
56 
57 	l->list = new;
58 	l->top = (struct bkey *) (&l->list[oldsize]);
59 
60 	return 0;
61 }
62 
63 struct bkey *bch_keylist_pop(struct keylist *l)
64 {
65 	struct bkey *k = l->bottom;
66 
67 	if (k == l->top)
68 		return NULL;
69 
70 	while (bkey_next(k) != l->top)
71 		k = bkey_next(k);
72 
73 	return l->top = k;
74 }
75 
76 /* Pointer validation */
77 
78 bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k)
79 {
80 	unsigned i;
81 	char buf[80];
82 
83 	if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k)))
84 		goto bad;
85 
86 	if (!level && KEY_SIZE(k) > KEY_OFFSET(k))
87 		goto bad;
88 
89 	if (!KEY_SIZE(k))
90 		return true;
91 
92 	for (i = 0; i < KEY_PTRS(k); i++)
93 		if (ptr_available(c, k, i)) {
94 			struct cache *ca = PTR_CACHE(c, k, i);
95 			size_t bucket = PTR_BUCKET_NR(c, k, i);
96 			size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
97 
98 			if (KEY_SIZE(k) + r > c->sb.bucket_size ||
99 			    bucket <  ca->sb.first_bucket ||
100 			    bucket >= ca->sb.nbuckets)
101 				goto bad;
102 		}
103 
104 	return false;
105 bad:
106 	bch_bkey_to_text(buf, sizeof(buf), k);
107 	cache_bug(c, "spotted bad key %s: %s", buf, bch_ptr_status(c, k));
108 	return true;
109 }
110 
111 bool bch_ptr_bad(struct btree *b, const struct bkey *k)
112 {
113 	struct bucket *g;
114 	unsigned i, stale;
115 
116 	if (!bkey_cmp(k, &ZERO_KEY) ||
117 	    !KEY_PTRS(k) ||
118 	    bch_ptr_invalid(b, k))
119 		return true;
120 
121 	if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV)
122 		return true;
123 
124 	for (i = 0; i < KEY_PTRS(k); i++)
125 		if (ptr_available(b->c, k, i)) {
126 			g = PTR_BUCKET(b->c, k, i);
127 			stale = ptr_stale(b->c, k, i);
128 
129 			btree_bug_on(stale > 96, b,
130 				     "key too stale: %i, need_gc %u",
131 				     stale, b->c->need_gc);
132 
133 			btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k),
134 				     b, "stale dirty pointer");
135 
136 			if (stale)
137 				return true;
138 
139 #ifdef CONFIG_BCACHE_EDEBUG
140 			if (!mutex_trylock(&b->c->bucket_lock))
141 				continue;
142 
143 			if (b->level) {
144 				if (KEY_DIRTY(k) ||
145 				    g->prio != BTREE_PRIO ||
146 				    (b->c->gc_mark_valid &&
147 				     GC_MARK(g) != GC_MARK_METADATA))
148 					goto bug;
149 
150 			} else {
151 				if (g->prio == BTREE_PRIO)
152 					goto bug;
153 
154 				if (KEY_DIRTY(k) &&
155 				    b->c->gc_mark_valid &&
156 				    GC_MARK(g) != GC_MARK_DIRTY)
157 					goto bug;
158 			}
159 			mutex_unlock(&b->c->bucket_lock);
160 #endif
161 		}
162 
163 	return false;
164 #ifdef CONFIG_BCACHE_EDEBUG
165 bug:
166 	mutex_unlock(&b->c->bucket_lock);
167 
168 	{
169 		char buf[80];
170 
171 		bch_bkey_to_text(buf, sizeof(buf), k);
172 		btree_bug(b,
173 "inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i",
174 			  buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
175 			  g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen);
176 	}
177 	return true;
178 #endif
179 }
180 
181 /* Key/pointer manipulation */
182 
183 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
184 			      unsigned i)
185 {
186 	BUG_ON(i > KEY_PTRS(src));
187 
188 	/* Only copy the header, key, and one pointer. */
189 	memcpy(dest, src, 2 * sizeof(uint64_t));
190 	dest->ptr[0] = src->ptr[i];
191 	SET_KEY_PTRS(dest, 1);
192 	/* We didn't copy the checksum so clear that bit. */
193 	SET_KEY_CSUM(dest, 0);
194 }
195 
196 bool __bch_cut_front(const struct bkey *where, struct bkey *k)
197 {
198 	unsigned i, len = 0;
199 
200 	if (bkey_cmp(where, &START_KEY(k)) <= 0)
201 		return false;
202 
203 	if (bkey_cmp(where, k) < 0)
204 		len = KEY_OFFSET(k) - KEY_OFFSET(where);
205 	else
206 		bkey_copy_key(k, where);
207 
208 	for (i = 0; i < KEY_PTRS(k); i++)
209 		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
210 
211 	BUG_ON(len > KEY_SIZE(k));
212 	SET_KEY_SIZE(k, len);
213 	return true;
214 }
215 
216 bool __bch_cut_back(const struct bkey *where, struct bkey *k)
217 {
218 	unsigned len = 0;
219 
220 	if (bkey_cmp(where, k) >= 0)
221 		return false;
222 
223 	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
224 
225 	if (bkey_cmp(where, &START_KEY(k)) > 0)
226 		len = KEY_OFFSET(where) - KEY_START(k);
227 
228 	bkey_copy_key(k, where);
229 
230 	BUG_ON(len > KEY_SIZE(k));
231 	SET_KEY_SIZE(k, len);
232 	return true;
233 }
234 
235 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
236 {
237 	return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
238 		~((uint64_t)1 << 63);
239 }
240 
241 /* Tries to merge l and r: l should be lower than r
242  * Returns true if we were able to merge. If we did merge, l will be the merged
243  * key, r will be untouched.
244  */
245 bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r)
246 {
247 	unsigned i;
248 
249 	if (key_merging_disabled(b->c))
250 		return false;
251 
252 	if (KEY_PTRS(l) != KEY_PTRS(r) ||
253 	    KEY_DIRTY(l) != KEY_DIRTY(r) ||
254 	    bkey_cmp(l, &START_KEY(r)))
255 		return false;
256 
257 	for (i = 0; i < KEY_PTRS(l); i++)
258 		if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
259 		    PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
260 			return false;
261 
262 	/* Keys with no pointers aren't restricted to one bucket and could
263 	 * overflow KEY_SIZE
264 	 */
265 	if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
266 		SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
267 		SET_KEY_SIZE(l, USHRT_MAX);
268 
269 		bch_cut_front(l, r);
270 		return false;
271 	}
272 
273 	if (KEY_CSUM(l)) {
274 		if (KEY_CSUM(r))
275 			l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
276 		else
277 			SET_KEY_CSUM(l, 0);
278 	}
279 
280 	SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
281 	SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
282 
283 	return true;
284 }
285 
286 /* Binary tree stuff for auxiliary search trees */
287 
288 static unsigned inorder_next(unsigned j, unsigned size)
289 {
290 	if (j * 2 + 1 < size) {
291 		j = j * 2 + 1;
292 
293 		while (j * 2 < size)
294 			j *= 2;
295 	} else
296 		j >>= ffz(j) + 1;
297 
298 	return j;
299 }
300 
301 static unsigned inorder_prev(unsigned j, unsigned size)
302 {
303 	if (j * 2 < size) {
304 		j = j * 2;
305 
306 		while (j * 2 + 1 < size)
307 			j = j * 2 + 1;
308 	} else
309 		j >>= ffs(j);
310 
311 	return j;
312 }
313 
314 /* I have no idea why this code works... and I'm the one who wrote it
315  *
316  * However, I do know what it does:
317  * Given a binary tree constructed in an array (i.e. how you normally implement
318  * a heap), it converts a node in the tree - referenced by array index - to the
319  * index it would have if you did an inorder traversal.
320  *
321  * Also tested for every j, size up to size somewhere around 6 million.
322  *
323  * The binary tree starts at array index 1, not 0
324  * extra is a function of size:
325  *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
326  */
327 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
328 {
329 	unsigned b = fls(j);
330 	unsigned shift = fls(size - 1) - b;
331 
332 	j  ^= 1U << (b - 1);
333 	j <<= 1;
334 	j  |= 1;
335 	j <<= shift;
336 
337 	if (j > extra)
338 		j -= (j - extra) >> 1;
339 
340 	return j;
341 }
342 
343 static unsigned to_inorder(unsigned j, struct bset_tree *t)
344 {
345 	return __to_inorder(j, t->size, t->extra);
346 }
347 
348 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
349 {
350 	unsigned shift;
351 
352 	if (j > extra)
353 		j += j - extra;
354 
355 	shift = ffs(j);
356 
357 	j >>= shift;
358 	j  |= roundup_pow_of_two(size) >> shift;
359 
360 	return j;
361 }
362 
363 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
364 {
365 	return __inorder_to_tree(j, t->size, t->extra);
366 }
367 
368 #if 0
369 void inorder_test(void)
370 {
371 	unsigned long done = 0;
372 	ktime_t start = ktime_get();
373 
374 	for (unsigned size = 2;
375 	     size < 65536000;
376 	     size++) {
377 		unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
378 		unsigned i = 1, j = rounddown_pow_of_two(size - 1);
379 
380 		if (!(size % 4096))
381 			printk(KERN_NOTICE "loop %u, %llu per us\n", size,
382 			       done / ktime_us_delta(ktime_get(), start));
383 
384 		while (1) {
385 			if (__inorder_to_tree(i, size, extra) != j)
386 				panic("size %10u j %10u i %10u", size, j, i);
387 
388 			if (__to_inorder(j, size, extra) != i)
389 				panic("size %10u j %10u i %10u", size, j, i);
390 
391 			if (j == rounddown_pow_of_two(size) - 1)
392 				break;
393 
394 			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
395 
396 			j = inorder_next(j, size);
397 			i++;
398 		}
399 
400 		done += size - 1;
401 	}
402 }
403 #endif
404 
405 /*
406  * Cacheline/offset <-> bkey pointer arithmetic:
407  *
408  * t->tree is a binary search tree in an array; each node corresponds to a key
409  * in one cacheline in t->set (BSET_CACHELINE bytes).
410  *
411  * This means we don't have to store the full index of the key that a node in
412  * the binary tree points to; to_inorder() gives us the cacheline, and then
413  * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
414  *
415  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
416  * make this work.
417  *
418  * To construct the bfloat for an arbitrary key we need to know what the key
419  * immediately preceding it is: we have to check if the two keys differ in the
420  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
421  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
422  */
423 
424 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
425 				      unsigned offset)
426 {
427 	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
428 }
429 
430 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
431 {
432 	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
433 }
434 
435 static unsigned bkey_to_cacheline_offset(struct bkey *k)
436 {
437 	return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t);
438 }
439 
440 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
441 {
442 	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
443 }
444 
445 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
446 {
447 	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
448 }
449 
450 /*
451  * For the write set - the one we're currently inserting keys into - we don't
452  * maintain a full search tree, we just keep a simple lookup table in t->prev.
453  */
454 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
455 {
456 	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
457 }
458 
459 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
460 {
461 #ifdef CONFIG_X86_64
462 	asm("shrd %[shift],%[high],%[low]"
463 	    : [low] "+Rm" (low)
464 	    : [high] "R" (high),
465 	    [shift] "ci" (shift)
466 	    : "cc");
467 #else
468 	low >>= shift;
469 	low  |= (high << 1) << (63U - shift);
470 #endif
471 	return low;
472 }
473 
474 static inline unsigned bfloat_mantissa(const struct bkey *k,
475 				       struct bkey_float *f)
476 {
477 	const uint64_t *p = &k->low - (f->exponent >> 6);
478 	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
479 }
480 
481 static void make_bfloat(struct bset_tree *t, unsigned j)
482 {
483 	struct bkey_float *f = &t->tree[j];
484 	struct bkey *m = tree_to_bkey(t, j);
485 	struct bkey *p = tree_to_prev_bkey(t, j);
486 
487 	struct bkey *l = is_power_of_2(j)
488 		? t->data->start
489 		: tree_to_prev_bkey(t, j >> ffs(j));
490 
491 	struct bkey *r = is_power_of_2(j + 1)
492 		? node(t->data, t->data->keys - bkey_u64s(&t->end))
493 		: tree_to_bkey(t, j >> (ffz(j) + 1));
494 
495 	BUG_ON(m < l || m > r);
496 	BUG_ON(bkey_next(p) != m);
497 
498 	if (KEY_INODE(l) != KEY_INODE(r))
499 		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
500 	else
501 		f->exponent = fls64(r->low ^ l->low);
502 
503 	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
504 
505 	/*
506 	 * Setting f->exponent = 127 flags this node as failed, and causes the
507 	 * lookup code to fall back to comparing against the original key.
508 	 */
509 
510 	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
511 		f->mantissa = bfloat_mantissa(m, f) - 1;
512 	else
513 		f->exponent = 127;
514 }
515 
516 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
517 {
518 	if (t != b->sets) {
519 		unsigned j = roundup(t[-1].size,
520 				     64 / sizeof(struct bkey_float));
521 
522 		t->tree = t[-1].tree + j;
523 		t->prev = t[-1].prev + j;
524 	}
525 
526 	while (t < b->sets + MAX_BSETS)
527 		t++->size = 0;
528 }
529 
530 static void bset_build_unwritten_tree(struct btree *b)
531 {
532 	struct bset_tree *t = b->sets + b->nsets;
533 
534 	bset_alloc_tree(b, t);
535 
536 	if (t->tree != b->sets->tree + bset_tree_space(b)) {
537 		t->prev[0] = bkey_to_cacheline_offset(t->data->start);
538 		t->size = 1;
539 	}
540 }
541 
542 static void bset_build_written_tree(struct btree *b)
543 {
544 	struct bset_tree *t = b->sets + b->nsets;
545 	struct bkey *k = t->data->start;
546 	unsigned j, cacheline = 1;
547 
548 	bset_alloc_tree(b, t);
549 
550 	t->size = min_t(unsigned,
551 			bkey_to_cacheline(t, end(t->data)),
552 			b->sets->tree + bset_tree_space(b) - t->tree);
553 
554 	if (t->size < 2) {
555 		t->size = 0;
556 		return;
557 	}
558 
559 	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
560 
561 	/* First we figure out where the first key in each cacheline is */
562 	for (j = inorder_next(0, t->size);
563 	     j;
564 	     j = inorder_next(j, t->size)) {
565 		while (bkey_to_cacheline(t, k) != cacheline)
566 			k = bkey_next(k);
567 
568 		t->prev[j] = bkey_u64s(k);
569 		k = bkey_next(k);
570 		cacheline++;
571 		t->tree[j].m = bkey_to_cacheline_offset(k);
572 	}
573 
574 	while (bkey_next(k) != end(t->data))
575 		k = bkey_next(k);
576 
577 	t->end = *k;
578 
579 	/* Then we build the tree */
580 	for (j = inorder_next(0, t->size);
581 	     j;
582 	     j = inorder_next(j, t->size))
583 		make_bfloat(t, j);
584 }
585 
586 void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k)
587 {
588 	struct bset_tree *t;
589 	unsigned inorder, j = 1;
590 
591 	for (t = b->sets; t <= &b->sets[b->nsets]; t++)
592 		if (k < end(t->data))
593 			goto found_set;
594 
595 	BUG();
596 found_set:
597 	if (!t->size || !bset_written(b, t))
598 		return;
599 
600 	inorder = bkey_to_cacheline(t, k);
601 
602 	if (k == t->data->start)
603 		goto fix_left;
604 
605 	if (bkey_next(k) == end(t->data)) {
606 		t->end = *k;
607 		goto fix_right;
608 	}
609 
610 	j = inorder_to_tree(inorder, t);
611 
612 	if (j &&
613 	    j < t->size &&
614 	    k == tree_to_bkey(t, j))
615 fix_left:	do {
616 			make_bfloat(t, j);
617 			j = j * 2;
618 		} while (j < t->size);
619 
620 	j = inorder_to_tree(inorder + 1, t);
621 
622 	if (j &&
623 	    j < t->size &&
624 	    k == tree_to_prev_bkey(t, j))
625 fix_right:	do {
626 			make_bfloat(t, j);
627 			j = j * 2 + 1;
628 		} while (j < t->size);
629 }
630 
631 void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k)
632 {
633 	struct bset_tree *t = &b->sets[b->nsets];
634 	unsigned shift = bkey_u64s(k);
635 	unsigned j = bkey_to_cacheline(t, k);
636 
637 	/* We're getting called from btree_split() or btree_gc, just bail out */
638 	if (!t->size)
639 		return;
640 
641 	/* k is the key we just inserted; we need to find the entry in the
642 	 * lookup table for the first key that is strictly greater than k:
643 	 * it's either k's cacheline or the next one
644 	 */
645 	if (j < t->size &&
646 	    table_to_bkey(t, j) <= k)
647 		j++;
648 
649 	/* Adjust all the lookup table entries, and find a new key for any that
650 	 * have gotten too big
651 	 */
652 	for (; j < t->size; j++) {
653 		t->prev[j] += shift;
654 
655 		if (t->prev[j] > 7) {
656 			k = table_to_bkey(t, j - 1);
657 
658 			while (k < cacheline_to_bkey(t, j, 0))
659 				k = bkey_next(k);
660 
661 			t->prev[j] = bkey_to_cacheline_offset(k);
662 		}
663 	}
664 
665 	if (t->size == b->sets->tree + bset_tree_space(b) - t->tree)
666 		return;
667 
668 	/* Possibly add a new entry to the end of the lookup table */
669 
670 	for (k = table_to_bkey(t, t->size - 1);
671 	     k != end(t->data);
672 	     k = bkey_next(k))
673 		if (t->size == bkey_to_cacheline(t, k)) {
674 			t->prev[t->size] = bkey_to_cacheline_offset(k);
675 			t->size++;
676 		}
677 }
678 
679 void bch_bset_init_next(struct btree *b)
680 {
681 	struct bset *i = write_block(b);
682 
683 	if (i != b->sets[0].data) {
684 		b->sets[++b->nsets].data = i;
685 		i->seq = b->sets[0].data->seq;
686 	} else
687 		get_random_bytes(&i->seq, sizeof(uint64_t));
688 
689 	i->magic	= bset_magic(b->c);
690 	i->version	= 0;
691 	i->keys		= 0;
692 
693 	bset_build_unwritten_tree(b);
694 }
695 
696 struct bset_search_iter {
697 	struct bkey *l, *r;
698 };
699 
700 static struct bset_search_iter bset_search_write_set(struct btree *b,
701 						     struct bset_tree *t,
702 						     const struct bkey *search)
703 {
704 	unsigned li = 0, ri = t->size;
705 
706 	BUG_ON(!b->nsets &&
707 	       t->size < bkey_to_cacheline(t, end(t->data)));
708 
709 	while (li + 1 != ri) {
710 		unsigned m = (li + ri) >> 1;
711 
712 		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
713 			ri = m;
714 		else
715 			li = m;
716 	}
717 
718 	return (struct bset_search_iter) {
719 		table_to_bkey(t, li),
720 		ri < t->size ? table_to_bkey(t, ri) : end(t->data)
721 	};
722 }
723 
724 static struct bset_search_iter bset_search_tree(struct btree *b,
725 						struct bset_tree *t,
726 						const struct bkey *search)
727 {
728 	struct bkey *l, *r;
729 	struct bkey_float *f;
730 	unsigned inorder, j, n = 1;
731 
732 	do {
733 		unsigned p = n << 4;
734 		p &= ((int) (p - t->size)) >> 31;
735 
736 		prefetch(&t->tree[p]);
737 
738 		j = n;
739 		f = &t->tree[j];
740 
741 		/*
742 		 * n = (f->mantissa > bfloat_mantissa())
743 		 *	? j * 2
744 		 *	: j * 2 + 1;
745 		 *
746 		 * We need to subtract 1 from f->mantissa for the sign bit trick
747 		 * to work  - that's done in make_bfloat()
748 		 */
749 		if (likely(f->exponent != 127))
750 			n = j * 2 + (((unsigned)
751 				      (f->mantissa -
752 				       bfloat_mantissa(search, f))) >> 31);
753 		else
754 			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
755 				? j * 2
756 				: j * 2 + 1;
757 	} while (n < t->size);
758 
759 	inorder = to_inorder(j, t);
760 
761 	/*
762 	 * n would have been the node we recursed to - the low bit tells us if
763 	 * we recursed left or recursed right.
764 	 */
765 	if (n & 1) {
766 		l = cacheline_to_bkey(t, inorder, f->m);
767 
768 		if (++inorder != t->size) {
769 			f = &t->tree[inorder_next(j, t->size)];
770 			r = cacheline_to_bkey(t, inorder, f->m);
771 		} else
772 			r = end(t->data);
773 	} else {
774 		r = cacheline_to_bkey(t, inorder, f->m);
775 
776 		if (--inorder) {
777 			f = &t->tree[inorder_prev(j, t->size)];
778 			l = cacheline_to_bkey(t, inorder, f->m);
779 		} else
780 			l = t->data->start;
781 	}
782 
783 	return (struct bset_search_iter) {l, r};
784 }
785 
786 struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t,
787 			       const struct bkey *search)
788 {
789 	struct bset_search_iter i;
790 
791 	/*
792 	 * First, we search for a cacheline, then lastly we do a linear search
793 	 * within that cacheline.
794 	 *
795 	 * To search for the cacheline, there's three different possibilities:
796 	 *  * The set is too small to have a search tree, so we just do a linear
797 	 *    search over the whole set.
798 	 *  * The set is the one we're currently inserting into; keeping a full
799 	 *    auxiliary search tree up to date would be too expensive, so we
800 	 *    use a much simpler lookup table to do a binary search -
801 	 *    bset_search_write_set().
802 	 *  * Or we use the auxiliary search tree we constructed earlier -
803 	 *    bset_search_tree()
804 	 */
805 
806 	if (unlikely(!t->size)) {
807 		i.l = t->data->start;
808 		i.r = end(t->data);
809 	} else if (bset_written(b, t)) {
810 		/*
811 		 * Each node in the auxiliary search tree covers a certain range
812 		 * of bits, and keys above and below the set it covers might
813 		 * differ outside those bits - so we have to special case the
814 		 * start and end - handle that here:
815 		 */
816 
817 		if (unlikely(bkey_cmp(search, &t->end) >= 0))
818 			return end(t->data);
819 
820 		if (unlikely(bkey_cmp(search, t->data->start) < 0))
821 			return t->data->start;
822 
823 		i = bset_search_tree(b, t, search);
824 	} else
825 		i = bset_search_write_set(b, t, search);
826 
827 #ifdef CONFIG_BCACHE_EDEBUG
828 	BUG_ON(bset_written(b, t) &&
829 	       i.l != t->data->start &&
830 	       bkey_cmp(tree_to_prev_bkey(t,
831 		  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
832 			search) > 0);
833 
834 	BUG_ON(i.r != end(t->data) &&
835 	       bkey_cmp(i.r, search) <= 0);
836 #endif
837 
838 	while (likely(i.l != i.r) &&
839 	       bkey_cmp(i.l, search) <= 0)
840 		i.l = bkey_next(i.l);
841 
842 	return i.l;
843 }
844 
845 /* Btree iterator */
846 
847 static inline bool btree_iter_cmp(struct btree_iter_set l,
848 				  struct btree_iter_set r)
849 {
850 	int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
851 
852 	return c ? c > 0 : l.k < r.k;
853 }
854 
855 static inline bool btree_iter_end(struct btree_iter *iter)
856 {
857 	return !iter->used;
858 }
859 
860 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
861 			 struct bkey *end)
862 {
863 	if (k != end)
864 		BUG_ON(!heap_add(iter,
865 				 ((struct btree_iter_set) { k, end }),
866 				 btree_iter_cmp));
867 }
868 
869 struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter,
870 			       struct bkey *search, struct bset_tree *start)
871 {
872 	struct bkey *ret = NULL;
873 	iter->size = ARRAY_SIZE(iter->data);
874 	iter->used = 0;
875 
876 	for (; start <= &b->sets[b->nsets]; start++) {
877 		ret = bch_bset_search(b, start, search);
878 		bch_btree_iter_push(iter, ret, end(start->data));
879 	}
880 
881 	return ret;
882 }
883 
884 struct bkey *bch_btree_iter_next(struct btree_iter *iter)
885 {
886 	struct btree_iter_set unused;
887 	struct bkey *ret = NULL;
888 
889 	if (!btree_iter_end(iter)) {
890 		ret = iter->data->k;
891 		iter->data->k = bkey_next(iter->data->k);
892 
893 		if (iter->data->k > iter->data->end) {
894 			WARN_ONCE(1, "bset was corrupt!\n");
895 			iter->data->k = iter->data->end;
896 		}
897 
898 		if (iter->data->k == iter->data->end)
899 			heap_pop(iter, unused, btree_iter_cmp);
900 		else
901 			heap_sift(iter, 0, btree_iter_cmp);
902 	}
903 
904 	return ret;
905 }
906 
907 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
908 					struct btree *b, ptr_filter_fn fn)
909 {
910 	struct bkey *ret;
911 
912 	do {
913 		ret = bch_btree_iter_next(iter);
914 	} while (ret && fn(b, ret));
915 
916 	return ret;
917 }
918 
919 struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search)
920 {
921 	struct btree_iter iter;
922 
923 	bch_btree_iter_init(b, &iter, search);
924 	return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
925 }
926 
927 /* Mergesort */
928 
929 static void btree_sort_fixup(struct btree_iter *iter)
930 {
931 	while (iter->used > 1) {
932 		struct btree_iter_set *top = iter->data, *i = top + 1;
933 		struct bkey *k;
934 
935 		if (iter->used > 2 &&
936 		    btree_iter_cmp(i[0], i[1]))
937 			i++;
938 
939 		for (k = i->k;
940 		     k != i->end && bkey_cmp(top->k, &START_KEY(k)) > 0;
941 		     k = bkey_next(k))
942 			if (top->k > i->k)
943 				__bch_cut_front(top->k, k);
944 			else if (KEY_SIZE(k))
945 				bch_cut_back(&START_KEY(k), top->k);
946 
947 		if (top->k < i->k || k == i->k)
948 			break;
949 
950 		heap_sift(iter, i - top, btree_iter_cmp);
951 	}
952 }
953 
954 static void btree_mergesort(struct btree *b, struct bset *out,
955 			    struct btree_iter *iter,
956 			    bool fixup, bool remove_stale)
957 {
958 	struct bkey *k, *last = NULL;
959 	bool (*bad)(struct btree *, const struct bkey *) = remove_stale
960 		? bch_ptr_bad
961 		: bch_ptr_invalid;
962 
963 	while (!btree_iter_end(iter)) {
964 		if (fixup && !b->level)
965 			btree_sort_fixup(iter);
966 
967 		k = bch_btree_iter_next(iter);
968 		if (bad(b, k))
969 			continue;
970 
971 		if (!last) {
972 			last = out->start;
973 			bkey_copy(last, k);
974 		} else if (b->level ||
975 			   !bch_bkey_try_merge(b, last, k)) {
976 			last = bkey_next(last);
977 			bkey_copy(last, k);
978 		}
979 	}
980 
981 	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
982 
983 	pr_debug("sorted %i keys", out->keys);
984 	bch_check_key_order(b, out);
985 }
986 
987 static void __btree_sort(struct btree *b, struct btree_iter *iter,
988 			 unsigned start, unsigned order, bool fixup)
989 {
990 	uint64_t start_time;
991 	bool remove_stale = !b->written;
992 	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO,
993 						     order);
994 	if (!out) {
995 		mutex_lock(&b->c->sort_lock);
996 		out = b->c->sort;
997 		order = ilog2(bucket_pages(b->c));
998 	}
999 
1000 	start_time = local_clock();
1001 
1002 	btree_mergesort(b, out, iter, fixup, remove_stale);
1003 	b->nsets = start;
1004 
1005 	if (!fixup && !start && b->written)
1006 		bch_btree_verify(b, out);
1007 
1008 	if (!start && order == b->page_order) {
1009 		/*
1010 		 * Our temporary buffer is the same size as the btree node's
1011 		 * buffer, we can just swap buffers instead of doing a big
1012 		 * memcpy()
1013 		 */
1014 
1015 		out->magic	= bset_magic(b->c);
1016 		out->seq	= b->sets[0].data->seq;
1017 		out->version	= b->sets[0].data->version;
1018 		swap(out, b->sets[0].data);
1019 
1020 		if (b->c->sort == b->sets[0].data)
1021 			b->c->sort = out;
1022 	} else {
1023 		b->sets[start].data->keys = out->keys;
1024 		memcpy(b->sets[start].data->start, out->start,
1025 		       (void *) end(out) - (void *) out->start);
1026 	}
1027 
1028 	if (out == b->c->sort)
1029 		mutex_unlock(&b->c->sort_lock);
1030 	else
1031 		free_pages((unsigned long) out, order);
1032 
1033 	if (b->written)
1034 		bset_build_written_tree(b);
1035 
1036 	if (!start) {
1037 		spin_lock(&b->c->sort_time_lock);
1038 		bch_time_stats_update(&b->c->sort_time, start_time);
1039 		spin_unlock(&b->c->sort_time_lock);
1040 	}
1041 }
1042 
1043 void bch_btree_sort_partial(struct btree *b, unsigned start)
1044 {
1045 	size_t oldsize = 0, order = b->page_order, keys = 0;
1046 	struct btree_iter iter;
1047 	__bch_btree_iter_init(b, &iter, NULL, &b->sets[start]);
1048 
1049 	BUG_ON(b->sets[b->nsets].data == write_block(b) &&
1050 	       (b->sets[b->nsets].size || b->nsets));
1051 
1052 	if (b->written)
1053 		oldsize = bch_count_data(b);
1054 
1055 	if (start) {
1056 		unsigned i;
1057 
1058 		for (i = start; i <= b->nsets; i++)
1059 			keys += b->sets[i].data->keys;
1060 
1061 		order = roundup_pow_of_two(__set_bytes(b->sets->data,
1062 						       keys)) / PAGE_SIZE;
1063 		if (order)
1064 			order = ilog2(order);
1065 	}
1066 
1067 	__btree_sort(b, &iter, start, order, false);
1068 
1069 	EBUG_ON(b->written && bch_count_data(b) != oldsize);
1070 }
1071 
1072 void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter)
1073 {
1074 	BUG_ON(!b->written);
1075 	__btree_sort(b, iter, 0, b->page_order, true);
1076 }
1077 
1078 void bch_btree_sort_into(struct btree *b, struct btree *new)
1079 {
1080 	uint64_t start_time = local_clock();
1081 
1082 	struct btree_iter iter;
1083 	bch_btree_iter_init(b, &iter, NULL);
1084 
1085 	btree_mergesort(b, new->sets->data, &iter, false, true);
1086 
1087 	spin_lock(&b->c->sort_time_lock);
1088 	bch_time_stats_update(&b->c->sort_time, start_time);
1089 	spin_unlock(&b->c->sort_time_lock);
1090 
1091 	bkey_copy_key(&new->key, &b->key);
1092 	new->sets->size = 0;
1093 }
1094 
1095 #define SORT_CRIT	(4096 / sizeof(uint64_t))
1096 
1097 void bch_btree_sort_lazy(struct btree *b)
1098 {
1099 	unsigned crit = SORT_CRIT;
1100 	int i;
1101 
1102 	/* Don't sort if nothing to do */
1103 	if (!b->nsets)
1104 		goto out;
1105 
1106 	/* If not a leaf node, always sort */
1107 	if (b->level) {
1108 		bch_btree_sort(b);
1109 		return;
1110 	}
1111 
1112 	for (i = b->nsets - 1; i >= 0; --i) {
1113 		crit *= b->c->sort_crit_factor;
1114 
1115 		if (b->sets[i].data->keys < crit) {
1116 			bch_btree_sort_partial(b, i);
1117 			return;
1118 		}
1119 	}
1120 
1121 	/* Sort if we'd overflow */
1122 	if (b->nsets + 1 == MAX_BSETS) {
1123 		bch_btree_sort(b);
1124 		return;
1125 	}
1126 
1127 out:
1128 	bset_build_written_tree(b);
1129 }
1130 
1131 /* Sysfs stuff */
1132 
1133 struct bset_stats {
1134 	size_t nodes;
1135 	size_t sets_written, sets_unwritten;
1136 	size_t bytes_written, bytes_unwritten;
1137 	size_t floats, failed;
1138 };
1139 
1140 static int bch_btree_bset_stats(struct btree *b, struct btree_op *op,
1141 			    struct bset_stats *stats)
1142 {
1143 	struct bkey *k;
1144 	unsigned i;
1145 
1146 	stats->nodes++;
1147 
1148 	for (i = 0; i <= b->nsets; i++) {
1149 		struct bset_tree *t = &b->sets[i];
1150 		size_t bytes = t->data->keys * sizeof(uint64_t);
1151 		size_t j;
1152 
1153 		if (bset_written(b, t)) {
1154 			stats->sets_written++;
1155 			stats->bytes_written += bytes;
1156 
1157 			stats->floats += t->size - 1;
1158 
1159 			for (j = 1; j < t->size; j++)
1160 				if (t->tree[j].exponent == 127)
1161 					stats->failed++;
1162 		} else {
1163 			stats->sets_unwritten++;
1164 			stats->bytes_unwritten += bytes;
1165 		}
1166 	}
1167 
1168 	if (b->level) {
1169 		struct btree_iter iter;
1170 
1171 		for_each_key_filter(b, k, &iter, bch_ptr_bad) {
1172 			int ret = btree(bset_stats, k, b, op, stats);
1173 			if (ret)
1174 				return ret;
1175 		}
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 int bch_bset_print_stats(struct cache_set *c, char *buf)
1182 {
1183 	struct btree_op op;
1184 	struct bset_stats t;
1185 	int ret;
1186 
1187 	bch_btree_op_init_stack(&op);
1188 	memset(&t, 0, sizeof(struct bset_stats));
1189 
1190 	ret = btree_root(bset_stats, c, &op, &t);
1191 	if (ret)
1192 		return ret;
1193 
1194 	return snprintf(buf, PAGE_SIZE,
1195 			"btree nodes:		%zu\n"
1196 			"written sets:		%zu\n"
1197 			"unwritten sets:		%zu\n"
1198 			"written key bytes:	%zu\n"
1199 			"unwritten key bytes:	%zu\n"
1200 			"floats:			%zu\n"
1201 			"failed:			%zu\n",
1202 			t.nodes,
1203 			t.sets_written, t.sets_unwritten,
1204 			t.bytes_written, t.bytes_unwritten,
1205 			t.floats, t.failed);
1206 }
1207