1 /* 2 * Code for working with individual keys, and sorted sets of keys with in a 3 * btree node 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 12 #include <linux/random.h> 13 #include <linux/prefetch.h> 14 15 /* Keylists */ 16 17 int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c) 18 { 19 size_t oldsize = bch_keylist_nkeys(l); 20 size_t newsize = oldsize + 2 + nptrs; 21 uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; 22 uint64_t *new_keys; 23 24 /* The journalling code doesn't handle the case where the keys to insert 25 * is bigger than an empty write: If we just return -ENOMEM here, 26 * bio_insert() and bio_invalidate() will insert the keys created so far 27 * and finish the rest when the keylist is empty. 28 */ 29 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 30 return -ENOMEM; 31 32 newsize = roundup_pow_of_two(newsize); 33 34 if (newsize <= KEYLIST_INLINE || 35 roundup_pow_of_two(oldsize) == newsize) 36 return 0; 37 38 new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); 39 40 if (!new_keys) 41 return -ENOMEM; 42 43 if (!old_keys) 44 memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); 45 46 l->keys_p = new_keys; 47 l->top_p = new_keys + oldsize; 48 49 return 0; 50 } 51 52 struct bkey *bch_keylist_pop(struct keylist *l) 53 { 54 struct bkey *k = l->keys; 55 56 if (k == l->top) 57 return NULL; 58 59 while (bkey_next(k) != l->top) 60 k = bkey_next(k); 61 62 return l->top = k; 63 } 64 65 void bch_keylist_pop_front(struct keylist *l) 66 { 67 l->top_p -= bkey_u64s(l->keys); 68 69 memmove(l->keys, 70 bkey_next(l->keys), 71 bch_keylist_bytes(l)); 72 } 73 74 /* Pointer validation */ 75 76 static bool __ptr_invalid(struct cache_set *c, const struct bkey *k) 77 { 78 unsigned i; 79 80 for (i = 0; i < KEY_PTRS(k); i++) 81 if (ptr_available(c, k, i)) { 82 struct cache *ca = PTR_CACHE(c, k, i); 83 size_t bucket = PTR_BUCKET_NR(c, k, i); 84 size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); 85 86 if (KEY_SIZE(k) + r > c->sb.bucket_size || 87 bucket < ca->sb.first_bucket || 88 bucket >= ca->sb.nbuckets) 89 return true; 90 } 91 92 return false; 93 } 94 95 bool bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k) 96 { 97 char buf[80]; 98 99 if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k)) 100 goto bad; 101 102 if (__ptr_invalid(c, k)) 103 goto bad; 104 105 return false; 106 bad: 107 bch_bkey_to_text(buf, sizeof(buf), k); 108 cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k)); 109 return true; 110 } 111 112 bool bch_extent_ptr_invalid(struct cache_set *c, const struct bkey *k) 113 { 114 char buf[80]; 115 116 if (!KEY_SIZE(k)) 117 return true; 118 119 if (KEY_SIZE(k) > KEY_OFFSET(k)) 120 goto bad; 121 122 if (__ptr_invalid(c, k)) 123 goto bad; 124 125 return false; 126 bad: 127 bch_bkey_to_text(buf, sizeof(buf), k); 128 cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k)); 129 return true; 130 } 131 132 static bool ptr_bad_expensive_checks(struct btree *b, const struct bkey *k, 133 unsigned ptr) 134 { 135 struct bucket *g = PTR_BUCKET(b->c, k, ptr); 136 char buf[80]; 137 138 if (mutex_trylock(&b->c->bucket_lock)) { 139 if (b->level) { 140 if (KEY_DIRTY(k) || 141 g->prio != BTREE_PRIO || 142 (b->c->gc_mark_valid && 143 GC_MARK(g) != GC_MARK_METADATA)) 144 goto err; 145 146 } else { 147 if (g->prio == BTREE_PRIO) 148 goto err; 149 150 if (KEY_DIRTY(k) && 151 b->c->gc_mark_valid && 152 GC_MARK(g) != GC_MARK_DIRTY) 153 goto err; 154 } 155 mutex_unlock(&b->c->bucket_lock); 156 } 157 158 return false; 159 err: 160 mutex_unlock(&b->c->bucket_lock); 161 bch_bkey_to_text(buf, sizeof(buf), k); 162 btree_bug(b, 163 "inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i", 164 buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin), 165 g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen); 166 return true; 167 } 168 169 bool bch_ptr_bad(struct btree *b, const struct bkey *k) 170 { 171 struct bucket *g; 172 unsigned i, stale; 173 174 if (!bkey_cmp(k, &ZERO_KEY) || 175 !KEY_PTRS(k) || 176 bch_ptr_invalid(b, k)) 177 return true; 178 179 for (i = 0; i < KEY_PTRS(k); i++) { 180 if (!ptr_available(b->c, k, i)) 181 return true; 182 183 g = PTR_BUCKET(b->c, k, i); 184 stale = ptr_stale(b->c, k, i); 185 186 btree_bug_on(stale > 96, b, 187 "key too stale: %i, need_gc %u", 188 stale, b->c->need_gc); 189 190 btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k), 191 b, "stale dirty pointer"); 192 193 if (stale) 194 return true; 195 196 if (expensive_debug_checks(b->c) && 197 ptr_bad_expensive_checks(b, k, i)) 198 return true; 199 } 200 201 return false; 202 } 203 204 /* Key/pointer manipulation */ 205 206 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, 207 unsigned i) 208 { 209 BUG_ON(i > KEY_PTRS(src)); 210 211 /* Only copy the header, key, and one pointer. */ 212 memcpy(dest, src, 2 * sizeof(uint64_t)); 213 dest->ptr[0] = src->ptr[i]; 214 SET_KEY_PTRS(dest, 1); 215 /* We didn't copy the checksum so clear that bit. */ 216 SET_KEY_CSUM(dest, 0); 217 } 218 219 bool __bch_cut_front(const struct bkey *where, struct bkey *k) 220 { 221 unsigned i, len = 0; 222 223 if (bkey_cmp(where, &START_KEY(k)) <= 0) 224 return false; 225 226 if (bkey_cmp(where, k) < 0) 227 len = KEY_OFFSET(k) - KEY_OFFSET(where); 228 else 229 bkey_copy_key(k, where); 230 231 for (i = 0; i < KEY_PTRS(k); i++) 232 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); 233 234 BUG_ON(len > KEY_SIZE(k)); 235 SET_KEY_SIZE(k, len); 236 return true; 237 } 238 239 bool __bch_cut_back(const struct bkey *where, struct bkey *k) 240 { 241 unsigned len = 0; 242 243 if (bkey_cmp(where, k) >= 0) 244 return false; 245 246 BUG_ON(KEY_INODE(where) != KEY_INODE(k)); 247 248 if (bkey_cmp(where, &START_KEY(k)) > 0) 249 len = KEY_OFFSET(where) - KEY_START(k); 250 251 bkey_copy_key(k, where); 252 253 BUG_ON(len > KEY_SIZE(k)); 254 SET_KEY_SIZE(k, len); 255 return true; 256 } 257 258 static uint64_t merge_chksums(struct bkey *l, struct bkey *r) 259 { 260 return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & 261 ~((uint64_t)1 << 63); 262 } 263 264 /* Tries to merge l and r: l should be lower than r 265 * Returns true if we were able to merge. If we did merge, l will be the merged 266 * key, r will be untouched. 267 */ 268 bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r) 269 { 270 unsigned i; 271 272 if (key_merging_disabled(b->c)) 273 return false; 274 275 if (KEY_PTRS(l) != KEY_PTRS(r) || 276 KEY_DIRTY(l) != KEY_DIRTY(r) || 277 bkey_cmp(l, &START_KEY(r))) 278 return false; 279 280 for (i = 0; i < KEY_PTRS(l); i++) 281 if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || 282 PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) 283 return false; 284 285 /* Keys with no pointers aren't restricted to one bucket and could 286 * overflow KEY_SIZE 287 */ 288 if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { 289 SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); 290 SET_KEY_SIZE(l, USHRT_MAX); 291 292 bch_cut_front(l, r); 293 return false; 294 } 295 296 if (KEY_CSUM(l)) { 297 if (KEY_CSUM(r)) 298 l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); 299 else 300 SET_KEY_CSUM(l, 0); 301 } 302 303 SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); 304 SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); 305 306 return true; 307 } 308 309 /* Binary tree stuff for auxiliary search trees */ 310 311 static unsigned inorder_next(unsigned j, unsigned size) 312 { 313 if (j * 2 + 1 < size) { 314 j = j * 2 + 1; 315 316 while (j * 2 < size) 317 j *= 2; 318 } else 319 j >>= ffz(j) + 1; 320 321 return j; 322 } 323 324 static unsigned inorder_prev(unsigned j, unsigned size) 325 { 326 if (j * 2 < size) { 327 j = j * 2; 328 329 while (j * 2 + 1 < size) 330 j = j * 2 + 1; 331 } else 332 j >>= ffs(j); 333 334 return j; 335 } 336 337 /* I have no idea why this code works... and I'm the one who wrote it 338 * 339 * However, I do know what it does: 340 * Given a binary tree constructed in an array (i.e. how you normally implement 341 * a heap), it converts a node in the tree - referenced by array index - to the 342 * index it would have if you did an inorder traversal. 343 * 344 * Also tested for every j, size up to size somewhere around 6 million. 345 * 346 * The binary tree starts at array index 1, not 0 347 * extra is a function of size: 348 * extra = (size - rounddown_pow_of_two(size - 1)) << 1; 349 */ 350 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) 351 { 352 unsigned b = fls(j); 353 unsigned shift = fls(size - 1) - b; 354 355 j ^= 1U << (b - 1); 356 j <<= 1; 357 j |= 1; 358 j <<= shift; 359 360 if (j > extra) 361 j -= (j - extra) >> 1; 362 363 return j; 364 } 365 366 static unsigned to_inorder(unsigned j, struct bset_tree *t) 367 { 368 return __to_inorder(j, t->size, t->extra); 369 } 370 371 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) 372 { 373 unsigned shift; 374 375 if (j > extra) 376 j += j - extra; 377 378 shift = ffs(j); 379 380 j >>= shift; 381 j |= roundup_pow_of_two(size) >> shift; 382 383 return j; 384 } 385 386 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) 387 { 388 return __inorder_to_tree(j, t->size, t->extra); 389 } 390 391 #if 0 392 void inorder_test(void) 393 { 394 unsigned long done = 0; 395 ktime_t start = ktime_get(); 396 397 for (unsigned size = 2; 398 size < 65536000; 399 size++) { 400 unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; 401 unsigned i = 1, j = rounddown_pow_of_two(size - 1); 402 403 if (!(size % 4096)) 404 printk(KERN_NOTICE "loop %u, %llu per us\n", size, 405 done / ktime_us_delta(ktime_get(), start)); 406 407 while (1) { 408 if (__inorder_to_tree(i, size, extra) != j) 409 panic("size %10u j %10u i %10u", size, j, i); 410 411 if (__to_inorder(j, size, extra) != i) 412 panic("size %10u j %10u i %10u", size, j, i); 413 414 if (j == rounddown_pow_of_two(size) - 1) 415 break; 416 417 BUG_ON(inorder_prev(inorder_next(j, size), size) != j); 418 419 j = inorder_next(j, size); 420 i++; 421 } 422 423 done += size - 1; 424 } 425 } 426 #endif 427 428 /* 429 * Cacheline/offset <-> bkey pointer arithmetic: 430 * 431 * t->tree is a binary search tree in an array; each node corresponds to a key 432 * in one cacheline in t->set (BSET_CACHELINE bytes). 433 * 434 * This means we don't have to store the full index of the key that a node in 435 * the binary tree points to; to_inorder() gives us the cacheline, and then 436 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. 437 * 438 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 439 * make this work. 440 * 441 * To construct the bfloat for an arbitrary key we need to know what the key 442 * immediately preceding it is: we have to check if the two keys differ in the 443 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 444 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 445 */ 446 447 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, 448 unsigned offset) 449 { 450 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; 451 } 452 453 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) 454 { 455 return ((void *) k - (void *) t->data) / BSET_CACHELINE; 456 } 457 458 static unsigned bkey_to_cacheline_offset(struct bkey *k) 459 { 460 return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t); 461 } 462 463 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) 464 { 465 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); 466 } 467 468 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) 469 { 470 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); 471 } 472 473 /* 474 * For the write set - the one we're currently inserting keys into - we don't 475 * maintain a full search tree, we just keep a simple lookup table in t->prev. 476 */ 477 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) 478 { 479 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); 480 } 481 482 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) 483 { 484 low >>= shift; 485 low |= (high << 1) << (63U - shift); 486 return low; 487 } 488 489 static inline unsigned bfloat_mantissa(const struct bkey *k, 490 struct bkey_float *f) 491 { 492 const uint64_t *p = &k->low - (f->exponent >> 6); 493 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; 494 } 495 496 static void make_bfloat(struct bset_tree *t, unsigned j) 497 { 498 struct bkey_float *f = &t->tree[j]; 499 struct bkey *m = tree_to_bkey(t, j); 500 struct bkey *p = tree_to_prev_bkey(t, j); 501 502 struct bkey *l = is_power_of_2(j) 503 ? t->data->start 504 : tree_to_prev_bkey(t, j >> ffs(j)); 505 506 struct bkey *r = is_power_of_2(j + 1) 507 ? node(t->data, t->data->keys - bkey_u64s(&t->end)) 508 : tree_to_bkey(t, j >> (ffz(j) + 1)); 509 510 BUG_ON(m < l || m > r); 511 BUG_ON(bkey_next(p) != m); 512 513 if (KEY_INODE(l) != KEY_INODE(r)) 514 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; 515 else 516 f->exponent = fls64(r->low ^ l->low); 517 518 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); 519 520 /* 521 * Setting f->exponent = 127 flags this node as failed, and causes the 522 * lookup code to fall back to comparing against the original key. 523 */ 524 525 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) 526 f->mantissa = bfloat_mantissa(m, f) - 1; 527 else 528 f->exponent = 127; 529 } 530 531 static void bset_alloc_tree(struct btree *b, struct bset_tree *t) 532 { 533 if (t != b->sets) { 534 unsigned j = roundup(t[-1].size, 535 64 / sizeof(struct bkey_float)); 536 537 t->tree = t[-1].tree + j; 538 t->prev = t[-1].prev + j; 539 } 540 541 while (t < b->sets + MAX_BSETS) 542 t++->size = 0; 543 } 544 545 static void bset_build_unwritten_tree(struct btree *b) 546 { 547 struct bset_tree *t = b->sets + b->nsets; 548 549 bset_alloc_tree(b, t); 550 551 if (t->tree != b->sets->tree + bset_tree_space(b)) { 552 t->prev[0] = bkey_to_cacheline_offset(t->data->start); 553 t->size = 1; 554 } 555 } 556 557 static void bset_build_written_tree(struct btree *b) 558 { 559 struct bset_tree *t = b->sets + b->nsets; 560 struct bkey *k = t->data->start; 561 unsigned j, cacheline = 1; 562 563 bset_alloc_tree(b, t); 564 565 t->size = min_t(unsigned, 566 bkey_to_cacheline(t, end(t->data)), 567 b->sets->tree + bset_tree_space(b) - t->tree); 568 569 if (t->size < 2) { 570 t->size = 0; 571 return; 572 } 573 574 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 575 576 /* First we figure out where the first key in each cacheline is */ 577 for (j = inorder_next(0, t->size); 578 j; 579 j = inorder_next(j, t->size)) { 580 while (bkey_to_cacheline(t, k) != cacheline) 581 k = bkey_next(k); 582 583 t->prev[j] = bkey_u64s(k); 584 k = bkey_next(k); 585 cacheline++; 586 t->tree[j].m = bkey_to_cacheline_offset(k); 587 } 588 589 while (bkey_next(k) != end(t->data)) 590 k = bkey_next(k); 591 592 t->end = *k; 593 594 /* Then we build the tree */ 595 for (j = inorder_next(0, t->size); 596 j; 597 j = inorder_next(j, t->size)) 598 make_bfloat(t, j); 599 } 600 601 void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k) 602 { 603 struct bset_tree *t; 604 unsigned inorder, j = 1; 605 606 for (t = b->sets; t <= &b->sets[b->nsets]; t++) 607 if (k < end(t->data)) 608 goto found_set; 609 610 BUG(); 611 found_set: 612 if (!t->size || !bset_written(b, t)) 613 return; 614 615 inorder = bkey_to_cacheline(t, k); 616 617 if (k == t->data->start) 618 goto fix_left; 619 620 if (bkey_next(k) == end(t->data)) { 621 t->end = *k; 622 goto fix_right; 623 } 624 625 j = inorder_to_tree(inorder, t); 626 627 if (j && 628 j < t->size && 629 k == tree_to_bkey(t, j)) 630 fix_left: do { 631 make_bfloat(t, j); 632 j = j * 2; 633 } while (j < t->size); 634 635 j = inorder_to_tree(inorder + 1, t); 636 637 if (j && 638 j < t->size && 639 k == tree_to_prev_bkey(t, j)) 640 fix_right: do { 641 make_bfloat(t, j); 642 j = j * 2 + 1; 643 } while (j < t->size); 644 } 645 646 void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k) 647 { 648 struct bset_tree *t = &b->sets[b->nsets]; 649 unsigned shift = bkey_u64s(k); 650 unsigned j = bkey_to_cacheline(t, k); 651 652 /* We're getting called from btree_split() or btree_gc, just bail out */ 653 if (!t->size) 654 return; 655 656 /* k is the key we just inserted; we need to find the entry in the 657 * lookup table for the first key that is strictly greater than k: 658 * it's either k's cacheline or the next one 659 */ 660 if (j < t->size && 661 table_to_bkey(t, j) <= k) 662 j++; 663 664 /* Adjust all the lookup table entries, and find a new key for any that 665 * have gotten too big 666 */ 667 for (; j < t->size; j++) { 668 t->prev[j] += shift; 669 670 if (t->prev[j] > 7) { 671 k = table_to_bkey(t, j - 1); 672 673 while (k < cacheline_to_bkey(t, j, 0)) 674 k = bkey_next(k); 675 676 t->prev[j] = bkey_to_cacheline_offset(k); 677 } 678 } 679 680 if (t->size == b->sets->tree + bset_tree_space(b) - t->tree) 681 return; 682 683 /* Possibly add a new entry to the end of the lookup table */ 684 685 for (k = table_to_bkey(t, t->size - 1); 686 k != end(t->data); 687 k = bkey_next(k)) 688 if (t->size == bkey_to_cacheline(t, k)) { 689 t->prev[t->size] = bkey_to_cacheline_offset(k); 690 t->size++; 691 } 692 } 693 694 void bch_bset_init_next(struct btree *b) 695 { 696 struct bset *i = write_block(b); 697 698 if (i != b->sets[0].data) { 699 b->sets[++b->nsets].data = i; 700 i->seq = b->sets[0].data->seq; 701 } else 702 get_random_bytes(&i->seq, sizeof(uint64_t)); 703 704 i->magic = bset_magic(&b->c->sb); 705 i->version = 0; 706 i->keys = 0; 707 708 bset_build_unwritten_tree(b); 709 } 710 711 struct bset_search_iter { 712 struct bkey *l, *r; 713 }; 714 715 static struct bset_search_iter bset_search_write_set(struct btree *b, 716 struct bset_tree *t, 717 const struct bkey *search) 718 { 719 unsigned li = 0, ri = t->size; 720 721 BUG_ON(!b->nsets && 722 t->size < bkey_to_cacheline(t, end(t->data))); 723 724 while (li + 1 != ri) { 725 unsigned m = (li + ri) >> 1; 726 727 if (bkey_cmp(table_to_bkey(t, m), search) > 0) 728 ri = m; 729 else 730 li = m; 731 } 732 733 return (struct bset_search_iter) { 734 table_to_bkey(t, li), 735 ri < t->size ? table_to_bkey(t, ri) : end(t->data) 736 }; 737 } 738 739 static struct bset_search_iter bset_search_tree(struct btree *b, 740 struct bset_tree *t, 741 const struct bkey *search) 742 { 743 struct bkey *l, *r; 744 struct bkey_float *f; 745 unsigned inorder, j, n = 1; 746 747 do { 748 unsigned p = n << 4; 749 p &= ((int) (p - t->size)) >> 31; 750 751 prefetch(&t->tree[p]); 752 753 j = n; 754 f = &t->tree[j]; 755 756 /* 757 * n = (f->mantissa > bfloat_mantissa()) 758 * ? j * 2 759 * : j * 2 + 1; 760 * 761 * We need to subtract 1 from f->mantissa for the sign bit trick 762 * to work - that's done in make_bfloat() 763 */ 764 if (likely(f->exponent != 127)) 765 n = j * 2 + (((unsigned) 766 (f->mantissa - 767 bfloat_mantissa(search, f))) >> 31); 768 else 769 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) 770 ? j * 2 771 : j * 2 + 1; 772 } while (n < t->size); 773 774 inorder = to_inorder(j, t); 775 776 /* 777 * n would have been the node we recursed to - the low bit tells us if 778 * we recursed left or recursed right. 779 */ 780 if (n & 1) { 781 l = cacheline_to_bkey(t, inorder, f->m); 782 783 if (++inorder != t->size) { 784 f = &t->tree[inorder_next(j, t->size)]; 785 r = cacheline_to_bkey(t, inorder, f->m); 786 } else 787 r = end(t->data); 788 } else { 789 r = cacheline_to_bkey(t, inorder, f->m); 790 791 if (--inorder) { 792 f = &t->tree[inorder_prev(j, t->size)]; 793 l = cacheline_to_bkey(t, inorder, f->m); 794 } else 795 l = t->data->start; 796 } 797 798 return (struct bset_search_iter) {l, r}; 799 } 800 801 struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t, 802 const struct bkey *search) 803 { 804 struct bset_search_iter i; 805 806 /* 807 * First, we search for a cacheline, then lastly we do a linear search 808 * within that cacheline. 809 * 810 * To search for the cacheline, there's three different possibilities: 811 * * The set is too small to have a search tree, so we just do a linear 812 * search over the whole set. 813 * * The set is the one we're currently inserting into; keeping a full 814 * auxiliary search tree up to date would be too expensive, so we 815 * use a much simpler lookup table to do a binary search - 816 * bset_search_write_set(). 817 * * Or we use the auxiliary search tree we constructed earlier - 818 * bset_search_tree() 819 */ 820 821 if (unlikely(!t->size)) { 822 i.l = t->data->start; 823 i.r = end(t->data); 824 } else if (bset_written(b, t)) { 825 /* 826 * Each node in the auxiliary search tree covers a certain range 827 * of bits, and keys above and below the set it covers might 828 * differ outside those bits - so we have to special case the 829 * start and end - handle that here: 830 */ 831 832 if (unlikely(bkey_cmp(search, &t->end) >= 0)) 833 return end(t->data); 834 835 if (unlikely(bkey_cmp(search, t->data->start) < 0)) 836 return t->data->start; 837 838 i = bset_search_tree(b, t, search); 839 } else 840 i = bset_search_write_set(b, t, search); 841 842 if (expensive_debug_checks(b->c)) { 843 BUG_ON(bset_written(b, t) && 844 i.l != t->data->start && 845 bkey_cmp(tree_to_prev_bkey(t, 846 inorder_to_tree(bkey_to_cacheline(t, i.l), t)), 847 search) > 0); 848 849 BUG_ON(i.r != end(t->data) && 850 bkey_cmp(i.r, search) <= 0); 851 } 852 853 while (likely(i.l != i.r) && 854 bkey_cmp(i.l, search) <= 0) 855 i.l = bkey_next(i.l); 856 857 return i.l; 858 } 859 860 /* Btree iterator */ 861 862 /* 863 * Returns true if l > r - unless l == r, in which case returns true if l is 864 * older than r. 865 * 866 * Necessary for btree_sort_fixup() - if there are multiple keys that compare 867 * equal in different sets, we have to process them newest to oldest. 868 */ 869 static inline bool btree_iter_cmp(struct btree_iter_set l, 870 struct btree_iter_set r) 871 { 872 int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k)); 873 874 return c ? c > 0 : l.k < r.k; 875 } 876 877 static inline bool btree_iter_end(struct btree_iter *iter) 878 { 879 return !iter->used; 880 } 881 882 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, 883 struct bkey *end) 884 { 885 if (k != end) 886 BUG_ON(!heap_add(iter, 887 ((struct btree_iter_set) { k, end }), 888 btree_iter_cmp)); 889 } 890 891 struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter, 892 struct bkey *search, struct bset_tree *start) 893 { 894 struct bkey *ret = NULL; 895 iter->size = ARRAY_SIZE(iter->data); 896 iter->used = 0; 897 898 #ifdef CONFIG_BCACHE_DEBUG 899 iter->b = b; 900 #endif 901 902 for (; start <= &b->sets[b->nsets]; start++) { 903 ret = bch_bset_search(b, start, search); 904 bch_btree_iter_push(iter, ret, end(start->data)); 905 } 906 907 return ret; 908 } 909 910 struct bkey *bch_btree_iter_next(struct btree_iter *iter) 911 { 912 struct btree_iter_set unused; 913 struct bkey *ret = NULL; 914 915 if (!btree_iter_end(iter)) { 916 bch_btree_iter_next_check(iter); 917 918 ret = iter->data->k; 919 iter->data->k = bkey_next(iter->data->k); 920 921 if (iter->data->k > iter->data->end) { 922 WARN_ONCE(1, "bset was corrupt!\n"); 923 iter->data->k = iter->data->end; 924 } 925 926 if (iter->data->k == iter->data->end) 927 heap_pop(iter, unused, btree_iter_cmp); 928 else 929 heap_sift(iter, 0, btree_iter_cmp); 930 } 931 932 return ret; 933 } 934 935 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, 936 struct btree *b, ptr_filter_fn fn) 937 { 938 struct bkey *ret; 939 940 do { 941 ret = bch_btree_iter_next(iter); 942 } while (ret && fn(b, ret)); 943 944 return ret; 945 } 946 947 /* Mergesort */ 948 949 static void sort_key_next(struct btree_iter *iter, 950 struct btree_iter_set *i) 951 { 952 i->k = bkey_next(i->k); 953 954 if (i->k == i->end) 955 *i = iter->data[--iter->used]; 956 } 957 958 static void btree_sort_fixup(struct btree_iter *iter) 959 { 960 while (iter->used > 1) { 961 struct btree_iter_set *top = iter->data, *i = top + 1; 962 963 if (iter->used > 2 && 964 btree_iter_cmp(i[0], i[1])) 965 i++; 966 967 if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0) 968 break; 969 970 if (!KEY_SIZE(i->k)) { 971 sort_key_next(iter, i); 972 heap_sift(iter, i - top, btree_iter_cmp); 973 continue; 974 } 975 976 if (top->k > i->k) { 977 if (bkey_cmp(top->k, i->k) >= 0) 978 sort_key_next(iter, i); 979 else 980 bch_cut_front(top->k, i->k); 981 982 heap_sift(iter, i - top, btree_iter_cmp); 983 } else { 984 /* can't happen because of comparison func */ 985 BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k))); 986 bch_cut_back(&START_KEY(i->k), top->k); 987 } 988 } 989 } 990 991 static void btree_mergesort(struct btree *b, struct bset *out, 992 struct btree_iter *iter, 993 bool fixup, bool remove_stale) 994 { 995 struct bkey *k, *last = NULL; 996 bool (*bad)(struct btree *, const struct bkey *) = remove_stale 997 ? bch_ptr_bad 998 : bch_ptr_invalid; 999 1000 while (!btree_iter_end(iter)) { 1001 if (fixup && !b->level) 1002 btree_sort_fixup(iter); 1003 1004 k = bch_btree_iter_next(iter); 1005 if (bad(b, k)) 1006 continue; 1007 1008 if (!last) { 1009 last = out->start; 1010 bkey_copy(last, k); 1011 } else if (b->level || 1012 !bch_bkey_try_merge(b, last, k)) { 1013 last = bkey_next(last); 1014 bkey_copy(last, k); 1015 } 1016 } 1017 1018 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; 1019 1020 pr_debug("sorted %i keys", out->keys); 1021 } 1022 1023 static void __btree_sort(struct btree *b, struct btree_iter *iter, 1024 unsigned start, unsigned order, bool fixup) 1025 { 1026 uint64_t start_time; 1027 bool remove_stale = !b->written; 1028 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO, 1029 order); 1030 if (!out) { 1031 mutex_lock(&b->c->sort_lock); 1032 out = b->c->sort; 1033 order = ilog2(bucket_pages(b->c)); 1034 } 1035 1036 start_time = local_clock(); 1037 1038 btree_mergesort(b, out, iter, fixup, remove_stale); 1039 b->nsets = start; 1040 1041 if (!fixup && !start && b->written) 1042 bch_btree_verify(b, out); 1043 1044 if (!start && order == b->page_order) { 1045 /* 1046 * Our temporary buffer is the same size as the btree node's 1047 * buffer, we can just swap buffers instead of doing a big 1048 * memcpy() 1049 */ 1050 1051 out->magic = bset_magic(&b->c->sb); 1052 out->seq = b->sets[0].data->seq; 1053 out->version = b->sets[0].data->version; 1054 swap(out, b->sets[0].data); 1055 1056 if (b->c->sort == b->sets[0].data) 1057 b->c->sort = out; 1058 } else { 1059 b->sets[start].data->keys = out->keys; 1060 memcpy(b->sets[start].data->start, out->start, 1061 (void *) end(out) - (void *) out->start); 1062 } 1063 1064 if (out == b->c->sort) 1065 mutex_unlock(&b->c->sort_lock); 1066 else 1067 free_pages((unsigned long) out, order); 1068 1069 if (b->written) 1070 bset_build_written_tree(b); 1071 1072 if (!start) 1073 bch_time_stats_update(&b->c->sort_time, start_time); 1074 } 1075 1076 void bch_btree_sort_partial(struct btree *b, unsigned start) 1077 { 1078 size_t order = b->page_order, keys = 0; 1079 struct btree_iter iter; 1080 int oldsize = bch_count_data(b); 1081 1082 __bch_btree_iter_init(b, &iter, NULL, &b->sets[start]); 1083 1084 BUG_ON(b->sets[b->nsets].data == write_block(b) && 1085 (b->sets[b->nsets].size || b->nsets)); 1086 1087 1088 if (start) { 1089 unsigned i; 1090 1091 for (i = start; i <= b->nsets; i++) 1092 keys += b->sets[i].data->keys; 1093 1094 order = roundup_pow_of_two(__set_bytes(b->sets->data, 1095 keys)) / PAGE_SIZE; 1096 if (order) 1097 order = ilog2(order); 1098 } 1099 1100 __btree_sort(b, &iter, start, order, false); 1101 1102 EBUG_ON(b->written && oldsize >= 0 && bch_count_data(b) != oldsize); 1103 } 1104 1105 void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter) 1106 { 1107 BUG_ON(!b->written); 1108 __btree_sort(b, iter, 0, b->page_order, true); 1109 } 1110 1111 void bch_btree_sort_into(struct btree *b, struct btree *new) 1112 { 1113 uint64_t start_time = local_clock(); 1114 1115 struct btree_iter iter; 1116 bch_btree_iter_init(b, &iter, NULL); 1117 1118 btree_mergesort(b, new->sets->data, &iter, false, true); 1119 1120 bch_time_stats_update(&b->c->sort_time, start_time); 1121 1122 bkey_copy_key(&new->key, &b->key); 1123 new->sets->size = 0; 1124 } 1125 1126 #define SORT_CRIT (4096 / sizeof(uint64_t)) 1127 1128 void bch_btree_sort_lazy(struct btree *b) 1129 { 1130 unsigned crit = SORT_CRIT; 1131 int i; 1132 1133 /* Don't sort if nothing to do */ 1134 if (!b->nsets) 1135 goto out; 1136 1137 /* If not a leaf node, always sort */ 1138 if (b->level) { 1139 bch_btree_sort(b); 1140 return; 1141 } 1142 1143 for (i = b->nsets - 1; i >= 0; --i) { 1144 crit *= b->c->sort_crit_factor; 1145 1146 if (b->sets[i].data->keys < crit) { 1147 bch_btree_sort_partial(b, i); 1148 return; 1149 } 1150 } 1151 1152 /* Sort if we'd overflow */ 1153 if (b->nsets + 1 == MAX_BSETS) { 1154 bch_btree_sort(b); 1155 return; 1156 } 1157 1158 out: 1159 bset_build_written_tree(b); 1160 } 1161 1162 /* Sysfs stuff */ 1163 1164 struct bset_stats { 1165 struct btree_op op; 1166 size_t nodes; 1167 size_t sets_written, sets_unwritten; 1168 size_t bytes_written, bytes_unwritten; 1169 size_t floats, failed; 1170 }; 1171 1172 static int btree_bset_stats(struct btree_op *op, struct btree *b) 1173 { 1174 struct bset_stats *stats = container_of(op, struct bset_stats, op); 1175 unsigned i; 1176 1177 stats->nodes++; 1178 1179 for (i = 0; i <= b->nsets; i++) { 1180 struct bset_tree *t = &b->sets[i]; 1181 size_t bytes = t->data->keys * sizeof(uint64_t); 1182 size_t j; 1183 1184 if (bset_written(b, t)) { 1185 stats->sets_written++; 1186 stats->bytes_written += bytes; 1187 1188 stats->floats += t->size - 1; 1189 1190 for (j = 1; j < t->size; j++) 1191 if (t->tree[j].exponent == 127) 1192 stats->failed++; 1193 } else { 1194 stats->sets_unwritten++; 1195 stats->bytes_unwritten += bytes; 1196 } 1197 } 1198 1199 return MAP_CONTINUE; 1200 } 1201 1202 int bch_bset_print_stats(struct cache_set *c, char *buf) 1203 { 1204 struct bset_stats t; 1205 int ret; 1206 1207 memset(&t, 0, sizeof(struct bset_stats)); 1208 bch_btree_op_init(&t.op, -1); 1209 1210 ret = bch_btree_map_nodes(&t.op, c, &ZERO_KEY, btree_bset_stats); 1211 if (ret < 0) 1212 return ret; 1213 1214 return snprintf(buf, PAGE_SIZE, 1215 "btree nodes: %zu\n" 1216 "written sets: %zu\n" 1217 "unwritten sets: %zu\n" 1218 "written key bytes: %zu\n" 1219 "unwritten key bytes: %zu\n" 1220 "floats: %zu\n" 1221 "failed: %zu\n", 1222 t.nodes, 1223 t.sets_written, t.sets_unwritten, 1224 t.bytes_written, t.bytes_unwritten, 1225 t.floats, t.failed); 1226 } 1227