1 /* 2 * Code for working with individual keys, and sorted sets of keys with in a 3 * btree node 4 * 5 * Copyright 2012 Google, Inc. 6 */ 7 8 #include "bcache.h" 9 #include "btree.h" 10 #include "debug.h" 11 12 #include <linux/random.h> 13 #include <linux/prefetch.h> 14 15 /* Keylists */ 16 17 void bch_keylist_copy(struct keylist *dest, struct keylist *src) 18 { 19 *dest = *src; 20 21 if (src->list == src->d) { 22 size_t n = (uint64_t *) src->top - src->d; 23 dest->top = (struct bkey *) &dest->d[n]; 24 dest->list = dest->d; 25 } 26 } 27 28 int bch_keylist_realloc(struct keylist *l, int nptrs, struct cache_set *c) 29 { 30 unsigned oldsize = (uint64_t *) l->top - l->list; 31 unsigned newsize = oldsize + 2 + nptrs; 32 uint64_t *new; 33 34 /* The journalling code doesn't handle the case where the keys to insert 35 * is bigger than an empty write: If we just return -ENOMEM here, 36 * bio_insert() and bio_invalidate() will insert the keys created so far 37 * and finish the rest when the keylist is empty. 38 */ 39 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 40 return -ENOMEM; 41 42 newsize = roundup_pow_of_two(newsize); 43 44 if (newsize <= KEYLIST_INLINE || 45 roundup_pow_of_two(oldsize) == newsize) 46 return 0; 47 48 new = krealloc(l->list == l->d ? NULL : l->list, 49 sizeof(uint64_t) * newsize, GFP_NOIO); 50 51 if (!new) 52 return -ENOMEM; 53 54 if (l->list == l->d) 55 memcpy(new, l->list, sizeof(uint64_t) * KEYLIST_INLINE); 56 57 l->list = new; 58 l->top = (struct bkey *) (&l->list[oldsize]); 59 60 return 0; 61 } 62 63 struct bkey *bch_keylist_pop(struct keylist *l) 64 { 65 struct bkey *k = l->bottom; 66 67 if (k == l->top) 68 return NULL; 69 70 while (bkey_next(k) != l->top) 71 k = bkey_next(k); 72 73 return l->top = k; 74 } 75 76 /* Pointer validation */ 77 78 bool __bch_ptr_invalid(struct cache_set *c, int level, const struct bkey *k) 79 { 80 unsigned i; 81 char buf[80]; 82 83 if (level && (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))) 84 goto bad; 85 86 if (!level && KEY_SIZE(k) > KEY_OFFSET(k)) 87 goto bad; 88 89 if (!KEY_SIZE(k)) 90 return true; 91 92 for (i = 0; i < KEY_PTRS(k); i++) 93 if (ptr_available(c, k, i)) { 94 struct cache *ca = PTR_CACHE(c, k, i); 95 size_t bucket = PTR_BUCKET_NR(c, k, i); 96 size_t r = bucket_remainder(c, PTR_OFFSET(k, i)); 97 98 if (KEY_SIZE(k) + r > c->sb.bucket_size || 99 bucket < ca->sb.first_bucket || 100 bucket >= ca->sb.nbuckets) 101 goto bad; 102 } 103 104 return false; 105 bad: 106 bch_bkey_to_text(buf, sizeof(buf), k); 107 cache_bug(c, "spotted bad key %s: %s", buf, bch_ptr_status(c, k)); 108 return true; 109 } 110 111 bool bch_ptr_bad(struct btree *b, const struct bkey *k) 112 { 113 struct bucket *g; 114 unsigned i, stale; 115 116 if (!bkey_cmp(k, &ZERO_KEY) || 117 !KEY_PTRS(k) || 118 bch_ptr_invalid(b, k)) 119 return true; 120 121 if (KEY_PTRS(k) && PTR_DEV(k, 0) == PTR_CHECK_DEV) 122 return true; 123 124 for (i = 0; i < KEY_PTRS(k); i++) 125 if (ptr_available(b->c, k, i)) { 126 g = PTR_BUCKET(b->c, k, i); 127 stale = ptr_stale(b->c, k, i); 128 129 btree_bug_on(stale > 96, b, 130 "key too stale: %i, need_gc %u", 131 stale, b->c->need_gc); 132 133 btree_bug_on(stale && KEY_DIRTY(k) && KEY_SIZE(k), 134 b, "stale dirty pointer"); 135 136 if (stale) 137 return true; 138 139 #ifdef CONFIG_BCACHE_EDEBUG 140 if (!mutex_trylock(&b->c->bucket_lock)) 141 continue; 142 143 if (b->level) { 144 if (KEY_DIRTY(k) || 145 g->prio != BTREE_PRIO || 146 (b->c->gc_mark_valid && 147 GC_MARK(g) != GC_MARK_METADATA)) 148 goto bug; 149 150 } else { 151 if (g->prio == BTREE_PRIO) 152 goto bug; 153 154 if (KEY_DIRTY(k) && 155 b->c->gc_mark_valid && 156 GC_MARK(g) != GC_MARK_DIRTY) 157 goto bug; 158 } 159 mutex_unlock(&b->c->bucket_lock); 160 #endif 161 } 162 163 return false; 164 #ifdef CONFIG_BCACHE_EDEBUG 165 bug: 166 mutex_unlock(&b->c->bucket_lock); 167 168 { 169 char buf[80]; 170 171 bch_bkey_to_text(buf, sizeof(buf), k); 172 btree_bug(b, 173 "inconsistent pointer %s: bucket %zu pin %i prio %i gen %i last_gc %i mark %llu gc_gen %i", 174 buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin), 175 g->prio, g->gen, g->last_gc, GC_MARK(g), g->gc_gen); 176 } 177 return true; 178 #endif 179 } 180 181 /* Key/pointer manipulation */ 182 183 void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, 184 unsigned i) 185 { 186 BUG_ON(i > KEY_PTRS(src)); 187 188 /* Only copy the header, key, and one pointer. */ 189 memcpy(dest, src, 2 * sizeof(uint64_t)); 190 dest->ptr[0] = src->ptr[i]; 191 SET_KEY_PTRS(dest, 1); 192 /* We didn't copy the checksum so clear that bit. */ 193 SET_KEY_CSUM(dest, 0); 194 } 195 196 bool __bch_cut_front(const struct bkey *where, struct bkey *k) 197 { 198 unsigned i, len = 0; 199 200 if (bkey_cmp(where, &START_KEY(k)) <= 0) 201 return false; 202 203 if (bkey_cmp(where, k) < 0) 204 len = KEY_OFFSET(k) - KEY_OFFSET(where); 205 else 206 bkey_copy_key(k, where); 207 208 for (i = 0; i < KEY_PTRS(k); i++) 209 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); 210 211 BUG_ON(len > KEY_SIZE(k)); 212 SET_KEY_SIZE(k, len); 213 return true; 214 } 215 216 bool __bch_cut_back(const struct bkey *where, struct bkey *k) 217 { 218 unsigned len = 0; 219 220 if (bkey_cmp(where, k) >= 0) 221 return false; 222 223 BUG_ON(KEY_INODE(where) != KEY_INODE(k)); 224 225 if (bkey_cmp(where, &START_KEY(k)) > 0) 226 len = KEY_OFFSET(where) - KEY_START(k); 227 228 bkey_copy_key(k, where); 229 230 BUG_ON(len > KEY_SIZE(k)); 231 SET_KEY_SIZE(k, len); 232 return true; 233 } 234 235 static uint64_t merge_chksums(struct bkey *l, struct bkey *r) 236 { 237 return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) & 238 ~((uint64_t)1 << 63); 239 } 240 241 /* Tries to merge l and r: l should be lower than r 242 * Returns true if we were able to merge. If we did merge, l will be the merged 243 * key, r will be untouched. 244 */ 245 bool bch_bkey_try_merge(struct btree *b, struct bkey *l, struct bkey *r) 246 { 247 unsigned i; 248 249 if (key_merging_disabled(b->c)) 250 return false; 251 252 if (KEY_PTRS(l) != KEY_PTRS(r) || 253 KEY_DIRTY(l) != KEY_DIRTY(r) || 254 bkey_cmp(l, &START_KEY(r))) 255 return false; 256 257 for (i = 0; i < KEY_PTRS(l); i++) 258 if (l->ptr[i] + PTR(0, KEY_SIZE(l), 0) != r->ptr[i] || 259 PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i)) 260 return false; 261 262 /* Keys with no pointers aren't restricted to one bucket and could 263 * overflow KEY_SIZE 264 */ 265 if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) { 266 SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l)); 267 SET_KEY_SIZE(l, USHRT_MAX); 268 269 bch_cut_front(l, r); 270 return false; 271 } 272 273 if (KEY_CSUM(l)) { 274 if (KEY_CSUM(r)) 275 l->ptr[KEY_PTRS(l)] = merge_chksums(l, r); 276 else 277 SET_KEY_CSUM(l, 0); 278 } 279 280 SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r)); 281 SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r)); 282 283 return true; 284 } 285 286 /* Binary tree stuff for auxiliary search trees */ 287 288 static unsigned inorder_next(unsigned j, unsigned size) 289 { 290 if (j * 2 + 1 < size) { 291 j = j * 2 + 1; 292 293 while (j * 2 < size) 294 j *= 2; 295 } else 296 j >>= ffz(j) + 1; 297 298 return j; 299 } 300 301 static unsigned inorder_prev(unsigned j, unsigned size) 302 { 303 if (j * 2 < size) { 304 j = j * 2; 305 306 while (j * 2 + 1 < size) 307 j = j * 2 + 1; 308 } else 309 j >>= ffs(j); 310 311 return j; 312 } 313 314 /* I have no idea why this code works... and I'm the one who wrote it 315 * 316 * However, I do know what it does: 317 * Given a binary tree constructed in an array (i.e. how you normally implement 318 * a heap), it converts a node in the tree - referenced by array index - to the 319 * index it would have if you did an inorder traversal. 320 * 321 * Also tested for every j, size up to size somewhere around 6 million. 322 * 323 * The binary tree starts at array index 1, not 0 324 * extra is a function of size: 325 * extra = (size - rounddown_pow_of_two(size - 1)) << 1; 326 */ 327 static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra) 328 { 329 unsigned b = fls(j); 330 unsigned shift = fls(size - 1) - b; 331 332 j ^= 1U << (b - 1); 333 j <<= 1; 334 j |= 1; 335 j <<= shift; 336 337 if (j > extra) 338 j -= (j - extra) >> 1; 339 340 return j; 341 } 342 343 static unsigned to_inorder(unsigned j, struct bset_tree *t) 344 { 345 return __to_inorder(j, t->size, t->extra); 346 } 347 348 static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra) 349 { 350 unsigned shift; 351 352 if (j > extra) 353 j += j - extra; 354 355 shift = ffs(j); 356 357 j >>= shift; 358 j |= roundup_pow_of_two(size) >> shift; 359 360 return j; 361 } 362 363 static unsigned inorder_to_tree(unsigned j, struct bset_tree *t) 364 { 365 return __inorder_to_tree(j, t->size, t->extra); 366 } 367 368 #if 0 369 void inorder_test(void) 370 { 371 unsigned long done = 0; 372 ktime_t start = ktime_get(); 373 374 for (unsigned size = 2; 375 size < 65536000; 376 size++) { 377 unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1; 378 unsigned i = 1, j = rounddown_pow_of_two(size - 1); 379 380 if (!(size % 4096)) 381 printk(KERN_NOTICE "loop %u, %llu per us\n", size, 382 done / ktime_us_delta(ktime_get(), start)); 383 384 while (1) { 385 if (__inorder_to_tree(i, size, extra) != j) 386 panic("size %10u j %10u i %10u", size, j, i); 387 388 if (__to_inorder(j, size, extra) != i) 389 panic("size %10u j %10u i %10u", size, j, i); 390 391 if (j == rounddown_pow_of_two(size) - 1) 392 break; 393 394 BUG_ON(inorder_prev(inorder_next(j, size), size) != j); 395 396 j = inorder_next(j, size); 397 i++; 398 } 399 400 done += size - 1; 401 } 402 } 403 #endif 404 405 /* 406 * Cacheline/offset <-> bkey pointer arithmetic: 407 * 408 * t->tree is a binary search tree in an array; each node corresponds to a key 409 * in one cacheline in t->set (BSET_CACHELINE bytes). 410 * 411 * This means we don't have to store the full index of the key that a node in 412 * the binary tree points to; to_inorder() gives us the cacheline, and then 413 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. 414 * 415 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to 416 * make this work. 417 * 418 * To construct the bfloat for an arbitrary key we need to know what the key 419 * immediately preceding it is: we have to check if the two keys differ in the 420 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size 421 * of the previous key so we can walk backwards to it from t->tree[j]'s key. 422 */ 423 424 static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline, 425 unsigned offset) 426 { 427 return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; 428 } 429 430 static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k) 431 { 432 return ((void *) k - (void *) t->data) / BSET_CACHELINE; 433 } 434 435 static unsigned bkey_to_cacheline_offset(struct bkey *k) 436 { 437 return ((size_t) k & (BSET_CACHELINE - 1)) / sizeof(uint64_t); 438 } 439 440 static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j) 441 { 442 return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); 443 } 444 445 static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j) 446 { 447 return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); 448 } 449 450 /* 451 * For the write set - the one we're currently inserting keys into - we don't 452 * maintain a full search tree, we just keep a simple lookup table in t->prev. 453 */ 454 static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline) 455 { 456 return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); 457 } 458 459 static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) 460 { 461 #ifdef CONFIG_X86_64 462 asm("shrd %[shift],%[high],%[low]" 463 : [low] "+Rm" (low) 464 : [high] "R" (high), 465 [shift] "ci" (shift) 466 : "cc"); 467 #else 468 low >>= shift; 469 low |= (high << 1) << (63U - shift); 470 #endif 471 return low; 472 } 473 474 static inline unsigned bfloat_mantissa(const struct bkey *k, 475 struct bkey_float *f) 476 { 477 const uint64_t *p = &k->low - (f->exponent >> 6); 478 return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; 479 } 480 481 static void make_bfloat(struct bset_tree *t, unsigned j) 482 { 483 struct bkey_float *f = &t->tree[j]; 484 struct bkey *m = tree_to_bkey(t, j); 485 struct bkey *p = tree_to_prev_bkey(t, j); 486 487 struct bkey *l = is_power_of_2(j) 488 ? t->data->start 489 : tree_to_prev_bkey(t, j >> ffs(j)); 490 491 struct bkey *r = is_power_of_2(j + 1) 492 ? node(t->data, t->data->keys - bkey_u64s(&t->end)) 493 : tree_to_bkey(t, j >> (ffz(j) + 1)); 494 495 BUG_ON(m < l || m > r); 496 BUG_ON(bkey_next(p) != m); 497 498 if (KEY_INODE(l) != KEY_INODE(r)) 499 f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; 500 else 501 f->exponent = fls64(r->low ^ l->low); 502 503 f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); 504 505 /* 506 * Setting f->exponent = 127 flags this node as failed, and causes the 507 * lookup code to fall back to comparing against the original key. 508 */ 509 510 if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) 511 f->mantissa = bfloat_mantissa(m, f) - 1; 512 else 513 f->exponent = 127; 514 } 515 516 static void bset_alloc_tree(struct btree *b, struct bset_tree *t) 517 { 518 if (t != b->sets) { 519 unsigned j = roundup(t[-1].size, 520 64 / sizeof(struct bkey_float)); 521 522 t->tree = t[-1].tree + j; 523 t->prev = t[-1].prev + j; 524 } 525 526 while (t < b->sets + MAX_BSETS) 527 t++->size = 0; 528 } 529 530 static void bset_build_unwritten_tree(struct btree *b) 531 { 532 struct bset_tree *t = b->sets + b->nsets; 533 534 bset_alloc_tree(b, t); 535 536 if (t->tree != b->sets->tree + bset_tree_space(b)) { 537 t->prev[0] = bkey_to_cacheline_offset(t->data->start); 538 t->size = 1; 539 } 540 } 541 542 static void bset_build_written_tree(struct btree *b) 543 { 544 struct bset_tree *t = b->sets + b->nsets; 545 struct bkey *k = t->data->start; 546 unsigned j, cacheline = 1; 547 548 bset_alloc_tree(b, t); 549 550 t->size = min_t(unsigned, 551 bkey_to_cacheline(t, end(t->data)), 552 b->sets->tree + bset_tree_space(b) - t->tree); 553 554 if (t->size < 2) { 555 t->size = 0; 556 return; 557 } 558 559 t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; 560 561 /* First we figure out where the first key in each cacheline is */ 562 for (j = inorder_next(0, t->size); 563 j; 564 j = inorder_next(j, t->size)) { 565 while (bkey_to_cacheline(t, k) != cacheline) 566 k = bkey_next(k); 567 568 t->prev[j] = bkey_u64s(k); 569 k = bkey_next(k); 570 cacheline++; 571 t->tree[j].m = bkey_to_cacheline_offset(k); 572 } 573 574 while (bkey_next(k) != end(t->data)) 575 k = bkey_next(k); 576 577 t->end = *k; 578 579 /* Then we build the tree */ 580 for (j = inorder_next(0, t->size); 581 j; 582 j = inorder_next(j, t->size)) 583 make_bfloat(t, j); 584 } 585 586 void bch_bset_fix_invalidated_key(struct btree *b, struct bkey *k) 587 { 588 struct bset_tree *t; 589 unsigned inorder, j = 1; 590 591 for (t = b->sets; t <= &b->sets[b->nsets]; t++) 592 if (k < end(t->data)) 593 goto found_set; 594 595 BUG(); 596 found_set: 597 if (!t->size || !bset_written(b, t)) 598 return; 599 600 inorder = bkey_to_cacheline(t, k); 601 602 if (k == t->data->start) 603 goto fix_left; 604 605 if (bkey_next(k) == end(t->data)) { 606 t->end = *k; 607 goto fix_right; 608 } 609 610 j = inorder_to_tree(inorder, t); 611 612 if (j && 613 j < t->size && 614 k == tree_to_bkey(t, j)) 615 fix_left: do { 616 make_bfloat(t, j); 617 j = j * 2; 618 } while (j < t->size); 619 620 j = inorder_to_tree(inorder + 1, t); 621 622 if (j && 623 j < t->size && 624 k == tree_to_prev_bkey(t, j)) 625 fix_right: do { 626 make_bfloat(t, j); 627 j = j * 2 + 1; 628 } while (j < t->size); 629 } 630 631 void bch_bset_fix_lookup_table(struct btree *b, struct bkey *k) 632 { 633 struct bset_tree *t = &b->sets[b->nsets]; 634 unsigned shift = bkey_u64s(k); 635 unsigned j = bkey_to_cacheline(t, k); 636 637 /* We're getting called from btree_split() or btree_gc, just bail out */ 638 if (!t->size) 639 return; 640 641 /* k is the key we just inserted; we need to find the entry in the 642 * lookup table for the first key that is strictly greater than k: 643 * it's either k's cacheline or the next one 644 */ 645 if (j < t->size && 646 table_to_bkey(t, j) <= k) 647 j++; 648 649 /* Adjust all the lookup table entries, and find a new key for any that 650 * have gotten too big 651 */ 652 for (; j < t->size; j++) { 653 t->prev[j] += shift; 654 655 if (t->prev[j] > 7) { 656 k = table_to_bkey(t, j - 1); 657 658 while (k < cacheline_to_bkey(t, j, 0)) 659 k = bkey_next(k); 660 661 t->prev[j] = bkey_to_cacheline_offset(k); 662 } 663 } 664 665 if (t->size == b->sets->tree + bset_tree_space(b) - t->tree) 666 return; 667 668 /* Possibly add a new entry to the end of the lookup table */ 669 670 for (k = table_to_bkey(t, t->size - 1); 671 k != end(t->data); 672 k = bkey_next(k)) 673 if (t->size == bkey_to_cacheline(t, k)) { 674 t->prev[t->size] = bkey_to_cacheline_offset(k); 675 t->size++; 676 } 677 } 678 679 void bch_bset_init_next(struct btree *b) 680 { 681 struct bset *i = write_block(b); 682 683 if (i != b->sets[0].data) { 684 b->sets[++b->nsets].data = i; 685 i->seq = b->sets[0].data->seq; 686 } else 687 get_random_bytes(&i->seq, sizeof(uint64_t)); 688 689 i->magic = bset_magic(b->c); 690 i->version = 0; 691 i->keys = 0; 692 693 bset_build_unwritten_tree(b); 694 } 695 696 struct bset_search_iter { 697 struct bkey *l, *r; 698 }; 699 700 static struct bset_search_iter bset_search_write_set(struct btree *b, 701 struct bset_tree *t, 702 const struct bkey *search) 703 { 704 unsigned li = 0, ri = t->size; 705 706 BUG_ON(!b->nsets && 707 t->size < bkey_to_cacheline(t, end(t->data))); 708 709 while (li + 1 != ri) { 710 unsigned m = (li + ri) >> 1; 711 712 if (bkey_cmp(table_to_bkey(t, m), search) > 0) 713 ri = m; 714 else 715 li = m; 716 } 717 718 return (struct bset_search_iter) { 719 table_to_bkey(t, li), 720 ri < t->size ? table_to_bkey(t, ri) : end(t->data) 721 }; 722 } 723 724 static struct bset_search_iter bset_search_tree(struct btree *b, 725 struct bset_tree *t, 726 const struct bkey *search) 727 { 728 struct bkey *l, *r; 729 struct bkey_float *f; 730 unsigned inorder, j, n = 1; 731 732 do { 733 unsigned p = n << 4; 734 p &= ((int) (p - t->size)) >> 31; 735 736 prefetch(&t->tree[p]); 737 738 j = n; 739 f = &t->tree[j]; 740 741 /* 742 * n = (f->mantissa > bfloat_mantissa()) 743 * ? j * 2 744 * : j * 2 + 1; 745 * 746 * We need to subtract 1 from f->mantissa for the sign bit trick 747 * to work - that's done in make_bfloat() 748 */ 749 if (likely(f->exponent != 127)) 750 n = j * 2 + (((unsigned) 751 (f->mantissa - 752 bfloat_mantissa(search, f))) >> 31); 753 else 754 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) 755 ? j * 2 756 : j * 2 + 1; 757 } while (n < t->size); 758 759 inorder = to_inorder(j, t); 760 761 /* 762 * n would have been the node we recursed to - the low bit tells us if 763 * we recursed left or recursed right. 764 */ 765 if (n & 1) { 766 l = cacheline_to_bkey(t, inorder, f->m); 767 768 if (++inorder != t->size) { 769 f = &t->tree[inorder_next(j, t->size)]; 770 r = cacheline_to_bkey(t, inorder, f->m); 771 } else 772 r = end(t->data); 773 } else { 774 r = cacheline_to_bkey(t, inorder, f->m); 775 776 if (--inorder) { 777 f = &t->tree[inorder_prev(j, t->size)]; 778 l = cacheline_to_bkey(t, inorder, f->m); 779 } else 780 l = t->data->start; 781 } 782 783 return (struct bset_search_iter) {l, r}; 784 } 785 786 struct bkey *__bch_bset_search(struct btree *b, struct bset_tree *t, 787 const struct bkey *search) 788 { 789 struct bset_search_iter i; 790 791 /* 792 * First, we search for a cacheline, then lastly we do a linear search 793 * within that cacheline. 794 * 795 * To search for the cacheline, there's three different possibilities: 796 * * The set is too small to have a search tree, so we just do a linear 797 * search over the whole set. 798 * * The set is the one we're currently inserting into; keeping a full 799 * auxiliary search tree up to date would be too expensive, so we 800 * use a much simpler lookup table to do a binary search - 801 * bset_search_write_set(). 802 * * Or we use the auxiliary search tree we constructed earlier - 803 * bset_search_tree() 804 */ 805 806 if (unlikely(!t->size)) { 807 i.l = t->data->start; 808 i.r = end(t->data); 809 } else if (bset_written(b, t)) { 810 /* 811 * Each node in the auxiliary search tree covers a certain range 812 * of bits, and keys above and below the set it covers might 813 * differ outside those bits - so we have to special case the 814 * start and end - handle that here: 815 */ 816 817 if (unlikely(bkey_cmp(search, &t->end) >= 0)) 818 return end(t->data); 819 820 if (unlikely(bkey_cmp(search, t->data->start) < 0)) 821 return t->data->start; 822 823 i = bset_search_tree(b, t, search); 824 } else 825 i = bset_search_write_set(b, t, search); 826 827 #ifdef CONFIG_BCACHE_EDEBUG 828 BUG_ON(bset_written(b, t) && 829 i.l != t->data->start && 830 bkey_cmp(tree_to_prev_bkey(t, 831 inorder_to_tree(bkey_to_cacheline(t, i.l), t)), 832 search) > 0); 833 834 BUG_ON(i.r != end(t->data) && 835 bkey_cmp(i.r, search) <= 0); 836 #endif 837 838 while (likely(i.l != i.r) && 839 bkey_cmp(i.l, search) <= 0) 840 i.l = bkey_next(i.l); 841 842 return i.l; 843 } 844 845 /* Btree iterator */ 846 847 static inline bool btree_iter_cmp(struct btree_iter_set l, 848 struct btree_iter_set r) 849 { 850 int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k)); 851 852 return c ? c > 0 : l.k < r.k; 853 } 854 855 static inline bool btree_iter_end(struct btree_iter *iter) 856 { 857 return !iter->used; 858 } 859 860 void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, 861 struct bkey *end) 862 { 863 if (k != end) 864 BUG_ON(!heap_add(iter, 865 ((struct btree_iter_set) { k, end }), 866 btree_iter_cmp)); 867 } 868 869 struct bkey *__bch_btree_iter_init(struct btree *b, struct btree_iter *iter, 870 struct bkey *search, struct bset_tree *start) 871 { 872 struct bkey *ret = NULL; 873 iter->size = ARRAY_SIZE(iter->data); 874 iter->used = 0; 875 876 for (; start <= &b->sets[b->nsets]; start++) { 877 ret = bch_bset_search(b, start, search); 878 bch_btree_iter_push(iter, ret, end(start->data)); 879 } 880 881 return ret; 882 } 883 884 struct bkey *bch_btree_iter_next(struct btree_iter *iter) 885 { 886 struct btree_iter_set unused; 887 struct bkey *ret = NULL; 888 889 if (!btree_iter_end(iter)) { 890 ret = iter->data->k; 891 iter->data->k = bkey_next(iter->data->k); 892 893 if (iter->data->k > iter->data->end) { 894 WARN_ONCE(1, "bset was corrupt!\n"); 895 iter->data->k = iter->data->end; 896 } 897 898 if (iter->data->k == iter->data->end) 899 heap_pop(iter, unused, btree_iter_cmp); 900 else 901 heap_sift(iter, 0, btree_iter_cmp); 902 } 903 904 return ret; 905 } 906 907 struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, 908 struct btree *b, ptr_filter_fn fn) 909 { 910 struct bkey *ret; 911 912 do { 913 ret = bch_btree_iter_next(iter); 914 } while (ret && fn(b, ret)); 915 916 return ret; 917 } 918 919 struct bkey *bch_next_recurse_key(struct btree *b, struct bkey *search) 920 { 921 struct btree_iter iter; 922 923 bch_btree_iter_init(b, &iter, search); 924 return bch_btree_iter_next_filter(&iter, b, bch_ptr_bad); 925 } 926 927 /* Mergesort */ 928 929 static void sort_key_next(struct btree_iter *iter, 930 struct btree_iter_set *i) 931 { 932 i->k = bkey_next(i->k); 933 934 if (i->k == i->end) 935 *i = iter->data[--iter->used]; 936 } 937 938 static void btree_sort_fixup(struct btree_iter *iter) 939 { 940 while (iter->used > 1) { 941 struct btree_iter_set *top = iter->data, *i = top + 1; 942 943 if (iter->used > 2 && 944 btree_iter_cmp(i[0], i[1])) 945 i++; 946 947 if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0) 948 break; 949 950 if (!KEY_SIZE(i->k)) { 951 sort_key_next(iter, i); 952 heap_sift(iter, i - top, btree_iter_cmp); 953 continue; 954 } 955 956 if (top->k > i->k) { 957 if (bkey_cmp(top->k, i->k) >= 0) 958 sort_key_next(iter, i); 959 else 960 bch_cut_front(top->k, i->k); 961 962 heap_sift(iter, i - top, btree_iter_cmp); 963 } else { 964 /* can't happen because of comparison func */ 965 BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k))); 966 bch_cut_back(&START_KEY(i->k), top->k); 967 } 968 } 969 } 970 971 static void btree_mergesort(struct btree *b, struct bset *out, 972 struct btree_iter *iter, 973 bool fixup, bool remove_stale) 974 { 975 struct bkey *k, *last = NULL; 976 bool (*bad)(struct btree *, const struct bkey *) = remove_stale 977 ? bch_ptr_bad 978 : bch_ptr_invalid; 979 980 while (!btree_iter_end(iter)) { 981 if (fixup && !b->level) 982 btree_sort_fixup(iter); 983 984 k = bch_btree_iter_next(iter); 985 if (bad(b, k)) 986 continue; 987 988 if (!last) { 989 last = out->start; 990 bkey_copy(last, k); 991 } else if (b->level || 992 !bch_bkey_try_merge(b, last, k)) { 993 last = bkey_next(last); 994 bkey_copy(last, k); 995 } 996 } 997 998 out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; 999 1000 pr_debug("sorted %i keys", out->keys); 1001 bch_check_key_order(b, out); 1002 } 1003 1004 static void __btree_sort(struct btree *b, struct btree_iter *iter, 1005 unsigned start, unsigned order, bool fixup) 1006 { 1007 uint64_t start_time; 1008 bool remove_stale = !b->written; 1009 struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOIO, 1010 order); 1011 if (!out) { 1012 mutex_lock(&b->c->sort_lock); 1013 out = b->c->sort; 1014 order = ilog2(bucket_pages(b->c)); 1015 } 1016 1017 start_time = local_clock(); 1018 1019 btree_mergesort(b, out, iter, fixup, remove_stale); 1020 b->nsets = start; 1021 1022 if (!fixup && !start && b->written) 1023 bch_btree_verify(b, out); 1024 1025 if (!start && order == b->page_order) { 1026 /* 1027 * Our temporary buffer is the same size as the btree node's 1028 * buffer, we can just swap buffers instead of doing a big 1029 * memcpy() 1030 */ 1031 1032 out->magic = bset_magic(b->c); 1033 out->seq = b->sets[0].data->seq; 1034 out->version = b->sets[0].data->version; 1035 swap(out, b->sets[0].data); 1036 1037 if (b->c->sort == b->sets[0].data) 1038 b->c->sort = out; 1039 } else { 1040 b->sets[start].data->keys = out->keys; 1041 memcpy(b->sets[start].data->start, out->start, 1042 (void *) end(out) - (void *) out->start); 1043 } 1044 1045 if (out == b->c->sort) 1046 mutex_unlock(&b->c->sort_lock); 1047 else 1048 free_pages((unsigned long) out, order); 1049 1050 if (b->written) 1051 bset_build_written_tree(b); 1052 1053 if (!start) { 1054 spin_lock(&b->c->sort_time_lock); 1055 bch_time_stats_update(&b->c->sort_time, start_time); 1056 spin_unlock(&b->c->sort_time_lock); 1057 } 1058 } 1059 1060 void bch_btree_sort_partial(struct btree *b, unsigned start) 1061 { 1062 size_t oldsize = 0, order = b->page_order, keys = 0; 1063 struct btree_iter iter; 1064 __bch_btree_iter_init(b, &iter, NULL, &b->sets[start]); 1065 1066 BUG_ON(b->sets[b->nsets].data == write_block(b) && 1067 (b->sets[b->nsets].size || b->nsets)); 1068 1069 if (b->written) 1070 oldsize = bch_count_data(b); 1071 1072 if (start) { 1073 unsigned i; 1074 1075 for (i = start; i <= b->nsets; i++) 1076 keys += b->sets[i].data->keys; 1077 1078 order = roundup_pow_of_two(__set_bytes(b->sets->data, 1079 keys)) / PAGE_SIZE; 1080 if (order) 1081 order = ilog2(order); 1082 } 1083 1084 __btree_sort(b, &iter, start, order, false); 1085 1086 EBUG_ON(b->written && bch_count_data(b) != oldsize); 1087 } 1088 1089 void bch_btree_sort_and_fix_extents(struct btree *b, struct btree_iter *iter) 1090 { 1091 BUG_ON(!b->written); 1092 __btree_sort(b, iter, 0, b->page_order, true); 1093 } 1094 1095 void bch_btree_sort_into(struct btree *b, struct btree *new) 1096 { 1097 uint64_t start_time = local_clock(); 1098 1099 struct btree_iter iter; 1100 bch_btree_iter_init(b, &iter, NULL); 1101 1102 btree_mergesort(b, new->sets->data, &iter, false, true); 1103 1104 spin_lock(&b->c->sort_time_lock); 1105 bch_time_stats_update(&b->c->sort_time, start_time); 1106 spin_unlock(&b->c->sort_time_lock); 1107 1108 bkey_copy_key(&new->key, &b->key); 1109 new->sets->size = 0; 1110 } 1111 1112 #define SORT_CRIT (4096 / sizeof(uint64_t)) 1113 1114 void bch_btree_sort_lazy(struct btree *b) 1115 { 1116 unsigned crit = SORT_CRIT; 1117 int i; 1118 1119 /* Don't sort if nothing to do */ 1120 if (!b->nsets) 1121 goto out; 1122 1123 /* If not a leaf node, always sort */ 1124 if (b->level) { 1125 bch_btree_sort(b); 1126 return; 1127 } 1128 1129 for (i = b->nsets - 1; i >= 0; --i) { 1130 crit *= b->c->sort_crit_factor; 1131 1132 if (b->sets[i].data->keys < crit) { 1133 bch_btree_sort_partial(b, i); 1134 return; 1135 } 1136 } 1137 1138 /* Sort if we'd overflow */ 1139 if (b->nsets + 1 == MAX_BSETS) { 1140 bch_btree_sort(b); 1141 return; 1142 } 1143 1144 out: 1145 bset_build_written_tree(b); 1146 } 1147 1148 /* Sysfs stuff */ 1149 1150 struct bset_stats { 1151 size_t nodes; 1152 size_t sets_written, sets_unwritten; 1153 size_t bytes_written, bytes_unwritten; 1154 size_t floats, failed; 1155 }; 1156 1157 static int bch_btree_bset_stats(struct btree *b, struct btree_op *op, 1158 struct bset_stats *stats) 1159 { 1160 struct bkey *k; 1161 unsigned i; 1162 1163 stats->nodes++; 1164 1165 for (i = 0; i <= b->nsets; i++) { 1166 struct bset_tree *t = &b->sets[i]; 1167 size_t bytes = t->data->keys * sizeof(uint64_t); 1168 size_t j; 1169 1170 if (bset_written(b, t)) { 1171 stats->sets_written++; 1172 stats->bytes_written += bytes; 1173 1174 stats->floats += t->size - 1; 1175 1176 for (j = 1; j < t->size; j++) 1177 if (t->tree[j].exponent == 127) 1178 stats->failed++; 1179 } else { 1180 stats->sets_unwritten++; 1181 stats->bytes_unwritten += bytes; 1182 } 1183 } 1184 1185 if (b->level) { 1186 struct btree_iter iter; 1187 1188 for_each_key_filter(b, k, &iter, bch_ptr_bad) { 1189 int ret = btree(bset_stats, k, b, op, stats); 1190 if (ret) 1191 return ret; 1192 } 1193 } 1194 1195 return 0; 1196 } 1197 1198 int bch_bset_print_stats(struct cache_set *c, char *buf) 1199 { 1200 struct btree_op op; 1201 struct bset_stats t; 1202 int ret; 1203 1204 bch_btree_op_init_stack(&op); 1205 memset(&t, 0, sizeof(struct bset_stats)); 1206 1207 ret = btree_root(bset_stats, c, &op, &t); 1208 if (ret) 1209 return ret; 1210 1211 return snprintf(buf, PAGE_SIZE, 1212 "btree nodes: %zu\n" 1213 "written sets: %zu\n" 1214 "unwritten sets: %zu\n" 1215 "written key bytes: %zu\n" 1216 "unwritten key bytes: %zu\n" 1217 "floats: %zu\n" 1218 "failed: %zu\n", 1219 t.nodes, 1220 t.sets_written, t.sets_unwritten, 1221 t.bytes_written, t.bytes_unwritten, 1222 t.floats, t.failed); 1223 } 1224