xref: /openbmc/linux/drivers/md/bcache/bcache.h (revision f6723b56)
1 #ifndef _BCACHE_H
2 #define _BCACHE_H
3 
4 /*
5  * SOME HIGH LEVEL CODE DOCUMENTATION:
6  *
7  * Bcache mostly works with cache sets, cache devices, and backing devices.
8  *
9  * Support for multiple cache devices hasn't quite been finished off yet, but
10  * it's about 95% plumbed through. A cache set and its cache devices is sort of
11  * like a md raid array and its component devices. Most of the code doesn't care
12  * about individual cache devices, the main abstraction is the cache set.
13  *
14  * Multiple cache devices is intended to give us the ability to mirror dirty
15  * cached data and metadata, without mirroring clean cached data.
16  *
17  * Backing devices are different, in that they have a lifetime independent of a
18  * cache set. When you register a newly formatted backing device it'll come up
19  * in passthrough mode, and then you can attach and detach a backing device from
20  * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21  * invalidates any cached data for that backing device.
22  *
23  * A cache set can have multiple (many) backing devices attached to it.
24  *
25  * There's also flash only volumes - this is the reason for the distinction
26  * between struct cached_dev and struct bcache_device. A flash only volume
27  * works much like a bcache device that has a backing device, except the
28  * "cached" data is always dirty. The end result is that we get thin
29  * provisioning with very little additional code.
30  *
31  * Flash only volumes work but they're not production ready because the moving
32  * garbage collector needs more work. More on that later.
33  *
34  * BUCKETS/ALLOCATION:
35  *
36  * Bcache is primarily designed for caching, which means that in normal
37  * operation all of our available space will be allocated. Thus, we need an
38  * efficient way of deleting things from the cache so we can write new things to
39  * it.
40  *
41  * To do this, we first divide the cache device up into buckets. A bucket is the
42  * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43  * works efficiently.
44  *
45  * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46  * it. The gens and priorities for all the buckets are stored contiguously and
47  * packed on disk (in a linked list of buckets - aside from the superblock, all
48  * of bcache's metadata is stored in buckets).
49  *
50  * The priority is used to implement an LRU. We reset a bucket's priority when
51  * we allocate it or on cache it, and every so often we decrement the priority
52  * of each bucket. It could be used to implement something more sophisticated,
53  * if anyone ever gets around to it.
54  *
55  * The generation is used for invalidating buckets. Each pointer also has an 8
56  * bit generation embedded in it; for a pointer to be considered valid, its gen
57  * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
58  * we have to do is increment its gen (and write its new gen to disk; we batch
59  * this up).
60  *
61  * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62  * contain metadata (including btree nodes).
63  *
64  * THE BTREE:
65  *
66  * Bcache is in large part design around the btree.
67  *
68  * At a high level, the btree is just an index of key -> ptr tuples.
69  *
70  * Keys represent extents, and thus have a size field. Keys also have a variable
71  * number of pointers attached to them (potentially zero, which is handy for
72  * invalidating the cache).
73  *
74  * The key itself is an inode:offset pair. The inode number corresponds to a
75  * backing device or a flash only volume. The offset is the ending offset of the
76  * extent within the inode - not the starting offset; this makes lookups
77  * slightly more convenient.
78  *
79  * Pointers contain the cache device id, the offset on that device, and an 8 bit
80  * generation number. More on the gen later.
81  *
82  * Index lookups are not fully abstracted - cache lookups in particular are
83  * still somewhat mixed in with the btree code, but things are headed in that
84  * direction.
85  *
86  * Updates are fairly well abstracted, though. There are two different ways of
87  * updating the btree; insert and replace.
88  *
89  * BTREE_INSERT will just take a list of keys and insert them into the btree -
90  * overwriting (possibly only partially) any extents they overlap with. This is
91  * used to update the index after a write.
92  *
93  * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94  * overwriting a key that matches another given key. This is used for inserting
95  * data into the cache after a cache miss, and for background writeback, and for
96  * the moving garbage collector.
97  *
98  * There is no "delete" operation; deleting things from the index is
99  * accomplished by either by invalidating pointers (by incrementing a bucket's
100  * gen) or by inserting a key with 0 pointers - which will overwrite anything
101  * previously present at that location in the index.
102  *
103  * This means that there are always stale/invalid keys in the btree. They're
104  * filtered out by the code that iterates through a btree node, and removed when
105  * a btree node is rewritten.
106  *
107  * BTREE NODES:
108  *
109  * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110  * free smaller than a bucket - so, that's how big our btree nodes are.
111  *
112  * (If buckets are really big we'll only use part of the bucket for a btree node
113  * - no less than 1/4th - but a bucket still contains no more than a single
114  * btree node. I'd actually like to change this, but for now we rely on the
115  * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116  *
117  * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118  * btree implementation.
119  *
120  * The way this is solved is that btree nodes are internally log structured; we
121  * can append new keys to an existing btree node without rewriting it. This
122  * means each set of keys we write is sorted, but the node is not.
123  *
124  * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125  * be expensive, and we have to distinguish between the keys we have written and
126  * the keys we haven't. So to do a lookup in a btree node, we have to search
127  * each sorted set. But we do merge written sets together lazily, so the cost of
128  * these extra searches is quite low (normally most of the keys in a btree node
129  * will be in one big set, and then there'll be one or two sets that are much
130  * smaller).
131  *
132  * This log structure makes bcache's btree more of a hybrid between a
133  * conventional btree and a compacting data structure, with some of the
134  * advantages of both.
135  *
136  * GARBAGE COLLECTION:
137  *
138  * We can't just invalidate any bucket - it might contain dirty data or
139  * metadata. If it once contained dirty data, other writes might overwrite it
140  * later, leaving no valid pointers into that bucket in the index.
141  *
142  * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143  * It also counts how much valid data it each bucket currently contains, so that
144  * allocation can reuse buckets sooner when they've been mostly overwritten.
145  *
146  * It also does some things that are really internal to the btree
147  * implementation. If a btree node contains pointers that are stale by more than
148  * some threshold, it rewrites the btree node to avoid the bucket's generation
149  * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150  *
151  * THE JOURNAL:
152  *
153  * Bcache's journal is not necessary for consistency; we always strictly
154  * order metadata writes so that the btree and everything else is consistent on
155  * disk in the event of an unclean shutdown, and in fact bcache had writeback
156  * caching (with recovery from unclean shutdown) before journalling was
157  * implemented.
158  *
159  * Rather, the journal is purely a performance optimization; we can't complete a
160  * write until we've updated the index on disk, otherwise the cache would be
161  * inconsistent in the event of an unclean shutdown. This means that without the
162  * journal, on random write workloads we constantly have to update all the leaf
163  * nodes in the btree, and those writes will be mostly empty (appending at most
164  * a few keys each) - highly inefficient in terms of amount of metadata writes,
165  * and it puts more strain on the various btree resorting/compacting code.
166  *
167  * The journal is just a log of keys we've inserted; on startup we just reinsert
168  * all the keys in the open journal entries. That means that when we're updating
169  * a node in the btree, we can wait until a 4k block of keys fills up before
170  * writing them out.
171  *
172  * For simplicity, we only journal updates to leaf nodes; updates to parent
173  * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174  * the complexity to deal with journalling them (in particular, journal replay)
175  * - updates to non leaf nodes just happen synchronously (see btree_split()).
176  */
177 
178 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179 
180 #include <linux/bcache.h>
181 #include <linux/bio.h>
182 #include <linux/kobject.h>
183 #include <linux/list.h>
184 #include <linux/mutex.h>
185 #include <linux/rbtree.h>
186 #include <linux/rwsem.h>
187 #include <linux/types.h>
188 #include <linux/workqueue.h>
189 
190 #include "bset.h"
191 #include "util.h"
192 #include "closure.h"
193 
194 struct bucket {
195 	atomic_t	pin;
196 	uint16_t	prio;
197 	uint8_t		gen;
198 	uint8_t		disk_gen;
199 	uint8_t		last_gc; /* Most out of date gen in the btree */
200 	uint8_t		gc_gen;
201 	uint16_t	gc_mark; /* Bitfield used by GC. See below for field */
202 };
203 
204 /*
205  * I'd use bitfields for these, but I don't trust the compiler not to screw me
206  * as multiple threads touch struct bucket without locking
207  */
208 
209 BITMASK(GC_MARK,	 struct bucket, gc_mark, 0, 2);
210 #define GC_MARK_RECLAIMABLE	0
211 #define GC_MARK_DIRTY		1
212 #define GC_MARK_METADATA	2
213 #define GC_SECTORS_USED_SIZE	13
214 #define MAX_GC_SECTORS_USED	(~(~0ULL << GC_SECTORS_USED_SIZE))
215 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
216 BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
217 
218 #include "journal.h"
219 #include "stats.h"
220 struct search;
221 struct btree;
222 struct keybuf;
223 
224 struct keybuf_key {
225 	struct rb_node		node;
226 	BKEY_PADDED(key);
227 	void			*private;
228 };
229 
230 struct keybuf {
231 	struct bkey		last_scanned;
232 	spinlock_t		lock;
233 
234 	/*
235 	 * Beginning and end of range in rb tree - so that we can skip taking
236 	 * lock and checking the rb tree when we need to check for overlapping
237 	 * keys.
238 	 */
239 	struct bkey		start;
240 	struct bkey		end;
241 
242 	struct rb_root		keys;
243 
244 #define KEYBUF_NR		500
245 	DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
246 };
247 
248 struct bio_split_pool {
249 	struct bio_set		*bio_split;
250 	mempool_t		*bio_split_hook;
251 };
252 
253 struct bio_split_hook {
254 	struct closure		cl;
255 	struct bio_split_pool	*p;
256 	struct bio		*bio;
257 	bio_end_io_t		*bi_end_io;
258 	void			*bi_private;
259 };
260 
261 struct bcache_device {
262 	struct closure		cl;
263 
264 	struct kobject		kobj;
265 
266 	struct cache_set	*c;
267 	unsigned		id;
268 #define BCACHEDEVNAME_SIZE	12
269 	char			name[BCACHEDEVNAME_SIZE];
270 
271 	struct gendisk		*disk;
272 
273 	unsigned long		flags;
274 #define BCACHE_DEV_CLOSING	0
275 #define BCACHE_DEV_DETACHING	1
276 #define BCACHE_DEV_UNLINK_DONE	2
277 
278 	unsigned		nr_stripes;
279 	unsigned		stripe_size;
280 	atomic_t		*stripe_sectors_dirty;
281 	unsigned long		*full_dirty_stripes;
282 
283 	unsigned long		sectors_dirty_last;
284 	long			sectors_dirty_derivative;
285 
286 	struct bio_set		*bio_split;
287 
288 	unsigned		data_csum:1;
289 
290 	int (*cache_miss)(struct btree *, struct search *,
291 			  struct bio *, unsigned);
292 	int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
293 
294 	struct bio_split_pool	bio_split_hook;
295 };
296 
297 struct io {
298 	/* Used to track sequential IO so it can be skipped */
299 	struct hlist_node	hash;
300 	struct list_head	lru;
301 
302 	unsigned long		jiffies;
303 	unsigned		sequential;
304 	sector_t		last;
305 };
306 
307 struct cached_dev {
308 	struct list_head	list;
309 	struct bcache_device	disk;
310 	struct block_device	*bdev;
311 
312 	struct cache_sb		sb;
313 	struct bio		sb_bio;
314 	struct bio_vec		sb_bv[1];
315 	struct closure		sb_write;
316 	struct semaphore	sb_write_mutex;
317 
318 	/* Refcount on the cache set. Always nonzero when we're caching. */
319 	atomic_t		count;
320 	struct work_struct	detach;
321 
322 	/*
323 	 * Device might not be running if it's dirty and the cache set hasn't
324 	 * showed up yet.
325 	 */
326 	atomic_t		running;
327 
328 	/*
329 	 * Writes take a shared lock from start to finish; scanning for dirty
330 	 * data to refill the rb tree requires an exclusive lock.
331 	 */
332 	struct rw_semaphore	writeback_lock;
333 
334 	/*
335 	 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
336 	 * data in the cache. Protected by writeback_lock; must have an
337 	 * shared lock to set and exclusive lock to clear.
338 	 */
339 	atomic_t		has_dirty;
340 
341 	struct bch_ratelimit	writeback_rate;
342 	struct delayed_work	writeback_rate_update;
343 
344 	/*
345 	 * Internal to the writeback code, so read_dirty() can keep track of
346 	 * where it's at.
347 	 */
348 	sector_t		last_read;
349 
350 	/* Limit number of writeback bios in flight */
351 	struct semaphore	in_flight;
352 	struct task_struct	*writeback_thread;
353 
354 	struct keybuf		writeback_keys;
355 
356 	/* For tracking sequential IO */
357 #define RECENT_IO_BITS	7
358 #define RECENT_IO	(1 << RECENT_IO_BITS)
359 	struct io		io[RECENT_IO];
360 	struct hlist_head	io_hash[RECENT_IO + 1];
361 	struct list_head	io_lru;
362 	spinlock_t		io_lock;
363 
364 	struct cache_accounting	accounting;
365 
366 	/* The rest of this all shows up in sysfs */
367 	unsigned		sequential_cutoff;
368 	unsigned		readahead;
369 
370 	unsigned		verify:1;
371 	unsigned		bypass_torture_test:1;
372 
373 	unsigned		partial_stripes_expensive:1;
374 	unsigned		writeback_metadata:1;
375 	unsigned		writeback_running:1;
376 	unsigned char		writeback_percent;
377 	unsigned		writeback_delay;
378 
379 	uint64_t		writeback_rate_target;
380 	int64_t			writeback_rate_proportional;
381 	int64_t			writeback_rate_derivative;
382 	int64_t			writeback_rate_change;
383 
384 	unsigned		writeback_rate_update_seconds;
385 	unsigned		writeback_rate_d_term;
386 	unsigned		writeback_rate_p_term_inverse;
387 };
388 
389 enum alloc_reserve {
390 	RESERVE_BTREE,
391 	RESERVE_PRIO,
392 	RESERVE_MOVINGGC,
393 	RESERVE_NONE,
394 	RESERVE_NR,
395 };
396 
397 struct cache {
398 	struct cache_set	*set;
399 	struct cache_sb		sb;
400 	struct bio		sb_bio;
401 	struct bio_vec		sb_bv[1];
402 
403 	struct kobject		kobj;
404 	struct block_device	*bdev;
405 
406 	struct task_struct	*alloc_thread;
407 
408 	struct closure		prio;
409 	struct prio_set		*disk_buckets;
410 
411 	/*
412 	 * When allocating new buckets, prio_write() gets first dibs - since we
413 	 * may not be allocate at all without writing priorities and gens.
414 	 * prio_buckets[] contains the last buckets we wrote priorities to (so
415 	 * gc can mark them as metadata), prio_next[] contains the buckets
416 	 * allocated for the next prio write.
417 	 */
418 	uint64_t		*prio_buckets;
419 	uint64_t		*prio_last_buckets;
420 
421 	/*
422 	 * free: Buckets that are ready to be used
423 	 *
424 	 * free_inc: Incoming buckets - these are buckets that currently have
425 	 * cached data in them, and we can't reuse them until after we write
426 	 * their new gen to disk. After prio_write() finishes writing the new
427 	 * gens/prios, they'll be moved to the free list (and possibly discarded
428 	 * in the process)
429 	 *
430 	 * unused: GC found nothing pointing into these buckets (possibly
431 	 * because all the data they contained was overwritten), so we only
432 	 * need to discard them before they can be moved to the free list.
433 	 */
434 	DECLARE_FIFO(long, free)[RESERVE_NR];
435 	DECLARE_FIFO(long, free_inc);
436 	DECLARE_FIFO(long, unused);
437 
438 	size_t			fifo_last_bucket;
439 
440 	/* Allocation stuff: */
441 	struct bucket		*buckets;
442 
443 	DECLARE_HEAP(struct bucket *, heap);
444 
445 	/*
446 	 * max(gen - disk_gen) for all buckets. When it gets too big we have to
447 	 * call prio_write() to keep gens from wrapping.
448 	 */
449 	uint8_t			need_save_prio;
450 
451 	/*
452 	 * If nonzero, we know we aren't going to find any buckets to invalidate
453 	 * until a gc finishes - otherwise we could pointlessly burn a ton of
454 	 * cpu
455 	 */
456 	unsigned		invalidate_needs_gc:1;
457 
458 	bool			discard; /* Get rid of? */
459 
460 	struct journal_device	journal;
461 
462 	/* The rest of this all shows up in sysfs */
463 #define IO_ERROR_SHIFT		20
464 	atomic_t		io_errors;
465 	atomic_t		io_count;
466 
467 	atomic_long_t		meta_sectors_written;
468 	atomic_long_t		btree_sectors_written;
469 	atomic_long_t		sectors_written;
470 
471 	struct bio_split_pool	bio_split_hook;
472 };
473 
474 struct gc_stat {
475 	size_t			nodes;
476 	size_t			key_bytes;
477 
478 	size_t			nkeys;
479 	uint64_t		data;	/* sectors */
480 	unsigned		in_use; /* percent */
481 };
482 
483 /*
484  * Flag bits, for how the cache set is shutting down, and what phase it's at:
485  *
486  * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
487  * all the backing devices first (their cached data gets invalidated, and they
488  * won't automatically reattach).
489  *
490  * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
491  * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
492  * flushing dirty data).
493  */
494 #define CACHE_SET_UNREGISTERING		0
495 #define	CACHE_SET_STOPPING		1
496 
497 struct cache_set {
498 	struct closure		cl;
499 
500 	struct list_head	list;
501 	struct kobject		kobj;
502 	struct kobject		internal;
503 	struct dentry		*debug;
504 	struct cache_accounting accounting;
505 
506 	unsigned long		flags;
507 
508 	struct cache_sb		sb;
509 
510 	struct cache		*cache[MAX_CACHES_PER_SET];
511 	struct cache		*cache_by_alloc[MAX_CACHES_PER_SET];
512 	int			caches_loaded;
513 
514 	struct bcache_device	**devices;
515 	struct list_head	cached_devs;
516 	uint64_t		cached_dev_sectors;
517 	struct closure		caching;
518 
519 	struct closure		sb_write;
520 	struct semaphore	sb_write_mutex;
521 
522 	mempool_t		*search;
523 	mempool_t		*bio_meta;
524 	struct bio_set		*bio_split;
525 
526 	/* For the btree cache */
527 	struct shrinker		shrink;
528 
529 	/* For the btree cache and anything allocation related */
530 	struct mutex		bucket_lock;
531 
532 	/* log2(bucket_size), in sectors */
533 	unsigned short		bucket_bits;
534 
535 	/* log2(block_size), in sectors */
536 	unsigned short		block_bits;
537 
538 	/*
539 	 * Default number of pages for a new btree node - may be less than a
540 	 * full bucket
541 	 */
542 	unsigned		btree_pages;
543 
544 	/*
545 	 * Lists of struct btrees; lru is the list for structs that have memory
546 	 * allocated for actual btree node, freed is for structs that do not.
547 	 *
548 	 * We never free a struct btree, except on shutdown - we just put it on
549 	 * the btree_cache_freed list and reuse it later. This simplifies the
550 	 * code, and it doesn't cost us much memory as the memory usage is
551 	 * dominated by buffers that hold the actual btree node data and those
552 	 * can be freed - and the number of struct btrees allocated is
553 	 * effectively bounded.
554 	 *
555 	 * btree_cache_freeable effectively is a small cache - we use it because
556 	 * high order page allocations can be rather expensive, and it's quite
557 	 * common to delete and allocate btree nodes in quick succession. It
558 	 * should never grow past ~2-3 nodes in practice.
559 	 */
560 	struct list_head	btree_cache;
561 	struct list_head	btree_cache_freeable;
562 	struct list_head	btree_cache_freed;
563 
564 	/* Number of elements in btree_cache + btree_cache_freeable lists */
565 	unsigned		bucket_cache_used;
566 
567 	/*
568 	 * If we need to allocate memory for a new btree node and that
569 	 * allocation fails, we can cannibalize another node in the btree cache
570 	 * to satisfy the allocation. However, only one thread can be doing this
571 	 * at a time, for obvious reasons - try_harder and try_wait are
572 	 * basically a lock for this that we can wait on asynchronously. The
573 	 * btree_root() macro releases the lock when it returns.
574 	 */
575 	struct task_struct	*try_harder;
576 	wait_queue_head_t	try_wait;
577 	uint64_t		try_harder_start;
578 
579 	/*
580 	 * When we free a btree node, we increment the gen of the bucket the
581 	 * node is in - but we can't rewrite the prios and gens until we
582 	 * finished whatever it is we were doing, otherwise after a crash the
583 	 * btree node would be freed but for say a split, we might not have the
584 	 * pointers to the new nodes inserted into the btree yet.
585 	 *
586 	 * This is a refcount that blocks prio_write() until the new keys are
587 	 * written.
588 	 */
589 	atomic_t		prio_blocked;
590 	wait_queue_head_t	bucket_wait;
591 
592 	/*
593 	 * For any bio we don't skip we subtract the number of sectors from
594 	 * rescale; when it hits 0 we rescale all the bucket priorities.
595 	 */
596 	atomic_t		rescale;
597 	/*
598 	 * When we invalidate buckets, we use both the priority and the amount
599 	 * of good data to determine which buckets to reuse first - to weight
600 	 * those together consistently we keep track of the smallest nonzero
601 	 * priority of any bucket.
602 	 */
603 	uint16_t		min_prio;
604 
605 	/*
606 	 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc
607 	 * to keep gens from wrapping around.
608 	 */
609 	uint8_t			need_gc;
610 	struct gc_stat		gc_stats;
611 	size_t			nbuckets;
612 
613 	struct task_struct	*gc_thread;
614 	/* Where in the btree gc currently is */
615 	struct bkey		gc_done;
616 
617 	/*
618 	 * The allocation code needs gc_mark in struct bucket to be correct, but
619 	 * it's not while a gc is in progress. Protected by bucket_lock.
620 	 */
621 	int			gc_mark_valid;
622 
623 	/* Counts how many sectors bio_insert has added to the cache */
624 	atomic_t		sectors_to_gc;
625 
626 	wait_queue_head_t	moving_gc_wait;
627 	struct keybuf		moving_gc_keys;
628 	/* Number of moving GC bios in flight */
629 	struct semaphore	moving_in_flight;
630 
631 	struct btree		*root;
632 
633 #ifdef CONFIG_BCACHE_DEBUG
634 	struct btree		*verify_data;
635 	struct bset		*verify_ondisk;
636 	struct mutex		verify_lock;
637 #endif
638 
639 	unsigned		nr_uuids;
640 	struct uuid_entry	*uuids;
641 	BKEY_PADDED(uuid_bucket);
642 	struct closure		uuid_write;
643 	struct semaphore	uuid_write_mutex;
644 
645 	/*
646 	 * A btree node on disk could have too many bsets for an iterator to fit
647 	 * on the stack - have to dynamically allocate them
648 	 */
649 	mempool_t		*fill_iter;
650 
651 	struct bset_sort_state	sort;
652 
653 	/* List of buckets we're currently writing data to */
654 	struct list_head	data_buckets;
655 	spinlock_t		data_bucket_lock;
656 
657 	struct journal		journal;
658 
659 #define CONGESTED_MAX		1024
660 	unsigned		congested_last_us;
661 	atomic_t		congested;
662 
663 	/* The rest of this all shows up in sysfs */
664 	unsigned		congested_read_threshold_us;
665 	unsigned		congested_write_threshold_us;
666 
667 	struct time_stats	btree_gc_time;
668 	struct time_stats	btree_split_time;
669 	struct time_stats	btree_read_time;
670 	struct time_stats	try_harder_time;
671 
672 	atomic_long_t		cache_read_races;
673 	atomic_long_t		writeback_keys_done;
674 	atomic_long_t		writeback_keys_failed;
675 
676 	enum			{
677 		ON_ERROR_UNREGISTER,
678 		ON_ERROR_PANIC,
679 	}			on_error;
680 	unsigned		error_limit;
681 	unsigned		error_decay;
682 
683 	unsigned short		journal_delay_ms;
684 	bool			expensive_debug_checks;
685 	unsigned		verify:1;
686 	unsigned		key_merging_disabled:1;
687 	unsigned		gc_always_rewrite:1;
688 	unsigned		shrinker_disabled:1;
689 	unsigned		copy_gc_enabled:1;
690 
691 #define BUCKET_HASH_BITS	12
692 	struct hlist_head	bucket_hash[1 << BUCKET_HASH_BITS];
693 };
694 
695 struct bbio {
696 	unsigned		submit_time_us;
697 	union {
698 		struct bkey	key;
699 		uint64_t	_pad[3];
700 		/*
701 		 * We only need pad = 3 here because we only ever carry around a
702 		 * single pointer - i.e. the pointer we're doing io to/from.
703 		 */
704 	};
705 	struct bio		bio;
706 };
707 
708 #define BTREE_PRIO		USHRT_MAX
709 #define INITIAL_PRIO		32768U
710 
711 #define btree_bytes(c)		((c)->btree_pages * PAGE_SIZE)
712 #define btree_blocks(b)							\
713 	((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
714 
715 #define btree_default_blocks(c)						\
716 	((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
717 
718 #define bucket_pages(c)		((c)->sb.bucket_size / PAGE_SECTORS)
719 #define bucket_bytes(c)		((c)->sb.bucket_size << 9)
720 #define block_bytes(c)		((c)->sb.block_size << 9)
721 
722 #define prios_per_bucket(c)				\
723 	((bucket_bytes(c) - sizeof(struct prio_set)) /	\
724 	 sizeof(struct bucket_disk))
725 #define prio_buckets(c)					\
726 	DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
727 
728 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
729 {
730 	return s >> c->bucket_bits;
731 }
732 
733 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
734 {
735 	return ((sector_t) b) << c->bucket_bits;
736 }
737 
738 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
739 {
740 	return s & (c->sb.bucket_size - 1);
741 }
742 
743 static inline struct cache *PTR_CACHE(struct cache_set *c,
744 				      const struct bkey *k,
745 				      unsigned ptr)
746 {
747 	return c->cache[PTR_DEV(k, ptr)];
748 }
749 
750 static inline size_t PTR_BUCKET_NR(struct cache_set *c,
751 				   const struct bkey *k,
752 				   unsigned ptr)
753 {
754 	return sector_to_bucket(c, PTR_OFFSET(k, ptr));
755 }
756 
757 static inline struct bucket *PTR_BUCKET(struct cache_set *c,
758 					const struct bkey *k,
759 					unsigned ptr)
760 {
761 	return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
762 }
763 
764 static inline uint8_t gen_after(uint8_t a, uint8_t b)
765 {
766 	uint8_t r = a - b;
767 	return r > 128U ? 0 : r;
768 }
769 
770 static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
771 				unsigned i)
772 {
773 	return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
774 }
775 
776 static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
777 				 unsigned i)
778 {
779 	return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
780 }
781 
782 /* Btree key macros */
783 
784 /*
785  * This is used for various on disk data structures - cache_sb, prio_set, bset,
786  * jset: The checksum is _always_ the first 8 bytes of these structs
787  */
788 #define csum_set(i)							\
789 	bch_crc64(((void *) (i)) + sizeof(uint64_t),			\
790 		  ((void *) bset_bkey_last(i)) -			\
791 		  (((void *) (i)) + sizeof(uint64_t)))
792 
793 /* Error handling macros */
794 
795 #define btree_bug(b, ...)						\
796 do {									\
797 	if (bch_cache_set_error((b)->c, __VA_ARGS__))			\
798 		dump_stack();						\
799 } while (0)
800 
801 #define cache_bug(c, ...)						\
802 do {									\
803 	if (bch_cache_set_error(c, __VA_ARGS__))			\
804 		dump_stack();						\
805 } while (0)
806 
807 #define btree_bug_on(cond, b, ...)					\
808 do {									\
809 	if (cond)							\
810 		btree_bug(b, __VA_ARGS__);				\
811 } while (0)
812 
813 #define cache_bug_on(cond, c, ...)					\
814 do {									\
815 	if (cond)							\
816 		cache_bug(c, __VA_ARGS__);				\
817 } while (0)
818 
819 #define cache_set_err_on(cond, c, ...)					\
820 do {									\
821 	if (cond)							\
822 		bch_cache_set_error(c, __VA_ARGS__);			\
823 } while (0)
824 
825 /* Looping macros */
826 
827 #define for_each_cache(ca, cs, iter)					\
828 	for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
829 
830 #define for_each_bucket(b, ca)						\
831 	for (b = (ca)->buckets + (ca)->sb.first_bucket;			\
832 	     b < (ca)->buckets + (ca)->sb.nbuckets; b++)
833 
834 static inline void cached_dev_put(struct cached_dev *dc)
835 {
836 	if (atomic_dec_and_test(&dc->count))
837 		schedule_work(&dc->detach);
838 }
839 
840 static inline bool cached_dev_get(struct cached_dev *dc)
841 {
842 	if (!atomic_inc_not_zero(&dc->count))
843 		return false;
844 
845 	/* Paired with the mb in cached_dev_attach */
846 	smp_mb__after_atomic_inc();
847 	return true;
848 }
849 
850 /*
851  * bucket_gc_gen() returns the difference between the bucket's current gen and
852  * the oldest gen of any pointer into that bucket in the btree (last_gc).
853  *
854  * bucket_disk_gen() returns the difference between the current gen and the gen
855  * on disk; they're both used to make sure gens don't wrap around.
856  */
857 
858 static inline uint8_t bucket_gc_gen(struct bucket *b)
859 {
860 	return b->gen - b->last_gc;
861 }
862 
863 static inline uint8_t bucket_disk_gen(struct bucket *b)
864 {
865 	return b->gen - b->disk_gen;
866 }
867 
868 #define BUCKET_GC_GEN_MAX	96U
869 #define BUCKET_DISK_GEN_MAX	64U
870 
871 #define kobj_attribute_write(n, fn)					\
872 	static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
873 
874 #define kobj_attribute_rw(n, show, store)				\
875 	static struct kobj_attribute ksysfs_##n =			\
876 		__ATTR(n, S_IWUSR|S_IRUSR, show, store)
877 
878 static inline void wake_up_allocators(struct cache_set *c)
879 {
880 	struct cache *ca;
881 	unsigned i;
882 
883 	for_each_cache(ca, c, i)
884 		wake_up_process(ca->alloc_thread);
885 }
886 
887 /* Forward declarations */
888 
889 void bch_count_io_errors(struct cache *, int, const char *);
890 void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
891 			      int, const char *);
892 void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *);
893 void bch_bbio_free(struct bio *, struct cache_set *);
894 struct bio *bch_bbio_alloc(struct cache_set *);
895 
896 void bch_generic_make_request(struct bio *, struct bio_split_pool *);
897 void __bch_submit_bbio(struct bio *, struct cache_set *);
898 void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
899 
900 uint8_t bch_inc_gen(struct cache *, struct bucket *);
901 void bch_rescale_priorities(struct cache_set *, int);
902 bool bch_bucket_add_unused(struct cache *, struct bucket *);
903 
904 long bch_bucket_alloc(struct cache *, unsigned, bool);
905 void bch_bucket_free(struct cache_set *, struct bkey *);
906 
907 int __bch_bucket_alloc_set(struct cache_set *, unsigned,
908 			   struct bkey *, int, bool);
909 int bch_bucket_alloc_set(struct cache_set *, unsigned,
910 			 struct bkey *, int, bool);
911 bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
912 		       unsigned, unsigned, bool);
913 
914 __printf(2, 3)
915 bool bch_cache_set_error(struct cache_set *, const char *, ...);
916 
917 void bch_prio_write(struct cache *);
918 void bch_write_bdev_super(struct cached_dev *, struct closure *);
919 
920 extern struct workqueue_struct *bcache_wq;
921 extern const char * const bch_cache_modes[];
922 extern struct mutex bch_register_lock;
923 extern struct list_head bch_cache_sets;
924 
925 extern struct kobj_type bch_cached_dev_ktype;
926 extern struct kobj_type bch_flash_dev_ktype;
927 extern struct kobj_type bch_cache_set_ktype;
928 extern struct kobj_type bch_cache_set_internal_ktype;
929 extern struct kobj_type bch_cache_ktype;
930 
931 void bch_cached_dev_release(struct kobject *);
932 void bch_flash_dev_release(struct kobject *);
933 void bch_cache_set_release(struct kobject *);
934 void bch_cache_release(struct kobject *);
935 
936 int bch_uuid_write(struct cache_set *);
937 void bcache_write_super(struct cache_set *);
938 
939 int bch_flash_dev_create(struct cache_set *c, uint64_t size);
940 
941 int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
942 void bch_cached_dev_detach(struct cached_dev *);
943 void bch_cached_dev_run(struct cached_dev *);
944 void bcache_device_stop(struct bcache_device *);
945 
946 void bch_cache_set_unregister(struct cache_set *);
947 void bch_cache_set_stop(struct cache_set *);
948 
949 struct cache_set *bch_cache_set_alloc(struct cache_sb *);
950 void bch_btree_cache_free(struct cache_set *);
951 int bch_btree_cache_alloc(struct cache_set *);
952 void bch_moving_init_cache_set(struct cache_set *);
953 int bch_open_buckets_alloc(struct cache_set *);
954 void bch_open_buckets_free(struct cache_set *);
955 
956 int bch_cache_allocator_start(struct cache *ca);
957 int bch_cache_allocator_init(struct cache *ca);
958 
959 void bch_debug_exit(void);
960 int bch_debug_init(struct kobject *);
961 void bch_request_exit(void);
962 int bch_request_init(void);
963 void bch_btree_exit(void);
964 int bch_btree_init(void);
965 
966 #endif /* _BCACHE_H */
967