1 #ifndef _BCACHE_H 2 #define _BCACHE_H 3 4 /* 5 * SOME HIGH LEVEL CODE DOCUMENTATION: 6 * 7 * Bcache mostly works with cache sets, cache devices, and backing devices. 8 * 9 * Support for multiple cache devices hasn't quite been finished off yet, but 10 * it's about 95% plumbed through. A cache set and its cache devices is sort of 11 * like a md raid array and its component devices. Most of the code doesn't care 12 * about individual cache devices, the main abstraction is the cache set. 13 * 14 * Multiple cache devices is intended to give us the ability to mirror dirty 15 * cached data and metadata, without mirroring clean cached data. 16 * 17 * Backing devices are different, in that they have a lifetime independent of a 18 * cache set. When you register a newly formatted backing device it'll come up 19 * in passthrough mode, and then you can attach and detach a backing device from 20 * a cache set at runtime - while it's mounted and in use. Detaching implicitly 21 * invalidates any cached data for that backing device. 22 * 23 * A cache set can have multiple (many) backing devices attached to it. 24 * 25 * There's also flash only volumes - this is the reason for the distinction 26 * between struct cached_dev and struct bcache_device. A flash only volume 27 * works much like a bcache device that has a backing device, except the 28 * "cached" data is always dirty. The end result is that we get thin 29 * provisioning with very little additional code. 30 * 31 * Flash only volumes work but they're not production ready because the moving 32 * garbage collector needs more work. More on that later. 33 * 34 * BUCKETS/ALLOCATION: 35 * 36 * Bcache is primarily designed for caching, which means that in normal 37 * operation all of our available space will be allocated. Thus, we need an 38 * efficient way of deleting things from the cache so we can write new things to 39 * it. 40 * 41 * To do this, we first divide the cache device up into buckets. A bucket is the 42 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ 43 * works efficiently. 44 * 45 * Each bucket has a 16 bit priority, and an 8 bit generation associated with 46 * it. The gens and priorities for all the buckets are stored contiguously and 47 * packed on disk (in a linked list of buckets - aside from the superblock, all 48 * of bcache's metadata is stored in buckets). 49 * 50 * The priority is used to implement an LRU. We reset a bucket's priority when 51 * we allocate it or on cache it, and every so often we decrement the priority 52 * of each bucket. It could be used to implement something more sophisticated, 53 * if anyone ever gets around to it. 54 * 55 * The generation is used for invalidating buckets. Each pointer also has an 8 56 * bit generation embedded in it; for a pointer to be considered valid, its gen 57 * must match the gen of the bucket it points into. Thus, to reuse a bucket all 58 * we have to do is increment its gen (and write its new gen to disk; we batch 59 * this up). 60 * 61 * Bcache is entirely COW - we never write twice to a bucket, even buckets that 62 * contain metadata (including btree nodes). 63 * 64 * THE BTREE: 65 * 66 * Bcache is in large part design around the btree. 67 * 68 * At a high level, the btree is just an index of key -> ptr tuples. 69 * 70 * Keys represent extents, and thus have a size field. Keys also have a variable 71 * number of pointers attached to them (potentially zero, which is handy for 72 * invalidating the cache). 73 * 74 * The key itself is an inode:offset pair. The inode number corresponds to a 75 * backing device or a flash only volume. The offset is the ending offset of the 76 * extent within the inode - not the starting offset; this makes lookups 77 * slightly more convenient. 78 * 79 * Pointers contain the cache device id, the offset on that device, and an 8 bit 80 * generation number. More on the gen later. 81 * 82 * Index lookups are not fully abstracted - cache lookups in particular are 83 * still somewhat mixed in with the btree code, but things are headed in that 84 * direction. 85 * 86 * Updates are fairly well abstracted, though. There are two different ways of 87 * updating the btree; insert and replace. 88 * 89 * BTREE_INSERT will just take a list of keys and insert them into the btree - 90 * overwriting (possibly only partially) any extents they overlap with. This is 91 * used to update the index after a write. 92 * 93 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is 94 * overwriting a key that matches another given key. This is used for inserting 95 * data into the cache after a cache miss, and for background writeback, and for 96 * the moving garbage collector. 97 * 98 * There is no "delete" operation; deleting things from the index is 99 * accomplished by either by invalidating pointers (by incrementing a bucket's 100 * gen) or by inserting a key with 0 pointers - which will overwrite anything 101 * previously present at that location in the index. 102 * 103 * This means that there are always stale/invalid keys in the btree. They're 104 * filtered out by the code that iterates through a btree node, and removed when 105 * a btree node is rewritten. 106 * 107 * BTREE NODES: 108 * 109 * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and 110 * free smaller than a bucket - so, that's how big our btree nodes are. 111 * 112 * (If buckets are really big we'll only use part of the bucket for a btree node 113 * - no less than 1/4th - but a bucket still contains no more than a single 114 * btree node. I'd actually like to change this, but for now we rely on the 115 * bucket's gen for deleting btree nodes when we rewrite/split a node.) 116 * 117 * Anyways, btree nodes are big - big enough to be inefficient with a textbook 118 * btree implementation. 119 * 120 * The way this is solved is that btree nodes are internally log structured; we 121 * can append new keys to an existing btree node without rewriting it. This 122 * means each set of keys we write is sorted, but the node is not. 123 * 124 * We maintain this log structure in memory - keeping 1Mb of keys sorted would 125 * be expensive, and we have to distinguish between the keys we have written and 126 * the keys we haven't. So to do a lookup in a btree node, we have to search 127 * each sorted set. But we do merge written sets together lazily, so the cost of 128 * these extra searches is quite low (normally most of the keys in a btree node 129 * will be in one big set, and then there'll be one or two sets that are much 130 * smaller). 131 * 132 * This log structure makes bcache's btree more of a hybrid between a 133 * conventional btree and a compacting data structure, with some of the 134 * advantages of both. 135 * 136 * GARBAGE COLLECTION: 137 * 138 * We can't just invalidate any bucket - it might contain dirty data or 139 * metadata. If it once contained dirty data, other writes might overwrite it 140 * later, leaving no valid pointers into that bucket in the index. 141 * 142 * Thus, the primary purpose of garbage collection is to find buckets to reuse. 143 * It also counts how much valid data it each bucket currently contains, so that 144 * allocation can reuse buckets sooner when they've been mostly overwritten. 145 * 146 * It also does some things that are really internal to the btree 147 * implementation. If a btree node contains pointers that are stale by more than 148 * some threshold, it rewrites the btree node to avoid the bucket's generation 149 * wrapping around. It also merges adjacent btree nodes if they're empty enough. 150 * 151 * THE JOURNAL: 152 * 153 * Bcache's journal is not necessary for consistency; we always strictly 154 * order metadata writes so that the btree and everything else is consistent on 155 * disk in the event of an unclean shutdown, and in fact bcache had writeback 156 * caching (with recovery from unclean shutdown) before journalling was 157 * implemented. 158 * 159 * Rather, the journal is purely a performance optimization; we can't complete a 160 * write until we've updated the index on disk, otherwise the cache would be 161 * inconsistent in the event of an unclean shutdown. This means that without the 162 * journal, on random write workloads we constantly have to update all the leaf 163 * nodes in the btree, and those writes will be mostly empty (appending at most 164 * a few keys each) - highly inefficient in terms of amount of metadata writes, 165 * and it puts more strain on the various btree resorting/compacting code. 166 * 167 * The journal is just a log of keys we've inserted; on startup we just reinsert 168 * all the keys in the open journal entries. That means that when we're updating 169 * a node in the btree, we can wait until a 4k block of keys fills up before 170 * writing them out. 171 * 172 * For simplicity, we only journal updates to leaf nodes; updates to parent 173 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth 174 * the complexity to deal with journalling them (in particular, journal replay) 175 * - updates to non leaf nodes just happen synchronously (see btree_split()). 176 */ 177 178 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ 179 180 #include <linux/bio.h> 181 #include <linux/kobject.h> 182 #include <linux/list.h> 183 #include <linux/mutex.h> 184 #include <linux/rbtree.h> 185 #include <linux/rwsem.h> 186 #include <linux/types.h> 187 #include <linux/workqueue.h> 188 189 #include "util.h" 190 #include "closure.h" 191 192 struct bucket { 193 atomic_t pin; 194 uint16_t prio; 195 uint8_t gen; 196 uint8_t disk_gen; 197 uint8_t last_gc; /* Most out of date gen in the btree */ 198 uint8_t gc_gen; 199 uint16_t gc_mark; 200 }; 201 202 /* 203 * I'd use bitfields for these, but I don't trust the compiler not to screw me 204 * as multiple threads touch struct bucket without locking 205 */ 206 207 BITMASK(GC_MARK, struct bucket, gc_mark, 0, 2); 208 #define GC_MARK_RECLAIMABLE 0 209 #define GC_MARK_DIRTY 1 210 #define GC_MARK_METADATA 2 211 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, 14); 212 213 struct bkey { 214 uint64_t high; 215 uint64_t low; 216 uint64_t ptr[]; 217 }; 218 219 /* Enough for a key with 6 pointers */ 220 #define BKEY_PAD 8 221 222 #define BKEY_PADDED(key) \ 223 union { struct bkey key; uint64_t key ## _pad[BKEY_PAD]; } 224 225 /* Version 0: Cache device 226 * Version 1: Backing device 227 * Version 2: Seed pointer into btree node checksum 228 * Version 3: Cache device with new UUID format 229 * Version 4: Backing device with data offset 230 */ 231 #define BCACHE_SB_VERSION_CDEV 0 232 #define BCACHE_SB_VERSION_BDEV 1 233 #define BCACHE_SB_VERSION_CDEV_WITH_UUID 3 234 #define BCACHE_SB_VERSION_BDEV_WITH_OFFSET 4 235 #define BCACHE_SB_MAX_VERSION 4 236 237 #define SB_SECTOR 8 238 #define SB_SIZE 4096 239 #define SB_LABEL_SIZE 32 240 #define SB_JOURNAL_BUCKETS 256U 241 /* SB_JOURNAL_BUCKETS must be divisible by BITS_PER_LONG */ 242 #define MAX_CACHES_PER_SET 8 243 244 #define BDEV_DATA_START_DEFAULT 16 /* sectors */ 245 246 struct cache_sb { 247 uint64_t csum; 248 uint64_t offset; /* sector where this sb was written */ 249 uint64_t version; 250 251 uint8_t magic[16]; 252 253 uint8_t uuid[16]; 254 union { 255 uint8_t set_uuid[16]; 256 uint64_t set_magic; 257 }; 258 uint8_t label[SB_LABEL_SIZE]; 259 260 uint64_t flags; 261 uint64_t seq; 262 uint64_t pad[8]; 263 264 union { 265 struct { 266 /* Cache devices */ 267 uint64_t nbuckets; /* device size */ 268 269 uint16_t block_size; /* sectors */ 270 uint16_t bucket_size; /* sectors */ 271 272 uint16_t nr_in_set; 273 uint16_t nr_this_dev; 274 }; 275 struct { 276 /* Backing devices */ 277 uint64_t data_offset; 278 279 /* 280 * block_size from the cache device section is still used by 281 * backing devices, so don't add anything here until we fix 282 * things to not need it for backing devices anymore 283 */ 284 }; 285 }; 286 287 uint32_t last_mount; /* time_t */ 288 289 uint16_t first_bucket; 290 union { 291 uint16_t njournal_buckets; 292 uint16_t keys; 293 }; 294 uint64_t d[SB_JOURNAL_BUCKETS]; /* journal buckets */ 295 }; 296 297 BITMASK(CACHE_SYNC, struct cache_sb, flags, 0, 1); 298 BITMASK(CACHE_DISCARD, struct cache_sb, flags, 1, 1); 299 BITMASK(CACHE_REPLACEMENT, struct cache_sb, flags, 2, 3); 300 #define CACHE_REPLACEMENT_LRU 0U 301 #define CACHE_REPLACEMENT_FIFO 1U 302 #define CACHE_REPLACEMENT_RANDOM 2U 303 304 BITMASK(BDEV_CACHE_MODE, struct cache_sb, flags, 0, 4); 305 #define CACHE_MODE_WRITETHROUGH 0U 306 #define CACHE_MODE_WRITEBACK 1U 307 #define CACHE_MODE_WRITEAROUND 2U 308 #define CACHE_MODE_NONE 3U 309 BITMASK(BDEV_STATE, struct cache_sb, flags, 61, 2); 310 #define BDEV_STATE_NONE 0U 311 #define BDEV_STATE_CLEAN 1U 312 #define BDEV_STATE_DIRTY 2U 313 #define BDEV_STATE_STALE 3U 314 315 /* Version 1: Seed pointer into btree node checksum 316 */ 317 #define BCACHE_BSET_VERSION 1 318 319 /* 320 * This is the on disk format for btree nodes - a btree node on disk is a list 321 * of these; within each set the keys are sorted 322 */ 323 struct bset { 324 uint64_t csum; 325 uint64_t magic; 326 uint64_t seq; 327 uint32_t version; 328 uint32_t keys; 329 330 union { 331 struct bkey start[0]; 332 uint64_t d[0]; 333 }; 334 }; 335 336 /* 337 * On disk format for priorities and gens - see super.c near prio_write() for 338 * more. 339 */ 340 struct prio_set { 341 uint64_t csum; 342 uint64_t magic; 343 uint64_t seq; 344 uint32_t version; 345 uint32_t pad; 346 347 uint64_t next_bucket; 348 349 struct bucket_disk { 350 uint16_t prio; 351 uint8_t gen; 352 } __attribute((packed)) data[]; 353 }; 354 355 struct uuid_entry { 356 union { 357 struct { 358 uint8_t uuid[16]; 359 uint8_t label[32]; 360 uint32_t first_reg; 361 uint32_t last_reg; 362 uint32_t invalidated; 363 364 uint32_t flags; 365 /* Size of flash only volumes */ 366 uint64_t sectors; 367 }; 368 369 uint8_t pad[128]; 370 }; 371 }; 372 373 BITMASK(UUID_FLASH_ONLY, struct uuid_entry, flags, 0, 1); 374 375 #include "journal.h" 376 #include "stats.h" 377 struct search; 378 struct btree; 379 struct keybuf; 380 381 struct keybuf_key { 382 struct rb_node node; 383 BKEY_PADDED(key); 384 void *private; 385 }; 386 387 typedef bool (keybuf_pred_fn)(struct keybuf *, struct bkey *); 388 389 struct keybuf { 390 struct bkey last_scanned; 391 spinlock_t lock; 392 393 /* 394 * Beginning and end of range in rb tree - so that we can skip taking 395 * lock and checking the rb tree when we need to check for overlapping 396 * keys. 397 */ 398 struct bkey start; 399 struct bkey end; 400 401 struct rb_root keys; 402 403 #define KEYBUF_NR 100 404 DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR); 405 }; 406 407 struct bio_split_pool { 408 struct bio_set *bio_split; 409 mempool_t *bio_split_hook; 410 }; 411 412 struct bio_split_hook { 413 struct closure cl; 414 struct bio_split_pool *p; 415 struct bio *bio; 416 bio_end_io_t *bi_end_io; 417 void *bi_private; 418 }; 419 420 struct bcache_device { 421 struct closure cl; 422 423 struct kobject kobj; 424 425 struct cache_set *c; 426 unsigned id; 427 #define BCACHEDEVNAME_SIZE 12 428 char name[BCACHEDEVNAME_SIZE]; 429 430 struct gendisk *disk; 431 432 /* If nonzero, we're closing */ 433 atomic_t closing; 434 435 /* If nonzero, we're detaching/unregistering from cache set */ 436 atomic_t detaching; 437 int flush_done; 438 439 uint64_t nr_stripes; 440 unsigned stripe_size_bits; 441 atomic_t *stripe_sectors_dirty; 442 443 unsigned long sectors_dirty_last; 444 long sectors_dirty_derivative; 445 446 mempool_t *unaligned_bvec; 447 struct bio_set *bio_split; 448 449 unsigned data_csum:1; 450 451 int (*cache_miss)(struct btree *, struct search *, 452 struct bio *, unsigned); 453 int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long); 454 455 struct bio_split_pool bio_split_hook; 456 }; 457 458 struct io { 459 /* Used to track sequential IO so it can be skipped */ 460 struct hlist_node hash; 461 struct list_head lru; 462 463 unsigned long jiffies; 464 unsigned sequential; 465 sector_t last; 466 }; 467 468 struct cached_dev { 469 struct list_head list; 470 struct bcache_device disk; 471 struct block_device *bdev; 472 473 struct cache_sb sb; 474 struct bio sb_bio; 475 struct bio_vec sb_bv[1]; 476 struct closure_with_waitlist sb_write; 477 478 /* Refcount on the cache set. Always nonzero when we're caching. */ 479 atomic_t count; 480 struct work_struct detach; 481 482 /* 483 * Device might not be running if it's dirty and the cache set hasn't 484 * showed up yet. 485 */ 486 atomic_t running; 487 488 /* 489 * Writes take a shared lock from start to finish; scanning for dirty 490 * data to refill the rb tree requires an exclusive lock. 491 */ 492 struct rw_semaphore writeback_lock; 493 494 /* 495 * Nonzero, and writeback has a refcount (d->count), iff there is dirty 496 * data in the cache. Protected by writeback_lock; must have an 497 * shared lock to set and exclusive lock to clear. 498 */ 499 atomic_t has_dirty; 500 501 struct bch_ratelimit writeback_rate; 502 struct delayed_work writeback_rate_update; 503 504 /* 505 * Internal to the writeback code, so read_dirty() can keep track of 506 * where it's at. 507 */ 508 sector_t last_read; 509 510 /* Limit number of writeback bios in flight */ 511 struct semaphore in_flight; 512 struct closure_with_timer writeback; 513 514 struct keybuf writeback_keys; 515 516 /* For tracking sequential IO */ 517 #define RECENT_IO_BITS 7 518 #define RECENT_IO (1 << RECENT_IO_BITS) 519 struct io io[RECENT_IO]; 520 struct hlist_head io_hash[RECENT_IO + 1]; 521 struct list_head io_lru; 522 spinlock_t io_lock; 523 524 struct cache_accounting accounting; 525 526 /* The rest of this all shows up in sysfs */ 527 unsigned sequential_cutoff; 528 unsigned readahead; 529 530 unsigned sequential_merge:1; 531 unsigned verify:1; 532 533 unsigned partial_stripes_expensive:1; 534 unsigned writeback_metadata:1; 535 unsigned writeback_running:1; 536 unsigned char writeback_percent; 537 unsigned writeback_delay; 538 539 int writeback_rate_change; 540 int64_t writeback_rate_derivative; 541 uint64_t writeback_rate_target; 542 543 unsigned writeback_rate_update_seconds; 544 unsigned writeback_rate_d_term; 545 unsigned writeback_rate_p_term_inverse; 546 unsigned writeback_rate_d_smooth; 547 }; 548 549 enum alloc_watermarks { 550 WATERMARK_PRIO, 551 WATERMARK_METADATA, 552 WATERMARK_MOVINGGC, 553 WATERMARK_NONE, 554 WATERMARK_MAX 555 }; 556 557 struct cache { 558 struct cache_set *set; 559 struct cache_sb sb; 560 struct bio sb_bio; 561 struct bio_vec sb_bv[1]; 562 563 struct kobject kobj; 564 struct block_device *bdev; 565 566 unsigned watermark[WATERMARK_MAX]; 567 568 struct task_struct *alloc_thread; 569 570 struct closure prio; 571 struct prio_set *disk_buckets; 572 573 /* 574 * When allocating new buckets, prio_write() gets first dibs - since we 575 * may not be allocate at all without writing priorities and gens. 576 * prio_buckets[] contains the last buckets we wrote priorities to (so 577 * gc can mark them as metadata), prio_next[] contains the buckets 578 * allocated for the next prio write. 579 */ 580 uint64_t *prio_buckets; 581 uint64_t *prio_last_buckets; 582 583 /* 584 * free: Buckets that are ready to be used 585 * 586 * free_inc: Incoming buckets - these are buckets that currently have 587 * cached data in them, and we can't reuse them until after we write 588 * their new gen to disk. After prio_write() finishes writing the new 589 * gens/prios, they'll be moved to the free list (and possibly discarded 590 * in the process) 591 * 592 * unused: GC found nothing pointing into these buckets (possibly 593 * because all the data they contained was overwritten), so we only 594 * need to discard them before they can be moved to the free list. 595 */ 596 DECLARE_FIFO(long, free); 597 DECLARE_FIFO(long, free_inc); 598 DECLARE_FIFO(long, unused); 599 600 size_t fifo_last_bucket; 601 602 /* Allocation stuff: */ 603 struct bucket *buckets; 604 605 DECLARE_HEAP(struct bucket *, heap); 606 607 /* 608 * max(gen - disk_gen) for all buckets. When it gets too big we have to 609 * call prio_write() to keep gens from wrapping. 610 */ 611 uint8_t need_save_prio; 612 unsigned gc_move_threshold; 613 614 /* 615 * If nonzero, we know we aren't going to find any buckets to invalidate 616 * until a gc finishes - otherwise we could pointlessly burn a ton of 617 * cpu 618 */ 619 unsigned invalidate_needs_gc:1; 620 621 bool discard; /* Get rid of? */ 622 623 /* 624 * We preallocate structs for issuing discards to buckets, and keep them 625 * on this list when they're not in use; do_discard() issues discards 626 * whenever there's work to do and is called by free_some_buckets() and 627 * when a discard finishes. 628 */ 629 atomic_t discards_in_flight; 630 struct list_head discards; 631 632 struct journal_device journal; 633 634 /* The rest of this all shows up in sysfs */ 635 #define IO_ERROR_SHIFT 20 636 atomic_t io_errors; 637 atomic_t io_count; 638 639 atomic_long_t meta_sectors_written; 640 atomic_long_t btree_sectors_written; 641 atomic_long_t sectors_written; 642 643 struct bio_split_pool bio_split_hook; 644 }; 645 646 struct gc_stat { 647 size_t nodes; 648 size_t key_bytes; 649 650 size_t nkeys; 651 uint64_t data; /* sectors */ 652 uint64_t dirty; /* sectors */ 653 unsigned in_use; /* percent */ 654 }; 655 656 /* 657 * Flag bits, for how the cache set is shutting down, and what phase it's at: 658 * 659 * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching 660 * all the backing devices first (their cached data gets invalidated, and they 661 * won't automatically reattach). 662 * 663 * CACHE_SET_STOPPING always gets set first when we're closing down a cache set; 664 * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e. 665 * flushing dirty data). 666 */ 667 #define CACHE_SET_UNREGISTERING 0 668 #define CACHE_SET_STOPPING 1 669 670 struct cache_set { 671 struct closure cl; 672 673 struct list_head list; 674 struct kobject kobj; 675 struct kobject internal; 676 struct dentry *debug; 677 struct cache_accounting accounting; 678 679 unsigned long flags; 680 681 struct cache_sb sb; 682 683 struct cache *cache[MAX_CACHES_PER_SET]; 684 struct cache *cache_by_alloc[MAX_CACHES_PER_SET]; 685 int caches_loaded; 686 687 struct bcache_device **devices; 688 struct list_head cached_devs; 689 uint64_t cached_dev_sectors; 690 struct closure caching; 691 692 struct closure_with_waitlist sb_write; 693 694 mempool_t *search; 695 mempool_t *bio_meta; 696 struct bio_set *bio_split; 697 698 /* For the btree cache */ 699 struct shrinker shrink; 700 701 /* For the btree cache and anything allocation related */ 702 struct mutex bucket_lock; 703 704 /* log2(bucket_size), in sectors */ 705 unsigned short bucket_bits; 706 707 /* log2(block_size), in sectors */ 708 unsigned short block_bits; 709 710 /* 711 * Default number of pages for a new btree node - may be less than a 712 * full bucket 713 */ 714 unsigned btree_pages; 715 716 /* 717 * Lists of struct btrees; lru is the list for structs that have memory 718 * allocated for actual btree node, freed is for structs that do not. 719 * 720 * We never free a struct btree, except on shutdown - we just put it on 721 * the btree_cache_freed list and reuse it later. This simplifies the 722 * code, and it doesn't cost us much memory as the memory usage is 723 * dominated by buffers that hold the actual btree node data and those 724 * can be freed - and the number of struct btrees allocated is 725 * effectively bounded. 726 * 727 * btree_cache_freeable effectively is a small cache - we use it because 728 * high order page allocations can be rather expensive, and it's quite 729 * common to delete and allocate btree nodes in quick succession. It 730 * should never grow past ~2-3 nodes in practice. 731 */ 732 struct list_head btree_cache; 733 struct list_head btree_cache_freeable; 734 struct list_head btree_cache_freed; 735 736 /* Number of elements in btree_cache + btree_cache_freeable lists */ 737 unsigned bucket_cache_used; 738 739 /* 740 * If we need to allocate memory for a new btree node and that 741 * allocation fails, we can cannibalize another node in the btree cache 742 * to satisfy the allocation. However, only one thread can be doing this 743 * at a time, for obvious reasons - try_harder and try_wait are 744 * basically a lock for this that we can wait on asynchronously. The 745 * btree_root() macro releases the lock when it returns. 746 */ 747 struct closure *try_harder; 748 struct closure_waitlist try_wait; 749 uint64_t try_harder_start; 750 751 /* 752 * When we free a btree node, we increment the gen of the bucket the 753 * node is in - but we can't rewrite the prios and gens until we 754 * finished whatever it is we were doing, otherwise after a crash the 755 * btree node would be freed but for say a split, we might not have the 756 * pointers to the new nodes inserted into the btree yet. 757 * 758 * This is a refcount that blocks prio_write() until the new keys are 759 * written. 760 */ 761 atomic_t prio_blocked; 762 struct closure_waitlist bucket_wait; 763 764 /* 765 * For any bio we don't skip we subtract the number of sectors from 766 * rescale; when it hits 0 we rescale all the bucket priorities. 767 */ 768 atomic_t rescale; 769 /* 770 * When we invalidate buckets, we use both the priority and the amount 771 * of good data to determine which buckets to reuse first - to weight 772 * those together consistently we keep track of the smallest nonzero 773 * priority of any bucket. 774 */ 775 uint16_t min_prio; 776 777 /* 778 * max(gen - gc_gen) for all buckets. When it gets too big we have to gc 779 * to keep gens from wrapping around. 780 */ 781 uint8_t need_gc; 782 struct gc_stat gc_stats; 783 size_t nbuckets; 784 785 struct closure_with_waitlist gc; 786 /* Where in the btree gc currently is */ 787 struct bkey gc_done; 788 789 /* 790 * The allocation code needs gc_mark in struct bucket to be correct, but 791 * it's not while a gc is in progress. Protected by bucket_lock. 792 */ 793 int gc_mark_valid; 794 795 /* Counts how many sectors bio_insert has added to the cache */ 796 atomic_t sectors_to_gc; 797 798 struct closure moving_gc; 799 struct closure_waitlist moving_gc_wait; 800 struct keybuf moving_gc_keys; 801 /* Number of moving GC bios in flight */ 802 atomic_t in_flight; 803 804 struct btree *root; 805 806 #ifdef CONFIG_BCACHE_DEBUG 807 struct btree *verify_data; 808 struct mutex verify_lock; 809 #endif 810 811 unsigned nr_uuids; 812 struct uuid_entry *uuids; 813 BKEY_PADDED(uuid_bucket); 814 struct closure_with_waitlist uuid_write; 815 816 /* 817 * A btree node on disk could have too many bsets for an iterator to fit 818 * on the stack - have to dynamically allocate them 819 */ 820 mempool_t *fill_iter; 821 822 /* 823 * btree_sort() is a merge sort and requires temporary space - single 824 * element mempool 825 */ 826 struct mutex sort_lock; 827 struct bset *sort; 828 unsigned sort_crit_factor; 829 830 /* List of buckets we're currently writing data to */ 831 struct list_head data_buckets; 832 spinlock_t data_bucket_lock; 833 834 struct journal journal; 835 836 #define CONGESTED_MAX 1024 837 unsigned congested_last_us; 838 atomic_t congested; 839 840 /* The rest of this all shows up in sysfs */ 841 unsigned congested_read_threshold_us; 842 unsigned congested_write_threshold_us; 843 844 spinlock_t sort_time_lock; 845 struct time_stats sort_time; 846 struct time_stats btree_gc_time; 847 struct time_stats btree_split_time; 848 spinlock_t btree_read_time_lock; 849 struct time_stats btree_read_time; 850 struct time_stats try_harder_time; 851 852 atomic_long_t cache_read_races; 853 atomic_long_t writeback_keys_done; 854 atomic_long_t writeback_keys_failed; 855 unsigned error_limit; 856 unsigned error_decay; 857 unsigned short journal_delay_ms; 858 unsigned verify:1; 859 unsigned key_merging_disabled:1; 860 unsigned gc_always_rewrite:1; 861 unsigned shrinker_disabled:1; 862 unsigned copy_gc_enabled:1; 863 864 #define BUCKET_HASH_BITS 12 865 struct hlist_head bucket_hash[1 << BUCKET_HASH_BITS]; 866 }; 867 868 static inline bool key_merging_disabled(struct cache_set *c) 869 { 870 #ifdef CONFIG_BCACHE_DEBUG 871 return c->key_merging_disabled; 872 #else 873 return 0; 874 #endif 875 } 876 877 static inline bool SB_IS_BDEV(const struct cache_sb *sb) 878 { 879 return sb->version == BCACHE_SB_VERSION_BDEV 880 || sb->version == BCACHE_SB_VERSION_BDEV_WITH_OFFSET; 881 } 882 883 struct bbio { 884 unsigned submit_time_us; 885 union { 886 struct bkey key; 887 uint64_t _pad[3]; 888 /* 889 * We only need pad = 3 here because we only ever carry around a 890 * single pointer - i.e. the pointer we're doing io to/from. 891 */ 892 }; 893 struct bio bio; 894 }; 895 896 static inline unsigned local_clock_us(void) 897 { 898 return local_clock() >> 10; 899 } 900 901 #define BTREE_PRIO USHRT_MAX 902 #define INITIAL_PRIO 32768 903 904 #define btree_bytes(c) ((c)->btree_pages * PAGE_SIZE) 905 #define btree_blocks(b) \ 906 ((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits)) 907 908 #define btree_default_blocks(c) \ 909 ((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits)) 910 911 #define bucket_pages(c) ((c)->sb.bucket_size / PAGE_SECTORS) 912 #define bucket_bytes(c) ((c)->sb.bucket_size << 9) 913 #define block_bytes(c) ((c)->sb.block_size << 9) 914 915 #define __set_bytes(i, k) (sizeof(*(i)) + (k) * sizeof(uint64_t)) 916 #define set_bytes(i) __set_bytes(i, i->keys) 917 918 #define __set_blocks(i, k, c) DIV_ROUND_UP(__set_bytes(i, k), block_bytes(c)) 919 #define set_blocks(i, c) __set_blocks(i, (i)->keys, c) 920 921 #define node(i, j) ((struct bkey *) ((i)->d + (j))) 922 #define end(i) node(i, (i)->keys) 923 924 #define index(i, b) \ 925 ((size_t) (((void *) i - (void *) (b)->sets[0].data) / \ 926 block_bytes(b->c))) 927 928 #define btree_data_space(b) (PAGE_SIZE << (b)->page_order) 929 930 #define prios_per_bucket(c) \ 931 ((bucket_bytes(c) - sizeof(struct prio_set)) / \ 932 sizeof(struct bucket_disk)) 933 #define prio_buckets(c) \ 934 DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c)) 935 936 #define JSET_MAGIC 0x245235c1a3625032ULL 937 #define PSET_MAGIC 0x6750e15f87337f91ULL 938 #define BSET_MAGIC 0x90135c78b99e07f5ULL 939 940 #define jset_magic(c) ((c)->sb.set_magic ^ JSET_MAGIC) 941 #define pset_magic(c) ((c)->sb.set_magic ^ PSET_MAGIC) 942 #define bset_magic(c) ((c)->sb.set_magic ^ BSET_MAGIC) 943 944 /* Bkey fields: all units are in sectors */ 945 946 #define KEY_FIELD(name, field, offset, size) \ 947 BITMASK(name, struct bkey, field, offset, size) 948 949 #define PTR_FIELD(name, offset, size) \ 950 static inline uint64_t name(const struct bkey *k, unsigned i) \ 951 { return (k->ptr[i] >> offset) & ~(((uint64_t) ~0) << size); } \ 952 \ 953 static inline void SET_##name(struct bkey *k, unsigned i, uint64_t v)\ 954 { \ 955 k->ptr[i] &= ~(~((uint64_t) ~0 << size) << offset); \ 956 k->ptr[i] |= v << offset; \ 957 } 958 959 KEY_FIELD(KEY_PTRS, high, 60, 3) 960 KEY_FIELD(HEADER_SIZE, high, 58, 2) 961 KEY_FIELD(KEY_CSUM, high, 56, 2) 962 KEY_FIELD(KEY_PINNED, high, 55, 1) 963 KEY_FIELD(KEY_DIRTY, high, 36, 1) 964 965 KEY_FIELD(KEY_SIZE, high, 20, 16) 966 KEY_FIELD(KEY_INODE, high, 0, 20) 967 968 /* Next time I change the on disk format, KEY_OFFSET() won't be 64 bits */ 969 970 static inline uint64_t KEY_OFFSET(const struct bkey *k) 971 { 972 return k->low; 973 } 974 975 static inline void SET_KEY_OFFSET(struct bkey *k, uint64_t v) 976 { 977 k->low = v; 978 } 979 980 PTR_FIELD(PTR_DEV, 51, 12) 981 PTR_FIELD(PTR_OFFSET, 8, 43) 982 PTR_FIELD(PTR_GEN, 0, 8) 983 984 #define PTR_CHECK_DEV ((1 << 12) - 1) 985 986 #define PTR(gen, offset, dev) \ 987 ((((uint64_t) dev) << 51) | ((uint64_t) offset) << 8 | gen) 988 989 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s) 990 { 991 return s >> c->bucket_bits; 992 } 993 994 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b) 995 { 996 return ((sector_t) b) << c->bucket_bits; 997 } 998 999 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s) 1000 { 1001 return s & (c->sb.bucket_size - 1); 1002 } 1003 1004 static inline struct cache *PTR_CACHE(struct cache_set *c, 1005 const struct bkey *k, 1006 unsigned ptr) 1007 { 1008 return c->cache[PTR_DEV(k, ptr)]; 1009 } 1010 1011 static inline size_t PTR_BUCKET_NR(struct cache_set *c, 1012 const struct bkey *k, 1013 unsigned ptr) 1014 { 1015 return sector_to_bucket(c, PTR_OFFSET(k, ptr)); 1016 } 1017 1018 static inline struct bucket *PTR_BUCKET(struct cache_set *c, 1019 const struct bkey *k, 1020 unsigned ptr) 1021 { 1022 return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr); 1023 } 1024 1025 /* Btree key macros */ 1026 1027 /* 1028 * The high bit being set is a relic from when we used it to do binary 1029 * searches - it told you where a key started. It's not used anymore, 1030 * and can probably be safely dropped. 1031 */ 1032 #define KEY(dev, sector, len) \ 1033 ((struct bkey) { \ 1034 .high = (1ULL << 63) | ((uint64_t) (len) << 20) | (dev), \ 1035 .low = (sector) \ 1036 }) 1037 1038 static inline void bkey_init(struct bkey *k) 1039 { 1040 *k = KEY(0, 0, 0); 1041 } 1042 1043 #define KEY_START(k) (KEY_OFFSET(k) - KEY_SIZE(k)) 1044 #define START_KEY(k) KEY(KEY_INODE(k), KEY_START(k), 0) 1045 #define MAX_KEY KEY(~(~0 << 20), ((uint64_t) ~0) >> 1, 0) 1046 #define ZERO_KEY KEY(0, 0, 0) 1047 1048 /* 1049 * This is used for various on disk data structures - cache_sb, prio_set, bset, 1050 * jset: The checksum is _always_ the first 8 bytes of these structs 1051 */ 1052 #define csum_set(i) \ 1053 bch_crc64(((void *) (i)) + sizeof(uint64_t), \ 1054 ((void *) end(i)) - (((void *) (i)) + sizeof(uint64_t))) 1055 1056 /* Error handling macros */ 1057 1058 #define btree_bug(b, ...) \ 1059 do { \ 1060 if (bch_cache_set_error((b)->c, __VA_ARGS__)) \ 1061 dump_stack(); \ 1062 } while (0) 1063 1064 #define cache_bug(c, ...) \ 1065 do { \ 1066 if (bch_cache_set_error(c, __VA_ARGS__)) \ 1067 dump_stack(); \ 1068 } while (0) 1069 1070 #define btree_bug_on(cond, b, ...) \ 1071 do { \ 1072 if (cond) \ 1073 btree_bug(b, __VA_ARGS__); \ 1074 } while (0) 1075 1076 #define cache_bug_on(cond, c, ...) \ 1077 do { \ 1078 if (cond) \ 1079 cache_bug(c, __VA_ARGS__); \ 1080 } while (0) 1081 1082 #define cache_set_err_on(cond, c, ...) \ 1083 do { \ 1084 if (cond) \ 1085 bch_cache_set_error(c, __VA_ARGS__); \ 1086 } while (0) 1087 1088 /* Looping macros */ 1089 1090 #define for_each_cache(ca, cs, iter) \ 1091 for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++) 1092 1093 #define for_each_bucket(b, ca) \ 1094 for (b = (ca)->buckets + (ca)->sb.first_bucket; \ 1095 b < (ca)->buckets + (ca)->sb.nbuckets; b++) 1096 1097 static inline void __bkey_put(struct cache_set *c, struct bkey *k) 1098 { 1099 unsigned i; 1100 1101 for (i = 0; i < KEY_PTRS(k); i++) 1102 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 1103 } 1104 1105 static inline void cached_dev_put(struct cached_dev *dc) 1106 { 1107 if (atomic_dec_and_test(&dc->count)) 1108 schedule_work(&dc->detach); 1109 } 1110 1111 static inline bool cached_dev_get(struct cached_dev *dc) 1112 { 1113 if (!atomic_inc_not_zero(&dc->count)) 1114 return false; 1115 1116 /* Paired with the mb in cached_dev_attach */ 1117 smp_mb__after_atomic_inc(); 1118 return true; 1119 } 1120 1121 /* 1122 * bucket_gc_gen() returns the difference between the bucket's current gen and 1123 * the oldest gen of any pointer into that bucket in the btree (last_gc). 1124 * 1125 * bucket_disk_gen() returns the difference between the current gen and the gen 1126 * on disk; they're both used to make sure gens don't wrap around. 1127 */ 1128 1129 static inline uint8_t bucket_gc_gen(struct bucket *b) 1130 { 1131 return b->gen - b->last_gc; 1132 } 1133 1134 static inline uint8_t bucket_disk_gen(struct bucket *b) 1135 { 1136 return b->gen - b->disk_gen; 1137 } 1138 1139 #define BUCKET_GC_GEN_MAX 96U 1140 #define BUCKET_DISK_GEN_MAX 64U 1141 1142 #define kobj_attribute_write(n, fn) \ 1143 static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn) 1144 1145 #define kobj_attribute_rw(n, show, store) \ 1146 static struct kobj_attribute ksysfs_##n = \ 1147 __ATTR(n, S_IWUSR|S_IRUSR, show, store) 1148 1149 static inline void wake_up_allocators(struct cache_set *c) 1150 { 1151 struct cache *ca; 1152 unsigned i; 1153 1154 for_each_cache(ca, c, i) 1155 wake_up_process(ca->alloc_thread); 1156 } 1157 1158 /* Forward declarations */ 1159 1160 void bch_count_io_errors(struct cache *, int, const char *); 1161 void bch_bbio_count_io_errors(struct cache_set *, struct bio *, 1162 int, const char *); 1163 void bch_bbio_endio(struct cache_set *, struct bio *, int, const char *); 1164 void bch_bbio_free(struct bio *, struct cache_set *); 1165 struct bio *bch_bbio_alloc(struct cache_set *); 1166 1167 struct bio *bch_bio_split(struct bio *, int, gfp_t, struct bio_set *); 1168 void bch_generic_make_request(struct bio *, struct bio_split_pool *); 1169 void __bch_submit_bbio(struct bio *, struct cache_set *); 1170 void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned); 1171 1172 uint8_t bch_inc_gen(struct cache *, struct bucket *); 1173 void bch_rescale_priorities(struct cache_set *, int); 1174 bool bch_bucket_add_unused(struct cache *, struct bucket *); 1175 1176 long bch_bucket_alloc(struct cache *, unsigned, struct closure *); 1177 void bch_bucket_free(struct cache_set *, struct bkey *); 1178 1179 int __bch_bucket_alloc_set(struct cache_set *, unsigned, 1180 struct bkey *, int, struct closure *); 1181 int bch_bucket_alloc_set(struct cache_set *, unsigned, 1182 struct bkey *, int, struct closure *); 1183 1184 __printf(2, 3) 1185 bool bch_cache_set_error(struct cache_set *, const char *, ...); 1186 1187 void bch_prio_write(struct cache *); 1188 void bch_write_bdev_super(struct cached_dev *, struct closure *); 1189 1190 extern struct workqueue_struct *bcache_wq, *bch_gc_wq; 1191 extern const char * const bch_cache_modes[]; 1192 extern struct mutex bch_register_lock; 1193 extern struct list_head bch_cache_sets; 1194 1195 extern struct kobj_type bch_cached_dev_ktype; 1196 extern struct kobj_type bch_flash_dev_ktype; 1197 extern struct kobj_type bch_cache_set_ktype; 1198 extern struct kobj_type bch_cache_set_internal_ktype; 1199 extern struct kobj_type bch_cache_ktype; 1200 1201 void bch_cached_dev_release(struct kobject *); 1202 void bch_flash_dev_release(struct kobject *); 1203 void bch_cache_set_release(struct kobject *); 1204 void bch_cache_release(struct kobject *); 1205 1206 int bch_uuid_write(struct cache_set *); 1207 void bcache_write_super(struct cache_set *); 1208 1209 int bch_flash_dev_create(struct cache_set *c, uint64_t size); 1210 1211 int bch_cached_dev_attach(struct cached_dev *, struct cache_set *); 1212 void bch_cached_dev_detach(struct cached_dev *); 1213 void bch_cached_dev_run(struct cached_dev *); 1214 void bcache_device_stop(struct bcache_device *); 1215 1216 void bch_cache_set_unregister(struct cache_set *); 1217 void bch_cache_set_stop(struct cache_set *); 1218 1219 struct cache_set *bch_cache_set_alloc(struct cache_sb *); 1220 void bch_btree_cache_free(struct cache_set *); 1221 int bch_btree_cache_alloc(struct cache_set *); 1222 void bch_moving_init_cache_set(struct cache_set *); 1223 1224 int bch_cache_allocator_start(struct cache *ca); 1225 void bch_cache_allocator_exit(struct cache *ca); 1226 int bch_cache_allocator_init(struct cache *ca); 1227 1228 void bch_debug_exit(void); 1229 int bch_debug_init(struct kobject *); 1230 void bch_writeback_exit(void); 1231 int bch_writeback_init(void); 1232 void bch_request_exit(void); 1233 int bch_request_init(void); 1234 void bch_btree_exit(void); 1235 int bch_btree_init(void); 1236 1237 #endif /* _BCACHE_H */ 1238