xref: /openbmc/linux/drivers/md/bcache/bcache.h (revision d8932f38)
1 #ifndef _BCACHE_H
2 #define _BCACHE_H
3 
4 /*
5  * SOME HIGH LEVEL CODE DOCUMENTATION:
6  *
7  * Bcache mostly works with cache sets, cache devices, and backing devices.
8  *
9  * Support for multiple cache devices hasn't quite been finished off yet, but
10  * it's about 95% plumbed through. A cache set and its cache devices is sort of
11  * like a md raid array and its component devices. Most of the code doesn't care
12  * about individual cache devices, the main abstraction is the cache set.
13  *
14  * Multiple cache devices is intended to give us the ability to mirror dirty
15  * cached data and metadata, without mirroring clean cached data.
16  *
17  * Backing devices are different, in that they have a lifetime independent of a
18  * cache set. When you register a newly formatted backing device it'll come up
19  * in passthrough mode, and then you can attach and detach a backing device from
20  * a cache set at runtime - while it's mounted and in use. Detaching implicitly
21  * invalidates any cached data for that backing device.
22  *
23  * A cache set can have multiple (many) backing devices attached to it.
24  *
25  * There's also flash only volumes - this is the reason for the distinction
26  * between struct cached_dev and struct bcache_device. A flash only volume
27  * works much like a bcache device that has a backing device, except the
28  * "cached" data is always dirty. The end result is that we get thin
29  * provisioning with very little additional code.
30  *
31  * Flash only volumes work but they're not production ready because the moving
32  * garbage collector needs more work. More on that later.
33  *
34  * BUCKETS/ALLOCATION:
35  *
36  * Bcache is primarily designed for caching, which means that in normal
37  * operation all of our available space will be allocated. Thus, we need an
38  * efficient way of deleting things from the cache so we can write new things to
39  * it.
40  *
41  * To do this, we first divide the cache device up into buckets. A bucket is the
42  * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+
43  * works efficiently.
44  *
45  * Each bucket has a 16 bit priority, and an 8 bit generation associated with
46  * it. The gens and priorities for all the buckets are stored contiguously and
47  * packed on disk (in a linked list of buckets - aside from the superblock, all
48  * of bcache's metadata is stored in buckets).
49  *
50  * The priority is used to implement an LRU. We reset a bucket's priority when
51  * we allocate it or on cache it, and every so often we decrement the priority
52  * of each bucket. It could be used to implement something more sophisticated,
53  * if anyone ever gets around to it.
54  *
55  * The generation is used for invalidating buckets. Each pointer also has an 8
56  * bit generation embedded in it; for a pointer to be considered valid, its gen
57  * must match the gen of the bucket it points into.  Thus, to reuse a bucket all
58  * we have to do is increment its gen (and write its new gen to disk; we batch
59  * this up).
60  *
61  * Bcache is entirely COW - we never write twice to a bucket, even buckets that
62  * contain metadata (including btree nodes).
63  *
64  * THE BTREE:
65  *
66  * Bcache is in large part design around the btree.
67  *
68  * At a high level, the btree is just an index of key -> ptr tuples.
69  *
70  * Keys represent extents, and thus have a size field. Keys also have a variable
71  * number of pointers attached to them (potentially zero, which is handy for
72  * invalidating the cache).
73  *
74  * The key itself is an inode:offset pair. The inode number corresponds to a
75  * backing device or a flash only volume. The offset is the ending offset of the
76  * extent within the inode - not the starting offset; this makes lookups
77  * slightly more convenient.
78  *
79  * Pointers contain the cache device id, the offset on that device, and an 8 bit
80  * generation number. More on the gen later.
81  *
82  * Index lookups are not fully abstracted - cache lookups in particular are
83  * still somewhat mixed in with the btree code, but things are headed in that
84  * direction.
85  *
86  * Updates are fairly well abstracted, though. There are two different ways of
87  * updating the btree; insert and replace.
88  *
89  * BTREE_INSERT will just take a list of keys and insert them into the btree -
90  * overwriting (possibly only partially) any extents they overlap with. This is
91  * used to update the index after a write.
92  *
93  * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is
94  * overwriting a key that matches another given key. This is used for inserting
95  * data into the cache after a cache miss, and for background writeback, and for
96  * the moving garbage collector.
97  *
98  * There is no "delete" operation; deleting things from the index is
99  * accomplished by either by invalidating pointers (by incrementing a bucket's
100  * gen) or by inserting a key with 0 pointers - which will overwrite anything
101  * previously present at that location in the index.
102  *
103  * This means that there are always stale/invalid keys in the btree. They're
104  * filtered out by the code that iterates through a btree node, and removed when
105  * a btree node is rewritten.
106  *
107  * BTREE NODES:
108  *
109  * Our unit of allocation is a bucket, and we we can't arbitrarily allocate and
110  * free smaller than a bucket - so, that's how big our btree nodes are.
111  *
112  * (If buckets are really big we'll only use part of the bucket for a btree node
113  * - no less than 1/4th - but a bucket still contains no more than a single
114  * btree node. I'd actually like to change this, but for now we rely on the
115  * bucket's gen for deleting btree nodes when we rewrite/split a node.)
116  *
117  * Anyways, btree nodes are big - big enough to be inefficient with a textbook
118  * btree implementation.
119  *
120  * The way this is solved is that btree nodes are internally log structured; we
121  * can append new keys to an existing btree node without rewriting it. This
122  * means each set of keys we write is sorted, but the node is not.
123  *
124  * We maintain this log structure in memory - keeping 1Mb of keys sorted would
125  * be expensive, and we have to distinguish between the keys we have written and
126  * the keys we haven't. So to do a lookup in a btree node, we have to search
127  * each sorted set. But we do merge written sets together lazily, so the cost of
128  * these extra searches is quite low (normally most of the keys in a btree node
129  * will be in one big set, and then there'll be one or two sets that are much
130  * smaller).
131  *
132  * This log structure makes bcache's btree more of a hybrid between a
133  * conventional btree and a compacting data structure, with some of the
134  * advantages of both.
135  *
136  * GARBAGE COLLECTION:
137  *
138  * We can't just invalidate any bucket - it might contain dirty data or
139  * metadata. If it once contained dirty data, other writes might overwrite it
140  * later, leaving no valid pointers into that bucket in the index.
141  *
142  * Thus, the primary purpose of garbage collection is to find buckets to reuse.
143  * It also counts how much valid data it each bucket currently contains, so that
144  * allocation can reuse buckets sooner when they've been mostly overwritten.
145  *
146  * It also does some things that are really internal to the btree
147  * implementation. If a btree node contains pointers that are stale by more than
148  * some threshold, it rewrites the btree node to avoid the bucket's generation
149  * wrapping around. It also merges adjacent btree nodes if they're empty enough.
150  *
151  * THE JOURNAL:
152  *
153  * Bcache's journal is not necessary for consistency; we always strictly
154  * order metadata writes so that the btree and everything else is consistent on
155  * disk in the event of an unclean shutdown, and in fact bcache had writeback
156  * caching (with recovery from unclean shutdown) before journalling was
157  * implemented.
158  *
159  * Rather, the journal is purely a performance optimization; we can't complete a
160  * write until we've updated the index on disk, otherwise the cache would be
161  * inconsistent in the event of an unclean shutdown. This means that without the
162  * journal, on random write workloads we constantly have to update all the leaf
163  * nodes in the btree, and those writes will be mostly empty (appending at most
164  * a few keys each) - highly inefficient in terms of amount of metadata writes,
165  * and it puts more strain on the various btree resorting/compacting code.
166  *
167  * The journal is just a log of keys we've inserted; on startup we just reinsert
168  * all the keys in the open journal entries. That means that when we're updating
169  * a node in the btree, we can wait until a 4k block of keys fills up before
170  * writing them out.
171  *
172  * For simplicity, we only journal updates to leaf nodes; updates to parent
173  * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth
174  * the complexity to deal with journalling them (in particular, journal replay)
175  * - updates to non leaf nodes just happen synchronously (see btree_split()).
176  */
177 
178 #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
179 
180 #include <linux/bcache.h>
181 #include <linux/bio.h>
182 #include <linux/kobject.h>
183 #include <linux/list.h>
184 #include <linux/mutex.h>
185 #include <linux/rbtree.h>
186 #include <linux/rwsem.h>
187 #include <linux/types.h>
188 #include <linux/workqueue.h>
189 
190 #include "bset.h"
191 #include "util.h"
192 #include "closure.h"
193 
194 struct bucket {
195 	atomic_t	pin;
196 	uint16_t	prio;
197 	uint8_t		gen;
198 	uint8_t		last_gc; /* Most out of date gen in the btree */
199 	uint16_t	gc_mark; /* Bitfield used by GC. See below for field */
200 };
201 
202 /*
203  * I'd use bitfields for these, but I don't trust the compiler not to screw me
204  * as multiple threads touch struct bucket without locking
205  */
206 
207 BITMASK(GC_MARK,	 struct bucket, gc_mark, 0, 2);
208 #define GC_MARK_RECLAIMABLE	1
209 #define GC_MARK_DIRTY		2
210 #define GC_MARK_METADATA	3
211 #define GC_SECTORS_USED_SIZE	13
212 #define MAX_GC_SECTORS_USED	(~(~0ULL << GC_SECTORS_USED_SIZE))
213 BITMASK(GC_SECTORS_USED, struct bucket, gc_mark, 2, GC_SECTORS_USED_SIZE);
214 BITMASK(GC_MOVE, struct bucket, gc_mark, 15, 1);
215 
216 #include "journal.h"
217 #include "stats.h"
218 struct search;
219 struct btree;
220 struct keybuf;
221 
222 struct keybuf_key {
223 	struct rb_node		node;
224 	BKEY_PADDED(key);
225 	void			*private;
226 };
227 
228 struct keybuf {
229 	struct bkey		last_scanned;
230 	spinlock_t		lock;
231 
232 	/*
233 	 * Beginning and end of range in rb tree - so that we can skip taking
234 	 * lock and checking the rb tree when we need to check for overlapping
235 	 * keys.
236 	 */
237 	struct bkey		start;
238 	struct bkey		end;
239 
240 	struct rb_root		keys;
241 
242 #define KEYBUF_NR		500
243 	DECLARE_ARRAY_ALLOCATOR(struct keybuf_key, freelist, KEYBUF_NR);
244 };
245 
246 struct bcache_device {
247 	struct closure		cl;
248 
249 	struct kobject		kobj;
250 
251 	struct cache_set	*c;
252 	unsigned		id;
253 #define BCACHEDEVNAME_SIZE	12
254 	char			name[BCACHEDEVNAME_SIZE];
255 
256 	struct gendisk		*disk;
257 
258 	unsigned long		flags;
259 #define BCACHE_DEV_CLOSING	0
260 #define BCACHE_DEV_DETACHING	1
261 #define BCACHE_DEV_UNLINK_DONE	2
262 
263 	unsigned		nr_stripes;
264 	unsigned		stripe_size;
265 	atomic_t		*stripe_sectors_dirty;
266 	unsigned long		*full_dirty_stripes;
267 
268 	unsigned long		sectors_dirty_last;
269 	long			sectors_dirty_derivative;
270 
271 	struct bio_set		*bio_split;
272 
273 	unsigned		data_csum:1;
274 
275 	int (*cache_miss)(struct btree *, struct search *,
276 			  struct bio *, unsigned);
277 	int (*ioctl) (struct bcache_device *, fmode_t, unsigned, unsigned long);
278 };
279 
280 struct io {
281 	/* Used to track sequential IO so it can be skipped */
282 	struct hlist_node	hash;
283 	struct list_head	lru;
284 
285 	unsigned long		jiffies;
286 	unsigned		sequential;
287 	sector_t		last;
288 };
289 
290 struct cached_dev {
291 	struct list_head	list;
292 	struct bcache_device	disk;
293 	struct block_device	*bdev;
294 
295 	struct cache_sb		sb;
296 	struct bio		sb_bio;
297 	struct bio_vec		sb_bv[1];
298 	struct closure		sb_write;
299 	struct semaphore	sb_write_mutex;
300 
301 	/* Refcount on the cache set. Always nonzero when we're caching. */
302 	atomic_t		count;
303 	struct work_struct	detach;
304 
305 	/*
306 	 * Device might not be running if it's dirty and the cache set hasn't
307 	 * showed up yet.
308 	 */
309 	atomic_t		running;
310 
311 	/*
312 	 * Writes take a shared lock from start to finish; scanning for dirty
313 	 * data to refill the rb tree requires an exclusive lock.
314 	 */
315 	struct rw_semaphore	writeback_lock;
316 
317 	/*
318 	 * Nonzero, and writeback has a refcount (d->count), iff there is dirty
319 	 * data in the cache. Protected by writeback_lock; must have an
320 	 * shared lock to set and exclusive lock to clear.
321 	 */
322 	atomic_t		has_dirty;
323 
324 	struct bch_ratelimit	writeback_rate;
325 	struct delayed_work	writeback_rate_update;
326 
327 	/*
328 	 * Internal to the writeback code, so read_dirty() can keep track of
329 	 * where it's at.
330 	 */
331 	sector_t		last_read;
332 
333 	/* Limit number of writeback bios in flight */
334 	struct semaphore	in_flight;
335 	struct task_struct	*writeback_thread;
336 	struct workqueue_struct	*writeback_write_wq;
337 
338 	struct keybuf		writeback_keys;
339 
340 	/* For tracking sequential IO */
341 #define RECENT_IO_BITS	7
342 #define RECENT_IO	(1 << RECENT_IO_BITS)
343 	struct io		io[RECENT_IO];
344 	struct hlist_head	io_hash[RECENT_IO + 1];
345 	struct list_head	io_lru;
346 	spinlock_t		io_lock;
347 
348 	struct cache_accounting	accounting;
349 
350 	/* The rest of this all shows up in sysfs */
351 	unsigned		sequential_cutoff;
352 	unsigned		readahead;
353 
354 	unsigned		verify:1;
355 	unsigned		bypass_torture_test:1;
356 
357 	unsigned		partial_stripes_expensive:1;
358 	unsigned		writeback_metadata:1;
359 	unsigned		writeback_running:1;
360 	unsigned char		writeback_percent;
361 	unsigned		writeback_delay;
362 
363 	uint64_t		writeback_rate_target;
364 	int64_t			writeback_rate_proportional;
365 	int64_t			writeback_rate_derivative;
366 	int64_t			writeback_rate_change;
367 
368 	unsigned		writeback_rate_update_seconds;
369 	unsigned		writeback_rate_d_term;
370 	unsigned		writeback_rate_p_term_inverse;
371 };
372 
373 enum alloc_reserve {
374 	RESERVE_BTREE,
375 	RESERVE_PRIO,
376 	RESERVE_MOVINGGC,
377 	RESERVE_NONE,
378 	RESERVE_NR,
379 };
380 
381 struct cache {
382 	struct cache_set	*set;
383 	struct cache_sb		sb;
384 	struct bio		sb_bio;
385 	struct bio_vec		sb_bv[1];
386 
387 	struct kobject		kobj;
388 	struct block_device	*bdev;
389 
390 	struct task_struct	*alloc_thread;
391 
392 	struct closure		prio;
393 	struct prio_set		*disk_buckets;
394 
395 	/*
396 	 * When allocating new buckets, prio_write() gets first dibs - since we
397 	 * may not be allocate at all without writing priorities and gens.
398 	 * prio_buckets[] contains the last buckets we wrote priorities to (so
399 	 * gc can mark them as metadata), prio_next[] contains the buckets
400 	 * allocated for the next prio write.
401 	 */
402 	uint64_t		*prio_buckets;
403 	uint64_t		*prio_last_buckets;
404 
405 	/*
406 	 * free: Buckets that are ready to be used
407 	 *
408 	 * free_inc: Incoming buckets - these are buckets that currently have
409 	 * cached data in them, and we can't reuse them until after we write
410 	 * their new gen to disk. After prio_write() finishes writing the new
411 	 * gens/prios, they'll be moved to the free list (and possibly discarded
412 	 * in the process)
413 	 */
414 	DECLARE_FIFO(long, free)[RESERVE_NR];
415 	DECLARE_FIFO(long, free_inc);
416 
417 	size_t			fifo_last_bucket;
418 
419 	/* Allocation stuff: */
420 	struct bucket		*buckets;
421 
422 	DECLARE_HEAP(struct bucket *, heap);
423 
424 	/*
425 	 * If nonzero, we know we aren't going to find any buckets to invalidate
426 	 * until a gc finishes - otherwise we could pointlessly burn a ton of
427 	 * cpu
428 	 */
429 	unsigned		invalidate_needs_gc;
430 
431 	bool			discard; /* Get rid of? */
432 
433 	struct journal_device	journal;
434 
435 	/* The rest of this all shows up in sysfs */
436 #define IO_ERROR_SHIFT		20
437 	atomic_t		io_errors;
438 	atomic_t		io_count;
439 
440 	atomic_long_t		meta_sectors_written;
441 	atomic_long_t		btree_sectors_written;
442 	atomic_long_t		sectors_written;
443 };
444 
445 struct gc_stat {
446 	size_t			nodes;
447 	size_t			key_bytes;
448 
449 	size_t			nkeys;
450 	uint64_t		data;	/* sectors */
451 	unsigned		in_use; /* percent */
452 };
453 
454 /*
455  * Flag bits, for how the cache set is shutting down, and what phase it's at:
456  *
457  * CACHE_SET_UNREGISTERING means we're not just shutting down, we're detaching
458  * all the backing devices first (their cached data gets invalidated, and they
459  * won't automatically reattach).
460  *
461  * CACHE_SET_STOPPING always gets set first when we're closing down a cache set;
462  * we'll continue to run normally for awhile with CACHE_SET_STOPPING set (i.e.
463  * flushing dirty data).
464  *
465  * CACHE_SET_RUNNING means all cache devices have been registered and journal
466  * replay is complete.
467  */
468 #define CACHE_SET_UNREGISTERING		0
469 #define	CACHE_SET_STOPPING		1
470 #define	CACHE_SET_RUNNING		2
471 
472 struct cache_set {
473 	struct closure		cl;
474 
475 	struct list_head	list;
476 	struct kobject		kobj;
477 	struct kobject		internal;
478 	struct dentry		*debug;
479 	struct cache_accounting accounting;
480 
481 	unsigned long		flags;
482 
483 	struct cache_sb		sb;
484 
485 	struct cache		*cache[MAX_CACHES_PER_SET];
486 	struct cache		*cache_by_alloc[MAX_CACHES_PER_SET];
487 	int			caches_loaded;
488 
489 	struct bcache_device	**devices;
490 	struct list_head	cached_devs;
491 	uint64_t		cached_dev_sectors;
492 	struct closure		caching;
493 
494 	struct closure		sb_write;
495 	struct semaphore	sb_write_mutex;
496 
497 	mempool_t		*search;
498 	mempool_t		*bio_meta;
499 	struct bio_set		*bio_split;
500 
501 	/* For the btree cache */
502 	struct shrinker		shrink;
503 
504 	/* For the btree cache and anything allocation related */
505 	struct mutex		bucket_lock;
506 
507 	/* log2(bucket_size), in sectors */
508 	unsigned short		bucket_bits;
509 
510 	/* log2(block_size), in sectors */
511 	unsigned short		block_bits;
512 
513 	/*
514 	 * Default number of pages for a new btree node - may be less than a
515 	 * full bucket
516 	 */
517 	unsigned		btree_pages;
518 
519 	/*
520 	 * Lists of struct btrees; lru is the list for structs that have memory
521 	 * allocated for actual btree node, freed is for structs that do not.
522 	 *
523 	 * We never free a struct btree, except on shutdown - we just put it on
524 	 * the btree_cache_freed list and reuse it later. This simplifies the
525 	 * code, and it doesn't cost us much memory as the memory usage is
526 	 * dominated by buffers that hold the actual btree node data and those
527 	 * can be freed - and the number of struct btrees allocated is
528 	 * effectively bounded.
529 	 *
530 	 * btree_cache_freeable effectively is a small cache - we use it because
531 	 * high order page allocations can be rather expensive, and it's quite
532 	 * common to delete and allocate btree nodes in quick succession. It
533 	 * should never grow past ~2-3 nodes in practice.
534 	 */
535 	struct list_head	btree_cache;
536 	struct list_head	btree_cache_freeable;
537 	struct list_head	btree_cache_freed;
538 
539 	/* Number of elements in btree_cache + btree_cache_freeable lists */
540 	unsigned		btree_cache_used;
541 
542 	/*
543 	 * If we need to allocate memory for a new btree node and that
544 	 * allocation fails, we can cannibalize another node in the btree cache
545 	 * to satisfy the allocation - lock to guarantee only one thread does
546 	 * this at a time:
547 	 */
548 	wait_queue_head_t	btree_cache_wait;
549 	struct task_struct	*btree_cache_alloc_lock;
550 
551 	/*
552 	 * When we free a btree node, we increment the gen of the bucket the
553 	 * node is in - but we can't rewrite the prios and gens until we
554 	 * finished whatever it is we were doing, otherwise after a crash the
555 	 * btree node would be freed but for say a split, we might not have the
556 	 * pointers to the new nodes inserted into the btree yet.
557 	 *
558 	 * This is a refcount that blocks prio_write() until the new keys are
559 	 * written.
560 	 */
561 	atomic_t		prio_blocked;
562 	wait_queue_head_t	bucket_wait;
563 
564 	/*
565 	 * For any bio we don't skip we subtract the number of sectors from
566 	 * rescale; when it hits 0 we rescale all the bucket priorities.
567 	 */
568 	atomic_t		rescale;
569 	/*
570 	 * When we invalidate buckets, we use both the priority and the amount
571 	 * of good data to determine which buckets to reuse first - to weight
572 	 * those together consistently we keep track of the smallest nonzero
573 	 * priority of any bucket.
574 	 */
575 	uint16_t		min_prio;
576 
577 	/*
578 	 * max(gen - last_gc) for all buckets. When it gets too big we have to gc
579 	 * to keep gens from wrapping around.
580 	 */
581 	uint8_t			need_gc;
582 	struct gc_stat		gc_stats;
583 	size_t			nbuckets;
584 
585 	struct task_struct	*gc_thread;
586 	/* Where in the btree gc currently is */
587 	struct bkey		gc_done;
588 
589 	/*
590 	 * The allocation code needs gc_mark in struct bucket to be correct, but
591 	 * it's not while a gc is in progress. Protected by bucket_lock.
592 	 */
593 	int			gc_mark_valid;
594 
595 	/* Counts how many sectors bio_insert has added to the cache */
596 	atomic_t		sectors_to_gc;
597 	wait_queue_head_t	gc_wait;
598 
599 	struct keybuf		moving_gc_keys;
600 	/* Number of moving GC bios in flight */
601 	struct semaphore	moving_in_flight;
602 
603 	struct workqueue_struct	*moving_gc_wq;
604 
605 	struct btree		*root;
606 
607 #ifdef CONFIG_BCACHE_DEBUG
608 	struct btree		*verify_data;
609 	struct bset		*verify_ondisk;
610 	struct mutex		verify_lock;
611 #endif
612 
613 	unsigned		nr_uuids;
614 	struct uuid_entry	*uuids;
615 	BKEY_PADDED(uuid_bucket);
616 	struct closure		uuid_write;
617 	struct semaphore	uuid_write_mutex;
618 
619 	/*
620 	 * A btree node on disk could have too many bsets for an iterator to fit
621 	 * on the stack - have to dynamically allocate them
622 	 */
623 	mempool_t		*fill_iter;
624 
625 	struct bset_sort_state	sort;
626 
627 	/* List of buckets we're currently writing data to */
628 	struct list_head	data_buckets;
629 	spinlock_t		data_bucket_lock;
630 
631 	struct journal		journal;
632 
633 #define CONGESTED_MAX		1024
634 	unsigned		congested_last_us;
635 	atomic_t		congested;
636 
637 	/* The rest of this all shows up in sysfs */
638 	unsigned		congested_read_threshold_us;
639 	unsigned		congested_write_threshold_us;
640 
641 	struct time_stats	btree_gc_time;
642 	struct time_stats	btree_split_time;
643 	struct time_stats	btree_read_time;
644 
645 	atomic_long_t		cache_read_races;
646 	atomic_long_t		writeback_keys_done;
647 	atomic_long_t		writeback_keys_failed;
648 
649 	enum			{
650 		ON_ERROR_UNREGISTER,
651 		ON_ERROR_PANIC,
652 	}			on_error;
653 	unsigned		error_limit;
654 	unsigned		error_decay;
655 
656 	unsigned short		journal_delay_ms;
657 	bool			expensive_debug_checks;
658 	unsigned		verify:1;
659 	unsigned		key_merging_disabled:1;
660 	unsigned		gc_always_rewrite:1;
661 	unsigned		shrinker_disabled:1;
662 	unsigned		copy_gc_enabled:1;
663 
664 #define BUCKET_HASH_BITS	12
665 	struct hlist_head	bucket_hash[1 << BUCKET_HASH_BITS];
666 };
667 
668 struct bbio {
669 	unsigned		submit_time_us;
670 	union {
671 		struct bkey	key;
672 		uint64_t	_pad[3];
673 		/*
674 		 * We only need pad = 3 here because we only ever carry around a
675 		 * single pointer - i.e. the pointer we're doing io to/from.
676 		 */
677 	};
678 	struct bio		bio;
679 };
680 
681 #define BTREE_PRIO		USHRT_MAX
682 #define INITIAL_PRIO		32768U
683 
684 #define btree_bytes(c)		((c)->btree_pages * PAGE_SIZE)
685 #define btree_blocks(b)							\
686 	((unsigned) (KEY_SIZE(&b->key) >> (b)->c->block_bits))
687 
688 #define btree_default_blocks(c)						\
689 	((unsigned) ((PAGE_SECTORS * (c)->btree_pages) >> (c)->block_bits))
690 
691 #define bucket_pages(c)		((c)->sb.bucket_size / PAGE_SECTORS)
692 #define bucket_bytes(c)		((c)->sb.bucket_size << 9)
693 #define block_bytes(c)		((c)->sb.block_size << 9)
694 
695 #define prios_per_bucket(c)				\
696 	((bucket_bytes(c) - sizeof(struct prio_set)) /	\
697 	 sizeof(struct bucket_disk))
698 #define prio_buckets(c)					\
699 	DIV_ROUND_UP((size_t) (c)->sb.nbuckets, prios_per_bucket(c))
700 
701 static inline size_t sector_to_bucket(struct cache_set *c, sector_t s)
702 {
703 	return s >> c->bucket_bits;
704 }
705 
706 static inline sector_t bucket_to_sector(struct cache_set *c, size_t b)
707 {
708 	return ((sector_t) b) << c->bucket_bits;
709 }
710 
711 static inline sector_t bucket_remainder(struct cache_set *c, sector_t s)
712 {
713 	return s & (c->sb.bucket_size - 1);
714 }
715 
716 static inline struct cache *PTR_CACHE(struct cache_set *c,
717 				      const struct bkey *k,
718 				      unsigned ptr)
719 {
720 	return c->cache[PTR_DEV(k, ptr)];
721 }
722 
723 static inline size_t PTR_BUCKET_NR(struct cache_set *c,
724 				   const struct bkey *k,
725 				   unsigned ptr)
726 {
727 	return sector_to_bucket(c, PTR_OFFSET(k, ptr));
728 }
729 
730 static inline struct bucket *PTR_BUCKET(struct cache_set *c,
731 					const struct bkey *k,
732 					unsigned ptr)
733 {
734 	return PTR_CACHE(c, k, ptr)->buckets + PTR_BUCKET_NR(c, k, ptr);
735 }
736 
737 static inline uint8_t gen_after(uint8_t a, uint8_t b)
738 {
739 	uint8_t r = a - b;
740 	return r > 128U ? 0 : r;
741 }
742 
743 static inline uint8_t ptr_stale(struct cache_set *c, const struct bkey *k,
744 				unsigned i)
745 {
746 	return gen_after(PTR_BUCKET(c, k, i)->gen, PTR_GEN(k, i));
747 }
748 
749 static inline bool ptr_available(struct cache_set *c, const struct bkey *k,
750 				 unsigned i)
751 {
752 	return (PTR_DEV(k, i) < MAX_CACHES_PER_SET) && PTR_CACHE(c, k, i);
753 }
754 
755 /* Btree key macros */
756 
757 /*
758  * This is used for various on disk data structures - cache_sb, prio_set, bset,
759  * jset: The checksum is _always_ the first 8 bytes of these structs
760  */
761 #define csum_set(i)							\
762 	bch_crc64(((void *) (i)) + sizeof(uint64_t),			\
763 		  ((void *) bset_bkey_last(i)) -			\
764 		  (((void *) (i)) + sizeof(uint64_t)))
765 
766 /* Error handling macros */
767 
768 #define btree_bug(b, ...)						\
769 do {									\
770 	if (bch_cache_set_error((b)->c, __VA_ARGS__))			\
771 		dump_stack();						\
772 } while (0)
773 
774 #define cache_bug(c, ...)						\
775 do {									\
776 	if (bch_cache_set_error(c, __VA_ARGS__))			\
777 		dump_stack();						\
778 } while (0)
779 
780 #define btree_bug_on(cond, b, ...)					\
781 do {									\
782 	if (cond)							\
783 		btree_bug(b, __VA_ARGS__);				\
784 } while (0)
785 
786 #define cache_bug_on(cond, c, ...)					\
787 do {									\
788 	if (cond)							\
789 		cache_bug(c, __VA_ARGS__);				\
790 } while (0)
791 
792 #define cache_set_err_on(cond, c, ...)					\
793 do {									\
794 	if (cond)							\
795 		bch_cache_set_error(c, __VA_ARGS__);			\
796 } while (0)
797 
798 /* Looping macros */
799 
800 #define for_each_cache(ca, cs, iter)					\
801 	for (iter = 0; ca = cs->cache[iter], iter < (cs)->sb.nr_in_set; iter++)
802 
803 #define for_each_bucket(b, ca)						\
804 	for (b = (ca)->buckets + (ca)->sb.first_bucket;			\
805 	     b < (ca)->buckets + (ca)->sb.nbuckets; b++)
806 
807 static inline void cached_dev_put(struct cached_dev *dc)
808 {
809 	if (atomic_dec_and_test(&dc->count))
810 		schedule_work(&dc->detach);
811 }
812 
813 static inline bool cached_dev_get(struct cached_dev *dc)
814 {
815 	if (!atomic_inc_not_zero(&dc->count))
816 		return false;
817 
818 	/* Paired with the mb in cached_dev_attach */
819 	smp_mb__after_atomic();
820 	return true;
821 }
822 
823 /*
824  * bucket_gc_gen() returns the difference between the bucket's current gen and
825  * the oldest gen of any pointer into that bucket in the btree (last_gc).
826  */
827 
828 static inline uint8_t bucket_gc_gen(struct bucket *b)
829 {
830 	return b->gen - b->last_gc;
831 }
832 
833 #define BUCKET_GC_GEN_MAX	96U
834 
835 #define kobj_attribute_write(n, fn)					\
836 	static struct kobj_attribute ksysfs_##n = __ATTR(n, S_IWUSR, NULL, fn)
837 
838 #define kobj_attribute_rw(n, show, store)				\
839 	static struct kobj_attribute ksysfs_##n =			\
840 		__ATTR(n, S_IWUSR|S_IRUSR, show, store)
841 
842 static inline void wake_up_allocators(struct cache_set *c)
843 {
844 	struct cache *ca;
845 	unsigned i;
846 
847 	for_each_cache(ca, c, i)
848 		wake_up_process(ca->alloc_thread);
849 }
850 
851 /* Forward declarations */
852 
853 void bch_count_io_errors(struct cache *, blk_status_t, const char *);
854 void bch_bbio_count_io_errors(struct cache_set *, struct bio *,
855 			      blk_status_t, const char *);
856 void bch_bbio_endio(struct cache_set *, struct bio *, blk_status_t,
857 		const char *);
858 void bch_bbio_free(struct bio *, struct cache_set *);
859 struct bio *bch_bbio_alloc(struct cache_set *);
860 
861 void __bch_submit_bbio(struct bio *, struct cache_set *);
862 void bch_submit_bbio(struct bio *, struct cache_set *, struct bkey *, unsigned);
863 
864 uint8_t bch_inc_gen(struct cache *, struct bucket *);
865 void bch_rescale_priorities(struct cache_set *, int);
866 
867 bool bch_can_invalidate_bucket(struct cache *, struct bucket *);
868 void __bch_invalidate_one_bucket(struct cache *, struct bucket *);
869 
870 void __bch_bucket_free(struct cache *, struct bucket *);
871 void bch_bucket_free(struct cache_set *, struct bkey *);
872 
873 long bch_bucket_alloc(struct cache *, unsigned, bool);
874 int __bch_bucket_alloc_set(struct cache_set *, unsigned,
875 			   struct bkey *, int, bool);
876 int bch_bucket_alloc_set(struct cache_set *, unsigned,
877 			 struct bkey *, int, bool);
878 bool bch_alloc_sectors(struct cache_set *, struct bkey *, unsigned,
879 		       unsigned, unsigned, bool);
880 
881 __printf(2, 3)
882 bool bch_cache_set_error(struct cache_set *, const char *, ...);
883 
884 void bch_prio_write(struct cache *);
885 void bch_write_bdev_super(struct cached_dev *, struct closure *);
886 
887 extern struct workqueue_struct *bcache_wq;
888 extern const char * const bch_cache_modes[];
889 extern struct mutex bch_register_lock;
890 extern struct list_head bch_cache_sets;
891 
892 extern struct kobj_type bch_cached_dev_ktype;
893 extern struct kobj_type bch_flash_dev_ktype;
894 extern struct kobj_type bch_cache_set_ktype;
895 extern struct kobj_type bch_cache_set_internal_ktype;
896 extern struct kobj_type bch_cache_ktype;
897 
898 void bch_cached_dev_release(struct kobject *);
899 void bch_flash_dev_release(struct kobject *);
900 void bch_cache_set_release(struct kobject *);
901 void bch_cache_release(struct kobject *);
902 
903 int bch_uuid_write(struct cache_set *);
904 void bcache_write_super(struct cache_set *);
905 
906 int bch_flash_dev_create(struct cache_set *c, uint64_t size);
907 
908 int bch_cached_dev_attach(struct cached_dev *, struct cache_set *);
909 void bch_cached_dev_detach(struct cached_dev *);
910 void bch_cached_dev_run(struct cached_dev *);
911 void bcache_device_stop(struct bcache_device *);
912 
913 void bch_cache_set_unregister(struct cache_set *);
914 void bch_cache_set_stop(struct cache_set *);
915 
916 struct cache_set *bch_cache_set_alloc(struct cache_sb *);
917 void bch_btree_cache_free(struct cache_set *);
918 int bch_btree_cache_alloc(struct cache_set *);
919 void bch_moving_init_cache_set(struct cache_set *);
920 int bch_open_buckets_alloc(struct cache_set *);
921 void bch_open_buckets_free(struct cache_set *);
922 
923 int bch_cache_allocator_start(struct cache *ca);
924 
925 void bch_debug_exit(void);
926 int bch_debug_init(struct kobject *);
927 void bch_request_exit(void);
928 int bch_request_init(void);
929 
930 #endif /* _BCACHE_H */
931