1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Primary bucket allocation code 4 * 5 * Copyright 2012 Google, Inc. 6 * 7 * Allocation in bcache is done in terms of buckets: 8 * 9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 10 * btree pointers - they must match for the pointer to be considered valid. 11 * 12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 13 * bucket simply by incrementing its gen. 14 * 15 * The gens (along with the priorities; it's really the gens are important but 16 * the code is named as if it's the priorities) are written in an arbitrary list 17 * of buckets on disk, with a pointer to them in the journal header. 18 * 19 * When we invalidate a bucket, we have to write its new gen to disk and wait 20 * for that write to complete before we use it - otherwise after a crash we 21 * could have pointers that appeared to be good but pointed to data that had 22 * been overwritten. 23 * 24 * Since the gens and priorities are all stored contiguously on disk, we can 25 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 26 * call prio_write(), and when prio_write() finishes we pull buckets off the 27 * free_inc list and optionally discard them. 28 * 29 * free_inc isn't the only freelist - if it was, we'd often to sleep while 30 * priorities and gens were being written before we could allocate. c->free is a 31 * smaller freelist, and buckets on that list are always ready to be used. 32 * 33 * If we've got discards enabled, that happens when a bucket moves from the 34 * free_inc list to the free list. 35 * 36 * There is another freelist, because sometimes we have buckets that we know 37 * have nothing pointing into them - these we can reuse without waiting for 38 * priorities to be rewritten. These come from freed btree nodes and buckets 39 * that garbage collection discovered no longer had valid keys pointing into 40 * them (because they were overwritten). That's the unused list - buckets on the 41 * unused list move to the free list, optionally being discarded in the process. 42 * 43 * It's also important to ensure that gens don't wrap around - with respect to 44 * either the oldest gen in the btree or the gen on disk. This is quite 45 * difficult to do in practice, but we explicitly guard against it anyways - if 46 * a bucket is in danger of wrapping around we simply skip invalidating it that 47 * time around, and we garbage collect or rewrite the priorities sooner than we 48 * would have otherwise. 49 * 50 * bch_bucket_alloc() allocates a single bucket from a specific cache. 51 * 52 * bch_bucket_alloc_set() allocates one or more buckets from different caches 53 * out of a cache set. 54 * 55 * free_some_buckets() drives all the processes described above. It's called 56 * from bch_bucket_alloc() and a few other places that need to make sure free 57 * buckets are ready. 58 * 59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 60 * invalidated, and then invalidate them and stick them on the free_inc list - 61 * in either lru or fifo order. 62 */ 63 64 #include "bcache.h" 65 #include "btree.h" 66 67 #include <linux/blkdev.h> 68 #include <linux/kthread.h> 69 #include <linux/random.h> 70 #include <linux/sched/signal.h> 71 #include <trace/events/bcache.h> 72 73 #define MAX_OPEN_BUCKETS 128 74 75 /* Bucket heap / gen */ 76 77 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 78 { 79 uint8_t ret = ++b->gen; 80 81 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 82 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 83 84 return ret; 85 } 86 87 void bch_rescale_priorities(struct cache_set *c, int sectors) 88 { 89 struct cache *ca; 90 struct bucket *b; 91 unsigned int next = c->nbuckets * c->sb.bucket_size / 1024; 92 unsigned int i; 93 int r; 94 95 atomic_sub(sectors, &c->rescale); 96 97 do { 98 r = atomic_read(&c->rescale); 99 100 if (r >= 0) 101 return; 102 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 103 104 mutex_lock(&c->bucket_lock); 105 106 c->min_prio = USHRT_MAX; 107 108 for_each_cache(ca, c, i) 109 for_each_bucket(b, ca) 110 if (b->prio && 111 b->prio != BTREE_PRIO && 112 !atomic_read(&b->pin)) { 113 b->prio--; 114 c->min_prio = min(c->min_prio, b->prio); 115 } 116 117 mutex_unlock(&c->bucket_lock); 118 } 119 120 /* 121 * Background allocation thread: scans for buckets to be invalidated, 122 * invalidates them, rewrites prios/gens (marking them as invalidated on disk), 123 * then optionally issues discard commands to the newly free buckets, then puts 124 * them on the various freelists. 125 */ 126 127 static inline bool can_inc_bucket_gen(struct bucket *b) 128 { 129 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; 130 } 131 132 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) 133 { 134 BUG_ON(!ca->set->gc_mark_valid); 135 136 return (!GC_MARK(b) || 137 GC_MARK(b) == GC_MARK_RECLAIMABLE) && 138 !atomic_read(&b->pin) && 139 can_inc_bucket_gen(b); 140 } 141 142 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 143 { 144 lockdep_assert_held(&ca->set->bucket_lock); 145 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); 146 147 if (GC_SECTORS_USED(b)) 148 trace_bcache_invalidate(ca, b - ca->buckets); 149 150 bch_inc_gen(ca, b); 151 b->prio = INITIAL_PRIO; 152 atomic_inc(&b->pin); 153 } 154 155 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 156 { 157 __bch_invalidate_one_bucket(ca, b); 158 159 fifo_push(&ca->free_inc, b - ca->buckets); 160 } 161 162 /* 163 * Determines what order we're going to reuse buckets, smallest bucket_prio() 164 * first: we also take into account the number of sectors of live data in that 165 * bucket, and in order for that multiply to make sense we have to scale bucket 166 * 167 * Thus, we scale the bucket priorities so that the bucket with the smallest 168 * prio is worth 1/8th of what INITIAL_PRIO is worth. 169 */ 170 171 #define bucket_prio(b) \ 172 ({ \ 173 unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ 174 \ 175 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ 176 }) 177 178 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) 179 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) 180 181 static void invalidate_buckets_lru(struct cache *ca) 182 { 183 struct bucket *b; 184 ssize_t i; 185 186 ca->heap.used = 0; 187 188 for_each_bucket(b, ca) { 189 if (!bch_can_invalidate_bucket(ca, b)) 190 continue; 191 192 if (!heap_full(&ca->heap)) 193 heap_add(&ca->heap, b, bucket_max_cmp); 194 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { 195 ca->heap.data[0] = b; 196 heap_sift(&ca->heap, 0, bucket_max_cmp); 197 } 198 } 199 200 for (i = ca->heap.used / 2 - 1; i >= 0; --i) 201 heap_sift(&ca->heap, i, bucket_min_cmp); 202 203 while (!fifo_full(&ca->free_inc)) { 204 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { 205 /* 206 * We don't want to be calling invalidate_buckets() 207 * multiple times when it can't do anything 208 */ 209 ca->invalidate_needs_gc = 1; 210 wake_up_gc(ca->set); 211 return; 212 } 213 214 bch_invalidate_one_bucket(ca, b); 215 } 216 } 217 218 static void invalidate_buckets_fifo(struct cache *ca) 219 { 220 struct bucket *b; 221 size_t checked = 0; 222 223 while (!fifo_full(&ca->free_inc)) { 224 if (ca->fifo_last_bucket < ca->sb.first_bucket || 225 ca->fifo_last_bucket >= ca->sb.nbuckets) 226 ca->fifo_last_bucket = ca->sb.first_bucket; 227 228 b = ca->buckets + ca->fifo_last_bucket++; 229 230 if (bch_can_invalidate_bucket(ca, b)) 231 bch_invalidate_one_bucket(ca, b); 232 233 if (++checked >= ca->sb.nbuckets) { 234 ca->invalidate_needs_gc = 1; 235 wake_up_gc(ca->set); 236 return; 237 } 238 } 239 } 240 241 static void invalidate_buckets_random(struct cache *ca) 242 { 243 struct bucket *b; 244 size_t checked = 0; 245 246 while (!fifo_full(&ca->free_inc)) { 247 size_t n; 248 249 get_random_bytes(&n, sizeof(n)); 250 251 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 252 n += ca->sb.first_bucket; 253 254 b = ca->buckets + n; 255 256 if (bch_can_invalidate_bucket(ca, b)) 257 bch_invalidate_one_bucket(ca, b); 258 259 if (++checked >= ca->sb.nbuckets / 2) { 260 ca->invalidate_needs_gc = 1; 261 wake_up_gc(ca->set); 262 return; 263 } 264 } 265 } 266 267 static void invalidate_buckets(struct cache *ca) 268 { 269 BUG_ON(ca->invalidate_needs_gc); 270 271 switch (CACHE_REPLACEMENT(&ca->sb)) { 272 case CACHE_REPLACEMENT_LRU: 273 invalidate_buckets_lru(ca); 274 break; 275 case CACHE_REPLACEMENT_FIFO: 276 invalidate_buckets_fifo(ca); 277 break; 278 case CACHE_REPLACEMENT_RANDOM: 279 invalidate_buckets_random(ca); 280 break; 281 } 282 } 283 284 #define allocator_wait(ca, cond) \ 285 do { \ 286 while (1) { \ 287 set_current_state(TASK_INTERRUPTIBLE); \ 288 if (cond) \ 289 break; \ 290 \ 291 mutex_unlock(&(ca)->set->bucket_lock); \ 292 if (kthread_should_stop() || \ 293 test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \ 294 set_current_state(TASK_RUNNING); \ 295 goto out; \ 296 } \ 297 \ 298 schedule(); \ 299 mutex_lock(&(ca)->set->bucket_lock); \ 300 } \ 301 __set_current_state(TASK_RUNNING); \ 302 } while (0) 303 304 static int bch_allocator_push(struct cache *ca, long bucket) 305 { 306 unsigned int i; 307 308 /* Prios/gens are actually the most important reserve */ 309 if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) 310 return true; 311 312 for (i = 0; i < RESERVE_NR; i++) 313 if (fifo_push(&ca->free[i], bucket)) 314 return true; 315 316 return false; 317 } 318 319 static int bch_allocator_thread(void *arg) 320 { 321 struct cache *ca = arg; 322 323 mutex_lock(&ca->set->bucket_lock); 324 325 while (1) { 326 /* 327 * First, we pull buckets off of the unused and free_inc lists, 328 * possibly issue discards to them, then we add the bucket to 329 * the free list: 330 */ 331 while (1) { 332 long bucket; 333 334 if (!fifo_pop(&ca->free_inc, bucket)) 335 break; 336 337 if (ca->discard) { 338 mutex_unlock(&ca->set->bucket_lock); 339 blkdev_issue_discard(ca->bdev, 340 bucket_to_sector(ca->set, bucket), 341 ca->sb.bucket_size, GFP_KERNEL, 0); 342 mutex_lock(&ca->set->bucket_lock); 343 } 344 345 allocator_wait(ca, bch_allocator_push(ca, bucket)); 346 wake_up(&ca->set->btree_cache_wait); 347 wake_up(&ca->set->bucket_wait); 348 } 349 350 /* 351 * We've run out of free buckets, we need to find some buckets 352 * we can invalidate. First, invalidate them in memory and add 353 * them to the free_inc list: 354 */ 355 356 retry_invalidate: 357 allocator_wait(ca, ca->set->gc_mark_valid && 358 !ca->invalidate_needs_gc); 359 invalidate_buckets(ca); 360 361 /* 362 * Now, we write their new gens to disk so we can start writing 363 * new stuff to them: 364 */ 365 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 366 if (CACHE_SYNC(&ca->set->sb)) { 367 /* 368 * This could deadlock if an allocation with a btree 369 * node locked ever blocked - having the btree node 370 * locked would block garbage collection, but here we're 371 * waiting on garbage collection before we invalidate 372 * and free anything. 373 * 374 * But this should be safe since the btree code always 375 * uses btree_check_reserve() before allocating now, and 376 * if it fails it blocks without btree nodes locked. 377 */ 378 if (!fifo_full(&ca->free_inc)) 379 goto retry_invalidate; 380 381 if (bch_prio_write(ca, false) < 0) { 382 ca->invalidate_needs_gc = 1; 383 wake_up_gc(ca->set); 384 } 385 } 386 } 387 out: 388 wait_for_kthread_stop(); 389 return 0; 390 } 391 392 /* Allocation */ 393 394 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait) 395 { 396 DEFINE_WAIT(w); 397 struct bucket *b; 398 long r; 399 400 401 /* No allocation if CACHE_SET_IO_DISABLE bit is set */ 402 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags))) 403 return -1; 404 405 /* fastpath */ 406 if (fifo_pop(&ca->free[RESERVE_NONE], r) || 407 fifo_pop(&ca->free[reserve], r)) 408 goto out; 409 410 if (!wait) { 411 trace_bcache_alloc_fail(ca, reserve); 412 return -1; 413 } 414 415 do { 416 prepare_to_wait(&ca->set->bucket_wait, &w, 417 TASK_UNINTERRUPTIBLE); 418 419 mutex_unlock(&ca->set->bucket_lock); 420 schedule(); 421 mutex_lock(&ca->set->bucket_lock); 422 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && 423 !fifo_pop(&ca->free[reserve], r)); 424 425 finish_wait(&ca->set->bucket_wait, &w); 426 out: 427 if (ca->alloc_thread) 428 wake_up_process(ca->alloc_thread); 429 430 trace_bcache_alloc(ca, reserve); 431 432 if (expensive_debug_checks(ca->set)) { 433 size_t iter; 434 long i; 435 unsigned int j; 436 437 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 438 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 439 440 for (j = 0; j < RESERVE_NR; j++) 441 fifo_for_each(i, &ca->free[j], iter) 442 BUG_ON(i == r); 443 fifo_for_each(i, &ca->free_inc, iter) 444 BUG_ON(i == r); 445 } 446 447 b = ca->buckets + r; 448 449 BUG_ON(atomic_read(&b->pin) != 1); 450 451 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 452 453 if (reserve <= RESERVE_PRIO) { 454 SET_GC_MARK(b, GC_MARK_METADATA); 455 SET_GC_MOVE(b, 0); 456 b->prio = BTREE_PRIO; 457 } else { 458 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 459 SET_GC_MOVE(b, 0); 460 b->prio = INITIAL_PRIO; 461 } 462 463 if (ca->set->avail_nbuckets > 0) { 464 ca->set->avail_nbuckets--; 465 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 466 } 467 468 return r; 469 } 470 471 void __bch_bucket_free(struct cache *ca, struct bucket *b) 472 { 473 SET_GC_MARK(b, 0); 474 SET_GC_SECTORS_USED(b, 0); 475 476 if (ca->set->avail_nbuckets < ca->set->nbuckets) { 477 ca->set->avail_nbuckets++; 478 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 479 } 480 } 481 482 void bch_bucket_free(struct cache_set *c, struct bkey *k) 483 { 484 unsigned int i; 485 486 for (i = 0; i < KEY_PTRS(k); i++) 487 __bch_bucket_free(PTR_CACHE(c, k, i), 488 PTR_BUCKET(c, k, i)); 489 } 490 491 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, 492 struct bkey *k, int n, bool wait) 493 { 494 int i; 495 496 /* No allocation if CACHE_SET_IO_DISABLE bit is set */ 497 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 498 return -1; 499 500 lockdep_assert_held(&c->bucket_lock); 501 BUG_ON(!n || n > c->caches_loaded || n > MAX_CACHES_PER_SET); 502 503 bkey_init(k); 504 505 /* sort by free space/prio of oldest data in caches */ 506 507 for (i = 0; i < n; i++) { 508 struct cache *ca = c->cache_by_alloc[i]; 509 long b = bch_bucket_alloc(ca, reserve, wait); 510 511 if (b == -1) 512 goto err; 513 514 k->ptr[i] = MAKE_PTR(ca->buckets[b].gen, 515 bucket_to_sector(c, b), 516 ca->sb.nr_this_dev); 517 518 SET_KEY_PTRS(k, i + 1); 519 } 520 521 return 0; 522 err: 523 bch_bucket_free(c, k); 524 bkey_put(c, k); 525 return -1; 526 } 527 528 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, 529 struct bkey *k, int n, bool wait) 530 { 531 int ret; 532 533 mutex_lock(&c->bucket_lock); 534 ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); 535 mutex_unlock(&c->bucket_lock); 536 return ret; 537 } 538 539 /* Sector allocator */ 540 541 struct open_bucket { 542 struct list_head list; 543 unsigned int last_write_point; 544 unsigned int sectors_free; 545 BKEY_PADDED(key); 546 }; 547 548 /* 549 * We keep multiple buckets open for writes, and try to segregate different 550 * write streams for better cache utilization: first we try to segregate flash 551 * only volume write streams from cached devices, secondly we look for a bucket 552 * where the last write to it was sequential with the current write, and 553 * failing that we look for a bucket that was last used by the same task. 554 * 555 * The ideas is if you've got multiple tasks pulling data into the cache at the 556 * same time, you'll get better cache utilization if you try to segregate their 557 * data and preserve locality. 558 * 559 * For example, dirty sectors of flash only volume is not reclaimable, if their 560 * dirty sectors mixed with dirty sectors of cached device, such buckets will 561 * be marked as dirty and won't be reclaimed, though the dirty data of cached 562 * device have been written back to backend device. 563 * 564 * And say you've starting Firefox at the same time you're copying a 565 * bunch of files. Firefox will likely end up being fairly hot and stay in the 566 * cache awhile, but the data you copied might not be; if you wrote all that 567 * data to the same buckets it'd get invalidated at the same time. 568 * 569 * Both of those tasks will be doing fairly random IO so we can't rely on 570 * detecting sequential IO to segregate their data, but going off of the task 571 * should be a sane heuristic. 572 */ 573 static struct open_bucket *pick_data_bucket(struct cache_set *c, 574 const struct bkey *search, 575 unsigned int write_point, 576 struct bkey *alloc) 577 { 578 struct open_bucket *ret, *ret_task = NULL; 579 580 list_for_each_entry_reverse(ret, &c->data_buckets, list) 581 if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) != 582 UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)])) 583 continue; 584 else if (!bkey_cmp(&ret->key, search)) 585 goto found; 586 else if (ret->last_write_point == write_point) 587 ret_task = ret; 588 589 ret = ret_task ?: list_first_entry(&c->data_buckets, 590 struct open_bucket, list); 591 found: 592 if (!ret->sectors_free && KEY_PTRS(alloc)) { 593 ret->sectors_free = c->sb.bucket_size; 594 bkey_copy(&ret->key, alloc); 595 bkey_init(alloc); 596 } 597 598 if (!ret->sectors_free) 599 ret = NULL; 600 601 return ret; 602 } 603 604 /* 605 * Allocates some space in the cache to write to, and k to point to the newly 606 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 607 * end of the newly allocated space). 608 * 609 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 610 * sectors were actually allocated. 611 * 612 * If s->writeback is true, will not fail. 613 */ 614 bool bch_alloc_sectors(struct cache_set *c, 615 struct bkey *k, 616 unsigned int sectors, 617 unsigned int write_point, 618 unsigned int write_prio, 619 bool wait) 620 { 621 struct open_bucket *b; 622 BKEY_PADDED(key) alloc; 623 unsigned int i; 624 625 /* 626 * We might have to allocate a new bucket, which we can't do with a 627 * spinlock held. So if we have to allocate, we drop the lock, allocate 628 * and then retry. KEY_PTRS() indicates whether alloc points to 629 * allocated bucket(s). 630 */ 631 632 bkey_init(&alloc.key); 633 spin_lock(&c->data_bucket_lock); 634 635 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { 636 unsigned int watermark = write_prio 637 ? RESERVE_MOVINGGC 638 : RESERVE_NONE; 639 640 spin_unlock(&c->data_bucket_lock); 641 642 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) 643 return false; 644 645 spin_lock(&c->data_bucket_lock); 646 } 647 648 /* 649 * If we had to allocate, we might race and not need to allocate the 650 * second time we call pick_data_bucket(). If we allocated a bucket but 651 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 652 */ 653 if (KEY_PTRS(&alloc.key)) 654 bkey_put(c, &alloc.key); 655 656 for (i = 0; i < KEY_PTRS(&b->key); i++) 657 EBUG_ON(ptr_stale(c, &b->key, i)); 658 659 /* Set up the pointer to the space we're allocating: */ 660 661 for (i = 0; i < KEY_PTRS(&b->key); i++) 662 k->ptr[i] = b->key.ptr[i]; 663 664 sectors = min(sectors, b->sectors_free); 665 666 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 667 SET_KEY_SIZE(k, sectors); 668 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 669 670 /* 671 * Move b to the end of the lru, and keep track of what this bucket was 672 * last used for: 673 */ 674 list_move_tail(&b->list, &c->data_buckets); 675 bkey_copy_key(&b->key, k); 676 b->last_write_point = write_point; 677 678 b->sectors_free -= sectors; 679 680 for (i = 0; i < KEY_PTRS(&b->key); i++) { 681 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 682 683 atomic_long_add(sectors, 684 &PTR_CACHE(c, &b->key, i)->sectors_written); 685 } 686 687 if (b->sectors_free < c->sb.block_size) 688 b->sectors_free = 0; 689 690 /* 691 * k takes refcounts on the buckets it points to until it's inserted 692 * into the btree, but if we're done with this bucket we just transfer 693 * get_data_bucket()'s refcount. 694 */ 695 if (b->sectors_free) 696 for (i = 0; i < KEY_PTRS(&b->key); i++) 697 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 698 699 spin_unlock(&c->data_bucket_lock); 700 return true; 701 } 702 703 /* Init */ 704 705 void bch_open_buckets_free(struct cache_set *c) 706 { 707 struct open_bucket *b; 708 709 while (!list_empty(&c->data_buckets)) { 710 b = list_first_entry(&c->data_buckets, 711 struct open_bucket, list); 712 list_del(&b->list); 713 kfree(b); 714 } 715 } 716 717 int bch_open_buckets_alloc(struct cache_set *c) 718 { 719 int i; 720 721 spin_lock_init(&c->data_bucket_lock); 722 723 for (i = 0; i < MAX_OPEN_BUCKETS; i++) { 724 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 725 726 if (!b) 727 return -ENOMEM; 728 729 list_add(&b->list, &c->data_buckets); 730 } 731 732 return 0; 733 } 734 735 int bch_cache_allocator_start(struct cache *ca) 736 { 737 struct task_struct *k; 738 739 /* 740 * In case previous btree check operation occupies too many 741 * system memory for bcache btree node cache, and the 742 * registering process is selected by OOM killer. Here just 743 * ignore the SIGKILL sent by OOM killer if there is, to 744 * avoid kthread_run() being failed by pending signals. The 745 * bcache registering process will exit after the registration 746 * done. 747 */ 748 if (signal_pending(current)) 749 flush_signals(current); 750 751 k = kthread_run(bch_allocator_thread, ca, "bcache_allocator"); 752 if (IS_ERR(k)) 753 return PTR_ERR(k); 754 755 ca->alloc_thread = k; 756 return 0; 757 } 758