xref: /openbmc/linux/drivers/md/bcache/alloc.c (revision f8e17c17)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Primary bucket allocation code
4  *
5  * Copyright 2012 Google, Inc.
6  *
7  * Allocation in bcache is done in terms of buckets:
8  *
9  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
10  * btree pointers - they must match for the pointer to be considered valid.
11  *
12  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
13  * bucket simply by incrementing its gen.
14  *
15  * The gens (along with the priorities; it's really the gens are important but
16  * the code is named as if it's the priorities) are written in an arbitrary list
17  * of buckets on disk, with a pointer to them in the journal header.
18  *
19  * When we invalidate a bucket, we have to write its new gen to disk and wait
20  * for that write to complete before we use it - otherwise after a crash we
21  * could have pointers that appeared to be good but pointed to data that had
22  * been overwritten.
23  *
24  * Since the gens and priorities are all stored contiguously on disk, we can
25  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
26  * call prio_write(), and when prio_write() finishes we pull buckets off the
27  * free_inc list and optionally discard them.
28  *
29  * free_inc isn't the only freelist - if it was, we'd often to sleep while
30  * priorities and gens were being written before we could allocate. c->free is a
31  * smaller freelist, and buckets on that list are always ready to be used.
32  *
33  * If we've got discards enabled, that happens when a bucket moves from the
34  * free_inc list to the free list.
35  *
36  * There is another freelist, because sometimes we have buckets that we know
37  * have nothing pointing into them - these we can reuse without waiting for
38  * priorities to be rewritten. These come from freed btree nodes and buckets
39  * that garbage collection discovered no longer had valid keys pointing into
40  * them (because they were overwritten). That's the unused list - buckets on the
41  * unused list move to the free list, optionally being discarded in the process.
42  *
43  * It's also important to ensure that gens don't wrap around - with respect to
44  * either the oldest gen in the btree or the gen on disk. This is quite
45  * difficult to do in practice, but we explicitly guard against it anyways - if
46  * a bucket is in danger of wrapping around we simply skip invalidating it that
47  * time around, and we garbage collect or rewrite the priorities sooner than we
48  * would have otherwise.
49  *
50  * bch_bucket_alloc() allocates a single bucket from a specific cache.
51  *
52  * bch_bucket_alloc_set() allocates one or more buckets from different caches
53  * out of a cache set.
54  *
55  * free_some_buckets() drives all the processes described above. It's called
56  * from bch_bucket_alloc() and a few other places that need to make sure free
57  * buckets are ready.
58  *
59  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
60  * invalidated, and then invalidate them and stick them on the free_inc list -
61  * in either lru or fifo order.
62  */
63 
64 #include "bcache.h"
65 #include "btree.h"
66 
67 #include <linux/blkdev.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <linux/sched/signal.h>
71 #include <trace/events/bcache.h>
72 
73 #define MAX_OPEN_BUCKETS 128
74 
75 /* Bucket heap / gen */
76 
77 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
78 {
79 	uint8_t ret = ++b->gen;
80 
81 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
82 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
83 
84 	return ret;
85 }
86 
87 void bch_rescale_priorities(struct cache_set *c, int sectors)
88 {
89 	struct cache *ca;
90 	struct bucket *b;
91 	unsigned int next = c->nbuckets * c->sb.bucket_size / 1024;
92 	unsigned int i;
93 	int r;
94 
95 	atomic_sub(sectors, &c->rescale);
96 
97 	do {
98 		r = atomic_read(&c->rescale);
99 
100 		if (r >= 0)
101 			return;
102 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
103 
104 	mutex_lock(&c->bucket_lock);
105 
106 	c->min_prio = USHRT_MAX;
107 
108 	for_each_cache(ca, c, i)
109 		for_each_bucket(b, ca)
110 			if (b->prio &&
111 			    b->prio != BTREE_PRIO &&
112 			    !atomic_read(&b->pin)) {
113 				b->prio--;
114 				c->min_prio = min(c->min_prio, b->prio);
115 			}
116 
117 	mutex_unlock(&c->bucket_lock);
118 }
119 
120 /*
121  * Background allocation thread: scans for buckets to be invalidated,
122  * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
123  * then optionally issues discard commands to the newly free buckets, then puts
124  * them on the various freelists.
125  */
126 
127 static inline bool can_inc_bucket_gen(struct bucket *b)
128 {
129 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
130 }
131 
132 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
133 {
134 	BUG_ON(!ca->set->gc_mark_valid);
135 
136 	return (!GC_MARK(b) ||
137 		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
138 		!atomic_read(&b->pin) &&
139 		can_inc_bucket_gen(b);
140 }
141 
142 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
143 {
144 	lockdep_assert_held(&ca->set->bucket_lock);
145 	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
146 
147 	if (GC_SECTORS_USED(b))
148 		trace_bcache_invalidate(ca, b - ca->buckets);
149 
150 	bch_inc_gen(ca, b);
151 	b->prio = INITIAL_PRIO;
152 	atomic_inc(&b->pin);
153 }
154 
155 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
156 {
157 	__bch_invalidate_one_bucket(ca, b);
158 
159 	fifo_push(&ca->free_inc, b - ca->buckets);
160 }
161 
162 /*
163  * Determines what order we're going to reuse buckets, smallest bucket_prio()
164  * first: we also take into account the number of sectors of live data in that
165  * bucket, and in order for that multiply to make sense we have to scale bucket
166  *
167  * Thus, we scale the bucket priorities so that the bucket with the smallest
168  * prio is worth 1/8th of what INITIAL_PRIO is worth.
169  */
170 
171 #define bucket_prio(b)							\
172 ({									\
173 	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
174 									\
175 	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
176 })
177 
178 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
179 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
180 
181 static void invalidate_buckets_lru(struct cache *ca)
182 {
183 	struct bucket *b;
184 	ssize_t i;
185 
186 	ca->heap.used = 0;
187 
188 	for_each_bucket(b, ca) {
189 		if (!bch_can_invalidate_bucket(ca, b))
190 			continue;
191 
192 		if (!heap_full(&ca->heap))
193 			heap_add(&ca->heap, b, bucket_max_cmp);
194 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
195 			ca->heap.data[0] = b;
196 			heap_sift(&ca->heap, 0, bucket_max_cmp);
197 		}
198 	}
199 
200 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
201 		heap_sift(&ca->heap, i, bucket_min_cmp);
202 
203 	while (!fifo_full(&ca->free_inc)) {
204 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
205 			/*
206 			 * We don't want to be calling invalidate_buckets()
207 			 * multiple times when it can't do anything
208 			 */
209 			ca->invalidate_needs_gc = 1;
210 			wake_up_gc(ca->set);
211 			return;
212 		}
213 
214 		bch_invalidate_one_bucket(ca, b);
215 	}
216 }
217 
218 static void invalidate_buckets_fifo(struct cache *ca)
219 {
220 	struct bucket *b;
221 	size_t checked = 0;
222 
223 	while (!fifo_full(&ca->free_inc)) {
224 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
225 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
226 			ca->fifo_last_bucket = ca->sb.first_bucket;
227 
228 		b = ca->buckets + ca->fifo_last_bucket++;
229 
230 		if (bch_can_invalidate_bucket(ca, b))
231 			bch_invalidate_one_bucket(ca, b);
232 
233 		if (++checked >= ca->sb.nbuckets) {
234 			ca->invalidate_needs_gc = 1;
235 			wake_up_gc(ca->set);
236 			return;
237 		}
238 	}
239 }
240 
241 static void invalidate_buckets_random(struct cache *ca)
242 {
243 	struct bucket *b;
244 	size_t checked = 0;
245 
246 	while (!fifo_full(&ca->free_inc)) {
247 		size_t n;
248 
249 		get_random_bytes(&n, sizeof(n));
250 
251 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
252 		n += ca->sb.first_bucket;
253 
254 		b = ca->buckets + n;
255 
256 		if (bch_can_invalidate_bucket(ca, b))
257 			bch_invalidate_one_bucket(ca, b);
258 
259 		if (++checked >= ca->sb.nbuckets / 2) {
260 			ca->invalidate_needs_gc = 1;
261 			wake_up_gc(ca->set);
262 			return;
263 		}
264 	}
265 }
266 
267 static void invalidate_buckets(struct cache *ca)
268 {
269 	BUG_ON(ca->invalidate_needs_gc);
270 
271 	switch (CACHE_REPLACEMENT(&ca->sb)) {
272 	case CACHE_REPLACEMENT_LRU:
273 		invalidate_buckets_lru(ca);
274 		break;
275 	case CACHE_REPLACEMENT_FIFO:
276 		invalidate_buckets_fifo(ca);
277 		break;
278 	case CACHE_REPLACEMENT_RANDOM:
279 		invalidate_buckets_random(ca);
280 		break;
281 	}
282 }
283 
284 #define allocator_wait(ca, cond)					\
285 do {									\
286 	while (1) {							\
287 		set_current_state(TASK_INTERRUPTIBLE);			\
288 		if (cond)						\
289 			break;						\
290 									\
291 		mutex_unlock(&(ca)->set->bucket_lock);			\
292 		if (kthread_should_stop() ||				\
293 		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
294 			set_current_state(TASK_RUNNING);		\
295 			goto out;					\
296 		}							\
297 									\
298 		schedule();						\
299 		mutex_lock(&(ca)->set->bucket_lock);			\
300 	}								\
301 	__set_current_state(TASK_RUNNING);				\
302 } while (0)
303 
304 static int bch_allocator_push(struct cache *ca, long bucket)
305 {
306 	unsigned int i;
307 
308 	/* Prios/gens are actually the most important reserve */
309 	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
310 		return true;
311 
312 	for (i = 0; i < RESERVE_NR; i++)
313 		if (fifo_push(&ca->free[i], bucket))
314 			return true;
315 
316 	return false;
317 }
318 
319 static int bch_allocator_thread(void *arg)
320 {
321 	struct cache *ca = arg;
322 
323 	mutex_lock(&ca->set->bucket_lock);
324 
325 	while (1) {
326 		/*
327 		 * First, we pull buckets off of the unused and free_inc lists,
328 		 * possibly issue discards to them, then we add the bucket to
329 		 * the free list:
330 		 */
331 		while (1) {
332 			long bucket;
333 
334 			if (!fifo_pop(&ca->free_inc, bucket))
335 				break;
336 
337 			if (ca->discard) {
338 				mutex_unlock(&ca->set->bucket_lock);
339 				blkdev_issue_discard(ca->bdev,
340 					bucket_to_sector(ca->set, bucket),
341 					ca->sb.bucket_size, GFP_KERNEL, 0);
342 				mutex_lock(&ca->set->bucket_lock);
343 			}
344 
345 			allocator_wait(ca, bch_allocator_push(ca, bucket));
346 			wake_up(&ca->set->btree_cache_wait);
347 			wake_up(&ca->set->bucket_wait);
348 		}
349 
350 		/*
351 		 * We've run out of free buckets, we need to find some buckets
352 		 * we can invalidate. First, invalidate them in memory and add
353 		 * them to the free_inc list:
354 		 */
355 
356 retry_invalidate:
357 		allocator_wait(ca, ca->set->gc_mark_valid &&
358 			       !ca->invalidate_needs_gc);
359 		invalidate_buckets(ca);
360 
361 		/*
362 		 * Now, we write their new gens to disk so we can start writing
363 		 * new stuff to them:
364 		 */
365 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
366 		if (CACHE_SYNC(&ca->set->sb)) {
367 			/*
368 			 * This could deadlock if an allocation with a btree
369 			 * node locked ever blocked - having the btree node
370 			 * locked would block garbage collection, but here we're
371 			 * waiting on garbage collection before we invalidate
372 			 * and free anything.
373 			 *
374 			 * But this should be safe since the btree code always
375 			 * uses btree_check_reserve() before allocating now, and
376 			 * if it fails it blocks without btree nodes locked.
377 			 */
378 			if (!fifo_full(&ca->free_inc))
379 				goto retry_invalidate;
380 
381 			if (bch_prio_write(ca, false) < 0) {
382 				ca->invalidate_needs_gc = 1;
383 				wake_up_gc(ca->set);
384 			}
385 		}
386 	}
387 out:
388 	wait_for_kthread_stop();
389 	return 0;
390 }
391 
392 /* Allocation */
393 
394 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
395 {
396 	DEFINE_WAIT(w);
397 	struct bucket *b;
398 	long r;
399 
400 
401 	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
402 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
403 		return -1;
404 
405 	/* fastpath */
406 	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
407 	    fifo_pop(&ca->free[reserve], r))
408 		goto out;
409 
410 	if (!wait) {
411 		trace_bcache_alloc_fail(ca, reserve);
412 		return -1;
413 	}
414 
415 	do {
416 		prepare_to_wait(&ca->set->bucket_wait, &w,
417 				TASK_UNINTERRUPTIBLE);
418 
419 		mutex_unlock(&ca->set->bucket_lock);
420 		schedule();
421 		mutex_lock(&ca->set->bucket_lock);
422 	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
423 		 !fifo_pop(&ca->free[reserve], r));
424 
425 	finish_wait(&ca->set->bucket_wait, &w);
426 out:
427 	if (ca->alloc_thread)
428 		wake_up_process(ca->alloc_thread);
429 
430 	trace_bcache_alloc(ca, reserve);
431 
432 	if (expensive_debug_checks(ca->set)) {
433 		size_t iter;
434 		long i;
435 		unsigned int j;
436 
437 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
438 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
439 
440 		for (j = 0; j < RESERVE_NR; j++)
441 			fifo_for_each(i, &ca->free[j], iter)
442 				BUG_ON(i == r);
443 		fifo_for_each(i, &ca->free_inc, iter)
444 			BUG_ON(i == r);
445 	}
446 
447 	b = ca->buckets + r;
448 
449 	BUG_ON(atomic_read(&b->pin) != 1);
450 
451 	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
452 
453 	if (reserve <= RESERVE_PRIO) {
454 		SET_GC_MARK(b, GC_MARK_METADATA);
455 		SET_GC_MOVE(b, 0);
456 		b->prio = BTREE_PRIO;
457 	} else {
458 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
459 		SET_GC_MOVE(b, 0);
460 		b->prio = INITIAL_PRIO;
461 	}
462 
463 	if (ca->set->avail_nbuckets > 0) {
464 		ca->set->avail_nbuckets--;
465 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
466 	}
467 
468 	return r;
469 }
470 
471 void __bch_bucket_free(struct cache *ca, struct bucket *b)
472 {
473 	SET_GC_MARK(b, 0);
474 	SET_GC_SECTORS_USED(b, 0);
475 
476 	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
477 		ca->set->avail_nbuckets++;
478 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
479 	}
480 }
481 
482 void bch_bucket_free(struct cache_set *c, struct bkey *k)
483 {
484 	unsigned int i;
485 
486 	for (i = 0; i < KEY_PTRS(k); i++)
487 		__bch_bucket_free(PTR_CACHE(c, k, i),
488 				  PTR_BUCKET(c, k, i));
489 }
490 
491 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
492 			   struct bkey *k, int n, bool wait)
493 {
494 	int i;
495 
496 	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
497 	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
498 		return -1;
499 
500 	lockdep_assert_held(&c->bucket_lock);
501 	BUG_ON(!n || n > c->caches_loaded || n > MAX_CACHES_PER_SET);
502 
503 	bkey_init(k);
504 
505 	/* sort by free space/prio of oldest data in caches */
506 
507 	for (i = 0; i < n; i++) {
508 		struct cache *ca = c->cache_by_alloc[i];
509 		long b = bch_bucket_alloc(ca, reserve, wait);
510 
511 		if (b == -1)
512 			goto err;
513 
514 		k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
515 				bucket_to_sector(c, b),
516 				ca->sb.nr_this_dev);
517 
518 		SET_KEY_PTRS(k, i + 1);
519 	}
520 
521 	return 0;
522 err:
523 	bch_bucket_free(c, k);
524 	bkey_put(c, k);
525 	return -1;
526 }
527 
528 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
529 			 struct bkey *k, int n, bool wait)
530 {
531 	int ret;
532 
533 	mutex_lock(&c->bucket_lock);
534 	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
535 	mutex_unlock(&c->bucket_lock);
536 	return ret;
537 }
538 
539 /* Sector allocator */
540 
541 struct open_bucket {
542 	struct list_head	list;
543 	unsigned int		last_write_point;
544 	unsigned int		sectors_free;
545 	BKEY_PADDED(key);
546 };
547 
548 /*
549  * We keep multiple buckets open for writes, and try to segregate different
550  * write streams for better cache utilization: first we try to segregate flash
551  * only volume write streams from cached devices, secondly we look for a bucket
552  * where the last write to it was sequential with the current write, and
553  * failing that we look for a bucket that was last used by the same task.
554  *
555  * The ideas is if you've got multiple tasks pulling data into the cache at the
556  * same time, you'll get better cache utilization if you try to segregate their
557  * data and preserve locality.
558  *
559  * For example, dirty sectors of flash only volume is not reclaimable, if their
560  * dirty sectors mixed with dirty sectors of cached device, such buckets will
561  * be marked as dirty and won't be reclaimed, though the dirty data of cached
562  * device have been written back to backend device.
563  *
564  * And say you've starting Firefox at the same time you're copying a
565  * bunch of files. Firefox will likely end up being fairly hot and stay in the
566  * cache awhile, but the data you copied might not be; if you wrote all that
567  * data to the same buckets it'd get invalidated at the same time.
568  *
569  * Both of those tasks will be doing fairly random IO so we can't rely on
570  * detecting sequential IO to segregate their data, but going off of the task
571  * should be a sane heuristic.
572  */
573 static struct open_bucket *pick_data_bucket(struct cache_set *c,
574 					    const struct bkey *search,
575 					    unsigned int write_point,
576 					    struct bkey *alloc)
577 {
578 	struct open_bucket *ret, *ret_task = NULL;
579 
580 	list_for_each_entry_reverse(ret, &c->data_buckets, list)
581 		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
582 		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
583 			continue;
584 		else if (!bkey_cmp(&ret->key, search))
585 			goto found;
586 		else if (ret->last_write_point == write_point)
587 			ret_task = ret;
588 
589 	ret = ret_task ?: list_first_entry(&c->data_buckets,
590 					   struct open_bucket, list);
591 found:
592 	if (!ret->sectors_free && KEY_PTRS(alloc)) {
593 		ret->sectors_free = c->sb.bucket_size;
594 		bkey_copy(&ret->key, alloc);
595 		bkey_init(alloc);
596 	}
597 
598 	if (!ret->sectors_free)
599 		ret = NULL;
600 
601 	return ret;
602 }
603 
604 /*
605  * Allocates some space in the cache to write to, and k to point to the newly
606  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
607  * end of the newly allocated space).
608  *
609  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
610  * sectors were actually allocated.
611  *
612  * If s->writeback is true, will not fail.
613  */
614 bool bch_alloc_sectors(struct cache_set *c,
615 		       struct bkey *k,
616 		       unsigned int sectors,
617 		       unsigned int write_point,
618 		       unsigned int write_prio,
619 		       bool wait)
620 {
621 	struct open_bucket *b;
622 	BKEY_PADDED(key) alloc;
623 	unsigned int i;
624 
625 	/*
626 	 * We might have to allocate a new bucket, which we can't do with a
627 	 * spinlock held. So if we have to allocate, we drop the lock, allocate
628 	 * and then retry. KEY_PTRS() indicates whether alloc points to
629 	 * allocated bucket(s).
630 	 */
631 
632 	bkey_init(&alloc.key);
633 	spin_lock(&c->data_bucket_lock);
634 
635 	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
636 		unsigned int watermark = write_prio
637 			? RESERVE_MOVINGGC
638 			: RESERVE_NONE;
639 
640 		spin_unlock(&c->data_bucket_lock);
641 
642 		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
643 			return false;
644 
645 		spin_lock(&c->data_bucket_lock);
646 	}
647 
648 	/*
649 	 * If we had to allocate, we might race and not need to allocate the
650 	 * second time we call pick_data_bucket(). If we allocated a bucket but
651 	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
652 	 */
653 	if (KEY_PTRS(&alloc.key))
654 		bkey_put(c, &alloc.key);
655 
656 	for (i = 0; i < KEY_PTRS(&b->key); i++)
657 		EBUG_ON(ptr_stale(c, &b->key, i));
658 
659 	/* Set up the pointer to the space we're allocating: */
660 
661 	for (i = 0; i < KEY_PTRS(&b->key); i++)
662 		k->ptr[i] = b->key.ptr[i];
663 
664 	sectors = min(sectors, b->sectors_free);
665 
666 	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
667 	SET_KEY_SIZE(k, sectors);
668 	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
669 
670 	/*
671 	 * Move b to the end of the lru, and keep track of what this bucket was
672 	 * last used for:
673 	 */
674 	list_move_tail(&b->list, &c->data_buckets);
675 	bkey_copy_key(&b->key, k);
676 	b->last_write_point = write_point;
677 
678 	b->sectors_free	-= sectors;
679 
680 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
681 		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
682 
683 		atomic_long_add(sectors,
684 				&PTR_CACHE(c, &b->key, i)->sectors_written);
685 	}
686 
687 	if (b->sectors_free < c->sb.block_size)
688 		b->sectors_free = 0;
689 
690 	/*
691 	 * k takes refcounts on the buckets it points to until it's inserted
692 	 * into the btree, but if we're done with this bucket we just transfer
693 	 * get_data_bucket()'s refcount.
694 	 */
695 	if (b->sectors_free)
696 		for (i = 0; i < KEY_PTRS(&b->key); i++)
697 			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
698 
699 	spin_unlock(&c->data_bucket_lock);
700 	return true;
701 }
702 
703 /* Init */
704 
705 void bch_open_buckets_free(struct cache_set *c)
706 {
707 	struct open_bucket *b;
708 
709 	while (!list_empty(&c->data_buckets)) {
710 		b = list_first_entry(&c->data_buckets,
711 				     struct open_bucket, list);
712 		list_del(&b->list);
713 		kfree(b);
714 	}
715 }
716 
717 int bch_open_buckets_alloc(struct cache_set *c)
718 {
719 	int i;
720 
721 	spin_lock_init(&c->data_bucket_lock);
722 
723 	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
724 		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
725 
726 		if (!b)
727 			return -ENOMEM;
728 
729 		list_add(&b->list, &c->data_buckets);
730 	}
731 
732 	return 0;
733 }
734 
735 int bch_cache_allocator_start(struct cache *ca)
736 {
737 	struct task_struct *k;
738 
739 	/*
740 	 * In case previous btree check operation occupies too many
741 	 * system memory for bcache btree node cache, and the
742 	 * registering process is selected by OOM killer. Here just
743 	 * ignore the SIGKILL sent by OOM killer if there is, to
744 	 * avoid kthread_run() being failed by pending signals. The
745 	 * bcache registering process will exit after the registration
746 	 * done.
747 	 */
748 	if (signal_pending(current))
749 		flush_signals(current);
750 
751 	k = kthread_run(bch_allocator_thread, ca, "bcache_allocator");
752 	if (IS_ERR(k))
753 		return PTR_ERR(k);
754 
755 	ca->alloc_thread = k;
756 	return 0;
757 }
758