xref: /openbmc/linux/drivers/md/bcache/alloc.c (revision ee8a99bd)
1 /*
2  * Primary bucket allocation code
3  *
4  * Copyright 2012 Google, Inc.
5  *
6  * Allocation in bcache is done in terms of buckets:
7  *
8  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9  * btree pointers - they must match for the pointer to be considered valid.
10  *
11  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12  * bucket simply by incrementing its gen.
13  *
14  * The gens (along with the priorities; it's really the gens are important but
15  * the code is named as if it's the priorities) are written in an arbitrary list
16  * of buckets on disk, with a pointer to them in the journal header.
17  *
18  * When we invalidate a bucket, we have to write its new gen to disk and wait
19  * for that write to complete before we use it - otherwise after a crash we
20  * could have pointers that appeared to be good but pointed to data that had
21  * been overwritten.
22  *
23  * Since the gens and priorities are all stored contiguously on disk, we can
24  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25  * call prio_write(), and when prio_write() finishes we pull buckets off the
26  * free_inc list and optionally discard them.
27  *
28  * free_inc isn't the only freelist - if it was, we'd often to sleep while
29  * priorities and gens were being written before we could allocate. c->free is a
30  * smaller freelist, and buckets on that list are always ready to be used.
31  *
32  * If we've got discards enabled, that happens when a bucket moves from the
33  * free_inc list to the free list.
34  *
35  * There is another freelist, because sometimes we have buckets that we know
36  * have nothing pointing into them - these we can reuse without waiting for
37  * priorities to be rewritten. These come from freed btree nodes and buckets
38  * that garbage collection discovered no longer had valid keys pointing into
39  * them (because they were overwritten). That's the unused list - buckets on the
40  * unused list move to the free list, optionally being discarded in the process.
41  *
42  * It's also important to ensure that gens don't wrap around - with respect to
43  * either the oldest gen in the btree or the gen on disk. This is quite
44  * difficult to do in practice, but we explicitly guard against it anyways - if
45  * a bucket is in danger of wrapping around we simply skip invalidating it that
46  * time around, and we garbage collect or rewrite the priorities sooner than we
47  * would have otherwise.
48  *
49  * bch_bucket_alloc() allocates a single bucket from a specific cache.
50  *
51  * bch_bucket_alloc_set() allocates one or more buckets from different caches
52  * out of a cache set.
53  *
54  * free_some_buckets() drives all the processes described above. It's called
55  * from bch_bucket_alloc() and a few other places that need to make sure free
56  * buckets are ready.
57  *
58  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59  * invalidated, and then invalidate them and stick them on the free_inc list -
60  * in either lru or fifo order.
61  */
62 
63 #include "bcache.h"
64 #include "btree.h"
65 
66 #include <linux/freezer.h>
67 #include <linux/kthread.h>
68 #include <linux/random.h>
69 #include <trace/events/bcache.h>
70 
71 #define MAX_IN_FLIGHT_DISCARDS		8U
72 
73 /* Bucket heap / gen */
74 
75 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
76 {
77 	uint8_t ret = ++b->gen;
78 
79 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
80 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
81 
82 	if (CACHE_SYNC(&ca->set->sb)) {
83 		ca->need_save_prio = max(ca->need_save_prio,
84 					 bucket_disk_gen(b));
85 		WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
86 	}
87 
88 	return ret;
89 }
90 
91 void bch_rescale_priorities(struct cache_set *c, int sectors)
92 {
93 	struct cache *ca;
94 	struct bucket *b;
95 	unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
96 	unsigned i;
97 	int r;
98 
99 	atomic_sub(sectors, &c->rescale);
100 
101 	do {
102 		r = atomic_read(&c->rescale);
103 
104 		if (r >= 0)
105 			return;
106 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
107 
108 	mutex_lock(&c->bucket_lock);
109 
110 	c->min_prio = USHRT_MAX;
111 
112 	for_each_cache(ca, c, i)
113 		for_each_bucket(b, ca)
114 			if (b->prio &&
115 			    b->prio != BTREE_PRIO &&
116 			    !atomic_read(&b->pin)) {
117 				b->prio--;
118 				c->min_prio = min(c->min_prio, b->prio);
119 			}
120 
121 	mutex_unlock(&c->bucket_lock);
122 }
123 
124 /* Discard/TRIM */
125 
126 struct discard {
127 	struct list_head	list;
128 	struct work_struct	work;
129 	struct cache		*ca;
130 	long			bucket;
131 
132 	struct bio		bio;
133 	struct bio_vec		bv;
134 };
135 
136 static void discard_finish(struct work_struct *w)
137 {
138 	struct discard *d = container_of(w, struct discard, work);
139 	struct cache *ca = d->ca;
140 	char buf[BDEVNAME_SIZE];
141 
142 	if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) {
143 		pr_notice("discard error on %s, disabling",
144 			 bdevname(ca->bdev, buf));
145 		d->ca->discard = 0;
146 	}
147 
148 	mutex_lock(&ca->set->bucket_lock);
149 
150 	fifo_push(&ca->free, d->bucket);
151 	list_add(&d->list, &ca->discards);
152 	atomic_dec(&ca->discards_in_flight);
153 
154 	mutex_unlock(&ca->set->bucket_lock);
155 
156 	closure_wake_up(&ca->set->bucket_wait);
157 	wake_up_process(ca->alloc_thread);
158 
159 	closure_put(&ca->set->cl);
160 }
161 
162 static void discard_endio(struct bio *bio, int error)
163 {
164 	struct discard *d = container_of(bio, struct discard, bio);
165 	schedule_work(&d->work);
166 }
167 
168 static void do_discard(struct cache *ca, long bucket)
169 {
170 	struct discard *d = list_first_entry(&ca->discards,
171 					     struct discard, list);
172 
173 	list_del(&d->list);
174 	d->bucket = bucket;
175 
176 	atomic_inc(&ca->discards_in_flight);
177 	closure_get(&ca->set->cl);
178 
179 	bio_init(&d->bio);
180 
181 	d->bio.bi_sector	= bucket_to_sector(ca->set, d->bucket);
182 	d->bio.bi_bdev		= ca->bdev;
183 	d->bio.bi_rw		= REQ_WRITE|REQ_DISCARD;
184 	d->bio.bi_max_vecs	= 1;
185 	d->bio.bi_io_vec	= d->bio.bi_inline_vecs;
186 	d->bio.bi_size		= bucket_bytes(ca);
187 	d->bio.bi_end_io	= discard_endio;
188 	bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
189 
190 	submit_bio(0, &d->bio);
191 }
192 
193 /* Allocation */
194 
195 static inline bool can_inc_bucket_gen(struct bucket *b)
196 {
197 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
198 		bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
199 }
200 
201 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
202 {
203 	BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
204 
205 	if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
206 	    CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
207 		return false;
208 
209 	b->prio = 0;
210 
211 	if (can_inc_bucket_gen(b) &&
212 	    fifo_push(&ca->unused, b - ca->buckets)) {
213 		atomic_inc(&b->pin);
214 		return true;
215 	}
216 
217 	return false;
218 }
219 
220 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
221 {
222 	return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
223 		!atomic_read(&b->pin) &&
224 		can_inc_bucket_gen(b);
225 }
226 
227 static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
228 {
229 	bch_inc_gen(ca, b);
230 	b->prio = INITIAL_PRIO;
231 	atomic_inc(&b->pin);
232 	fifo_push(&ca->free_inc, b - ca->buckets);
233 }
234 
235 #define bucket_prio(b)				\
236 	(((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
237 
238 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
239 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
240 
241 static void invalidate_buckets_lru(struct cache *ca)
242 {
243 	struct bucket *b;
244 	ssize_t i;
245 
246 	ca->heap.used = 0;
247 
248 	for_each_bucket(b, ca) {
249 		/*
250 		 * If we fill up the unused list, if we then return before
251 		 * adding anything to the free_inc list we'll skip writing
252 		 * prios/gens and just go back to allocating from the unused
253 		 * list:
254 		 */
255 		if (fifo_full(&ca->unused))
256 			return;
257 
258 		if (!can_invalidate_bucket(ca, b))
259 			continue;
260 
261 		if (!GC_SECTORS_USED(b) &&
262 		    bch_bucket_add_unused(ca, b))
263 			continue;
264 
265 		if (!heap_full(&ca->heap))
266 			heap_add(&ca->heap, b, bucket_max_cmp);
267 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
268 			ca->heap.data[0] = b;
269 			heap_sift(&ca->heap, 0, bucket_max_cmp);
270 		}
271 	}
272 
273 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
274 		heap_sift(&ca->heap, i, bucket_min_cmp);
275 
276 	while (!fifo_full(&ca->free_inc)) {
277 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
278 			/*
279 			 * We don't want to be calling invalidate_buckets()
280 			 * multiple times when it can't do anything
281 			 */
282 			ca->invalidate_needs_gc = 1;
283 			bch_queue_gc(ca->set);
284 			return;
285 		}
286 
287 		invalidate_one_bucket(ca, b);
288 	}
289 }
290 
291 static void invalidate_buckets_fifo(struct cache *ca)
292 {
293 	struct bucket *b;
294 	size_t checked = 0;
295 
296 	while (!fifo_full(&ca->free_inc)) {
297 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
298 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
299 			ca->fifo_last_bucket = ca->sb.first_bucket;
300 
301 		b = ca->buckets + ca->fifo_last_bucket++;
302 
303 		if (can_invalidate_bucket(ca, b))
304 			invalidate_one_bucket(ca, b);
305 
306 		if (++checked >= ca->sb.nbuckets) {
307 			ca->invalidate_needs_gc = 1;
308 			bch_queue_gc(ca->set);
309 			return;
310 		}
311 	}
312 }
313 
314 static void invalidate_buckets_random(struct cache *ca)
315 {
316 	struct bucket *b;
317 	size_t checked = 0;
318 
319 	while (!fifo_full(&ca->free_inc)) {
320 		size_t n;
321 		get_random_bytes(&n, sizeof(n));
322 
323 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
324 		n += ca->sb.first_bucket;
325 
326 		b = ca->buckets + n;
327 
328 		if (can_invalidate_bucket(ca, b))
329 			invalidate_one_bucket(ca, b);
330 
331 		if (++checked >= ca->sb.nbuckets / 2) {
332 			ca->invalidate_needs_gc = 1;
333 			bch_queue_gc(ca->set);
334 			return;
335 		}
336 	}
337 }
338 
339 static void invalidate_buckets(struct cache *ca)
340 {
341 	if (ca->invalidate_needs_gc)
342 		return;
343 
344 	switch (CACHE_REPLACEMENT(&ca->sb)) {
345 	case CACHE_REPLACEMENT_LRU:
346 		invalidate_buckets_lru(ca);
347 		break;
348 	case CACHE_REPLACEMENT_FIFO:
349 		invalidate_buckets_fifo(ca);
350 		break;
351 	case CACHE_REPLACEMENT_RANDOM:
352 		invalidate_buckets_random(ca);
353 		break;
354 	}
355 
356 	trace_bcache_alloc_invalidate(ca);
357 }
358 
359 #define allocator_wait(ca, cond)					\
360 do {									\
361 	while (1) {							\
362 		set_current_state(TASK_INTERRUPTIBLE);			\
363 		if (cond)						\
364 			break;						\
365 									\
366 		mutex_unlock(&(ca)->set->bucket_lock);			\
367 		if (kthread_should_stop())				\
368 			return 0;					\
369 									\
370 		try_to_freeze();					\
371 		schedule();						\
372 		mutex_lock(&(ca)->set->bucket_lock);			\
373 	}								\
374 	__set_current_state(TASK_RUNNING);				\
375 } while (0)
376 
377 static int bch_allocator_thread(void *arg)
378 {
379 	struct cache *ca = arg;
380 
381 	mutex_lock(&ca->set->bucket_lock);
382 
383 	while (1) {
384 		/*
385 		 * First, we pull buckets off of the unused and free_inc lists,
386 		 * possibly issue discards to them, then we add the bucket to
387 		 * the free list:
388 		 */
389 		while (1) {
390 			long bucket;
391 
392 			if ((!atomic_read(&ca->set->prio_blocked) ||
393 			     !CACHE_SYNC(&ca->set->sb)) &&
394 			    !fifo_empty(&ca->unused))
395 				fifo_pop(&ca->unused, bucket);
396 			else if (!fifo_empty(&ca->free_inc))
397 				fifo_pop(&ca->free_inc, bucket);
398 			else
399 				break;
400 
401 			allocator_wait(ca, (int) fifo_free(&ca->free) >
402 				       atomic_read(&ca->discards_in_flight));
403 
404 			if (ca->discard) {
405 				allocator_wait(ca, !list_empty(&ca->discards));
406 				do_discard(ca, bucket);
407 			} else {
408 				fifo_push(&ca->free, bucket);
409 				closure_wake_up(&ca->set->bucket_wait);
410 			}
411 		}
412 
413 		/*
414 		 * We've run out of free buckets, we need to find some buckets
415 		 * we can invalidate. First, invalidate them in memory and add
416 		 * them to the free_inc list:
417 		 */
418 
419 		allocator_wait(ca, ca->set->gc_mark_valid &&
420 			       (ca->need_save_prio > 64 ||
421 				!ca->invalidate_needs_gc));
422 		invalidate_buckets(ca);
423 
424 		/*
425 		 * Now, we write their new gens to disk so we can start writing
426 		 * new stuff to them:
427 		 */
428 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
429 		if (CACHE_SYNC(&ca->set->sb) &&
430 		    (!fifo_empty(&ca->free_inc) ||
431 		     ca->need_save_prio > 64))
432 			bch_prio_write(ca);
433 	}
434 }
435 
436 long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl)
437 {
438 	long r = -1;
439 again:
440 	wake_up_process(ca->alloc_thread);
441 
442 	if (fifo_used(&ca->free) > ca->watermark[watermark] &&
443 	    fifo_pop(&ca->free, r)) {
444 		struct bucket *b = ca->buckets + r;
445 #ifdef CONFIG_BCACHE_EDEBUG
446 		size_t iter;
447 		long i;
448 
449 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
450 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
451 
452 		fifo_for_each(i, &ca->free, iter)
453 			BUG_ON(i == r);
454 		fifo_for_each(i, &ca->free_inc, iter)
455 			BUG_ON(i == r);
456 		fifo_for_each(i, &ca->unused, iter)
457 			BUG_ON(i == r);
458 #endif
459 		BUG_ON(atomic_read(&b->pin) != 1);
460 
461 		SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
462 
463 		if (watermark <= WATERMARK_METADATA) {
464 			SET_GC_MARK(b, GC_MARK_METADATA);
465 			b->prio = BTREE_PRIO;
466 		} else {
467 			SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
468 			b->prio = INITIAL_PRIO;
469 		}
470 
471 		return r;
472 	}
473 
474 	trace_bcache_alloc_fail(ca);
475 
476 	if (cl) {
477 		closure_wait(&ca->set->bucket_wait, cl);
478 
479 		if (closure_blocking(cl)) {
480 			mutex_unlock(&ca->set->bucket_lock);
481 			closure_sync(cl);
482 			mutex_lock(&ca->set->bucket_lock);
483 			goto again;
484 		}
485 	}
486 
487 	return -1;
488 }
489 
490 void bch_bucket_free(struct cache_set *c, struct bkey *k)
491 {
492 	unsigned i;
493 
494 	for (i = 0; i < KEY_PTRS(k); i++) {
495 		struct bucket *b = PTR_BUCKET(c, k, i);
496 
497 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
498 		SET_GC_SECTORS_USED(b, 0);
499 		bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
500 	}
501 }
502 
503 int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
504 			   struct bkey *k, int n, struct closure *cl)
505 {
506 	int i;
507 
508 	lockdep_assert_held(&c->bucket_lock);
509 	BUG_ON(!n || n > c->caches_loaded || n > 8);
510 
511 	bkey_init(k);
512 
513 	/* sort by free space/prio of oldest data in caches */
514 
515 	for (i = 0; i < n; i++) {
516 		struct cache *ca = c->cache_by_alloc[i];
517 		long b = bch_bucket_alloc(ca, watermark, cl);
518 
519 		if (b == -1)
520 			goto err;
521 
522 		k->ptr[i] = PTR(ca->buckets[b].gen,
523 				bucket_to_sector(c, b),
524 				ca->sb.nr_this_dev);
525 
526 		SET_KEY_PTRS(k, i + 1);
527 	}
528 
529 	return 0;
530 err:
531 	bch_bucket_free(c, k);
532 	__bkey_put(c, k);
533 	return -1;
534 }
535 
536 int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
537 			 struct bkey *k, int n, struct closure *cl)
538 {
539 	int ret;
540 	mutex_lock(&c->bucket_lock);
541 	ret = __bch_bucket_alloc_set(c, watermark, k, n, cl);
542 	mutex_unlock(&c->bucket_lock);
543 	return ret;
544 }
545 
546 /* Init */
547 
548 int bch_cache_allocator_start(struct cache *ca)
549 {
550 	struct task_struct *k = kthread_run(bch_allocator_thread,
551 					    ca, "bcache_allocator");
552 	if (IS_ERR(k))
553 		return PTR_ERR(k);
554 
555 	ca->alloc_thread = k;
556 	return 0;
557 }
558 
559 void bch_cache_allocator_exit(struct cache *ca)
560 {
561 	struct discard *d;
562 
563 	while (!list_empty(&ca->discards)) {
564 		d = list_first_entry(&ca->discards, struct discard, list);
565 		cancel_work_sync(&d->work);
566 		list_del(&d->list);
567 		kfree(d);
568 	}
569 }
570 
571 int bch_cache_allocator_init(struct cache *ca)
572 {
573 	unsigned i;
574 
575 	/*
576 	 * Reserve:
577 	 * Prio/gen writes first
578 	 * Then 8 for btree allocations
579 	 * Then half for the moving garbage collector
580 	 */
581 
582 	ca->watermark[WATERMARK_PRIO] = 0;
583 
584 	ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
585 
586 	ca->watermark[WATERMARK_MOVINGGC] = 8 +
587 		ca->watermark[WATERMARK_METADATA];
588 
589 	ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
590 		ca->watermark[WATERMARK_MOVINGGC];
591 
592 	for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) {
593 		struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL);
594 		if (!d)
595 			return -ENOMEM;
596 
597 		d->ca = ca;
598 		INIT_WORK(&d->work, discard_finish);
599 		list_add(&d->list, &ca->discards);
600 	}
601 
602 	return 0;
603 }
604