1 /* 2 * Primary bucket allocation code 3 * 4 * Copyright 2012 Google, Inc. 5 * 6 * Allocation in bcache is done in terms of buckets: 7 * 8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 9 * btree pointers - they must match for the pointer to be considered valid. 10 * 11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 12 * bucket simply by incrementing its gen. 13 * 14 * The gens (along with the priorities; it's really the gens are important but 15 * the code is named as if it's the priorities) are written in an arbitrary list 16 * of buckets on disk, with a pointer to them in the journal header. 17 * 18 * When we invalidate a bucket, we have to write its new gen to disk and wait 19 * for that write to complete before we use it - otherwise after a crash we 20 * could have pointers that appeared to be good but pointed to data that had 21 * been overwritten. 22 * 23 * Since the gens and priorities are all stored contiguously on disk, we can 24 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 25 * call prio_write(), and when prio_write() finishes we pull buckets off the 26 * free_inc list and optionally discard them. 27 * 28 * free_inc isn't the only freelist - if it was, we'd often to sleep while 29 * priorities and gens were being written before we could allocate. c->free is a 30 * smaller freelist, and buckets on that list are always ready to be used. 31 * 32 * If we've got discards enabled, that happens when a bucket moves from the 33 * free_inc list to the free list. 34 * 35 * There is another freelist, because sometimes we have buckets that we know 36 * have nothing pointing into them - these we can reuse without waiting for 37 * priorities to be rewritten. These come from freed btree nodes and buckets 38 * that garbage collection discovered no longer had valid keys pointing into 39 * them (because they were overwritten). That's the unused list - buckets on the 40 * unused list move to the free list, optionally being discarded in the process. 41 * 42 * It's also important to ensure that gens don't wrap around - with respect to 43 * either the oldest gen in the btree or the gen on disk. This is quite 44 * difficult to do in practice, but we explicitly guard against it anyways - if 45 * a bucket is in danger of wrapping around we simply skip invalidating it that 46 * time around, and we garbage collect or rewrite the priorities sooner than we 47 * would have otherwise. 48 * 49 * bch_bucket_alloc() allocates a single bucket from a specific cache. 50 * 51 * bch_bucket_alloc_set() allocates one or more buckets from different caches 52 * out of a cache set. 53 * 54 * free_some_buckets() drives all the processes described above. It's called 55 * from bch_bucket_alloc() and a few other places that need to make sure free 56 * buckets are ready. 57 * 58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 59 * invalidated, and then invalidate them and stick them on the free_inc list - 60 * in either lru or fifo order. 61 */ 62 63 #include "bcache.h" 64 #include "btree.h" 65 66 #include <linux/random.h> 67 68 #define MAX_IN_FLIGHT_DISCARDS 8U 69 70 /* Bucket heap / gen */ 71 72 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 73 { 74 uint8_t ret = ++b->gen; 75 76 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 77 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 78 79 if (CACHE_SYNC(&ca->set->sb)) { 80 ca->need_save_prio = max(ca->need_save_prio, 81 bucket_disk_gen(b)); 82 WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX); 83 } 84 85 return ret; 86 } 87 88 void bch_rescale_priorities(struct cache_set *c, int sectors) 89 { 90 struct cache *ca; 91 struct bucket *b; 92 unsigned next = c->nbuckets * c->sb.bucket_size / 1024; 93 unsigned i; 94 int r; 95 96 atomic_sub(sectors, &c->rescale); 97 98 do { 99 r = atomic_read(&c->rescale); 100 101 if (r >= 0) 102 return; 103 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 104 105 mutex_lock(&c->bucket_lock); 106 107 c->min_prio = USHRT_MAX; 108 109 for_each_cache(ca, c, i) 110 for_each_bucket(b, ca) 111 if (b->prio && 112 b->prio != BTREE_PRIO && 113 !atomic_read(&b->pin)) { 114 b->prio--; 115 c->min_prio = min(c->min_prio, b->prio); 116 } 117 118 mutex_unlock(&c->bucket_lock); 119 } 120 121 /* Discard/TRIM */ 122 123 struct discard { 124 struct list_head list; 125 struct work_struct work; 126 struct cache *ca; 127 long bucket; 128 129 struct bio bio; 130 struct bio_vec bv; 131 }; 132 133 static void discard_finish(struct work_struct *w) 134 { 135 struct discard *d = container_of(w, struct discard, work); 136 struct cache *ca = d->ca; 137 char buf[BDEVNAME_SIZE]; 138 139 if (!test_bit(BIO_UPTODATE, &d->bio.bi_flags)) { 140 pr_notice("discard error on %s, disabling", 141 bdevname(ca->bdev, buf)); 142 d->ca->discard = 0; 143 } 144 145 mutex_lock(&ca->set->bucket_lock); 146 147 fifo_push(&ca->free, d->bucket); 148 list_add(&d->list, &ca->discards); 149 atomic_dec(&ca->discards_in_flight); 150 151 mutex_unlock(&ca->set->bucket_lock); 152 153 closure_wake_up(&ca->set->bucket_wait); 154 wake_up(&ca->set->alloc_wait); 155 156 closure_put(&ca->set->cl); 157 } 158 159 static void discard_endio(struct bio *bio, int error) 160 { 161 struct discard *d = container_of(bio, struct discard, bio); 162 schedule_work(&d->work); 163 } 164 165 static void do_discard(struct cache *ca, long bucket) 166 { 167 struct discard *d = list_first_entry(&ca->discards, 168 struct discard, list); 169 170 list_del(&d->list); 171 d->bucket = bucket; 172 173 atomic_inc(&ca->discards_in_flight); 174 closure_get(&ca->set->cl); 175 176 bio_init(&d->bio); 177 178 d->bio.bi_sector = bucket_to_sector(ca->set, d->bucket); 179 d->bio.bi_bdev = ca->bdev; 180 d->bio.bi_rw = REQ_WRITE|REQ_DISCARD; 181 d->bio.bi_max_vecs = 1; 182 d->bio.bi_io_vec = d->bio.bi_inline_vecs; 183 d->bio.bi_size = bucket_bytes(ca); 184 d->bio.bi_end_io = discard_endio; 185 bio_set_prio(&d->bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); 186 187 submit_bio(0, &d->bio); 188 } 189 190 /* Allocation */ 191 192 static inline bool can_inc_bucket_gen(struct bucket *b) 193 { 194 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX && 195 bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX; 196 } 197 198 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b) 199 { 200 BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b)); 201 202 if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] && 203 CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO) 204 return false; 205 206 b->prio = 0; 207 208 if (can_inc_bucket_gen(b) && 209 fifo_push(&ca->unused, b - ca->buckets)) { 210 atomic_inc(&b->pin); 211 return true; 212 } 213 214 return false; 215 } 216 217 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b) 218 { 219 return GC_MARK(b) == GC_MARK_RECLAIMABLE && 220 !atomic_read(&b->pin) && 221 can_inc_bucket_gen(b); 222 } 223 224 static void invalidate_one_bucket(struct cache *ca, struct bucket *b) 225 { 226 bch_inc_gen(ca, b); 227 b->prio = INITIAL_PRIO; 228 atomic_inc(&b->pin); 229 fifo_push(&ca->free_inc, b - ca->buckets); 230 } 231 232 #define bucket_prio(b) \ 233 (((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b)) 234 235 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) 236 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) 237 238 static void invalidate_buckets_lru(struct cache *ca) 239 { 240 struct bucket *b; 241 ssize_t i; 242 243 ca->heap.used = 0; 244 245 for_each_bucket(b, ca) { 246 /* 247 * If we fill up the unused list, if we then return before 248 * adding anything to the free_inc list we'll skip writing 249 * prios/gens and just go back to allocating from the unused 250 * list: 251 */ 252 if (fifo_full(&ca->unused)) 253 return; 254 255 if (!can_invalidate_bucket(ca, b)) 256 continue; 257 258 if (!GC_SECTORS_USED(b) && 259 bch_bucket_add_unused(ca, b)) 260 continue; 261 262 if (!heap_full(&ca->heap)) 263 heap_add(&ca->heap, b, bucket_max_cmp); 264 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { 265 ca->heap.data[0] = b; 266 heap_sift(&ca->heap, 0, bucket_max_cmp); 267 } 268 } 269 270 for (i = ca->heap.used / 2 - 1; i >= 0; --i) 271 heap_sift(&ca->heap, i, bucket_min_cmp); 272 273 while (!fifo_full(&ca->free_inc)) { 274 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { 275 /* 276 * We don't want to be calling invalidate_buckets() 277 * multiple times when it can't do anything 278 */ 279 ca->invalidate_needs_gc = 1; 280 bch_queue_gc(ca->set); 281 return; 282 } 283 284 invalidate_one_bucket(ca, b); 285 } 286 } 287 288 static void invalidate_buckets_fifo(struct cache *ca) 289 { 290 struct bucket *b; 291 size_t checked = 0; 292 293 while (!fifo_full(&ca->free_inc)) { 294 if (ca->fifo_last_bucket < ca->sb.first_bucket || 295 ca->fifo_last_bucket >= ca->sb.nbuckets) 296 ca->fifo_last_bucket = ca->sb.first_bucket; 297 298 b = ca->buckets + ca->fifo_last_bucket++; 299 300 if (can_invalidate_bucket(ca, b)) 301 invalidate_one_bucket(ca, b); 302 303 if (++checked >= ca->sb.nbuckets) { 304 ca->invalidate_needs_gc = 1; 305 bch_queue_gc(ca->set); 306 return; 307 } 308 } 309 } 310 311 static void invalidate_buckets_random(struct cache *ca) 312 { 313 struct bucket *b; 314 size_t checked = 0; 315 316 while (!fifo_full(&ca->free_inc)) { 317 size_t n; 318 get_random_bytes(&n, sizeof(n)); 319 320 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 321 n += ca->sb.first_bucket; 322 323 b = ca->buckets + n; 324 325 if (can_invalidate_bucket(ca, b)) 326 invalidate_one_bucket(ca, b); 327 328 if (++checked >= ca->sb.nbuckets / 2) { 329 ca->invalidate_needs_gc = 1; 330 bch_queue_gc(ca->set); 331 return; 332 } 333 } 334 } 335 336 static void invalidate_buckets(struct cache *ca) 337 { 338 if (ca->invalidate_needs_gc) 339 return; 340 341 switch (CACHE_REPLACEMENT(&ca->sb)) { 342 case CACHE_REPLACEMENT_LRU: 343 invalidate_buckets_lru(ca); 344 break; 345 case CACHE_REPLACEMENT_FIFO: 346 invalidate_buckets_fifo(ca); 347 break; 348 case CACHE_REPLACEMENT_RANDOM: 349 invalidate_buckets_random(ca); 350 break; 351 } 352 353 pr_debug("free %zu/%zu free_inc %zu/%zu unused %zu/%zu", 354 fifo_used(&ca->free), ca->free.size, 355 fifo_used(&ca->free_inc), ca->free_inc.size, 356 fifo_used(&ca->unused), ca->unused.size); 357 } 358 359 #define allocator_wait(ca, cond) \ 360 do { \ 361 DEFINE_WAIT(__wait); \ 362 \ 363 while (1) { \ 364 prepare_to_wait(&ca->set->alloc_wait, \ 365 &__wait, TASK_INTERRUPTIBLE); \ 366 if (cond) \ 367 break; \ 368 \ 369 mutex_unlock(&(ca)->set->bucket_lock); \ 370 if (test_bit(CACHE_SET_STOPPING_2, &ca->set->flags)) { \ 371 finish_wait(&ca->set->alloc_wait, &__wait); \ 372 closure_return(cl); \ 373 } \ 374 \ 375 schedule(); \ 376 mutex_lock(&(ca)->set->bucket_lock); \ 377 } \ 378 \ 379 finish_wait(&ca->set->alloc_wait, &__wait); \ 380 } while (0) 381 382 void bch_allocator_thread(struct closure *cl) 383 { 384 struct cache *ca = container_of(cl, struct cache, alloc); 385 386 mutex_lock(&ca->set->bucket_lock); 387 388 while (1) { 389 /* 390 * First, we pull buckets off of the unused and free_inc lists, 391 * possibly issue discards to them, then we add the bucket to 392 * the free list: 393 */ 394 while (1) { 395 long bucket; 396 397 if ((!atomic_read(&ca->set->prio_blocked) || 398 !CACHE_SYNC(&ca->set->sb)) && 399 !fifo_empty(&ca->unused)) 400 fifo_pop(&ca->unused, bucket); 401 else if (!fifo_empty(&ca->free_inc)) 402 fifo_pop(&ca->free_inc, bucket); 403 else 404 break; 405 406 allocator_wait(ca, (int) fifo_free(&ca->free) > 407 atomic_read(&ca->discards_in_flight)); 408 409 if (ca->discard) { 410 allocator_wait(ca, !list_empty(&ca->discards)); 411 do_discard(ca, bucket); 412 } else { 413 fifo_push(&ca->free, bucket); 414 closure_wake_up(&ca->set->bucket_wait); 415 } 416 } 417 418 /* 419 * We've run out of free buckets, we need to find some buckets 420 * we can invalidate. First, invalidate them in memory and add 421 * them to the free_inc list: 422 */ 423 424 allocator_wait(ca, ca->set->gc_mark_valid && 425 (ca->need_save_prio > 64 || 426 !ca->invalidate_needs_gc)); 427 invalidate_buckets(ca); 428 429 /* 430 * Now, we write their new gens to disk so we can start writing 431 * new stuff to them: 432 */ 433 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 434 if (CACHE_SYNC(&ca->set->sb) && 435 (!fifo_empty(&ca->free_inc) || 436 ca->need_save_prio > 64)) 437 bch_prio_write(ca); 438 } 439 } 440 441 long bch_bucket_alloc(struct cache *ca, unsigned watermark, struct closure *cl) 442 { 443 long r = -1; 444 again: 445 wake_up(&ca->set->alloc_wait); 446 447 if (fifo_used(&ca->free) > ca->watermark[watermark] && 448 fifo_pop(&ca->free, r)) { 449 struct bucket *b = ca->buckets + r; 450 #ifdef CONFIG_BCACHE_EDEBUG 451 size_t iter; 452 long i; 453 454 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 455 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 456 457 fifo_for_each(i, &ca->free, iter) 458 BUG_ON(i == r); 459 fifo_for_each(i, &ca->free_inc, iter) 460 BUG_ON(i == r); 461 fifo_for_each(i, &ca->unused, iter) 462 BUG_ON(i == r); 463 #endif 464 BUG_ON(atomic_read(&b->pin) != 1); 465 466 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 467 468 if (watermark <= WATERMARK_METADATA) { 469 SET_GC_MARK(b, GC_MARK_METADATA); 470 b->prio = BTREE_PRIO; 471 } else { 472 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 473 b->prio = INITIAL_PRIO; 474 } 475 476 return r; 477 } 478 479 pr_debug("alloc failure: blocked %i free %zu free_inc %zu unused %zu", 480 atomic_read(&ca->set->prio_blocked), fifo_used(&ca->free), 481 fifo_used(&ca->free_inc), fifo_used(&ca->unused)); 482 483 if (cl) { 484 closure_wait(&ca->set->bucket_wait, cl); 485 486 if (closure_blocking(cl)) { 487 mutex_unlock(&ca->set->bucket_lock); 488 closure_sync(cl); 489 mutex_lock(&ca->set->bucket_lock); 490 goto again; 491 } 492 } 493 494 return -1; 495 } 496 497 void bch_bucket_free(struct cache_set *c, struct bkey *k) 498 { 499 unsigned i; 500 501 for (i = 0; i < KEY_PTRS(k); i++) { 502 struct bucket *b = PTR_BUCKET(c, k, i); 503 504 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 505 SET_GC_SECTORS_USED(b, 0); 506 bch_bucket_add_unused(PTR_CACHE(c, k, i), b); 507 } 508 } 509 510 int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark, 511 struct bkey *k, int n, struct closure *cl) 512 { 513 int i; 514 515 lockdep_assert_held(&c->bucket_lock); 516 BUG_ON(!n || n > c->caches_loaded || n > 8); 517 518 bkey_init(k); 519 520 /* sort by free space/prio of oldest data in caches */ 521 522 for (i = 0; i < n; i++) { 523 struct cache *ca = c->cache_by_alloc[i]; 524 long b = bch_bucket_alloc(ca, watermark, cl); 525 526 if (b == -1) 527 goto err; 528 529 k->ptr[i] = PTR(ca->buckets[b].gen, 530 bucket_to_sector(c, b), 531 ca->sb.nr_this_dev); 532 533 SET_KEY_PTRS(k, i + 1); 534 } 535 536 return 0; 537 err: 538 bch_bucket_free(c, k); 539 __bkey_put(c, k); 540 return -1; 541 } 542 543 int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark, 544 struct bkey *k, int n, struct closure *cl) 545 { 546 int ret; 547 mutex_lock(&c->bucket_lock); 548 ret = __bch_bucket_alloc_set(c, watermark, k, n, cl); 549 mutex_unlock(&c->bucket_lock); 550 return ret; 551 } 552 553 /* Init */ 554 555 void bch_cache_allocator_exit(struct cache *ca) 556 { 557 struct discard *d; 558 559 while (!list_empty(&ca->discards)) { 560 d = list_first_entry(&ca->discards, struct discard, list); 561 cancel_work_sync(&d->work); 562 list_del(&d->list); 563 kfree(d); 564 } 565 } 566 567 int bch_cache_allocator_init(struct cache *ca) 568 { 569 unsigned i; 570 571 /* 572 * Reserve: 573 * Prio/gen writes first 574 * Then 8 for btree allocations 575 * Then half for the moving garbage collector 576 */ 577 578 ca->watermark[WATERMARK_PRIO] = 0; 579 580 ca->watermark[WATERMARK_METADATA] = prio_buckets(ca); 581 582 ca->watermark[WATERMARK_MOVINGGC] = 8 + 583 ca->watermark[WATERMARK_METADATA]; 584 585 ca->watermark[WATERMARK_NONE] = ca->free.size / 2 + 586 ca->watermark[WATERMARK_MOVINGGC]; 587 588 for (i = 0; i < MAX_IN_FLIGHT_DISCARDS; i++) { 589 struct discard *d = kzalloc(sizeof(*d), GFP_KERNEL); 590 if (!d) 591 return -ENOMEM; 592 593 d->ca = ca; 594 INIT_WORK(&d->work, discard_finish); 595 list_add(&d->list, &ca->discards); 596 } 597 598 return 0; 599 } 600