xref: /openbmc/linux/drivers/md/bcache/alloc.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * Primary bucket allocation code
3  *
4  * Copyright 2012 Google, Inc.
5  *
6  * Allocation in bcache is done in terms of buckets:
7  *
8  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9  * btree pointers - they must match for the pointer to be considered valid.
10  *
11  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12  * bucket simply by incrementing its gen.
13  *
14  * The gens (along with the priorities; it's really the gens are important but
15  * the code is named as if it's the priorities) are written in an arbitrary list
16  * of buckets on disk, with a pointer to them in the journal header.
17  *
18  * When we invalidate a bucket, we have to write its new gen to disk and wait
19  * for that write to complete before we use it - otherwise after a crash we
20  * could have pointers that appeared to be good but pointed to data that had
21  * been overwritten.
22  *
23  * Since the gens and priorities are all stored contiguously on disk, we can
24  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25  * call prio_write(), and when prio_write() finishes we pull buckets off the
26  * free_inc list and optionally discard them.
27  *
28  * free_inc isn't the only freelist - if it was, we'd often to sleep while
29  * priorities and gens were being written before we could allocate. c->free is a
30  * smaller freelist, and buckets on that list are always ready to be used.
31  *
32  * If we've got discards enabled, that happens when a bucket moves from the
33  * free_inc list to the free list.
34  *
35  * There is another freelist, because sometimes we have buckets that we know
36  * have nothing pointing into them - these we can reuse without waiting for
37  * priorities to be rewritten. These come from freed btree nodes and buckets
38  * that garbage collection discovered no longer had valid keys pointing into
39  * them (because they were overwritten). That's the unused list - buckets on the
40  * unused list move to the free list, optionally being discarded in the process.
41  *
42  * It's also important to ensure that gens don't wrap around - with respect to
43  * either the oldest gen in the btree or the gen on disk. This is quite
44  * difficult to do in practice, but we explicitly guard against it anyways - if
45  * a bucket is in danger of wrapping around we simply skip invalidating it that
46  * time around, and we garbage collect or rewrite the priorities sooner than we
47  * would have otherwise.
48  *
49  * bch_bucket_alloc() allocates a single bucket from a specific cache.
50  *
51  * bch_bucket_alloc_set() allocates one or more buckets from different caches
52  * out of a cache set.
53  *
54  * free_some_buckets() drives all the processes described above. It's called
55  * from bch_bucket_alloc() and a few other places that need to make sure free
56  * buckets are ready.
57  *
58  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59  * invalidated, and then invalidate them and stick them on the free_inc list -
60  * in either lru or fifo order.
61  */
62 
63 #include "bcache.h"
64 #include "btree.h"
65 
66 #include <linux/blkdev.h>
67 #include <linux/kthread.h>
68 #include <linux/random.h>
69 #include <trace/events/bcache.h>
70 
71 /* Bucket heap / gen */
72 
73 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
74 {
75 	uint8_t ret = ++b->gen;
76 
77 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
78 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
79 
80 	return ret;
81 }
82 
83 void bch_rescale_priorities(struct cache_set *c, int sectors)
84 {
85 	struct cache *ca;
86 	struct bucket *b;
87 	unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
88 	unsigned i;
89 	int r;
90 
91 	atomic_sub(sectors, &c->rescale);
92 
93 	do {
94 		r = atomic_read(&c->rescale);
95 
96 		if (r >= 0)
97 			return;
98 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
99 
100 	mutex_lock(&c->bucket_lock);
101 
102 	c->min_prio = USHRT_MAX;
103 
104 	for_each_cache(ca, c, i)
105 		for_each_bucket(b, ca)
106 			if (b->prio &&
107 			    b->prio != BTREE_PRIO &&
108 			    !atomic_read(&b->pin)) {
109 				b->prio--;
110 				c->min_prio = min(c->min_prio, b->prio);
111 			}
112 
113 	mutex_unlock(&c->bucket_lock);
114 }
115 
116 /*
117  * Background allocation thread: scans for buckets to be invalidated,
118  * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
119  * then optionally issues discard commands to the newly free buckets, then puts
120  * them on the various freelists.
121  */
122 
123 static inline bool can_inc_bucket_gen(struct bucket *b)
124 {
125 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
126 }
127 
128 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
129 {
130 	BUG_ON(!ca->set->gc_mark_valid);
131 
132 	return (!GC_MARK(b) ||
133 		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
134 		!atomic_read(&b->pin) &&
135 		can_inc_bucket_gen(b);
136 }
137 
138 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
139 {
140 	lockdep_assert_held(&ca->set->bucket_lock);
141 	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
142 
143 	if (GC_SECTORS_USED(b))
144 		trace_bcache_invalidate(ca, b - ca->buckets);
145 
146 	bch_inc_gen(ca, b);
147 	b->prio = INITIAL_PRIO;
148 	atomic_inc(&b->pin);
149 }
150 
151 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
152 {
153 	__bch_invalidate_one_bucket(ca, b);
154 
155 	fifo_push(&ca->free_inc, b - ca->buckets);
156 }
157 
158 /*
159  * Determines what order we're going to reuse buckets, smallest bucket_prio()
160  * first: we also take into account the number of sectors of live data in that
161  * bucket, and in order for that multiply to make sense we have to scale bucket
162  *
163  * Thus, we scale the bucket priorities so that the bucket with the smallest
164  * prio is worth 1/8th of what INITIAL_PRIO is worth.
165  */
166 
167 #define bucket_prio(b)							\
168 ({									\
169 	unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
170 									\
171 	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
172 })
173 
174 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
175 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
176 
177 static void invalidate_buckets_lru(struct cache *ca)
178 {
179 	struct bucket *b;
180 	ssize_t i;
181 
182 	ca->heap.used = 0;
183 
184 	for_each_bucket(b, ca) {
185 		if (!bch_can_invalidate_bucket(ca, b))
186 			continue;
187 
188 		if (!heap_full(&ca->heap))
189 			heap_add(&ca->heap, b, bucket_max_cmp);
190 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
191 			ca->heap.data[0] = b;
192 			heap_sift(&ca->heap, 0, bucket_max_cmp);
193 		}
194 	}
195 
196 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
197 		heap_sift(&ca->heap, i, bucket_min_cmp);
198 
199 	while (!fifo_full(&ca->free_inc)) {
200 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
201 			/*
202 			 * We don't want to be calling invalidate_buckets()
203 			 * multiple times when it can't do anything
204 			 */
205 			ca->invalidate_needs_gc = 1;
206 			wake_up_gc(ca->set);
207 			return;
208 		}
209 
210 		bch_invalidate_one_bucket(ca, b);
211 	}
212 }
213 
214 static void invalidate_buckets_fifo(struct cache *ca)
215 {
216 	struct bucket *b;
217 	size_t checked = 0;
218 
219 	while (!fifo_full(&ca->free_inc)) {
220 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
221 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
222 			ca->fifo_last_bucket = ca->sb.first_bucket;
223 
224 		b = ca->buckets + ca->fifo_last_bucket++;
225 
226 		if (bch_can_invalidate_bucket(ca, b))
227 			bch_invalidate_one_bucket(ca, b);
228 
229 		if (++checked >= ca->sb.nbuckets) {
230 			ca->invalidate_needs_gc = 1;
231 			wake_up_gc(ca->set);
232 			return;
233 		}
234 	}
235 }
236 
237 static void invalidate_buckets_random(struct cache *ca)
238 {
239 	struct bucket *b;
240 	size_t checked = 0;
241 
242 	while (!fifo_full(&ca->free_inc)) {
243 		size_t n;
244 		get_random_bytes(&n, sizeof(n));
245 
246 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
247 		n += ca->sb.first_bucket;
248 
249 		b = ca->buckets + n;
250 
251 		if (bch_can_invalidate_bucket(ca, b))
252 			bch_invalidate_one_bucket(ca, b);
253 
254 		if (++checked >= ca->sb.nbuckets / 2) {
255 			ca->invalidate_needs_gc = 1;
256 			wake_up_gc(ca->set);
257 			return;
258 		}
259 	}
260 }
261 
262 static void invalidate_buckets(struct cache *ca)
263 {
264 	BUG_ON(ca->invalidate_needs_gc);
265 
266 	switch (CACHE_REPLACEMENT(&ca->sb)) {
267 	case CACHE_REPLACEMENT_LRU:
268 		invalidate_buckets_lru(ca);
269 		break;
270 	case CACHE_REPLACEMENT_FIFO:
271 		invalidate_buckets_fifo(ca);
272 		break;
273 	case CACHE_REPLACEMENT_RANDOM:
274 		invalidate_buckets_random(ca);
275 		break;
276 	}
277 }
278 
279 #define allocator_wait(ca, cond)					\
280 do {									\
281 	while (1) {							\
282 		set_current_state(TASK_INTERRUPTIBLE);			\
283 		if (cond)						\
284 			break;						\
285 									\
286 		mutex_unlock(&(ca)->set->bucket_lock);			\
287 		if (kthread_should_stop())				\
288 			return 0;					\
289 									\
290 		schedule();						\
291 		mutex_lock(&(ca)->set->bucket_lock);			\
292 	}								\
293 	__set_current_state(TASK_RUNNING);				\
294 } while (0)
295 
296 static int bch_allocator_push(struct cache *ca, long bucket)
297 {
298 	unsigned i;
299 
300 	/* Prios/gens are actually the most important reserve */
301 	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
302 		return true;
303 
304 	for (i = 0; i < RESERVE_NR; i++)
305 		if (fifo_push(&ca->free[i], bucket))
306 			return true;
307 
308 	return false;
309 }
310 
311 static int bch_allocator_thread(void *arg)
312 {
313 	struct cache *ca = arg;
314 
315 	mutex_lock(&ca->set->bucket_lock);
316 
317 	while (1) {
318 		/*
319 		 * First, we pull buckets off of the unused and free_inc lists,
320 		 * possibly issue discards to them, then we add the bucket to
321 		 * the free list:
322 		 */
323 		while (!fifo_empty(&ca->free_inc)) {
324 			long bucket;
325 
326 			fifo_pop(&ca->free_inc, bucket);
327 
328 			if (ca->discard) {
329 				mutex_unlock(&ca->set->bucket_lock);
330 				blkdev_issue_discard(ca->bdev,
331 					bucket_to_sector(ca->set, bucket),
332 					ca->sb.bucket_size, GFP_KERNEL, 0);
333 				mutex_lock(&ca->set->bucket_lock);
334 			}
335 
336 			allocator_wait(ca, bch_allocator_push(ca, bucket));
337 			wake_up(&ca->set->btree_cache_wait);
338 			wake_up(&ca->set->bucket_wait);
339 		}
340 
341 		/*
342 		 * We've run out of free buckets, we need to find some buckets
343 		 * we can invalidate. First, invalidate them in memory and add
344 		 * them to the free_inc list:
345 		 */
346 
347 retry_invalidate:
348 		allocator_wait(ca, ca->set->gc_mark_valid &&
349 			       !ca->invalidate_needs_gc);
350 		invalidate_buckets(ca);
351 
352 		/*
353 		 * Now, we write their new gens to disk so we can start writing
354 		 * new stuff to them:
355 		 */
356 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
357 		if (CACHE_SYNC(&ca->set->sb)) {
358 			/*
359 			 * This could deadlock if an allocation with a btree
360 			 * node locked ever blocked - having the btree node
361 			 * locked would block garbage collection, but here we're
362 			 * waiting on garbage collection before we invalidate
363 			 * and free anything.
364 			 *
365 			 * But this should be safe since the btree code always
366 			 * uses btree_check_reserve() before allocating now, and
367 			 * if it fails it blocks without btree nodes locked.
368 			 */
369 			if (!fifo_full(&ca->free_inc))
370 				goto retry_invalidate;
371 
372 			bch_prio_write(ca);
373 		}
374 	}
375 }
376 
377 /* Allocation */
378 
379 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
380 {
381 	DEFINE_WAIT(w);
382 	struct bucket *b;
383 	long r;
384 
385 	/* fastpath */
386 	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
387 	    fifo_pop(&ca->free[reserve], r))
388 		goto out;
389 
390 	if (!wait) {
391 		trace_bcache_alloc_fail(ca, reserve);
392 		return -1;
393 	}
394 
395 	do {
396 		prepare_to_wait(&ca->set->bucket_wait, &w,
397 				TASK_UNINTERRUPTIBLE);
398 
399 		mutex_unlock(&ca->set->bucket_lock);
400 		schedule();
401 		mutex_lock(&ca->set->bucket_lock);
402 	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
403 		 !fifo_pop(&ca->free[reserve], r));
404 
405 	finish_wait(&ca->set->bucket_wait, &w);
406 out:
407 	wake_up_process(ca->alloc_thread);
408 
409 	trace_bcache_alloc(ca, reserve);
410 
411 	if (expensive_debug_checks(ca->set)) {
412 		size_t iter;
413 		long i;
414 		unsigned j;
415 
416 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
417 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
418 
419 		for (j = 0; j < RESERVE_NR; j++)
420 			fifo_for_each(i, &ca->free[j], iter)
421 				BUG_ON(i == r);
422 		fifo_for_each(i, &ca->free_inc, iter)
423 			BUG_ON(i == r);
424 	}
425 
426 	b = ca->buckets + r;
427 
428 	BUG_ON(atomic_read(&b->pin) != 1);
429 
430 	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
431 
432 	if (reserve <= RESERVE_PRIO) {
433 		SET_GC_MARK(b, GC_MARK_METADATA);
434 		SET_GC_MOVE(b, 0);
435 		b->prio = BTREE_PRIO;
436 	} else {
437 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
438 		SET_GC_MOVE(b, 0);
439 		b->prio = INITIAL_PRIO;
440 	}
441 
442 	return r;
443 }
444 
445 void __bch_bucket_free(struct cache *ca, struct bucket *b)
446 {
447 	SET_GC_MARK(b, 0);
448 	SET_GC_SECTORS_USED(b, 0);
449 }
450 
451 void bch_bucket_free(struct cache_set *c, struct bkey *k)
452 {
453 	unsigned i;
454 
455 	for (i = 0; i < KEY_PTRS(k); i++)
456 		__bch_bucket_free(PTR_CACHE(c, k, i),
457 				  PTR_BUCKET(c, k, i));
458 }
459 
460 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
461 			   struct bkey *k, int n, bool wait)
462 {
463 	int i;
464 
465 	lockdep_assert_held(&c->bucket_lock);
466 	BUG_ON(!n || n > c->caches_loaded || n > 8);
467 
468 	bkey_init(k);
469 
470 	/* sort by free space/prio of oldest data in caches */
471 
472 	for (i = 0; i < n; i++) {
473 		struct cache *ca = c->cache_by_alloc[i];
474 		long b = bch_bucket_alloc(ca, reserve, wait);
475 
476 		if (b == -1)
477 			goto err;
478 
479 		k->ptr[i] = PTR(ca->buckets[b].gen,
480 				bucket_to_sector(c, b),
481 				ca->sb.nr_this_dev);
482 
483 		SET_KEY_PTRS(k, i + 1);
484 	}
485 
486 	return 0;
487 err:
488 	bch_bucket_free(c, k);
489 	bkey_put(c, k);
490 	return -1;
491 }
492 
493 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
494 			 struct bkey *k, int n, bool wait)
495 {
496 	int ret;
497 	mutex_lock(&c->bucket_lock);
498 	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
499 	mutex_unlock(&c->bucket_lock);
500 	return ret;
501 }
502 
503 /* Sector allocator */
504 
505 struct open_bucket {
506 	struct list_head	list;
507 	unsigned		last_write_point;
508 	unsigned		sectors_free;
509 	BKEY_PADDED(key);
510 };
511 
512 /*
513  * We keep multiple buckets open for writes, and try to segregate different
514  * write streams for better cache utilization: first we look for a bucket where
515  * the last write to it was sequential with the current write, and failing that
516  * we look for a bucket that was last used by the same task.
517  *
518  * The ideas is if you've got multiple tasks pulling data into the cache at the
519  * same time, you'll get better cache utilization if you try to segregate their
520  * data and preserve locality.
521  *
522  * For example, say you've starting Firefox at the same time you're copying a
523  * bunch of files. Firefox will likely end up being fairly hot and stay in the
524  * cache awhile, but the data you copied might not be; if you wrote all that
525  * data to the same buckets it'd get invalidated at the same time.
526  *
527  * Both of those tasks will be doing fairly random IO so we can't rely on
528  * detecting sequential IO to segregate their data, but going off of the task
529  * should be a sane heuristic.
530  */
531 static struct open_bucket *pick_data_bucket(struct cache_set *c,
532 					    const struct bkey *search,
533 					    unsigned write_point,
534 					    struct bkey *alloc)
535 {
536 	struct open_bucket *ret, *ret_task = NULL;
537 
538 	list_for_each_entry_reverse(ret, &c->data_buckets, list)
539 		if (!bkey_cmp(&ret->key, search))
540 			goto found;
541 		else if (ret->last_write_point == write_point)
542 			ret_task = ret;
543 
544 	ret = ret_task ?: list_first_entry(&c->data_buckets,
545 					   struct open_bucket, list);
546 found:
547 	if (!ret->sectors_free && KEY_PTRS(alloc)) {
548 		ret->sectors_free = c->sb.bucket_size;
549 		bkey_copy(&ret->key, alloc);
550 		bkey_init(alloc);
551 	}
552 
553 	if (!ret->sectors_free)
554 		ret = NULL;
555 
556 	return ret;
557 }
558 
559 /*
560  * Allocates some space in the cache to write to, and k to point to the newly
561  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
562  * end of the newly allocated space).
563  *
564  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
565  * sectors were actually allocated.
566  *
567  * If s->writeback is true, will not fail.
568  */
569 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
570 		       unsigned write_point, unsigned write_prio, bool wait)
571 {
572 	struct open_bucket *b;
573 	BKEY_PADDED(key) alloc;
574 	unsigned i;
575 
576 	/*
577 	 * We might have to allocate a new bucket, which we can't do with a
578 	 * spinlock held. So if we have to allocate, we drop the lock, allocate
579 	 * and then retry. KEY_PTRS() indicates whether alloc points to
580 	 * allocated bucket(s).
581 	 */
582 
583 	bkey_init(&alloc.key);
584 	spin_lock(&c->data_bucket_lock);
585 
586 	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
587 		unsigned watermark = write_prio
588 			? RESERVE_MOVINGGC
589 			: RESERVE_NONE;
590 
591 		spin_unlock(&c->data_bucket_lock);
592 
593 		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
594 			return false;
595 
596 		spin_lock(&c->data_bucket_lock);
597 	}
598 
599 	/*
600 	 * If we had to allocate, we might race and not need to allocate the
601 	 * second time we call find_data_bucket(). If we allocated a bucket but
602 	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
603 	 */
604 	if (KEY_PTRS(&alloc.key))
605 		bkey_put(c, &alloc.key);
606 
607 	for (i = 0; i < KEY_PTRS(&b->key); i++)
608 		EBUG_ON(ptr_stale(c, &b->key, i));
609 
610 	/* Set up the pointer to the space we're allocating: */
611 
612 	for (i = 0; i < KEY_PTRS(&b->key); i++)
613 		k->ptr[i] = b->key.ptr[i];
614 
615 	sectors = min(sectors, b->sectors_free);
616 
617 	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
618 	SET_KEY_SIZE(k, sectors);
619 	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
620 
621 	/*
622 	 * Move b to the end of the lru, and keep track of what this bucket was
623 	 * last used for:
624 	 */
625 	list_move_tail(&b->list, &c->data_buckets);
626 	bkey_copy_key(&b->key, k);
627 	b->last_write_point = write_point;
628 
629 	b->sectors_free	-= sectors;
630 
631 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
632 		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
633 
634 		atomic_long_add(sectors,
635 				&PTR_CACHE(c, &b->key, i)->sectors_written);
636 	}
637 
638 	if (b->sectors_free < c->sb.block_size)
639 		b->sectors_free = 0;
640 
641 	/*
642 	 * k takes refcounts on the buckets it points to until it's inserted
643 	 * into the btree, but if we're done with this bucket we just transfer
644 	 * get_data_bucket()'s refcount.
645 	 */
646 	if (b->sectors_free)
647 		for (i = 0; i < KEY_PTRS(&b->key); i++)
648 			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
649 
650 	spin_unlock(&c->data_bucket_lock);
651 	return true;
652 }
653 
654 /* Init */
655 
656 void bch_open_buckets_free(struct cache_set *c)
657 {
658 	struct open_bucket *b;
659 
660 	while (!list_empty(&c->data_buckets)) {
661 		b = list_first_entry(&c->data_buckets,
662 				     struct open_bucket, list);
663 		list_del(&b->list);
664 		kfree(b);
665 	}
666 }
667 
668 int bch_open_buckets_alloc(struct cache_set *c)
669 {
670 	int i;
671 
672 	spin_lock_init(&c->data_bucket_lock);
673 
674 	for (i = 0; i < 6; i++) {
675 		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
676 		if (!b)
677 			return -ENOMEM;
678 
679 		list_add(&b->list, &c->data_buckets);
680 	}
681 
682 	return 0;
683 }
684 
685 int bch_cache_allocator_start(struct cache *ca)
686 {
687 	struct task_struct *k = kthread_run(bch_allocator_thread,
688 					    ca, "bcache_allocator");
689 	if (IS_ERR(k))
690 		return PTR_ERR(k);
691 
692 	ca->alloc_thread = k;
693 	return 0;
694 }
695