xref: /openbmc/linux/drivers/md/bcache/alloc.c (revision c4ee0af3)
1 /*
2  * Primary bucket allocation code
3  *
4  * Copyright 2012 Google, Inc.
5  *
6  * Allocation in bcache is done in terms of buckets:
7  *
8  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9  * btree pointers - they must match for the pointer to be considered valid.
10  *
11  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12  * bucket simply by incrementing its gen.
13  *
14  * The gens (along with the priorities; it's really the gens are important but
15  * the code is named as if it's the priorities) are written in an arbitrary list
16  * of buckets on disk, with a pointer to them in the journal header.
17  *
18  * When we invalidate a bucket, we have to write its new gen to disk and wait
19  * for that write to complete before we use it - otherwise after a crash we
20  * could have pointers that appeared to be good but pointed to data that had
21  * been overwritten.
22  *
23  * Since the gens and priorities are all stored contiguously on disk, we can
24  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25  * call prio_write(), and when prio_write() finishes we pull buckets off the
26  * free_inc list and optionally discard them.
27  *
28  * free_inc isn't the only freelist - if it was, we'd often to sleep while
29  * priorities and gens were being written before we could allocate. c->free is a
30  * smaller freelist, and buckets on that list are always ready to be used.
31  *
32  * If we've got discards enabled, that happens when a bucket moves from the
33  * free_inc list to the free list.
34  *
35  * There is another freelist, because sometimes we have buckets that we know
36  * have nothing pointing into them - these we can reuse without waiting for
37  * priorities to be rewritten. These come from freed btree nodes and buckets
38  * that garbage collection discovered no longer had valid keys pointing into
39  * them (because they were overwritten). That's the unused list - buckets on the
40  * unused list move to the free list, optionally being discarded in the process.
41  *
42  * It's also important to ensure that gens don't wrap around - with respect to
43  * either the oldest gen in the btree or the gen on disk. This is quite
44  * difficult to do in practice, but we explicitly guard against it anyways - if
45  * a bucket is in danger of wrapping around we simply skip invalidating it that
46  * time around, and we garbage collect or rewrite the priorities sooner than we
47  * would have otherwise.
48  *
49  * bch_bucket_alloc() allocates a single bucket from a specific cache.
50  *
51  * bch_bucket_alloc_set() allocates one or more buckets from different caches
52  * out of a cache set.
53  *
54  * free_some_buckets() drives all the processes described above. It's called
55  * from bch_bucket_alloc() and a few other places that need to make sure free
56  * buckets are ready.
57  *
58  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59  * invalidated, and then invalidate them and stick them on the free_inc list -
60  * in either lru or fifo order.
61  */
62 
63 #include "bcache.h"
64 #include "btree.h"
65 
66 #include <linux/blkdev.h>
67 #include <linux/freezer.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
71 
72 /* Bucket heap / gen */
73 
74 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
75 {
76 	uint8_t ret = ++b->gen;
77 
78 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
79 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
80 
81 	if (CACHE_SYNC(&ca->set->sb)) {
82 		ca->need_save_prio = max(ca->need_save_prio,
83 					 bucket_disk_gen(b));
84 		WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX);
85 	}
86 
87 	return ret;
88 }
89 
90 void bch_rescale_priorities(struct cache_set *c, int sectors)
91 {
92 	struct cache *ca;
93 	struct bucket *b;
94 	unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
95 	unsigned i;
96 	int r;
97 
98 	atomic_sub(sectors, &c->rescale);
99 
100 	do {
101 		r = atomic_read(&c->rescale);
102 
103 		if (r >= 0)
104 			return;
105 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
106 
107 	mutex_lock(&c->bucket_lock);
108 
109 	c->min_prio = USHRT_MAX;
110 
111 	for_each_cache(ca, c, i)
112 		for_each_bucket(b, ca)
113 			if (b->prio &&
114 			    b->prio != BTREE_PRIO &&
115 			    !atomic_read(&b->pin)) {
116 				b->prio--;
117 				c->min_prio = min(c->min_prio, b->prio);
118 			}
119 
120 	mutex_unlock(&c->bucket_lock);
121 }
122 
123 /* Allocation */
124 
125 static inline bool can_inc_bucket_gen(struct bucket *b)
126 {
127 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX &&
128 		bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX;
129 }
130 
131 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b)
132 {
133 	BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b));
134 
135 	if (fifo_used(&ca->free) > ca->watermark[WATERMARK_MOVINGGC] &&
136 	    CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO)
137 		return false;
138 
139 	b->prio = 0;
140 
141 	if (can_inc_bucket_gen(b) &&
142 	    fifo_push(&ca->unused, b - ca->buckets)) {
143 		atomic_inc(&b->pin);
144 		return true;
145 	}
146 
147 	return false;
148 }
149 
150 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b)
151 {
152 	return GC_MARK(b) == GC_MARK_RECLAIMABLE &&
153 		!atomic_read(&b->pin) &&
154 		can_inc_bucket_gen(b);
155 }
156 
157 static void invalidate_one_bucket(struct cache *ca, struct bucket *b)
158 {
159 	bch_inc_gen(ca, b);
160 	b->prio = INITIAL_PRIO;
161 	atomic_inc(&b->pin);
162 	fifo_push(&ca->free_inc, b - ca->buckets);
163 }
164 
165 #define bucket_prio(b)				\
166 	(((unsigned) (b->prio - ca->set->min_prio)) * GC_SECTORS_USED(b))
167 
168 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
169 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
170 
171 static void invalidate_buckets_lru(struct cache *ca)
172 {
173 	struct bucket *b;
174 	ssize_t i;
175 
176 	ca->heap.used = 0;
177 
178 	for_each_bucket(b, ca) {
179 		/*
180 		 * If we fill up the unused list, if we then return before
181 		 * adding anything to the free_inc list we'll skip writing
182 		 * prios/gens and just go back to allocating from the unused
183 		 * list:
184 		 */
185 		if (fifo_full(&ca->unused))
186 			return;
187 
188 		if (!can_invalidate_bucket(ca, b))
189 			continue;
190 
191 		if (!GC_SECTORS_USED(b) &&
192 		    bch_bucket_add_unused(ca, b))
193 			continue;
194 
195 		if (!heap_full(&ca->heap))
196 			heap_add(&ca->heap, b, bucket_max_cmp);
197 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
198 			ca->heap.data[0] = b;
199 			heap_sift(&ca->heap, 0, bucket_max_cmp);
200 		}
201 	}
202 
203 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
204 		heap_sift(&ca->heap, i, bucket_min_cmp);
205 
206 	while (!fifo_full(&ca->free_inc)) {
207 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
208 			/*
209 			 * We don't want to be calling invalidate_buckets()
210 			 * multiple times when it can't do anything
211 			 */
212 			ca->invalidate_needs_gc = 1;
213 			wake_up_gc(ca->set);
214 			return;
215 		}
216 
217 		invalidate_one_bucket(ca, b);
218 	}
219 }
220 
221 static void invalidate_buckets_fifo(struct cache *ca)
222 {
223 	struct bucket *b;
224 	size_t checked = 0;
225 
226 	while (!fifo_full(&ca->free_inc)) {
227 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
228 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
229 			ca->fifo_last_bucket = ca->sb.first_bucket;
230 
231 		b = ca->buckets + ca->fifo_last_bucket++;
232 
233 		if (can_invalidate_bucket(ca, b))
234 			invalidate_one_bucket(ca, b);
235 
236 		if (++checked >= ca->sb.nbuckets) {
237 			ca->invalidate_needs_gc = 1;
238 			wake_up_gc(ca->set);
239 			return;
240 		}
241 	}
242 }
243 
244 static void invalidate_buckets_random(struct cache *ca)
245 {
246 	struct bucket *b;
247 	size_t checked = 0;
248 
249 	while (!fifo_full(&ca->free_inc)) {
250 		size_t n;
251 		get_random_bytes(&n, sizeof(n));
252 
253 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
254 		n += ca->sb.first_bucket;
255 
256 		b = ca->buckets + n;
257 
258 		if (can_invalidate_bucket(ca, b))
259 			invalidate_one_bucket(ca, b);
260 
261 		if (++checked >= ca->sb.nbuckets / 2) {
262 			ca->invalidate_needs_gc = 1;
263 			wake_up_gc(ca->set);
264 			return;
265 		}
266 	}
267 }
268 
269 static void invalidate_buckets(struct cache *ca)
270 {
271 	if (ca->invalidate_needs_gc)
272 		return;
273 
274 	switch (CACHE_REPLACEMENT(&ca->sb)) {
275 	case CACHE_REPLACEMENT_LRU:
276 		invalidate_buckets_lru(ca);
277 		break;
278 	case CACHE_REPLACEMENT_FIFO:
279 		invalidate_buckets_fifo(ca);
280 		break;
281 	case CACHE_REPLACEMENT_RANDOM:
282 		invalidate_buckets_random(ca);
283 		break;
284 	}
285 
286 	trace_bcache_alloc_invalidate(ca);
287 }
288 
289 #define allocator_wait(ca, cond)					\
290 do {									\
291 	while (1) {							\
292 		set_current_state(TASK_INTERRUPTIBLE);			\
293 		if (cond)						\
294 			break;						\
295 									\
296 		mutex_unlock(&(ca)->set->bucket_lock);			\
297 		if (kthread_should_stop())				\
298 			return 0;					\
299 									\
300 		try_to_freeze();					\
301 		schedule();						\
302 		mutex_lock(&(ca)->set->bucket_lock);			\
303 	}								\
304 	__set_current_state(TASK_RUNNING);				\
305 } while (0)
306 
307 static int bch_allocator_thread(void *arg)
308 {
309 	struct cache *ca = arg;
310 
311 	mutex_lock(&ca->set->bucket_lock);
312 
313 	while (1) {
314 		/*
315 		 * First, we pull buckets off of the unused and free_inc lists,
316 		 * possibly issue discards to them, then we add the bucket to
317 		 * the free list:
318 		 */
319 		while (1) {
320 			long bucket;
321 
322 			if ((!atomic_read(&ca->set->prio_blocked) ||
323 			     !CACHE_SYNC(&ca->set->sb)) &&
324 			    !fifo_empty(&ca->unused))
325 				fifo_pop(&ca->unused, bucket);
326 			else if (!fifo_empty(&ca->free_inc))
327 				fifo_pop(&ca->free_inc, bucket);
328 			else
329 				break;
330 
331 			if (ca->discard) {
332 				mutex_unlock(&ca->set->bucket_lock);
333 				blkdev_issue_discard(ca->bdev,
334 					bucket_to_sector(ca->set, bucket),
335 					ca->sb.block_size, GFP_KERNEL, 0);
336 				mutex_lock(&ca->set->bucket_lock);
337 			}
338 
339 			allocator_wait(ca, !fifo_full(&ca->free));
340 
341 			fifo_push(&ca->free, bucket);
342 			wake_up(&ca->set->bucket_wait);
343 		}
344 
345 		/*
346 		 * We've run out of free buckets, we need to find some buckets
347 		 * we can invalidate. First, invalidate them in memory and add
348 		 * them to the free_inc list:
349 		 */
350 
351 		allocator_wait(ca, ca->set->gc_mark_valid &&
352 			       (ca->need_save_prio > 64 ||
353 				!ca->invalidate_needs_gc));
354 		invalidate_buckets(ca);
355 
356 		/*
357 		 * Now, we write their new gens to disk so we can start writing
358 		 * new stuff to them:
359 		 */
360 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
361 		if (CACHE_SYNC(&ca->set->sb) &&
362 		    (!fifo_empty(&ca->free_inc) ||
363 		     ca->need_save_prio > 64))
364 			bch_prio_write(ca);
365 	}
366 }
367 
368 long bch_bucket_alloc(struct cache *ca, unsigned watermark, bool wait)
369 {
370 	DEFINE_WAIT(w);
371 	struct bucket *b;
372 	long r;
373 
374 	/* fastpath */
375 	if (fifo_used(&ca->free) > ca->watermark[watermark]) {
376 		fifo_pop(&ca->free, r);
377 		goto out;
378 	}
379 
380 	if (!wait)
381 		return -1;
382 
383 	while (1) {
384 		if (fifo_used(&ca->free) > ca->watermark[watermark]) {
385 			fifo_pop(&ca->free, r);
386 			break;
387 		}
388 
389 		prepare_to_wait(&ca->set->bucket_wait, &w,
390 				TASK_UNINTERRUPTIBLE);
391 
392 		mutex_unlock(&ca->set->bucket_lock);
393 		schedule();
394 		mutex_lock(&ca->set->bucket_lock);
395 	}
396 
397 	finish_wait(&ca->set->bucket_wait, &w);
398 out:
399 	wake_up_process(ca->alloc_thread);
400 
401 	if (expensive_debug_checks(ca->set)) {
402 		size_t iter;
403 		long i;
404 
405 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
406 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
407 
408 		fifo_for_each(i, &ca->free, iter)
409 			BUG_ON(i == r);
410 		fifo_for_each(i, &ca->free_inc, iter)
411 			BUG_ON(i == r);
412 		fifo_for_each(i, &ca->unused, iter)
413 			BUG_ON(i == r);
414 	}
415 
416 	b = ca->buckets + r;
417 
418 	BUG_ON(atomic_read(&b->pin) != 1);
419 
420 	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
421 
422 	if (watermark <= WATERMARK_METADATA) {
423 		SET_GC_MARK(b, GC_MARK_METADATA);
424 		SET_GC_MOVE(b, 0);
425 		b->prio = BTREE_PRIO;
426 	} else {
427 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
428 		SET_GC_MOVE(b, 0);
429 		b->prio = INITIAL_PRIO;
430 	}
431 
432 	return r;
433 }
434 
435 void bch_bucket_free(struct cache_set *c, struct bkey *k)
436 {
437 	unsigned i;
438 
439 	for (i = 0; i < KEY_PTRS(k); i++) {
440 		struct bucket *b = PTR_BUCKET(c, k, i);
441 
442 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
443 		SET_GC_SECTORS_USED(b, 0);
444 		bch_bucket_add_unused(PTR_CACHE(c, k, i), b);
445 	}
446 }
447 
448 int __bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
449 			   struct bkey *k, int n, bool wait)
450 {
451 	int i;
452 
453 	lockdep_assert_held(&c->bucket_lock);
454 	BUG_ON(!n || n > c->caches_loaded || n > 8);
455 
456 	bkey_init(k);
457 
458 	/* sort by free space/prio of oldest data in caches */
459 
460 	for (i = 0; i < n; i++) {
461 		struct cache *ca = c->cache_by_alloc[i];
462 		long b = bch_bucket_alloc(ca, watermark, wait);
463 
464 		if (b == -1)
465 			goto err;
466 
467 		k->ptr[i] = PTR(ca->buckets[b].gen,
468 				bucket_to_sector(c, b),
469 				ca->sb.nr_this_dev);
470 
471 		SET_KEY_PTRS(k, i + 1);
472 	}
473 
474 	return 0;
475 err:
476 	bch_bucket_free(c, k);
477 	bkey_put(c, k);
478 	return -1;
479 }
480 
481 int bch_bucket_alloc_set(struct cache_set *c, unsigned watermark,
482 			 struct bkey *k, int n, bool wait)
483 {
484 	int ret;
485 	mutex_lock(&c->bucket_lock);
486 	ret = __bch_bucket_alloc_set(c, watermark, k, n, wait);
487 	mutex_unlock(&c->bucket_lock);
488 	return ret;
489 }
490 
491 /* Sector allocator */
492 
493 struct open_bucket {
494 	struct list_head	list;
495 	unsigned		last_write_point;
496 	unsigned		sectors_free;
497 	BKEY_PADDED(key);
498 };
499 
500 /*
501  * We keep multiple buckets open for writes, and try to segregate different
502  * write streams for better cache utilization: first we look for a bucket where
503  * the last write to it was sequential with the current write, and failing that
504  * we look for a bucket that was last used by the same task.
505  *
506  * The ideas is if you've got multiple tasks pulling data into the cache at the
507  * same time, you'll get better cache utilization if you try to segregate their
508  * data and preserve locality.
509  *
510  * For example, say you've starting Firefox at the same time you're copying a
511  * bunch of files. Firefox will likely end up being fairly hot and stay in the
512  * cache awhile, but the data you copied might not be; if you wrote all that
513  * data to the same buckets it'd get invalidated at the same time.
514  *
515  * Both of those tasks will be doing fairly random IO so we can't rely on
516  * detecting sequential IO to segregate their data, but going off of the task
517  * should be a sane heuristic.
518  */
519 static struct open_bucket *pick_data_bucket(struct cache_set *c,
520 					    const struct bkey *search,
521 					    unsigned write_point,
522 					    struct bkey *alloc)
523 {
524 	struct open_bucket *ret, *ret_task = NULL;
525 
526 	list_for_each_entry_reverse(ret, &c->data_buckets, list)
527 		if (!bkey_cmp(&ret->key, search))
528 			goto found;
529 		else if (ret->last_write_point == write_point)
530 			ret_task = ret;
531 
532 	ret = ret_task ?: list_first_entry(&c->data_buckets,
533 					   struct open_bucket, list);
534 found:
535 	if (!ret->sectors_free && KEY_PTRS(alloc)) {
536 		ret->sectors_free = c->sb.bucket_size;
537 		bkey_copy(&ret->key, alloc);
538 		bkey_init(alloc);
539 	}
540 
541 	if (!ret->sectors_free)
542 		ret = NULL;
543 
544 	return ret;
545 }
546 
547 /*
548  * Allocates some space in the cache to write to, and k to point to the newly
549  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
550  * end of the newly allocated space).
551  *
552  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
553  * sectors were actually allocated.
554  *
555  * If s->writeback is true, will not fail.
556  */
557 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
558 		       unsigned write_point, unsigned write_prio, bool wait)
559 {
560 	struct open_bucket *b;
561 	BKEY_PADDED(key) alloc;
562 	unsigned i;
563 
564 	/*
565 	 * We might have to allocate a new bucket, which we can't do with a
566 	 * spinlock held. So if we have to allocate, we drop the lock, allocate
567 	 * and then retry. KEY_PTRS() indicates whether alloc points to
568 	 * allocated bucket(s).
569 	 */
570 
571 	bkey_init(&alloc.key);
572 	spin_lock(&c->data_bucket_lock);
573 
574 	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
575 		unsigned watermark = write_prio
576 			? WATERMARK_MOVINGGC
577 			: WATERMARK_NONE;
578 
579 		spin_unlock(&c->data_bucket_lock);
580 
581 		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
582 			return false;
583 
584 		spin_lock(&c->data_bucket_lock);
585 	}
586 
587 	/*
588 	 * If we had to allocate, we might race and not need to allocate the
589 	 * second time we call find_data_bucket(). If we allocated a bucket but
590 	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
591 	 */
592 	if (KEY_PTRS(&alloc.key))
593 		bkey_put(c, &alloc.key);
594 
595 	for (i = 0; i < KEY_PTRS(&b->key); i++)
596 		EBUG_ON(ptr_stale(c, &b->key, i));
597 
598 	/* Set up the pointer to the space we're allocating: */
599 
600 	for (i = 0; i < KEY_PTRS(&b->key); i++)
601 		k->ptr[i] = b->key.ptr[i];
602 
603 	sectors = min(sectors, b->sectors_free);
604 
605 	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
606 	SET_KEY_SIZE(k, sectors);
607 	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
608 
609 	/*
610 	 * Move b to the end of the lru, and keep track of what this bucket was
611 	 * last used for:
612 	 */
613 	list_move_tail(&b->list, &c->data_buckets);
614 	bkey_copy_key(&b->key, k);
615 	b->last_write_point = write_point;
616 
617 	b->sectors_free	-= sectors;
618 
619 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
620 		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
621 
622 		atomic_long_add(sectors,
623 				&PTR_CACHE(c, &b->key, i)->sectors_written);
624 	}
625 
626 	if (b->sectors_free < c->sb.block_size)
627 		b->sectors_free = 0;
628 
629 	/*
630 	 * k takes refcounts on the buckets it points to until it's inserted
631 	 * into the btree, but if we're done with this bucket we just transfer
632 	 * get_data_bucket()'s refcount.
633 	 */
634 	if (b->sectors_free)
635 		for (i = 0; i < KEY_PTRS(&b->key); i++)
636 			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
637 
638 	spin_unlock(&c->data_bucket_lock);
639 	return true;
640 }
641 
642 /* Init */
643 
644 void bch_open_buckets_free(struct cache_set *c)
645 {
646 	struct open_bucket *b;
647 
648 	while (!list_empty(&c->data_buckets)) {
649 		b = list_first_entry(&c->data_buckets,
650 				     struct open_bucket, list);
651 		list_del(&b->list);
652 		kfree(b);
653 	}
654 }
655 
656 int bch_open_buckets_alloc(struct cache_set *c)
657 {
658 	int i;
659 
660 	spin_lock_init(&c->data_bucket_lock);
661 
662 	for (i = 0; i < 6; i++) {
663 		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
664 		if (!b)
665 			return -ENOMEM;
666 
667 		list_add(&b->list, &c->data_buckets);
668 	}
669 
670 	return 0;
671 }
672 
673 int bch_cache_allocator_start(struct cache *ca)
674 {
675 	struct task_struct *k = kthread_run(bch_allocator_thread,
676 					    ca, "bcache_allocator");
677 	if (IS_ERR(k))
678 		return PTR_ERR(k);
679 
680 	ca->alloc_thread = k;
681 	return 0;
682 }
683 
684 int bch_cache_allocator_init(struct cache *ca)
685 {
686 	/*
687 	 * Reserve:
688 	 * Prio/gen writes first
689 	 * Then 8 for btree allocations
690 	 * Then half for the moving garbage collector
691 	 */
692 
693 	ca->watermark[WATERMARK_PRIO] = 0;
694 
695 	ca->watermark[WATERMARK_METADATA] = prio_buckets(ca);
696 
697 	ca->watermark[WATERMARK_MOVINGGC] = 8 +
698 		ca->watermark[WATERMARK_METADATA];
699 
700 	ca->watermark[WATERMARK_NONE] = ca->free.size / 2 +
701 		ca->watermark[WATERMARK_MOVINGGC];
702 
703 	return 0;
704 }
705