xref: /openbmc/linux/drivers/md/bcache/alloc.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Primary bucket allocation code
4  *
5  * Copyright 2012 Google, Inc.
6  *
7  * Allocation in bcache is done in terms of buckets:
8  *
9  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
10  * btree pointers - they must match for the pointer to be considered valid.
11  *
12  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
13  * bucket simply by incrementing its gen.
14  *
15  * The gens (along with the priorities; it's really the gens are important but
16  * the code is named as if it's the priorities) are written in an arbitrary list
17  * of buckets on disk, with a pointer to them in the journal header.
18  *
19  * When we invalidate a bucket, we have to write its new gen to disk and wait
20  * for that write to complete before we use it - otherwise after a crash we
21  * could have pointers that appeared to be good but pointed to data that had
22  * been overwritten.
23  *
24  * Since the gens and priorities are all stored contiguously on disk, we can
25  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
26  * call prio_write(), and when prio_write() finishes we pull buckets off the
27  * free_inc list and optionally discard them.
28  *
29  * free_inc isn't the only freelist - if it was, we'd often to sleep while
30  * priorities and gens were being written before we could allocate. c->free is a
31  * smaller freelist, and buckets on that list are always ready to be used.
32  *
33  * If we've got discards enabled, that happens when a bucket moves from the
34  * free_inc list to the free list.
35  *
36  * There is another freelist, because sometimes we have buckets that we know
37  * have nothing pointing into them - these we can reuse without waiting for
38  * priorities to be rewritten. These come from freed btree nodes and buckets
39  * that garbage collection discovered no longer had valid keys pointing into
40  * them (because they were overwritten). That's the unused list - buckets on the
41  * unused list move to the free list, optionally being discarded in the process.
42  *
43  * It's also important to ensure that gens don't wrap around - with respect to
44  * either the oldest gen in the btree or the gen on disk. This is quite
45  * difficult to do in practice, but we explicitly guard against it anyways - if
46  * a bucket is in danger of wrapping around we simply skip invalidating it that
47  * time around, and we garbage collect or rewrite the priorities sooner than we
48  * would have otherwise.
49  *
50  * bch_bucket_alloc() allocates a single bucket from a specific cache.
51  *
52  * bch_bucket_alloc_set() allocates one or more buckets from different caches
53  * out of a cache set.
54  *
55  * free_some_buckets() drives all the processes described above. It's called
56  * from bch_bucket_alloc() and a few other places that need to make sure free
57  * buckets are ready.
58  *
59  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
60  * invalidated, and then invalidate them and stick them on the free_inc list -
61  * in either lru or fifo order.
62  */
63 
64 #include "bcache.h"
65 #include "btree.h"
66 
67 #include <linux/blkdev.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
71 
72 #define MAX_OPEN_BUCKETS 128
73 
74 /* Bucket heap / gen */
75 
76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
77 {
78 	uint8_t ret = ++b->gen;
79 
80 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
81 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
82 
83 	return ret;
84 }
85 
86 void bch_rescale_priorities(struct cache_set *c, int sectors)
87 {
88 	struct cache *ca;
89 	struct bucket *b;
90 	unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
91 	unsigned i;
92 	int r;
93 
94 	atomic_sub(sectors, &c->rescale);
95 
96 	do {
97 		r = atomic_read(&c->rescale);
98 
99 		if (r >= 0)
100 			return;
101 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
102 
103 	mutex_lock(&c->bucket_lock);
104 
105 	c->min_prio = USHRT_MAX;
106 
107 	for_each_cache(ca, c, i)
108 		for_each_bucket(b, ca)
109 			if (b->prio &&
110 			    b->prio != BTREE_PRIO &&
111 			    !atomic_read(&b->pin)) {
112 				b->prio--;
113 				c->min_prio = min(c->min_prio, b->prio);
114 			}
115 
116 	mutex_unlock(&c->bucket_lock);
117 }
118 
119 /*
120  * Background allocation thread: scans for buckets to be invalidated,
121  * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
122  * then optionally issues discard commands to the newly free buckets, then puts
123  * them on the various freelists.
124  */
125 
126 static inline bool can_inc_bucket_gen(struct bucket *b)
127 {
128 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
129 }
130 
131 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
132 {
133 	BUG_ON(!ca->set->gc_mark_valid);
134 
135 	return (!GC_MARK(b) ||
136 		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
137 		!atomic_read(&b->pin) &&
138 		can_inc_bucket_gen(b);
139 }
140 
141 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
142 {
143 	lockdep_assert_held(&ca->set->bucket_lock);
144 	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
145 
146 	if (GC_SECTORS_USED(b))
147 		trace_bcache_invalidate(ca, b - ca->buckets);
148 
149 	bch_inc_gen(ca, b);
150 	b->prio = INITIAL_PRIO;
151 	atomic_inc(&b->pin);
152 }
153 
154 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
155 {
156 	__bch_invalidate_one_bucket(ca, b);
157 
158 	fifo_push(&ca->free_inc, b - ca->buckets);
159 }
160 
161 /*
162  * Determines what order we're going to reuse buckets, smallest bucket_prio()
163  * first: we also take into account the number of sectors of live data in that
164  * bucket, and in order for that multiply to make sense we have to scale bucket
165  *
166  * Thus, we scale the bucket priorities so that the bucket with the smallest
167  * prio is worth 1/8th of what INITIAL_PRIO is worth.
168  */
169 
170 #define bucket_prio(b)							\
171 ({									\
172 	unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
173 									\
174 	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
175 })
176 
177 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
178 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
179 
180 static void invalidate_buckets_lru(struct cache *ca)
181 {
182 	struct bucket *b;
183 	ssize_t i;
184 
185 	ca->heap.used = 0;
186 
187 	for_each_bucket(b, ca) {
188 		if (!bch_can_invalidate_bucket(ca, b))
189 			continue;
190 
191 		if (!heap_full(&ca->heap))
192 			heap_add(&ca->heap, b, bucket_max_cmp);
193 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
194 			ca->heap.data[0] = b;
195 			heap_sift(&ca->heap, 0, bucket_max_cmp);
196 		}
197 	}
198 
199 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
200 		heap_sift(&ca->heap, i, bucket_min_cmp);
201 
202 	while (!fifo_full(&ca->free_inc)) {
203 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
204 			/*
205 			 * We don't want to be calling invalidate_buckets()
206 			 * multiple times when it can't do anything
207 			 */
208 			ca->invalidate_needs_gc = 1;
209 			wake_up_gc(ca->set);
210 			return;
211 		}
212 
213 		bch_invalidate_one_bucket(ca, b);
214 	}
215 }
216 
217 static void invalidate_buckets_fifo(struct cache *ca)
218 {
219 	struct bucket *b;
220 	size_t checked = 0;
221 
222 	while (!fifo_full(&ca->free_inc)) {
223 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
224 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
225 			ca->fifo_last_bucket = ca->sb.first_bucket;
226 
227 		b = ca->buckets + ca->fifo_last_bucket++;
228 
229 		if (bch_can_invalidate_bucket(ca, b))
230 			bch_invalidate_one_bucket(ca, b);
231 
232 		if (++checked >= ca->sb.nbuckets) {
233 			ca->invalidate_needs_gc = 1;
234 			wake_up_gc(ca->set);
235 			return;
236 		}
237 	}
238 }
239 
240 static void invalidate_buckets_random(struct cache *ca)
241 {
242 	struct bucket *b;
243 	size_t checked = 0;
244 
245 	while (!fifo_full(&ca->free_inc)) {
246 		size_t n;
247 		get_random_bytes(&n, sizeof(n));
248 
249 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
250 		n += ca->sb.first_bucket;
251 
252 		b = ca->buckets + n;
253 
254 		if (bch_can_invalidate_bucket(ca, b))
255 			bch_invalidate_one_bucket(ca, b);
256 
257 		if (++checked >= ca->sb.nbuckets / 2) {
258 			ca->invalidate_needs_gc = 1;
259 			wake_up_gc(ca->set);
260 			return;
261 		}
262 	}
263 }
264 
265 static void invalidate_buckets(struct cache *ca)
266 {
267 	BUG_ON(ca->invalidate_needs_gc);
268 
269 	switch (CACHE_REPLACEMENT(&ca->sb)) {
270 	case CACHE_REPLACEMENT_LRU:
271 		invalidate_buckets_lru(ca);
272 		break;
273 	case CACHE_REPLACEMENT_FIFO:
274 		invalidate_buckets_fifo(ca);
275 		break;
276 	case CACHE_REPLACEMENT_RANDOM:
277 		invalidate_buckets_random(ca);
278 		break;
279 	}
280 }
281 
282 #define allocator_wait(ca, cond)					\
283 do {									\
284 	while (1) {							\
285 		set_current_state(TASK_INTERRUPTIBLE);			\
286 		if (cond)						\
287 			break;						\
288 									\
289 		mutex_unlock(&(ca)->set->bucket_lock);			\
290 		if (kthread_should_stop()) {				\
291 			set_current_state(TASK_RUNNING);		\
292 			return 0;					\
293 		}							\
294 									\
295 		schedule();						\
296 		mutex_lock(&(ca)->set->bucket_lock);			\
297 	}								\
298 	__set_current_state(TASK_RUNNING);				\
299 } while (0)
300 
301 static int bch_allocator_push(struct cache *ca, long bucket)
302 {
303 	unsigned i;
304 
305 	/* Prios/gens are actually the most important reserve */
306 	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
307 		return true;
308 
309 	for (i = 0; i < RESERVE_NR; i++)
310 		if (fifo_push(&ca->free[i], bucket))
311 			return true;
312 
313 	return false;
314 }
315 
316 static int bch_allocator_thread(void *arg)
317 {
318 	struct cache *ca = arg;
319 
320 	mutex_lock(&ca->set->bucket_lock);
321 
322 	while (1) {
323 		/*
324 		 * First, we pull buckets off of the unused and free_inc lists,
325 		 * possibly issue discards to them, then we add the bucket to
326 		 * the free list:
327 		 */
328 		while (!fifo_empty(&ca->free_inc)) {
329 			long bucket;
330 
331 			fifo_pop(&ca->free_inc, bucket);
332 
333 			if (ca->discard) {
334 				mutex_unlock(&ca->set->bucket_lock);
335 				blkdev_issue_discard(ca->bdev,
336 					bucket_to_sector(ca->set, bucket),
337 					ca->sb.bucket_size, GFP_KERNEL, 0);
338 				mutex_lock(&ca->set->bucket_lock);
339 			}
340 
341 			allocator_wait(ca, bch_allocator_push(ca, bucket));
342 			wake_up(&ca->set->btree_cache_wait);
343 			wake_up(&ca->set->bucket_wait);
344 		}
345 
346 		/*
347 		 * We've run out of free buckets, we need to find some buckets
348 		 * we can invalidate. First, invalidate them in memory and add
349 		 * them to the free_inc list:
350 		 */
351 
352 retry_invalidate:
353 		allocator_wait(ca, ca->set->gc_mark_valid &&
354 			       !ca->invalidate_needs_gc);
355 		invalidate_buckets(ca);
356 
357 		/*
358 		 * Now, we write their new gens to disk so we can start writing
359 		 * new stuff to them:
360 		 */
361 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
362 		if (CACHE_SYNC(&ca->set->sb)) {
363 			/*
364 			 * This could deadlock if an allocation with a btree
365 			 * node locked ever blocked - having the btree node
366 			 * locked would block garbage collection, but here we're
367 			 * waiting on garbage collection before we invalidate
368 			 * and free anything.
369 			 *
370 			 * But this should be safe since the btree code always
371 			 * uses btree_check_reserve() before allocating now, and
372 			 * if it fails it blocks without btree nodes locked.
373 			 */
374 			if (!fifo_full(&ca->free_inc))
375 				goto retry_invalidate;
376 
377 			bch_prio_write(ca);
378 		}
379 	}
380 }
381 
382 /* Allocation */
383 
384 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
385 {
386 	DEFINE_WAIT(w);
387 	struct bucket *b;
388 	long r;
389 
390 	/* fastpath */
391 	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
392 	    fifo_pop(&ca->free[reserve], r))
393 		goto out;
394 
395 	if (!wait) {
396 		trace_bcache_alloc_fail(ca, reserve);
397 		return -1;
398 	}
399 
400 	do {
401 		prepare_to_wait(&ca->set->bucket_wait, &w,
402 				TASK_UNINTERRUPTIBLE);
403 
404 		mutex_unlock(&ca->set->bucket_lock);
405 		schedule();
406 		mutex_lock(&ca->set->bucket_lock);
407 	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
408 		 !fifo_pop(&ca->free[reserve], r));
409 
410 	finish_wait(&ca->set->bucket_wait, &w);
411 out:
412 	if (ca->alloc_thread)
413 		wake_up_process(ca->alloc_thread);
414 
415 	trace_bcache_alloc(ca, reserve);
416 
417 	if (expensive_debug_checks(ca->set)) {
418 		size_t iter;
419 		long i;
420 		unsigned j;
421 
422 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
423 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
424 
425 		for (j = 0; j < RESERVE_NR; j++)
426 			fifo_for_each(i, &ca->free[j], iter)
427 				BUG_ON(i == r);
428 		fifo_for_each(i, &ca->free_inc, iter)
429 			BUG_ON(i == r);
430 	}
431 
432 	b = ca->buckets + r;
433 
434 	BUG_ON(atomic_read(&b->pin) != 1);
435 
436 	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
437 
438 	if (reserve <= RESERVE_PRIO) {
439 		SET_GC_MARK(b, GC_MARK_METADATA);
440 		SET_GC_MOVE(b, 0);
441 		b->prio = BTREE_PRIO;
442 	} else {
443 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
444 		SET_GC_MOVE(b, 0);
445 		b->prio = INITIAL_PRIO;
446 	}
447 
448 	if (ca->set->avail_nbuckets > 0) {
449 		ca->set->avail_nbuckets--;
450 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
451 	}
452 
453 	return r;
454 }
455 
456 void __bch_bucket_free(struct cache *ca, struct bucket *b)
457 {
458 	SET_GC_MARK(b, 0);
459 	SET_GC_SECTORS_USED(b, 0);
460 
461 	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
462 		ca->set->avail_nbuckets++;
463 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
464 	}
465 }
466 
467 void bch_bucket_free(struct cache_set *c, struct bkey *k)
468 {
469 	unsigned i;
470 
471 	for (i = 0; i < KEY_PTRS(k); i++)
472 		__bch_bucket_free(PTR_CACHE(c, k, i),
473 				  PTR_BUCKET(c, k, i));
474 }
475 
476 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
477 			   struct bkey *k, int n, bool wait)
478 {
479 	int i;
480 
481 	lockdep_assert_held(&c->bucket_lock);
482 	BUG_ON(!n || n > c->caches_loaded || n > 8);
483 
484 	bkey_init(k);
485 
486 	/* sort by free space/prio of oldest data in caches */
487 
488 	for (i = 0; i < n; i++) {
489 		struct cache *ca = c->cache_by_alloc[i];
490 		long b = bch_bucket_alloc(ca, reserve, wait);
491 
492 		if (b == -1)
493 			goto err;
494 
495 		k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
496 				bucket_to_sector(c, b),
497 				ca->sb.nr_this_dev);
498 
499 		SET_KEY_PTRS(k, i + 1);
500 	}
501 
502 	return 0;
503 err:
504 	bch_bucket_free(c, k);
505 	bkey_put(c, k);
506 	return -1;
507 }
508 
509 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
510 			 struct bkey *k, int n, bool wait)
511 {
512 	int ret;
513 	mutex_lock(&c->bucket_lock);
514 	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
515 	mutex_unlock(&c->bucket_lock);
516 	return ret;
517 }
518 
519 /* Sector allocator */
520 
521 struct open_bucket {
522 	struct list_head	list;
523 	unsigned		last_write_point;
524 	unsigned		sectors_free;
525 	BKEY_PADDED(key);
526 };
527 
528 /*
529  * We keep multiple buckets open for writes, and try to segregate different
530  * write streams for better cache utilization: first we try to segregate flash
531  * only volume write streams from cached devices, secondly we look for a bucket
532  * where the last write to it was sequential with the current write, and
533  * failing that we look for a bucket that was last used by the same task.
534  *
535  * The ideas is if you've got multiple tasks pulling data into the cache at the
536  * same time, you'll get better cache utilization if you try to segregate their
537  * data and preserve locality.
538  *
539  * For example, dirty sectors of flash only volume is not reclaimable, if their
540  * dirty sectors mixed with dirty sectors of cached device, such buckets will
541  * be marked as dirty and won't be reclaimed, though the dirty data of cached
542  * device have been written back to backend device.
543  *
544  * And say you've starting Firefox at the same time you're copying a
545  * bunch of files. Firefox will likely end up being fairly hot and stay in the
546  * cache awhile, but the data you copied might not be; if you wrote all that
547  * data to the same buckets it'd get invalidated at the same time.
548  *
549  * Both of those tasks will be doing fairly random IO so we can't rely on
550  * detecting sequential IO to segregate their data, but going off of the task
551  * should be a sane heuristic.
552  */
553 static struct open_bucket *pick_data_bucket(struct cache_set *c,
554 					    const struct bkey *search,
555 					    unsigned write_point,
556 					    struct bkey *alloc)
557 {
558 	struct open_bucket *ret, *ret_task = NULL;
559 
560 	list_for_each_entry_reverse(ret, &c->data_buckets, list)
561 		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
562 		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
563 			continue;
564 		else if (!bkey_cmp(&ret->key, search))
565 			goto found;
566 		else if (ret->last_write_point == write_point)
567 			ret_task = ret;
568 
569 	ret = ret_task ?: list_first_entry(&c->data_buckets,
570 					   struct open_bucket, list);
571 found:
572 	if (!ret->sectors_free && KEY_PTRS(alloc)) {
573 		ret->sectors_free = c->sb.bucket_size;
574 		bkey_copy(&ret->key, alloc);
575 		bkey_init(alloc);
576 	}
577 
578 	if (!ret->sectors_free)
579 		ret = NULL;
580 
581 	return ret;
582 }
583 
584 /*
585  * Allocates some space in the cache to write to, and k to point to the newly
586  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
587  * end of the newly allocated space).
588  *
589  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
590  * sectors were actually allocated.
591  *
592  * If s->writeback is true, will not fail.
593  */
594 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
595 		       unsigned write_point, unsigned write_prio, bool wait)
596 {
597 	struct open_bucket *b;
598 	BKEY_PADDED(key) alloc;
599 	unsigned i;
600 
601 	/*
602 	 * We might have to allocate a new bucket, which we can't do with a
603 	 * spinlock held. So if we have to allocate, we drop the lock, allocate
604 	 * and then retry. KEY_PTRS() indicates whether alloc points to
605 	 * allocated bucket(s).
606 	 */
607 
608 	bkey_init(&alloc.key);
609 	spin_lock(&c->data_bucket_lock);
610 
611 	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
612 		unsigned watermark = write_prio
613 			? RESERVE_MOVINGGC
614 			: RESERVE_NONE;
615 
616 		spin_unlock(&c->data_bucket_lock);
617 
618 		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
619 			return false;
620 
621 		spin_lock(&c->data_bucket_lock);
622 	}
623 
624 	/*
625 	 * If we had to allocate, we might race and not need to allocate the
626 	 * second time we call pick_data_bucket(). If we allocated a bucket but
627 	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
628 	 */
629 	if (KEY_PTRS(&alloc.key))
630 		bkey_put(c, &alloc.key);
631 
632 	for (i = 0; i < KEY_PTRS(&b->key); i++)
633 		EBUG_ON(ptr_stale(c, &b->key, i));
634 
635 	/* Set up the pointer to the space we're allocating: */
636 
637 	for (i = 0; i < KEY_PTRS(&b->key); i++)
638 		k->ptr[i] = b->key.ptr[i];
639 
640 	sectors = min(sectors, b->sectors_free);
641 
642 	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
643 	SET_KEY_SIZE(k, sectors);
644 	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
645 
646 	/*
647 	 * Move b to the end of the lru, and keep track of what this bucket was
648 	 * last used for:
649 	 */
650 	list_move_tail(&b->list, &c->data_buckets);
651 	bkey_copy_key(&b->key, k);
652 	b->last_write_point = write_point;
653 
654 	b->sectors_free	-= sectors;
655 
656 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
657 		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
658 
659 		atomic_long_add(sectors,
660 				&PTR_CACHE(c, &b->key, i)->sectors_written);
661 	}
662 
663 	if (b->sectors_free < c->sb.block_size)
664 		b->sectors_free = 0;
665 
666 	/*
667 	 * k takes refcounts on the buckets it points to until it's inserted
668 	 * into the btree, but if we're done with this bucket we just transfer
669 	 * get_data_bucket()'s refcount.
670 	 */
671 	if (b->sectors_free)
672 		for (i = 0; i < KEY_PTRS(&b->key); i++)
673 			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
674 
675 	spin_unlock(&c->data_bucket_lock);
676 	return true;
677 }
678 
679 /* Init */
680 
681 void bch_open_buckets_free(struct cache_set *c)
682 {
683 	struct open_bucket *b;
684 
685 	while (!list_empty(&c->data_buckets)) {
686 		b = list_first_entry(&c->data_buckets,
687 				     struct open_bucket, list);
688 		list_del(&b->list);
689 		kfree(b);
690 	}
691 }
692 
693 int bch_open_buckets_alloc(struct cache_set *c)
694 {
695 	int i;
696 
697 	spin_lock_init(&c->data_bucket_lock);
698 
699 	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
700 		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
701 		if (!b)
702 			return -ENOMEM;
703 
704 		list_add(&b->list, &c->data_buckets);
705 	}
706 
707 	return 0;
708 }
709 
710 int bch_cache_allocator_start(struct cache *ca)
711 {
712 	struct task_struct *k = kthread_run(bch_allocator_thread,
713 					    ca, "bcache_allocator");
714 	if (IS_ERR(k))
715 		return PTR_ERR(k);
716 
717 	ca->alloc_thread = k;
718 	return 0;
719 }
720