1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Primary bucket allocation code 4 * 5 * Copyright 2012 Google, Inc. 6 * 7 * Allocation in bcache is done in terms of buckets: 8 * 9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 10 * btree pointers - they must match for the pointer to be considered valid. 11 * 12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 13 * bucket simply by incrementing its gen. 14 * 15 * The gens (along with the priorities; it's really the gens are important but 16 * the code is named as if it's the priorities) are written in an arbitrary list 17 * of buckets on disk, with a pointer to them in the journal header. 18 * 19 * When we invalidate a bucket, we have to write its new gen to disk and wait 20 * for that write to complete before we use it - otherwise after a crash we 21 * could have pointers that appeared to be good but pointed to data that had 22 * been overwritten. 23 * 24 * Since the gens and priorities are all stored contiguously on disk, we can 25 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 26 * call prio_write(), and when prio_write() finishes we pull buckets off the 27 * free_inc list and optionally discard them. 28 * 29 * free_inc isn't the only freelist - if it was, we'd often to sleep while 30 * priorities and gens were being written before we could allocate. c->free is a 31 * smaller freelist, and buckets on that list are always ready to be used. 32 * 33 * If we've got discards enabled, that happens when a bucket moves from the 34 * free_inc list to the free list. 35 * 36 * There is another freelist, because sometimes we have buckets that we know 37 * have nothing pointing into them - these we can reuse without waiting for 38 * priorities to be rewritten. These come from freed btree nodes and buckets 39 * that garbage collection discovered no longer had valid keys pointing into 40 * them (because they were overwritten). That's the unused list - buckets on the 41 * unused list move to the free list, optionally being discarded in the process. 42 * 43 * It's also important to ensure that gens don't wrap around - with respect to 44 * either the oldest gen in the btree or the gen on disk. This is quite 45 * difficult to do in practice, but we explicitly guard against it anyways - if 46 * a bucket is in danger of wrapping around we simply skip invalidating it that 47 * time around, and we garbage collect or rewrite the priorities sooner than we 48 * would have otherwise. 49 * 50 * bch_bucket_alloc() allocates a single bucket from a specific cache. 51 * 52 * bch_bucket_alloc_set() allocates one or more buckets from different caches 53 * out of a cache set. 54 * 55 * free_some_buckets() drives all the processes described above. It's called 56 * from bch_bucket_alloc() and a few other places that need to make sure free 57 * buckets are ready. 58 * 59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 60 * invalidated, and then invalidate them and stick them on the free_inc list - 61 * in either lru or fifo order. 62 */ 63 64 #include "bcache.h" 65 #include "btree.h" 66 67 #include <linux/blkdev.h> 68 #include <linux/kthread.h> 69 #include <linux/random.h> 70 #include <trace/events/bcache.h> 71 72 #define MAX_OPEN_BUCKETS 128 73 74 /* Bucket heap / gen */ 75 76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 77 { 78 uint8_t ret = ++b->gen; 79 80 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 81 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 82 83 return ret; 84 } 85 86 void bch_rescale_priorities(struct cache_set *c, int sectors) 87 { 88 struct cache *ca; 89 struct bucket *b; 90 unsigned next = c->nbuckets * c->sb.bucket_size / 1024; 91 unsigned i; 92 int r; 93 94 atomic_sub(sectors, &c->rescale); 95 96 do { 97 r = atomic_read(&c->rescale); 98 99 if (r >= 0) 100 return; 101 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 102 103 mutex_lock(&c->bucket_lock); 104 105 c->min_prio = USHRT_MAX; 106 107 for_each_cache(ca, c, i) 108 for_each_bucket(b, ca) 109 if (b->prio && 110 b->prio != BTREE_PRIO && 111 !atomic_read(&b->pin)) { 112 b->prio--; 113 c->min_prio = min(c->min_prio, b->prio); 114 } 115 116 mutex_unlock(&c->bucket_lock); 117 } 118 119 /* 120 * Background allocation thread: scans for buckets to be invalidated, 121 * invalidates them, rewrites prios/gens (marking them as invalidated on disk), 122 * then optionally issues discard commands to the newly free buckets, then puts 123 * them on the various freelists. 124 */ 125 126 static inline bool can_inc_bucket_gen(struct bucket *b) 127 { 128 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; 129 } 130 131 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) 132 { 133 BUG_ON(!ca->set->gc_mark_valid); 134 135 return (!GC_MARK(b) || 136 GC_MARK(b) == GC_MARK_RECLAIMABLE) && 137 !atomic_read(&b->pin) && 138 can_inc_bucket_gen(b); 139 } 140 141 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 142 { 143 lockdep_assert_held(&ca->set->bucket_lock); 144 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); 145 146 if (GC_SECTORS_USED(b)) 147 trace_bcache_invalidate(ca, b - ca->buckets); 148 149 bch_inc_gen(ca, b); 150 b->prio = INITIAL_PRIO; 151 atomic_inc(&b->pin); 152 } 153 154 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 155 { 156 __bch_invalidate_one_bucket(ca, b); 157 158 fifo_push(&ca->free_inc, b - ca->buckets); 159 } 160 161 /* 162 * Determines what order we're going to reuse buckets, smallest bucket_prio() 163 * first: we also take into account the number of sectors of live data in that 164 * bucket, and in order for that multiply to make sense we have to scale bucket 165 * 166 * Thus, we scale the bucket priorities so that the bucket with the smallest 167 * prio is worth 1/8th of what INITIAL_PRIO is worth. 168 */ 169 170 #define bucket_prio(b) \ 171 ({ \ 172 unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ 173 \ 174 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ 175 }) 176 177 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) 178 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) 179 180 static void invalidate_buckets_lru(struct cache *ca) 181 { 182 struct bucket *b; 183 ssize_t i; 184 185 ca->heap.used = 0; 186 187 for_each_bucket(b, ca) { 188 if (!bch_can_invalidate_bucket(ca, b)) 189 continue; 190 191 if (!heap_full(&ca->heap)) 192 heap_add(&ca->heap, b, bucket_max_cmp); 193 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { 194 ca->heap.data[0] = b; 195 heap_sift(&ca->heap, 0, bucket_max_cmp); 196 } 197 } 198 199 for (i = ca->heap.used / 2 - 1; i >= 0; --i) 200 heap_sift(&ca->heap, i, bucket_min_cmp); 201 202 while (!fifo_full(&ca->free_inc)) { 203 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { 204 /* 205 * We don't want to be calling invalidate_buckets() 206 * multiple times when it can't do anything 207 */ 208 ca->invalidate_needs_gc = 1; 209 wake_up_gc(ca->set); 210 return; 211 } 212 213 bch_invalidate_one_bucket(ca, b); 214 } 215 } 216 217 static void invalidate_buckets_fifo(struct cache *ca) 218 { 219 struct bucket *b; 220 size_t checked = 0; 221 222 while (!fifo_full(&ca->free_inc)) { 223 if (ca->fifo_last_bucket < ca->sb.first_bucket || 224 ca->fifo_last_bucket >= ca->sb.nbuckets) 225 ca->fifo_last_bucket = ca->sb.first_bucket; 226 227 b = ca->buckets + ca->fifo_last_bucket++; 228 229 if (bch_can_invalidate_bucket(ca, b)) 230 bch_invalidate_one_bucket(ca, b); 231 232 if (++checked >= ca->sb.nbuckets) { 233 ca->invalidate_needs_gc = 1; 234 wake_up_gc(ca->set); 235 return; 236 } 237 } 238 } 239 240 static void invalidate_buckets_random(struct cache *ca) 241 { 242 struct bucket *b; 243 size_t checked = 0; 244 245 while (!fifo_full(&ca->free_inc)) { 246 size_t n; 247 get_random_bytes(&n, sizeof(n)); 248 249 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 250 n += ca->sb.first_bucket; 251 252 b = ca->buckets + n; 253 254 if (bch_can_invalidate_bucket(ca, b)) 255 bch_invalidate_one_bucket(ca, b); 256 257 if (++checked >= ca->sb.nbuckets / 2) { 258 ca->invalidate_needs_gc = 1; 259 wake_up_gc(ca->set); 260 return; 261 } 262 } 263 } 264 265 static void invalidate_buckets(struct cache *ca) 266 { 267 BUG_ON(ca->invalidate_needs_gc); 268 269 switch (CACHE_REPLACEMENT(&ca->sb)) { 270 case CACHE_REPLACEMENT_LRU: 271 invalidate_buckets_lru(ca); 272 break; 273 case CACHE_REPLACEMENT_FIFO: 274 invalidate_buckets_fifo(ca); 275 break; 276 case CACHE_REPLACEMENT_RANDOM: 277 invalidate_buckets_random(ca); 278 break; 279 } 280 } 281 282 #define allocator_wait(ca, cond) \ 283 do { \ 284 while (1) { \ 285 set_current_state(TASK_INTERRUPTIBLE); \ 286 if (cond) \ 287 break; \ 288 \ 289 mutex_unlock(&(ca)->set->bucket_lock); \ 290 if (kthread_should_stop()) { \ 291 set_current_state(TASK_RUNNING); \ 292 return 0; \ 293 } \ 294 \ 295 schedule(); \ 296 mutex_lock(&(ca)->set->bucket_lock); \ 297 } \ 298 __set_current_state(TASK_RUNNING); \ 299 } while (0) 300 301 static int bch_allocator_push(struct cache *ca, long bucket) 302 { 303 unsigned i; 304 305 /* Prios/gens are actually the most important reserve */ 306 if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) 307 return true; 308 309 for (i = 0; i < RESERVE_NR; i++) 310 if (fifo_push(&ca->free[i], bucket)) 311 return true; 312 313 return false; 314 } 315 316 static int bch_allocator_thread(void *arg) 317 { 318 struct cache *ca = arg; 319 320 mutex_lock(&ca->set->bucket_lock); 321 322 while (1) { 323 /* 324 * First, we pull buckets off of the unused and free_inc lists, 325 * possibly issue discards to them, then we add the bucket to 326 * the free list: 327 */ 328 while (!fifo_empty(&ca->free_inc)) { 329 long bucket; 330 331 fifo_pop(&ca->free_inc, bucket); 332 333 if (ca->discard) { 334 mutex_unlock(&ca->set->bucket_lock); 335 blkdev_issue_discard(ca->bdev, 336 bucket_to_sector(ca->set, bucket), 337 ca->sb.bucket_size, GFP_KERNEL, 0); 338 mutex_lock(&ca->set->bucket_lock); 339 } 340 341 allocator_wait(ca, bch_allocator_push(ca, bucket)); 342 wake_up(&ca->set->btree_cache_wait); 343 wake_up(&ca->set->bucket_wait); 344 } 345 346 /* 347 * We've run out of free buckets, we need to find some buckets 348 * we can invalidate. First, invalidate them in memory and add 349 * them to the free_inc list: 350 */ 351 352 retry_invalidate: 353 allocator_wait(ca, ca->set->gc_mark_valid && 354 !ca->invalidate_needs_gc); 355 invalidate_buckets(ca); 356 357 /* 358 * Now, we write their new gens to disk so we can start writing 359 * new stuff to them: 360 */ 361 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 362 if (CACHE_SYNC(&ca->set->sb)) { 363 /* 364 * This could deadlock if an allocation with a btree 365 * node locked ever blocked - having the btree node 366 * locked would block garbage collection, but here we're 367 * waiting on garbage collection before we invalidate 368 * and free anything. 369 * 370 * But this should be safe since the btree code always 371 * uses btree_check_reserve() before allocating now, and 372 * if it fails it blocks without btree nodes locked. 373 */ 374 if (!fifo_full(&ca->free_inc)) 375 goto retry_invalidate; 376 377 bch_prio_write(ca); 378 } 379 } 380 } 381 382 /* Allocation */ 383 384 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait) 385 { 386 DEFINE_WAIT(w); 387 struct bucket *b; 388 long r; 389 390 /* fastpath */ 391 if (fifo_pop(&ca->free[RESERVE_NONE], r) || 392 fifo_pop(&ca->free[reserve], r)) 393 goto out; 394 395 if (!wait) { 396 trace_bcache_alloc_fail(ca, reserve); 397 return -1; 398 } 399 400 do { 401 prepare_to_wait(&ca->set->bucket_wait, &w, 402 TASK_UNINTERRUPTIBLE); 403 404 mutex_unlock(&ca->set->bucket_lock); 405 schedule(); 406 mutex_lock(&ca->set->bucket_lock); 407 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && 408 !fifo_pop(&ca->free[reserve], r)); 409 410 finish_wait(&ca->set->bucket_wait, &w); 411 out: 412 if (ca->alloc_thread) 413 wake_up_process(ca->alloc_thread); 414 415 trace_bcache_alloc(ca, reserve); 416 417 if (expensive_debug_checks(ca->set)) { 418 size_t iter; 419 long i; 420 unsigned j; 421 422 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 423 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 424 425 for (j = 0; j < RESERVE_NR; j++) 426 fifo_for_each(i, &ca->free[j], iter) 427 BUG_ON(i == r); 428 fifo_for_each(i, &ca->free_inc, iter) 429 BUG_ON(i == r); 430 } 431 432 b = ca->buckets + r; 433 434 BUG_ON(atomic_read(&b->pin) != 1); 435 436 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 437 438 if (reserve <= RESERVE_PRIO) { 439 SET_GC_MARK(b, GC_MARK_METADATA); 440 SET_GC_MOVE(b, 0); 441 b->prio = BTREE_PRIO; 442 } else { 443 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 444 SET_GC_MOVE(b, 0); 445 b->prio = INITIAL_PRIO; 446 } 447 448 if (ca->set->avail_nbuckets > 0) { 449 ca->set->avail_nbuckets--; 450 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 451 } 452 453 return r; 454 } 455 456 void __bch_bucket_free(struct cache *ca, struct bucket *b) 457 { 458 SET_GC_MARK(b, 0); 459 SET_GC_SECTORS_USED(b, 0); 460 461 if (ca->set->avail_nbuckets < ca->set->nbuckets) { 462 ca->set->avail_nbuckets++; 463 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 464 } 465 } 466 467 void bch_bucket_free(struct cache_set *c, struct bkey *k) 468 { 469 unsigned i; 470 471 for (i = 0; i < KEY_PTRS(k); i++) 472 __bch_bucket_free(PTR_CACHE(c, k, i), 473 PTR_BUCKET(c, k, i)); 474 } 475 476 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, 477 struct bkey *k, int n, bool wait) 478 { 479 int i; 480 481 lockdep_assert_held(&c->bucket_lock); 482 BUG_ON(!n || n > c->caches_loaded || n > 8); 483 484 bkey_init(k); 485 486 /* sort by free space/prio of oldest data in caches */ 487 488 for (i = 0; i < n; i++) { 489 struct cache *ca = c->cache_by_alloc[i]; 490 long b = bch_bucket_alloc(ca, reserve, wait); 491 492 if (b == -1) 493 goto err; 494 495 k->ptr[i] = MAKE_PTR(ca->buckets[b].gen, 496 bucket_to_sector(c, b), 497 ca->sb.nr_this_dev); 498 499 SET_KEY_PTRS(k, i + 1); 500 } 501 502 return 0; 503 err: 504 bch_bucket_free(c, k); 505 bkey_put(c, k); 506 return -1; 507 } 508 509 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, 510 struct bkey *k, int n, bool wait) 511 { 512 int ret; 513 mutex_lock(&c->bucket_lock); 514 ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); 515 mutex_unlock(&c->bucket_lock); 516 return ret; 517 } 518 519 /* Sector allocator */ 520 521 struct open_bucket { 522 struct list_head list; 523 unsigned last_write_point; 524 unsigned sectors_free; 525 BKEY_PADDED(key); 526 }; 527 528 /* 529 * We keep multiple buckets open for writes, and try to segregate different 530 * write streams for better cache utilization: first we try to segregate flash 531 * only volume write streams from cached devices, secondly we look for a bucket 532 * where the last write to it was sequential with the current write, and 533 * failing that we look for a bucket that was last used by the same task. 534 * 535 * The ideas is if you've got multiple tasks pulling data into the cache at the 536 * same time, you'll get better cache utilization if you try to segregate their 537 * data and preserve locality. 538 * 539 * For example, dirty sectors of flash only volume is not reclaimable, if their 540 * dirty sectors mixed with dirty sectors of cached device, such buckets will 541 * be marked as dirty and won't be reclaimed, though the dirty data of cached 542 * device have been written back to backend device. 543 * 544 * And say you've starting Firefox at the same time you're copying a 545 * bunch of files. Firefox will likely end up being fairly hot and stay in the 546 * cache awhile, but the data you copied might not be; if you wrote all that 547 * data to the same buckets it'd get invalidated at the same time. 548 * 549 * Both of those tasks will be doing fairly random IO so we can't rely on 550 * detecting sequential IO to segregate their data, but going off of the task 551 * should be a sane heuristic. 552 */ 553 static struct open_bucket *pick_data_bucket(struct cache_set *c, 554 const struct bkey *search, 555 unsigned write_point, 556 struct bkey *alloc) 557 { 558 struct open_bucket *ret, *ret_task = NULL; 559 560 list_for_each_entry_reverse(ret, &c->data_buckets, list) 561 if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) != 562 UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)])) 563 continue; 564 else if (!bkey_cmp(&ret->key, search)) 565 goto found; 566 else if (ret->last_write_point == write_point) 567 ret_task = ret; 568 569 ret = ret_task ?: list_first_entry(&c->data_buckets, 570 struct open_bucket, list); 571 found: 572 if (!ret->sectors_free && KEY_PTRS(alloc)) { 573 ret->sectors_free = c->sb.bucket_size; 574 bkey_copy(&ret->key, alloc); 575 bkey_init(alloc); 576 } 577 578 if (!ret->sectors_free) 579 ret = NULL; 580 581 return ret; 582 } 583 584 /* 585 * Allocates some space in the cache to write to, and k to point to the newly 586 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 587 * end of the newly allocated space). 588 * 589 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 590 * sectors were actually allocated. 591 * 592 * If s->writeback is true, will not fail. 593 */ 594 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors, 595 unsigned write_point, unsigned write_prio, bool wait) 596 { 597 struct open_bucket *b; 598 BKEY_PADDED(key) alloc; 599 unsigned i; 600 601 /* 602 * We might have to allocate a new bucket, which we can't do with a 603 * spinlock held. So if we have to allocate, we drop the lock, allocate 604 * and then retry. KEY_PTRS() indicates whether alloc points to 605 * allocated bucket(s). 606 */ 607 608 bkey_init(&alloc.key); 609 spin_lock(&c->data_bucket_lock); 610 611 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { 612 unsigned watermark = write_prio 613 ? RESERVE_MOVINGGC 614 : RESERVE_NONE; 615 616 spin_unlock(&c->data_bucket_lock); 617 618 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) 619 return false; 620 621 spin_lock(&c->data_bucket_lock); 622 } 623 624 /* 625 * If we had to allocate, we might race and not need to allocate the 626 * second time we call pick_data_bucket(). If we allocated a bucket but 627 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 628 */ 629 if (KEY_PTRS(&alloc.key)) 630 bkey_put(c, &alloc.key); 631 632 for (i = 0; i < KEY_PTRS(&b->key); i++) 633 EBUG_ON(ptr_stale(c, &b->key, i)); 634 635 /* Set up the pointer to the space we're allocating: */ 636 637 for (i = 0; i < KEY_PTRS(&b->key); i++) 638 k->ptr[i] = b->key.ptr[i]; 639 640 sectors = min(sectors, b->sectors_free); 641 642 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 643 SET_KEY_SIZE(k, sectors); 644 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 645 646 /* 647 * Move b to the end of the lru, and keep track of what this bucket was 648 * last used for: 649 */ 650 list_move_tail(&b->list, &c->data_buckets); 651 bkey_copy_key(&b->key, k); 652 b->last_write_point = write_point; 653 654 b->sectors_free -= sectors; 655 656 for (i = 0; i < KEY_PTRS(&b->key); i++) { 657 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 658 659 atomic_long_add(sectors, 660 &PTR_CACHE(c, &b->key, i)->sectors_written); 661 } 662 663 if (b->sectors_free < c->sb.block_size) 664 b->sectors_free = 0; 665 666 /* 667 * k takes refcounts on the buckets it points to until it's inserted 668 * into the btree, but if we're done with this bucket we just transfer 669 * get_data_bucket()'s refcount. 670 */ 671 if (b->sectors_free) 672 for (i = 0; i < KEY_PTRS(&b->key); i++) 673 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 674 675 spin_unlock(&c->data_bucket_lock); 676 return true; 677 } 678 679 /* Init */ 680 681 void bch_open_buckets_free(struct cache_set *c) 682 { 683 struct open_bucket *b; 684 685 while (!list_empty(&c->data_buckets)) { 686 b = list_first_entry(&c->data_buckets, 687 struct open_bucket, list); 688 list_del(&b->list); 689 kfree(b); 690 } 691 } 692 693 int bch_open_buckets_alloc(struct cache_set *c) 694 { 695 int i; 696 697 spin_lock_init(&c->data_bucket_lock); 698 699 for (i = 0; i < MAX_OPEN_BUCKETS; i++) { 700 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 701 if (!b) 702 return -ENOMEM; 703 704 list_add(&b->list, &c->data_buckets); 705 } 706 707 return 0; 708 } 709 710 int bch_cache_allocator_start(struct cache *ca) 711 { 712 struct task_struct *k = kthread_run(bch_allocator_thread, 713 ca, "bcache_allocator"); 714 if (IS_ERR(k)) 715 return PTR_ERR(k); 716 717 ca->alloc_thread = k; 718 return 0; 719 } 720