1 /* 2 * Primary bucket allocation code 3 * 4 * Copyright 2012 Google, Inc. 5 * 6 * Allocation in bcache is done in terms of buckets: 7 * 8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 9 * btree pointers - they must match for the pointer to be considered valid. 10 * 11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 12 * bucket simply by incrementing its gen. 13 * 14 * The gens (along with the priorities; it's really the gens are important but 15 * the code is named as if it's the priorities) are written in an arbitrary list 16 * of buckets on disk, with a pointer to them in the journal header. 17 * 18 * When we invalidate a bucket, we have to write its new gen to disk and wait 19 * for that write to complete before we use it - otherwise after a crash we 20 * could have pointers that appeared to be good but pointed to data that had 21 * been overwritten. 22 * 23 * Since the gens and priorities are all stored contiguously on disk, we can 24 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 25 * call prio_write(), and when prio_write() finishes we pull buckets off the 26 * free_inc list and optionally discard them. 27 * 28 * free_inc isn't the only freelist - if it was, we'd often to sleep while 29 * priorities and gens were being written before we could allocate. c->free is a 30 * smaller freelist, and buckets on that list are always ready to be used. 31 * 32 * If we've got discards enabled, that happens when a bucket moves from the 33 * free_inc list to the free list. 34 * 35 * There is another freelist, because sometimes we have buckets that we know 36 * have nothing pointing into them - these we can reuse without waiting for 37 * priorities to be rewritten. These come from freed btree nodes and buckets 38 * that garbage collection discovered no longer had valid keys pointing into 39 * them (because they were overwritten). That's the unused list - buckets on the 40 * unused list move to the free list, optionally being discarded in the process. 41 * 42 * It's also important to ensure that gens don't wrap around - with respect to 43 * either the oldest gen in the btree or the gen on disk. This is quite 44 * difficult to do in practice, but we explicitly guard against it anyways - if 45 * a bucket is in danger of wrapping around we simply skip invalidating it that 46 * time around, and we garbage collect or rewrite the priorities sooner than we 47 * would have otherwise. 48 * 49 * bch_bucket_alloc() allocates a single bucket from a specific cache. 50 * 51 * bch_bucket_alloc_set() allocates one or more buckets from different caches 52 * out of a cache set. 53 * 54 * free_some_buckets() drives all the processes described above. It's called 55 * from bch_bucket_alloc() and a few other places that need to make sure free 56 * buckets are ready. 57 * 58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 59 * invalidated, and then invalidate them and stick them on the free_inc list - 60 * in either lru or fifo order. 61 */ 62 63 #include "bcache.h" 64 #include "btree.h" 65 66 #include <linux/blkdev.h> 67 #include <linux/kthread.h> 68 #include <linux/random.h> 69 #include <trace/events/bcache.h> 70 71 /* Bucket heap / gen */ 72 73 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 74 { 75 uint8_t ret = ++b->gen; 76 77 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 78 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 79 80 return ret; 81 } 82 83 void bch_rescale_priorities(struct cache_set *c, int sectors) 84 { 85 struct cache *ca; 86 struct bucket *b; 87 unsigned next = c->nbuckets * c->sb.bucket_size / 1024; 88 unsigned i; 89 int r; 90 91 atomic_sub(sectors, &c->rescale); 92 93 do { 94 r = atomic_read(&c->rescale); 95 96 if (r >= 0) 97 return; 98 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 99 100 mutex_lock(&c->bucket_lock); 101 102 c->min_prio = USHRT_MAX; 103 104 for_each_cache(ca, c, i) 105 for_each_bucket(b, ca) 106 if (b->prio && 107 b->prio != BTREE_PRIO && 108 !atomic_read(&b->pin)) { 109 b->prio--; 110 c->min_prio = min(c->min_prio, b->prio); 111 } 112 113 mutex_unlock(&c->bucket_lock); 114 } 115 116 /* 117 * Background allocation thread: scans for buckets to be invalidated, 118 * invalidates them, rewrites prios/gens (marking them as invalidated on disk), 119 * then optionally issues discard commands to the newly free buckets, then puts 120 * them on the various freelists. 121 */ 122 123 static inline bool can_inc_bucket_gen(struct bucket *b) 124 { 125 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; 126 } 127 128 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) 129 { 130 BUG_ON(!ca->set->gc_mark_valid); 131 132 return (!GC_MARK(b) || 133 GC_MARK(b) == GC_MARK_RECLAIMABLE) && 134 !atomic_read(&b->pin) && 135 can_inc_bucket_gen(b); 136 } 137 138 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 139 { 140 lockdep_assert_held(&ca->set->bucket_lock); 141 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); 142 143 if (GC_SECTORS_USED(b)) 144 trace_bcache_invalidate(ca, b - ca->buckets); 145 146 bch_inc_gen(ca, b); 147 b->prio = INITIAL_PRIO; 148 atomic_inc(&b->pin); 149 } 150 151 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 152 { 153 __bch_invalidate_one_bucket(ca, b); 154 155 fifo_push(&ca->free_inc, b - ca->buckets); 156 } 157 158 /* 159 * Determines what order we're going to reuse buckets, smallest bucket_prio() 160 * first: we also take into account the number of sectors of live data in that 161 * bucket, and in order for that multiply to make sense we have to scale bucket 162 * 163 * Thus, we scale the bucket priorities so that the bucket with the smallest 164 * prio is worth 1/8th of what INITIAL_PRIO is worth. 165 */ 166 167 #define bucket_prio(b) \ 168 ({ \ 169 unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ 170 \ 171 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ 172 }) 173 174 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) 175 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) 176 177 static void invalidate_buckets_lru(struct cache *ca) 178 { 179 struct bucket *b; 180 ssize_t i; 181 182 ca->heap.used = 0; 183 184 for_each_bucket(b, ca) { 185 if (!bch_can_invalidate_bucket(ca, b)) 186 continue; 187 188 if (!heap_full(&ca->heap)) 189 heap_add(&ca->heap, b, bucket_max_cmp); 190 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { 191 ca->heap.data[0] = b; 192 heap_sift(&ca->heap, 0, bucket_max_cmp); 193 } 194 } 195 196 for (i = ca->heap.used / 2 - 1; i >= 0; --i) 197 heap_sift(&ca->heap, i, bucket_min_cmp); 198 199 while (!fifo_full(&ca->free_inc)) { 200 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { 201 /* 202 * We don't want to be calling invalidate_buckets() 203 * multiple times when it can't do anything 204 */ 205 ca->invalidate_needs_gc = 1; 206 wake_up_gc(ca->set); 207 return; 208 } 209 210 bch_invalidate_one_bucket(ca, b); 211 } 212 } 213 214 static void invalidate_buckets_fifo(struct cache *ca) 215 { 216 struct bucket *b; 217 size_t checked = 0; 218 219 while (!fifo_full(&ca->free_inc)) { 220 if (ca->fifo_last_bucket < ca->sb.first_bucket || 221 ca->fifo_last_bucket >= ca->sb.nbuckets) 222 ca->fifo_last_bucket = ca->sb.first_bucket; 223 224 b = ca->buckets + ca->fifo_last_bucket++; 225 226 if (bch_can_invalidate_bucket(ca, b)) 227 bch_invalidate_one_bucket(ca, b); 228 229 if (++checked >= ca->sb.nbuckets) { 230 ca->invalidate_needs_gc = 1; 231 wake_up_gc(ca->set); 232 return; 233 } 234 } 235 } 236 237 static void invalidate_buckets_random(struct cache *ca) 238 { 239 struct bucket *b; 240 size_t checked = 0; 241 242 while (!fifo_full(&ca->free_inc)) { 243 size_t n; 244 get_random_bytes(&n, sizeof(n)); 245 246 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 247 n += ca->sb.first_bucket; 248 249 b = ca->buckets + n; 250 251 if (bch_can_invalidate_bucket(ca, b)) 252 bch_invalidate_one_bucket(ca, b); 253 254 if (++checked >= ca->sb.nbuckets / 2) { 255 ca->invalidate_needs_gc = 1; 256 wake_up_gc(ca->set); 257 return; 258 } 259 } 260 } 261 262 static void invalidate_buckets(struct cache *ca) 263 { 264 BUG_ON(ca->invalidate_needs_gc); 265 266 switch (CACHE_REPLACEMENT(&ca->sb)) { 267 case CACHE_REPLACEMENT_LRU: 268 invalidate_buckets_lru(ca); 269 break; 270 case CACHE_REPLACEMENT_FIFO: 271 invalidate_buckets_fifo(ca); 272 break; 273 case CACHE_REPLACEMENT_RANDOM: 274 invalidate_buckets_random(ca); 275 break; 276 } 277 } 278 279 #define allocator_wait(ca, cond) \ 280 do { \ 281 while (1) { \ 282 set_current_state(TASK_INTERRUPTIBLE); \ 283 if (cond) \ 284 break; \ 285 \ 286 mutex_unlock(&(ca)->set->bucket_lock); \ 287 if (kthread_should_stop()) \ 288 return 0; \ 289 \ 290 schedule(); \ 291 mutex_lock(&(ca)->set->bucket_lock); \ 292 } \ 293 __set_current_state(TASK_RUNNING); \ 294 } while (0) 295 296 static int bch_allocator_push(struct cache *ca, long bucket) 297 { 298 unsigned i; 299 300 /* Prios/gens are actually the most important reserve */ 301 if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) 302 return true; 303 304 for (i = 0; i < RESERVE_NR; i++) 305 if (fifo_push(&ca->free[i], bucket)) 306 return true; 307 308 return false; 309 } 310 311 static int bch_allocator_thread(void *arg) 312 { 313 struct cache *ca = arg; 314 315 mutex_lock(&ca->set->bucket_lock); 316 317 while (1) { 318 /* 319 * First, we pull buckets off of the unused and free_inc lists, 320 * possibly issue discards to them, then we add the bucket to 321 * the free list: 322 */ 323 while (!fifo_empty(&ca->free_inc)) { 324 long bucket; 325 326 fifo_pop(&ca->free_inc, bucket); 327 328 if (ca->discard) { 329 mutex_unlock(&ca->set->bucket_lock); 330 blkdev_issue_discard(ca->bdev, 331 bucket_to_sector(ca->set, bucket), 332 ca->sb.bucket_size, GFP_KERNEL, 0); 333 mutex_lock(&ca->set->bucket_lock); 334 } 335 336 allocator_wait(ca, bch_allocator_push(ca, bucket)); 337 wake_up(&ca->set->btree_cache_wait); 338 wake_up(&ca->set->bucket_wait); 339 } 340 341 /* 342 * We've run out of free buckets, we need to find some buckets 343 * we can invalidate. First, invalidate them in memory and add 344 * them to the free_inc list: 345 */ 346 347 retry_invalidate: 348 allocator_wait(ca, ca->set->gc_mark_valid && 349 !ca->invalidate_needs_gc); 350 invalidate_buckets(ca); 351 352 /* 353 * Now, we write their new gens to disk so we can start writing 354 * new stuff to them: 355 */ 356 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 357 if (CACHE_SYNC(&ca->set->sb)) { 358 /* 359 * This could deadlock if an allocation with a btree 360 * node locked ever blocked - having the btree node 361 * locked would block garbage collection, but here we're 362 * waiting on garbage collection before we invalidate 363 * and free anything. 364 * 365 * But this should be safe since the btree code always 366 * uses btree_check_reserve() before allocating now, and 367 * if it fails it blocks without btree nodes locked. 368 */ 369 if (!fifo_full(&ca->free_inc)) 370 goto retry_invalidate; 371 372 bch_prio_write(ca); 373 } 374 } 375 } 376 377 /* Allocation */ 378 379 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait) 380 { 381 DEFINE_WAIT(w); 382 struct bucket *b; 383 long r; 384 385 /* fastpath */ 386 if (fifo_pop(&ca->free[RESERVE_NONE], r) || 387 fifo_pop(&ca->free[reserve], r)) 388 goto out; 389 390 if (!wait) { 391 trace_bcache_alloc_fail(ca, reserve); 392 return -1; 393 } 394 395 do { 396 prepare_to_wait(&ca->set->bucket_wait, &w, 397 TASK_UNINTERRUPTIBLE); 398 399 mutex_unlock(&ca->set->bucket_lock); 400 schedule(); 401 mutex_lock(&ca->set->bucket_lock); 402 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && 403 !fifo_pop(&ca->free[reserve], r)); 404 405 finish_wait(&ca->set->bucket_wait, &w); 406 out: 407 wake_up_process(ca->alloc_thread); 408 409 trace_bcache_alloc(ca, reserve); 410 411 if (expensive_debug_checks(ca->set)) { 412 size_t iter; 413 long i; 414 unsigned j; 415 416 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 417 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 418 419 for (j = 0; j < RESERVE_NR; j++) 420 fifo_for_each(i, &ca->free[j], iter) 421 BUG_ON(i == r); 422 fifo_for_each(i, &ca->free_inc, iter) 423 BUG_ON(i == r); 424 } 425 426 b = ca->buckets + r; 427 428 BUG_ON(atomic_read(&b->pin) != 1); 429 430 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 431 432 if (reserve <= RESERVE_PRIO) { 433 SET_GC_MARK(b, GC_MARK_METADATA); 434 SET_GC_MOVE(b, 0); 435 b->prio = BTREE_PRIO; 436 } else { 437 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 438 SET_GC_MOVE(b, 0); 439 b->prio = INITIAL_PRIO; 440 } 441 442 return r; 443 } 444 445 void __bch_bucket_free(struct cache *ca, struct bucket *b) 446 { 447 SET_GC_MARK(b, 0); 448 SET_GC_SECTORS_USED(b, 0); 449 } 450 451 void bch_bucket_free(struct cache_set *c, struct bkey *k) 452 { 453 unsigned i; 454 455 for (i = 0; i < KEY_PTRS(k); i++) 456 __bch_bucket_free(PTR_CACHE(c, k, i), 457 PTR_BUCKET(c, k, i)); 458 } 459 460 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, 461 struct bkey *k, int n, bool wait) 462 { 463 int i; 464 465 lockdep_assert_held(&c->bucket_lock); 466 BUG_ON(!n || n > c->caches_loaded || n > 8); 467 468 bkey_init(k); 469 470 /* sort by free space/prio of oldest data in caches */ 471 472 for (i = 0; i < n; i++) { 473 struct cache *ca = c->cache_by_alloc[i]; 474 long b = bch_bucket_alloc(ca, reserve, wait); 475 476 if (b == -1) 477 goto err; 478 479 k->ptr[i] = PTR(ca->buckets[b].gen, 480 bucket_to_sector(c, b), 481 ca->sb.nr_this_dev); 482 483 SET_KEY_PTRS(k, i + 1); 484 } 485 486 return 0; 487 err: 488 bch_bucket_free(c, k); 489 bkey_put(c, k); 490 return -1; 491 } 492 493 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, 494 struct bkey *k, int n, bool wait) 495 { 496 int ret; 497 mutex_lock(&c->bucket_lock); 498 ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); 499 mutex_unlock(&c->bucket_lock); 500 return ret; 501 } 502 503 /* Sector allocator */ 504 505 struct open_bucket { 506 struct list_head list; 507 unsigned last_write_point; 508 unsigned sectors_free; 509 BKEY_PADDED(key); 510 }; 511 512 /* 513 * We keep multiple buckets open for writes, and try to segregate different 514 * write streams for better cache utilization: first we look for a bucket where 515 * the last write to it was sequential with the current write, and failing that 516 * we look for a bucket that was last used by the same task. 517 * 518 * The ideas is if you've got multiple tasks pulling data into the cache at the 519 * same time, you'll get better cache utilization if you try to segregate their 520 * data and preserve locality. 521 * 522 * For example, say you've starting Firefox at the same time you're copying a 523 * bunch of files. Firefox will likely end up being fairly hot and stay in the 524 * cache awhile, but the data you copied might not be; if you wrote all that 525 * data to the same buckets it'd get invalidated at the same time. 526 * 527 * Both of those tasks will be doing fairly random IO so we can't rely on 528 * detecting sequential IO to segregate their data, but going off of the task 529 * should be a sane heuristic. 530 */ 531 static struct open_bucket *pick_data_bucket(struct cache_set *c, 532 const struct bkey *search, 533 unsigned write_point, 534 struct bkey *alloc) 535 { 536 struct open_bucket *ret, *ret_task = NULL; 537 538 list_for_each_entry_reverse(ret, &c->data_buckets, list) 539 if (!bkey_cmp(&ret->key, search)) 540 goto found; 541 else if (ret->last_write_point == write_point) 542 ret_task = ret; 543 544 ret = ret_task ?: list_first_entry(&c->data_buckets, 545 struct open_bucket, list); 546 found: 547 if (!ret->sectors_free && KEY_PTRS(alloc)) { 548 ret->sectors_free = c->sb.bucket_size; 549 bkey_copy(&ret->key, alloc); 550 bkey_init(alloc); 551 } 552 553 if (!ret->sectors_free) 554 ret = NULL; 555 556 return ret; 557 } 558 559 /* 560 * Allocates some space in the cache to write to, and k to point to the newly 561 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 562 * end of the newly allocated space). 563 * 564 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 565 * sectors were actually allocated. 566 * 567 * If s->writeback is true, will not fail. 568 */ 569 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors, 570 unsigned write_point, unsigned write_prio, bool wait) 571 { 572 struct open_bucket *b; 573 BKEY_PADDED(key) alloc; 574 unsigned i; 575 576 /* 577 * We might have to allocate a new bucket, which we can't do with a 578 * spinlock held. So if we have to allocate, we drop the lock, allocate 579 * and then retry. KEY_PTRS() indicates whether alloc points to 580 * allocated bucket(s). 581 */ 582 583 bkey_init(&alloc.key); 584 spin_lock(&c->data_bucket_lock); 585 586 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { 587 unsigned watermark = write_prio 588 ? RESERVE_MOVINGGC 589 : RESERVE_NONE; 590 591 spin_unlock(&c->data_bucket_lock); 592 593 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) 594 return false; 595 596 spin_lock(&c->data_bucket_lock); 597 } 598 599 /* 600 * If we had to allocate, we might race and not need to allocate the 601 * second time we call find_data_bucket(). If we allocated a bucket but 602 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 603 */ 604 if (KEY_PTRS(&alloc.key)) 605 bkey_put(c, &alloc.key); 606 607 for (i = 0; i < KEY_PTRS(&b->key); i++) 608 EBUG_ON(ptr_stale(c, &b->key, i)); 609 610 /* Set up the pointer to the space we're allocating: */ 611 612 for (i = 0; i < KEY_PTRS(&b->key); i++) 613 k->ptr[i] = b->key.ptr[i]; 614 615 sectors = min(sectors, b->sectors_free); 616 617 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 618 SET_KEY_SIZE(k, sectors); 619 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 620 621 /* 622 * Move b to the end of the lru, and keep track of what this bucket was 623 * last used for: 624 */ 625 list_move_tail(&b->list, &c->data_buckets); 626 bkey_copy_key(&b->key, k); 627 b->last_write_point = write_point; 628 629 b->sectors_free -= sectors; 630 631 for (i = 0; i < KEY_PTRS(&b->key); i++) { 632 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 633 634 atomic_long_add(sectors, 635 &PTR_CACHE(c, &b->key, i)->sectors_written); 636 } 637 638 if (b->sectors_free < c->sb.block_size) 639 b->sectors_free = 0; 640 641 /* 642 * k takes refcounts on the buckets it points to until it's inserted 643 * into the btree, but if we're done with this bucket we just transfer 644 * get_data_bucket()'s refcount. 645 */ 646 if (b->sectors_free) 647 for (i = 0; i < KEY_PTRS(&b->key); i++) 648 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 649 650 spin_unlock(&c->data_bucket_lock); 651 return true; 652 } 653 654 /* Init */ 655 656 void bch_open_buckets_free(struct cache_set *c) 657 { 658 struct open_bucket *b; 659 660 while (!list_empty(&c->data_buckets)) { 661 b = list_first_entry(&c->data_buckets, 662 struct open_bucket, list); 663 list_del(&b->list); 664 kfree(b); 665 } 666 } 667 668 int bch_open_buckets_alloc(struct cache_set *c) 669 { 670 int i; 671 672 spin_lock_init(&c->data_bucket_lock); 673 674 for (i = 0; i < 6; i++) { 675 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 676 if (!b) 677 return -ENOMEM; 678 679 list_add(&b->list, &c->data_buckets); 680 } 681 682 return 0; 683 } 684 685 int bch_cache_allocator_start(struct cache *ca) 686 { 687 struct task_struct *k = kthread_run(bch_allocator_thread, 688 ca, "bcache_allocator"); 689 if (IS_ERR(k)) 690 return PTR_ERR(k); 691 692 ca->alloc_thread = k; 693 return 0; 694 } 695