xref: /openbmc/linux/drivers/md/bcache/alloc.c (revision 8f762fe5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Primary bucket allocation code
4  *
5  * Copyright 2012 Google, Inc.
6  *
7  * Allocation in bcache is done in terms of buckets:
8  *
9  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
10  * btree pointers - they must match for the pointer to be considered valid.
11  *
12  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
13  * bucket simply by incrementing its gen.
14  *
15  * The gens (along with the priorities; it's really the gens are important but
16  * the code is named as if it's the priorities) are written in an arbitrary list
17  * of buckets on disk, with a pointer to them in the journal header.
18  *
19  * When we invalidate a bucket, we have to write its new gen to disk and wait
20  * for that write to complete before we use it - otherwise after a crash we
21  * could have pointers that appeared to be good but pointed to data that had
22  * been overwritten.
23  *
24  * Since the gens and priorities are all stored contiguously on disk, we can
25  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
26  * call prio_write(), and when prio_write() finishes we pull buckets off the
27  * free_inc list and optionally discard them.
28  *
29  * free_inc isn't the only freelist - if it was, we'd often to sleep while
30  * priorities and gens were being written before we could allocate. c->free is a
31  * smaller freelist, and buckets on that list are always ready to be used.
32  *
33  * If we've got discards enabled, that happens when a bucket moves from the
34  * free_inc list to the free list.
35  *
36  * There is another freelist, because sometimes we have buckets that we know
37  * have nothing pointing into them - these we can reuse without waiting for
38  * priorities to be rewritten. These come from freed btree nodes and buckets
39  * that garbage collection discovered no longer had valid keys pointing into
40  * them (because they were overwritten). That's the unused list - buckets on the
41  * unused list move to the free list, optionally being discarded in the process.
42  *
43  * It's also important to ensure that gens don't wrap around - with respect to
44  * either the oldest gen in the btree or the gen on disk. This is quite
45  * difficult to do in practice, but we explicitly guard against it anyways - if
46  * a bucket is in danger of wrapping around we simply skip invalidating it that
47  * time around, and we garbage collect or rewrite the priorities sooner than we
48  * would have otherwise.
49  *
50  * bch_bucket_alloc() allocates a single bucket from a specific cache.
51  *
52  * bch_bucket_alloc_set() allocates one or more buckets from different caches
53  * out of a cache set.
54  *
55  * free_some_buckets() drives all the processes described above. It's called
56  * from bch_bucket_alloc() and a few other places that need to make sure free
57  * buckets are ready.
58  *
59  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
60  * invalidated, and then invalidate them and stick them on the free_inc list -
61  * in either lru or fifo order.
62  */
63 
64 #include "bcache.h"
65 #include "btree.h"
66 
67 #include <linux/blkdev.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
71 
72 #define MAX_OPEN_BUCKETS 128
73 
74 /* Bucket heap / gen */
75 
76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
77 {
78 	uint8_t ret = ++b->gen;
79 
80 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
81 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
82 
83 	return ret;
84 }
85 
86 void bch_rescale_priorities(struct cache_set *c, int sectors)
87 {
88 	struct cache *ca;
89 	struct bucket *b;
90 	unsigned int next = c->nbuckets * c->sb.bucket_size / 1024;
91 	unsigned int i;
92 	int r;
93 
94 	atomic_sub(sectors, &c->rescale);
95 
96 	do {
97 		r = atomic_read(&c->rescale);
98 
99 		if (r >= 0)
100 			return;
101 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
102 
103 	mutex_lock(&c->bucket_lock);
104 
105 	c->min_prio = USHRT_MAX;
106 
107 	for_each_cache(ca, c, i)
108 		for_each_bucket(b, ca)
109 			if (b->prio &&
110 			    b->prio != BTREE_PRIO &&
111 			    !atomic_read(&b->pin)) {
112 				b->prio--;
113 				c->min_prio = min(c->min_prio, b->prio);
114 			}
115 
116 	mutex_unlock(&c->bucket_lock);
117 }
118 
119 /*
120  * Background allocation thread: scans for buckets to be invalidated,
121  * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
122  * then optionally issues discard commands to the newly free buckets, then puts
123  * them on the various freelists.
124  */
125 
126 static inline bool can_inc_bucket_gen(struct bucket *b)
127 {
128 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
129 }
130 
131 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
132 {
133 	BUG_ON(!ca->set->gc_mark_valid);
134 
135 	return (!GC_MARK(b) ||
136 		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
137 		!atomic_read(&b->pin) &&
138 		can_inc_bucket_gen(b);
139 }
140 
141 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
142 {
143 	lockdep_assert_held(&ca->set->bucket_lock);
144 	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
145 
146 	if (GC_SECTORS_USED(b))
147 		trace_bcache_invalidate(ca, b - ca->buckets);
148 
149 	bch_inc_gen(ca, b);
150 	b->prio = INITIAL_PRIO;
151 	atomic_inc(&b->pin);
152 }
153 
154 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
155 {
156 	__bch_invalidate_one_bucket(ca, b);
157 
158 	fifo_push(&ca->free_inc, b - ca->buckets);
159 }
160 
161 /*
162  * Determines what order we're going to reuse buckets, smallest bucket_prio()
163  * first: we also take into account the number of sectors of live data in that
164  * bucket, and in order for that multiply to make sense we have to scale bucket
165  *
166  * Thus, we scale the bucket priorities so that the bucket with the smallest
167  * prio is worth 1/8th of what INITIAL_PRIO is worth.
168  */
169 
170 #define bucket_prio(b)							\
171 ({									\
172 	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
173 									\
174 	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
175 })
176 
177 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
178 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
179 
180 static void invalidate_buckets_lru(struct cache *ca)
181 {
182 	struct bucket *b;
183 	ssize_t i;
184 
185 	ca->heap.used = 0;
186 
187 	for_each_bucket(b, ca) {
188 		if (!bch_can_invalidate_bucket(ca, b))
189 			continue;
190 
191 		if (!heap_full(&ca->heap))
192 			heap_add(&ca->heap, b, bucket_max_cmp);
193 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
194 			ca->heap.data[0] = b;
195 			heap_sift(&ca->heap, 0, bucket_max_cmp);
196 		}
197 	}
198 
199 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
200 		heap_sift(&ca->heap, i, bucket_min_cmp);
201 
202 	while (!fifo_full(&ca->free_inc)) {
203 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
204 			/*
205 			 * We don't want to be calling invalidate_buckets()
206 			 * multiple times when it can't do anything
207 			 */
208 			ca->invalidate_needs_gc = 1;
209 			wake_up_gc(ca->set);
210 			return;
211 		}
212 
213 		bch_invalidate_one_bucket(ca, b);
214 	}
215 }
216 
217 static void invalidate_buckets_fifo(struct cache *ca)
218 {
219 	struct bucket *b;
220 	size_t checked = 0;
221 
222 	while (!fifo_full(&ca->free_inc)) {
223 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
224 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
225 			ca->fifo_last_bucket = ca->sb.first_bucket;
226 
227 		b = ca->buckets + ca->fifo_last_bucket++;
228 
229 		if (bch_can_invalidate_bucket(ca, b))
230 			bch_invalidate_one_bucket(ca, b);
231 
232 		if (++checked >= ca->sb.nbuckets) {
233 			ca->invalidate_needs_gc = 1;
234 			wake_up_gc(ca->set);
235 			return;
236 		}
237 	}
238 }
239 
240 static void invalidate_buckets_random(struct cache *ca)
241 {
242 	struct bucket *b;
243 	size_t checked = 0;
244 
245 	while (!fifo_full(&ca->free_inc)) {
246 		size_t n;
247 
248 		get_random_bytes(&n, sizeof(n));
249 
250 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
251 		n += ca->sb.first_bucket;
252 
253 		b = ca->buckets + n;
254 
255 		if (bch_can_invalidate_bucket(ca, b))
256 			bch_invalidate_one_bucket(ca, b);
257 
258 		if (++checked >= ca->sb.nbuckets / 2) {
259 			ca->invalidate_needs_gc = 1;
260 			wake_up_gc(ca->set);
261 			return;
262 		}
263 	}
264 }
265 
266 static void invalidate_buckets(struct cache *ca)
267 {
268 	BUG_ON(ca->invalidate_needs_gc);
269 
270 	switch (CACHE_REPLACEMENT(&ca->sb)) {
271 	case CACHE_REPLACEMENT_LRU:
272 		invalidate_buckets_lru(ca);
273 		break;
274 	case CACHE_REPLACEMENT_FIFO:
275 		invalidate_buckets_fifo(ca);
276 		break;
277 	case CACHE_REPLACEMENT_RANDOM:
278 		invalidate_buckets_random(ca);
279 		break;
280 	}
281 }
282 
283 #define allocator_wait(ca, cond)					\
284 do {									\
285 	while (1) {							\
286 		set_current_state(TASK_INTERRUPTIBLE);			\
287 		if (cond)						\
288 			break;						\
289 									\
290 		mutex_unlock(&(ca)->set->bucket_lock);			\
291 		if (kthread_should_stop() ||				\
292 		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
293 			set_current_state(TASK_RUNNING);		\
294 			goto out;					\
295 		}							\
296 									\
297 		schedule();						\
298 		mutex_lock(&(ca)->set->bucket_lock);			\
299 	}								\
300 	__set_current_state(TASK_RUNNING);				\
301 } while (0)
302 
303 static int bch_allocator_push(struct cache *ca, long bucket)
304 {
305 	unsigned int i;
306 
307 	/* Prios/gens are actually the most important reserve */
308 	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
309 		return true;
310 
311 	for (i = 0; i < RESERVE_NR; i++)
312 		if (fifo_push(&ca->free[i], bucket))
313 			return true;
314 
315 	return false;
316 }
317 
318 static int bch_allocator_thread(void *arg)
319 {
320 	struct cache *ca = arg;
321 
322 	mutex_lock(&ca->set->bucket_lock);
323 
324 	while (1) {
325 		/*
326 		 * First, we pull buckets off of the unused and free_inc lists,
327 		 * possibly issue discards to them, then we add the bucket to
328 		 * the free list:
329 		 */
330 		while (1) {
331 			long bucket;
332 
333 			if (!fifo_pop(&ca->free_inc, bucket))
334 				break;
335 
336 			if (ca->discard) {
337 				mutex_unlock(&ca->set->bucket_lock);
338 				blkdev_issue_discard(ca->bdev,
339 					bucket_to_sector(ca->set, bucket),
340 					ca->sb.bucket_size, GFP_KERNEL, 0);
341 				mutex_lock(&ca->set->bucket_lock);
342 			}
343 
344 			allocator_wait(ca, bch_allocator_push(ca, bucket));
345 			wake_up(&ca->set->btree_cache_wait);
346 			wake_up(&ca->set->bucket_wait);
347 		}
348 
349 		/*
350 		 * We've run out of free buckets, we need to find some buckets
351 		 * we can invalidate. First, invalidate them in memory and add
352 		 * them to the free_inc list:
353 		 */
354 
355 retry_invalidate:
356 		allocator_wait(ca, ca->set->gc_mark_valid &&
357 			       !ca->invalidate_needs_gc);
358 		invalidate_buckets(ca);
359 
360 		/*
361 		 * Now, we write their new gens to disk so we can start writing
362 		 * new stuff to them:
363 		 */
364 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
365 		if (CACHE_SYNC(&ca->set->sb)) {
366 			/*
367 			 * This could deadlock if an allocation with a btree
368 			 * node locked ever blocked - having the btree node
369 			 * locked would block garbage collection, but here we're
370 			 * waiting on garbage collection before we invalidate
371 			 * and free anything.
372 			 *
373 			 * But this should be safe since the btree code always
374 			 * uses btree_check_reserve() before allocating now, and
375 			 * if it fails it blocks without btree nodes locked.
376 			 */
377 			if (!fifo_full(&ca->free_inc))
378 				goto retry_invalidate;
379 
380 			bch_prio_write(ca);
381 		}
382 	}
383 out:
384 	wait_for_kthread_stop();
385 	return 0;
386 }
387 
388 /* Allocation */
389 
390 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
391 {
392 	DEFINE_WAIT(w);
393 	struct bucket *b;
394 	long r;
395 
396 	/* fastpath */
397 	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
398 	    fifo_pop(&ca->free[reserve], r))
399 		goto out;
400 
401 	if (!wait) {
402 		trace_bcache_alloc_fail(ca, reserve);
403 		return -1;
404 	}
405 
406 	do {
407 		prepare_to_wait(&ca->set->bucket_wait, &w,
408 				TASK_UNINTERRUPTIBLE);
409 
410 		mutex_unlock(&ca->set->bucket_lock);
411 		schedule();
412 		mutex_lock(&ca->set->bucket_lock);
413 	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
414 		 !fifo_pop(&ca->free[reserve], r));
415 
416 	finish_wait(&ca->set->bucket_wait, &w);
417 out:
418 	if (ca->alloc_thread)
419 		wake_up_process(ca->alloc_thread);
420 
421 	trace_bcache_alloc(ca, reserve);
422 
423 	if (expensive_debug_checks(ca->set)) {
424 		size_t iter;
425 		long i;
426 		unsigned int j;
427 
428 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
429 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
430 
431 		for (j = 0; j < RESERVE_NR; j++)
432 			fifo_for_each(i, &ca->free[j], iter)
433 				BUG_ON(i == r);
434 		fifo_for_each(i, &ca->free_inc, iter)
435 			BUG_ON(i == r);
436 	}
437 
438 	b = ca->buckets + r;
439 
440 	BUG_ON(atomic_read(&b->pin) != 1);
441 
442 	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
443 
444 	if (reserve <= RESERVE_PRIO) {
445 		SET_GC_MARK(b, GC_MARK_METADATA);
446 		SET_GC_MOVE(b, 0);
447 		b->prio = BTREE_PRIO;
448 	} else {
449 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
450 		SET_GC_MOVE(b, 0);
451 		b->prio = INITIAL_PRIO;
452 	}
453 
454 	if (ca->set->avail_nbuckets > 0) {
455 		ca->set->avail_nbuckets--;
456 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
457 	}
458 
459 	return r;
460 }
461 
462 void __bch_bucket_free(struct cache *ca, struct bucket *b)
463 {
464 	SET_GC_MARK(b, 0);
465 	SET_GC_SECTORS_USED(b, 0);
466 
467 	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
468 		ca->set->avail_nbuckets++;
469 		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
470 	}
471 }
472 
473 void bch_bucket_free(struct cache_set *c, struct bkey *k)
474 {
475 	unsigned int i;
476 
477 	for (i = 0; i < KEY_PTRS(k); i++)
478 		__bch_bucket_free(PTR_CACHE(c, k, i),
479 				  PTR_BUCKET(c, k, i));
480 }
481 
482 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
483 			   struct bkey *k, int n, bool wait)
484 {
485 	int i;
486 
487 	lockdep_assert_held(&c->bucket_lock);
488 	BUG_ON(!n || n > c->caches_loaded || n > MAX_CACHES_PER_SET);
489 
490 	bkey_init(k);
491 
492 	/* sort by free space/prio of oldest data in caches */
493 
494 	for (i = 0; i < n; i++) {
495 		struct cache *ca = c->cache_by_alloc[i];
496 		long b = bch_bucket_alloc(ca, reserve, wait);
497 
498 		if (b == -1)
499 			goto err;
500 
501 		k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
502 				bucket_to_sector(c, b),
503 				ca->sb.nr_this_dev);
504 
505 		SET_KEY_PTRS(k, i + 1);
506 	}
507 
508 	return 0;
509 err:
510 	bch_bucket_free(c, k);
511 	bkey_put(c, k);
512 	return -1;
513 }
514 
515 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
516 			 struct bkey *k, int n, bool wait)
517 {
518 	int ret;
519 
520 	mutex_lock(&c->bucket_lock);
521 	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
522 	mutex_unlock(&c->bucket_lock);
523 	return ret;
524 }
525 
526 /* Sector allocator */
527 
528 struct open_bucket {
529 	struct list_head	list;
530 	unsigned int		last_write_point;
531 	unsigned int		sectors_free;
532 	BKEY_PADDED(key);
533 };
534 
535 /*
536  * We keep multiple buckets open for writes, and try to segregate different
537  * write streams for better cache utilization: first we try to segregate flash
538  * only volume write streams from cached devices, secondly we look for a bucket
539  * where the last write to it was sequential with the current write, and
540  * failing that we look for a bucket that was last used by the same task.
541  *
542  * The ideas is if you've got multiple tasks pulling data into the cache at the
543  * same time, you'll get better cache utilization if you try to segregate their
544  * data and preserve locality.
545  *
546  * For example, dirty sectors of flash only volume is not reclaimable, if their
547  * dirty sectors mixed with dirty sectors of cached device, such buckets will
548  * be marked as dirty and won't be reclaimed, though the dirty data of cached
549  * device have been written back to backend device.
550  *
551  * And say you've starting Firefox at the same time you're copying a
552  * bunch of files. Firefox will likely end up being fairly hot and stay in the
553  * cache awhile, but the data you copied might not be; if you wrote all that
554  * data to the same buckets it'd get invalidated at the same time.
555  *
556  * Both of those tasks will be doing fairly random IO so we can't rely on
557  * detecting sequential IO to segregate their data, but going off of the task
558  * should be a sane heuristic.
559  */
560 static struct open_bucket *pick_data_bucket(struct cache_set *c,
561 					    const struct bkey *search,
562 					    unsigned int write_point,
563 					    struct bkey *alloc)
564 {
565 	struct open_bucket *ret, *ret_task = NULL;
566 
567 	list_for_each_entry_reverse(ret, &c->data_buckets, list)
568 		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
569 		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
570 			continue;
571 		else if (!bkey_cmp(&ret->key, search))
572 			goto found;
573 		else if (ret->last_write_point == write_point)
574 			ret_task = ret;
575 
576 	ret = ret_task ?: list_first_entry(&c->data_buckets,
577 					   struct open_bucket, list);
578 found:
579 	if (!ret->sectors_free && KEY_PTRS(alloc)) {
580 		ret->sectors_free = c->sb.bucket_size;
581 		bkey_copy(&ret->key, alloc);
582 		bkey_init(alloc);
583 	}
584 
585 	if (!ret->sectors_free)
586 		ret = NULL;
587 
588 	return ret;
589 }
590 
591 /*
592  * Allocates some space in the cache to write to, and k to point to the newly
593  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
594  * end of the newly allocated space).
595  *
596  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
597  * sectors were actually allocated.
598  *
599  * If s->writeback is true, will not fail.
600  */
601 bool bch_alloc_sectors(struct cache_set *c,
602 		       struct bkey *k,
603 		       unsigned int sectors,
604 		       unsigned int write_point,
605 		       unsigned int write_prio,
606 		       bool wait)
607 {
608 	struct open_bucket *b;
609 	BKEY_PADDED(key) alloc;
610 	unsigned int i;
611 
612 	/*
613 	 * We might have to allocate a new bucket, which we can't do with a
614 	 * spinlock held. So if we have to allocate, we drop the lock, allocate
615 	 * and then retry. KEY_PTRS() indicates whether alloc points to
616 	 * allocated bucket(s).
617 	 */
618 
619 	bkey_init(&alloc.key);
620 	spin_lock(&c->data_bucket_lock);
621 
622 	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
623 		unsigned int watermark = write_prio
624 			? RESERVE_MOVINGGC
625 			: RESERVE_NONE;
626 
627 		spin_unlock(&c->data_bucket_lock);
628 
629 		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
630 			return false;
631 
632 		spin_lock(&c->data_bucket_lock);
633 	}
634 
635 	/*
636 	 * If we had to allocate, we might race and not need to allocate the
637 	 * second time we call pick_data_bucket(). If we allocated a bucket but
638 	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
639 	 */
640 	if (KEY_PTRS(&alloc.key))
641 		bkey_put(c, &alloc.key);
642 
643 	for (i = 0; i < KEY_PTRS(&b->key); i++)
644 		EBUG_ON(ptr_stale(c, &b->key, i));
645 
646 	/* Set up the pointer to the space we're allocating: */
647 
648 	for (i = 0; i < KEY_PTRS(&b->key); i++)
649 		k->ptr[i] = b->key.ptr[i];
650 
651 	sectors = min(sectors, b->sectors_free);
652 
653 	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
654 	SET_KEY_SIZE(k, sectors);
655 	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
656 
657 	/*
658 	 * Move b to the end of the lru, and keep track of what this bucket was
659 	 * last used for:
660 	 */
661 	list_move_tail(&b->list, &c->data_buckets);
662 	bkey_copy_key(&b->key, k);
663 	b->last_write_point = write_point;
664 
665 	b->sectors_free	-= sectors;
666 
667 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
668 		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
669 
670 		atomic_long_add(sectors,
671 				&PTR_CACHE(c, &b->key, i)->sectors_written);
672 	}
673 
674 	if (b->sectors_free < c->sb.block_size)
675 		b->sectors_free = 0;
676 
677 	/*
678 	 * k takes refcounts on the buckets it points to until it's inserted
679 	 * into the btree, but if we're done with this bucket we just transfer
680 	 * get_data_bucket()'s refcount.
681 	 */
682 	if (b->sectors_free)
683 		for (i = 0; i < KEY_PTRS(&b->key); i++)
684 			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
685 
686 	spin_unlock(&c->data_bucket_lock);
687 	return true;
688 }
689 
690 /* Init */
691 
692 void bch_open_buckets_free(struct cache_set *c)
693 {
694 	struct open_bucket *b;
695 
696 	while (!list_empty(&c->data_buckets)) {
697 		b = list_first_entry(&c->data_buckets,
698 				     struct open_bucket, list);
699 		list_del(&b->list);
700 		kfree(b);
701 	}
702 }
703 
704 int bch_open_buckets_alloc(struct cache_set *c)
705 {
706 	int i;
707 
708 	spin_lock_init(&c->data_bucket_lock);
709 
710 	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
711 		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
712 
713 		if (!b)
714 			return -ENOMEM;
715 
716 		list_add(&b->list, &c->data_buckets);
717 	}
718 
719 	return 0;
720 }
721 
722 int bch_cache_allocator_start(struct cache *ca)
723 {
724 	struct task_struct *k = kthread_run(bch_allocator_thread,
725 					    ca, "bcache_allocator");
726 	if (IS_ERR(k))
727 		return PTR_ERR(k);
728 
729 	ca->alloc_thread = k;
730 	return 0;
731 }
732