1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Primary bucket allocation code 4 * 5 * Copyright 2012 Google, Inc. 6 * 7 * Allocation in bcache is done in terms of buckets: 8 * 9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 10 * btree pointers - they must match for the pointer to be considered valid. 11 * 12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 13 * bucket simply by incrementing its gen. 14 * 15 * The gens (along with the priorities; it's really the gens are important but 16 * the code is named as if it's the priorities) are written in an arbitrary list 17 * of buckets on disk, with a pointer to them in the journal header. 18 * 19 * When we invalidate a bucket, we have to write its new gen to disk and wait 20 * for that write to complete before we use it - otherwise after a crash we 21 * could have pointers that appeared to be good but pointed to data that had 22 * been overwritten. 23 * 24 * Since the gens and priorities are all stored contiguously on disk, we can 25 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 26 * call prio_write(), and when prio_write() finishes we pull buckets off the 27 * free_inc list and optionally discard them. 28 * 29 * free_inc isn't the only freelist - if it was, we'd often to sleep while 30 * priorities and gens were being written before we could allocate. c->free is a 31 * smaller freelist, and buckets on that list are always ready to be used. 32 * 33 * If we've got discards enabled, that happens when a bucket moves from the 34 * free_inc list to the free list. 35 * 36 * There is another freelist, because sometimes we have buckets that we know 37 * have nothing pointing into them - these we can reuse without waiting for 38 * priorities to be rewritten. These come from freed btree nodes and buckets 39 * that garbage collection discovered no longer had valid keys pointing into 40 * them (because they were overwritten). That's the unused list - buckets on the 41 * unused list move to the free list, optionally being discarded in the process. 42 * 43 * It's also important to ensure that gens don't wrap around - with respect to 44 * either the oldest gen in the btree or the gen on disk. This is quite 45 * difficult to do in practice, but we explicitly guard against it anyways - if 46 * a bucket is in danger of wrapping around we simply skip invalidating it that 47 * time around, and we garbage collect or rewrite the priorities sooner than we 48 * would have otherwise. 49 * 50 * bch_bucket_alloc() allocates a single bucket from a specific cache. 51 * 52 * bch_bucket_alloc_set() allocates one bucket from different caches 53 * out of a cache set. 54 * 55 * free_some_buckets() drives all the processes described above. It's called 56 * from bch_bucket_alloc() and a few other places that need to make sure free 57 * buckets are ready. 58 * 59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 60 * invalidated, and then invalidate them and stick them on the free_inc list - 61 * in either lru or fifo order. 62 */ 63 64 #include "bcache.h" 65 #include "btree.h" 66 67 #include <linux/blkdev.h> 68 #include <linux/kthread.h> 69 #include <linux/random.h> 70 #include <trace/events/bcache.h> 71 72 #define MAX_OPEN_BUCKETS 128 73 74 /* Bucket heap / gen */ 75 76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 77 { 78 uint8_t ret = ++b->gen; 79 80 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 81 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 82 83 return ret; 84 } 85 86 void bch_rescale_priorities(struct cache_set *c, int sectors) 87 { 88 struct cache *ca; 89 struct bucket *b; 90 unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024; 91 int r; 92 93 atomic_sub(sectors, &c->rescale); 94 95 do { 96 r = atomic_read(&c->rescale); 97 98 if (r >= 0) 99 return; 100 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 101 102 mutex_lock(&c->bucket_lock); 103 104 c->min_prio = USHRT_MAX; 105 106 ca = c->cache; 107 for_each_bucket(b, ca) 108 if (b->prio && 109 b->prio != BTREE_PRIO && 110 !atomic_read(&b->pin)) { 111 b->prio--; 112 c->min_prio = min(c->min_prio, b->prio); 113 } 114 115 mutex_unlock(&c->bucket_lock); 116 } 117 118 /* 119 * Background allocation thread: scans for buckets to be invalidated, 120 * invalidates them, rewrites prios/gens (marking them as invalidated on disk), 121 * then optionally issues discard commands to the newly free buckets, then puts 122 * them on the various freelists. 123 */ 124 125 static inline bool can_inc_bucket_gen(struct bucket *b) 126 { 127 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; 128 } 129 130 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) 131 { 132 BUG_ON(!ca->set->gc_mark_valid); 133 134 return (!GC_MARK(b) || 135 GC_MARK(b) == GC_MARK_RECLAIMABLE) && 136 !atomic_read(&b->pin) && 137 can_inc_bucket_gen(b); 138 } 139 140 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 141 { 142 lockdep_assert_held(&ca->set->bucket_lock); 143 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); 144 145 if (GC_SECTORS_USED(b)) 146 trace_bcache_invalidate(ca, b - ca->buckets); 147 148 bch_inc_gen(ca, b); 149 b->prio = INITIAL_PRIO; 150 atomic_inc(&b->pin); 151 } 152 153 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 154 { 155 __bch_invalidate_one_bucket(ca, b); 156 157 fifo_push(&ca->free_inc, b - ca->buckets); 158 } 159 160 /* 161 * Determines what order we're going to reuse buckets, smallest bucket_prio() 162 * first: we also take into account the number of sectors of live data in that 163 * bucket, and in order for that multiply to make sense we have to scale bucket 164 * 165 * Thus, we scale the bucket priorities so that the bucket with the smallest 166 * prio is worth 1/8th of what INITIAL_PRIO is worth. 167 */ 168 169 #define bucket_prio(b) \ 170 ({ \ 171 unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ 172 \ 173 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ 174 }) 175 176 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) 177 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) 178 179 static void invalidate_buckets_lru(struct cache *ca) 180 { 181 struct bucket *b; 182 ssize_t i; 183 184 ca->heap.used = 0; 185 186 for_each_bucket(b, ca) { 187 if (!bch_can_invalidate_bucket(ca, b)) 188 continue; 189 190 if (!heap_full(&ca->heap)) 191 heap_add(&ca->heap, b, bucket_max_cmp); 192 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { 193 ca->heap.data[0] = b; 194 heap_sift(&ca->heap, 0, bucket_max_cmp); 195 } 196 } 197 198 for (i = ca->heap.used / 2 - 1; i >= 0; --i) 199 heap_sift(&ca->heap, i, bucket_min_cmp); 200 201 while (!fifo_full(&ca->free_inc)) { 202 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { 203 /* 204 * We don't want to be calling invalidate_buckets() 205 * multiple times when it can't do anything 206 */ 207 ca->invalidate_needs_gc = 1; 208 wake_up_gc(ca->set); 209 return; 210 } 211 212 bch_invalidate_one_bucket(ca, b); 213 } 214 } 215 216 static void invalidate_buckets_fifo(struct cache *ca) 217 { 218 struct bucket *b; 219 size_t checked = 0; 220 221 while (!fifo_full(&ca->free_inc)) { 222 if (ca->fifo_last_bucket < ca->sb.first_bucket || 223 ca->fifo_last_bucket >= ca->sb.nbuckets) 224 ca->fifo_last_bucket = ca->sb.first_bucket; 225 226 b = ca->buckets + ca->fifo_last_bucket++; 227 228 if (bch_can_invalidate_bucket(ca, b)) 229 bch_invalidate_one_bucket(ca, b); 230 231 if (++checked >= ca->sb.nbuckets) { 232 ca->invalidate_needs_gc = 1; 233 wake_up_gc(ca->set); 234 return; 235 } 236 } 237 } 238 239 static void invalidate_buckets_random(struct cache *ca) 240 { 241 struct bucket *b; 242 size_t checked = 0; 243 244 while (!fifo_full(&ca->free_inc)) { 245 size_t n; 246 247 get_random_bytes(&n, sizeof(n)); 248 249 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 250 n += ca->sb.first_bucket; 251 252 b = ca->buckets + n; 253 254 if (bch_can_invalidate_bucket(ca, b)) 255 bch_invalidate_one_bucket(ca, b); 256 257 if (++checked >= ca->sb.nbuckets / 2) { 258 ca->invalidate_needs_gc = 1; 259 wake_up_gc(ca->set); 260 return; 261 } 262 } 263 } 264 265 static void invalidate_buckets(struct cache *ca) 266 { 267 BUG_ON(ca->invalidate_needs_gc); 268 269 switch (CACHE_REPLACEMENT(&ca->sb)) { 270 case CACHE_REPLACEMENT_LRU: 271 invalidate_buckets_lru(ca); 272 break; 273 case CACHE_REPLACEMENT_FIFO: 274 invalidate_buckets_fifo(ca); 275 break; 276 case CACHE_REPLACEMENT_RANDOM: 277 invalidate_buckets_random(ca); 278 break; 279 } 280 } 281 282 #define allocator_wait(ca, cond) \ 283 do { \ 284 while (1) { \ 285 set_current_state(TASK_INTERRUPTIBLE); \ 286 if (cond) \ 287 break; \ 288 \ 289 mutex_unlock(&(ca)->set->bucket_lock); \ 290 if (kthread_should_stop() || \ 291 test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) { \ 292 set_current_state(TASK_RUNNING); \ 293 goto out; \ 294 } \ 295 \ 296 schedule(); \ 297 mutex_lock(&(ca)->set->bucket_lock); \ 298 } \ 299 __set_current_state(TASK_RUNNING); \ 300 } while (0) 301 302 static int bch_allocator_push(struct cache *ca, long bucket) 303 { 304 unsigned int i; 305 306 /* Prios/gens are actually the most important reserve */ 307 if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) 308 return true; 309 310 for (i = 0; i < RESERVE_NR; i++) 311 if (fifo_push(&ca->free[i], bucket)) 312 return true; 313 314 return false; 315 } 316 317 static int bch_allocator_thread(void *arg) 318 { 319 struct cache *ca = arg; 320 321 mutex_lock(&ca->set->bucket_lock); 322 323 while (1) { 324 /* 325 * First, we pull buckets off of the unused and free_inc lists, 326 * possibly issue discards to them, then we add the bucket to 327 * the free list: 328 */ 329 while (1) { 330 long bucket; 331 332 if (!fifo_pop(&ca->free_inc, bucket)) 333 break; 334 335 if (ca->discard) { 336 mutex_unlock(&ca->set->bucket_lock); 337 blkdev_issue_discard(ca->bdev, 338 bucket_to_sector(ca->set, bucket), 339 ca->sb.bucket_size, GFP_KERNEL, 0); 340 mutex_lock(&ca->set->bucket_lock); 341 } 342 343 allocator_wait(ca, bch_allocator_push(ca, bucket)); 344 wake_up(&ca->set->btree_cache_wait); 345 wake_up(&ca->set->bucket_wait); 346 } 347 348 /* 349 * We've run out of free buckets, we need to find some buckets 350 * we can invalidate. First, invalidate them in memory and add 351 * them to the free_inc list: 352 */ 353 354 retry_invalidate: 355 allocator_wait(ca, ca->set->gc_mark_valid && 356 !ca->invalidate_needs_gc); 357 invalidate_buckets(ca); 358 359 /* 360 * Now, we write their new gens to disk so we can start writing 361 * new stuff to them: 362 */ 363 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 364 if (CACHE_SYNC(&ca->sb)) { 365 /* 366 * This could deadlock if an allocation with a btree 367 * node locked ever blocked - having the btree node 368 * locked would block garbage collection, but here we're 369 * waiting on garbage collection before we invalidate 370 * and free anything. 371 * 372 * But this should be safe since the btree code always 373 * uses btree_check_reserve() before allocating now, and 374 * if it fails it blocks without btree nodes locked. 375 */ 376 if (!fifo_full(&ca->free_inc)) 377 goto retry_invalidate; 378 379 if (bch_prio_write(ca, false) < 0) { 380 ca->invalidate_needs_gc = 1; 381 wake_up_gc(ca->set); 382 } 383 } 384 } 385 out: 386 wait_for_kthread_stop(); 387 return 0; 388 } 389 390 /* Allocation */ 391 392 long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait) 393 { 394 DEFINE_WAIT(w); 395 struct bucket *b; 396 long r; 397 398 399 /* No allocation if CACHE_SET_IO_DISABLE bit is set */ 400 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags))) 401 return -1; 402 403 /* fastpath */ 404 if (fifo_pop(&ca->free[RESERVE_NONE], r) || 405 fifo_pop(&ca->free[reserve], r)) 406 goto out; 407 408 if (!wait) { 409 trace_bcache_alloc_fail(ca, reserve); 410 return -1; 411 } 412 413 do { 414 prepare_to_wait(&ca->set->bucket_wait, &w, 415 TASK_UNINTERRUPTIBLE); 416 417 mutex_unlock(&ca->set->bucket_lock); 418 schedule(); 419 mutex_lock(&ca->set->bucket_lock); 420 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && 421 !fifo_pop(&ca->free[reserve], r)); 422 423 finish_wait(&ca->set->bucket_wait, &w); 424 out: 425 if (ca->alloc_thread) 426 wake_up_process(ca->alloc_thread); 427 428 trace_bcache_alloc(ca, reserve); 429 430 if (expensive_debug_checks(ca->set)) { 431 size_t iter; 432 long i; 433 unsigned int j; 434 435 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 436 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 437 438 for (j = 0; j < RESERVE_NR; j++) 439 fifo_for_each(i, &ca->free[j], iter) 440 BUG_ON(i == r); 441 fifo_for_each(i, &ca->free_inc, iter) 442 BUG_ON(i == r); 443 } 444 445 b = ca->buckets + r; 446 447 BUG_ON(atomic_read(&b->pin) != 1); 448 449 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 450 451 if (reserve <= RESERVE_PRIO) { 452 SET_GC_MARK(b, GC_MARK_METADATA); 453 SET_GC_MOVE(b, 0); 454 b->prio = BTREE_PRIO; 455 } else { 456 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 457 SET_GC_MOVE(b, 0); 458 b->prio = INITIAL_PRIO; 459 } 460 461 if (ca->set->avail_nbuckets > 0) { 462 ca->set->avail_nbuckets--; 463 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 464 } 465 466 return r; 467 } 468 469 void __bch_bucket_free(struct cache *ca, struct bucket *b) 470 { 471 SET_GC_MARK(b, 0); 472 SET_GC_SECTORS_USED(b, 0); 473 474 if (ca->set->avail_nbuckets < ca->set->nbuckets) { 475 ca->set->avail_nbuckets++; 476 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 477 } 478 } 479 480 void bch_bucket_free(struct cache_set *c, struct bkey *k) 481 { 482 unsigned int i; 483 484 for (i = 0; i < KEY_PTRS(k); i++) 485 __bch_bucket_free(PTR_CACHE(c, k, i), 486 PTR_BUCKET(c, k, i)); 487 } 488 489 int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, 490 struct bkey *k, bool wait) 491 { 492 struct cache *ca; 493 long b; 494 495 /* No allocation if CACHE_SET_IO_DISABLE bit is set */ 496 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags))) 497 return -1; 498 499 lockdep_assert_held(&c->bucket_lock); 500 501 bkey_init(k); 502 503 ca = c->cache; 504 b = bch_bucket_alloc(ca, reserve, wait); 505 if (b == -1) 506 goto err; 507 508 k->ptr[0] = MAKE_PTR(ca->buckets[b].gen, 509 bucket_to_sector(c, b), 510 ca->sb.nr_this_dev); 511 512 SET_KEY_PTRS(k, 1); 513 514 return 0; 515 err: 516 bch_bucket_free(c, k); 517 bkey_put(c, k); 518 return -1; 519 } 520 521 int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve, 522 struct bkey *k, bool wait) 523 { 524 int ret; 525 526 mutex_lock(&c->bucket_lock); 527 ret = __bch_bucket_alloc_set(c, reserve, k, wait); 528 mutex_unlock(&c->bucket_lock); 529 return ret; 530 } 531 532 /* Sector allocator */ 533 534 struct open_bucket { 535 struct list_head list; 536 unsigned int last_write_point; 537 unsigned int sectors_free; 538 BKEY_PADDED(key); 539 }; 540 541 /* 542 * We keep multiple buckets open for writes, and try to segregate different 543 * write streams for better cache utilization: first we try to segregate flash 544 * only volume write streams from cached devices, secondly we look for a bucket 545 * where the last write to it was sequential with the current write, and 546 * failing that we look for a bucket that was last used by the same task. 547 * 548 * The ideas is if you've got multiple tasks pulling data into the cache at the 549 * same time, you'll get better cache utilization if you try to segregate their 550 * data and preserve locality. 551 * 552 * For example, dirty sectors of flash only volume is not reclaimable, if their 553 * dirty sectors mixed with dirty sectors of cached device, such buckets will 554 * be marked as dirty and won't be reclaimed, though the dirty data of cached 555 * device have been written back to backend device. 556 * 557 * And say you've starting Firefox at the same time you're copying a 558 * bunch of files. Firefox will likely end up being fairly hot and stay in the 559 * cache awhile, but the data you copied might not be; if you wrote all that 560 * data to the same buckets it'd get invalidated at the same time. 561 * 562 * Both of those tasks will be doing fairly random IO so we can't rely on 563 * detecting sequential IO to segregate their data, but going off of the task 564 * should be a sane heuristic. 565 */ 566 static struct open_bucket *pick_data_bucket(struct cache_set *c, 567 const struct bkey *search, 568 unsigned int write_point, 569 struct bkey *alloc) 570 { 571 struct open_bucket *ret, *ret_task = NULL; 572 573 list_for_each_entry_reverse(ret, &c->data_buckets, list) 574 if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) != 575 UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)])) 576 continue; 577 else if (!bkey_cmp(&ret->key, search)) 578 goto found; 579 else if (ret->last_write_point == write_point) 580 ret_task = ret; 581 582 ret = ret_task ?: list_first_entry(&c->data_buckets, 583 struct open_bucket, list); 584 found: 585 if (!ret->sectors_free && KEY_PTRS(alloc)) { 586 ret->sectors_free = c->cache->sb.bucket_size; 587 bkey_copy(&ret->key, alloc); 588 bkey_init(alloc); 589 } 590 591 if (!ret->sectors_free) 592 ret = NULL; 593 594 return ret; 595 } 596 597 /* 598 * Allocates some space in the cache to write to, and k to point to the newly 599 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 600 * end of the newly allocated space). 601 * 602 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 603 * sectors were actually allocated. 604 * 605 * If s->writeback is true, will not fail. 606 */ 607 bool bch_alloc_sectors(struct cache_set *c, 608 struct bkey *k, 609 unsigned int sectors, 610 unsigned int write_point, 611 unsigned int write_prio, 612 bool wait) 613 { 614 struct open_bucket *b; 615 BKEY_PADDED(key) alloc; 616 unsigned int i; 617 618 /* 619 * We might have to allocate a new bucket, which we can't do with a 620 * spinlock held. So if we have to allocate, we drop the lock, allocate 621 * and then retry. KEY_PTRS() indicates whether alloc points to 622 * allocated bucket(s). 623 */ 624 625 bkey_init(&alloc.key); 626 spin_lock(&c->data_bucket_lock); 627 628 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { 629 unsigned int watermark = write_prio 630 ? RESERVE_MOVINGGC 631 : RESERVE_NONE; 632 633 spin_unlock(&c->data_bucket_lock); 634 635 if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait)) 636 return false; 637 638 spin_lock(&c->data_bucket_lock); 639 } 640 641 /* 642 * If we had to allocate, we might race and not need to allocate the 643 * second time we call pick_data_bucket(). If we allocated a bucket but 644 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 645 */ 646 if (KEY_PTRS(&alloc.key)) 647 bkey_put(c, &alloc.key); 648 649 for (i = 0; i < KEY_PTRS(&b->key); i++) 650 EBUG_ON(ptr_stale(c, &b->key, i)); 651 652 /* Set up the pointer to the space we're allocating: */ 653 654 for (i = 0; i < KEY_PTRS(&b->key); i++) 655 k->ptr[i] = b->key.ptr[i]; 656 657 sectors = min(sectors, b->sectors_free); 658 659 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 660 SET_KEY_SIZE(k, sectors); 661 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 662 663 /* 664 * Move b to the end of the lru, and keep track of what this bucket was 665 * last used for: 666 */ 667 list_move_tail(&b->list, &c->data_buckets); 668 bkey_copy_key(&b->key, k); 669 b->last_write_point = write_point; 670 671 b->sectors_free -= sectors; 672 673 for (i = 0; i < KEY_PTRS(&b->key); i++) { 674 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 675 676 atomic_long_add(sectors, 677 &PTR_CACHE(c, &b->key, i)->sectors_written); 678 } 679 680 if (b->sectors_free < c->cache->sb.block_size) 681 b->sectors_free = 0; 682 683 /* 684 * k takes refcounts on the buckets it points to until it's inserted 685 * into the btree, but if we're done with this bucket we just transfer 686 * get_data_bucket()'s refcount. 687 */ 688 if (b->sectors_free) 689 for (i = 0; i < KEY_PTRS(&b->key); i++) 690 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 691 692 spin_unlock(&c->data_bucket_lock); 693 return true; 694 } 695 696 /* Init */ 697 698 void bch_open_buckets_free(struct cache_set *c) 699 { 700 struct open_bucket *b; 701 702 while (!list_empty(&c->data_buckets)) { 703 b = list_first_entry(&c->data_buckets, 704 struct open_bucket, list); 705 list_del(&b->list); 706 kfree(b); 707 } 708 } 709 710 int bch_open_buckets_alloc(struct cache_set *c) 711 { 712 int i; 713 714 spin_lock_init(&c->data_bucket_lock); 715 716 for (i = 0; i < MAX_OPEN_BUCKETS; i++) { 717 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 718 719 if (!b) 720 return -ENOMEM; 721 722 list_add(&b->list, &c->data_buckets); 723 } 724 725 return 0; 726 } 727 728 int bch_cache_allocator_start(struct cache *ca) 729 { 730 struct task_struct *k = kthread_run(bch_allocator_thread, 731 ca, "bcache_allocator"); 732 if (IS_ERR(k)) 733 return PTR_ERR(k); 734 735 ca->alloc_thread = k; 736 return 0; 737 } 738