1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Primary bucket allocation code 4 * 5 * Copyright 2012 Google, Inc. 6 * 7 * Allocation in bcache is done in terms of buckets: 8 * 9 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 10 * btree pointers - they must match for the pointer to be considered valid. 11 * 12 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 13 * bucket simply by incrementing its gen. 14 * 15 * The gens (along with the priorities; it's really the gens are important but 16 * the code is named as if it's the priorities) are written in an arbitrary list 17 * of buckets on disk, with a pointer to them in the journal header. 18 * 19 * When we invalidate a bucket, we have to write its new gen to disk and wait 20 * for that write to complete before we use it - otherwise after a crash we 21 * could have pointers that appeared to be good but pointed to data that had 22 * been overwritten. 23 * 24 * Since the gens and priorities are all stored contiguously on disk, we can 25 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 26 * call prio_write(), and when prio_write() finishes we pull buckets off the 27 * free_inc list and optionally discard them. 28 * 29 * free_inc isn't the only freelist - if it was, we'd often to sleep while 30 * priorities and gens were being written before we could allocate. c->free is a 31 * smaller freelist, and buckets on that list are always ready to be used. 32 * 33 * If we've got discards enabled, that happens when a bucket moves from the 34 * free_inc list to the free list. 35 * 36 * There is another freelist, because sometimes we have buckets that we know 37 * have nothing pointing into them - these we can reuse without waiting for 38 * priorities to be rewritten. These come from freed btree nodes and buckets 39 * that garbage collection discovered no longer had valid keys pointing into 40 * them (because they were overwritten). That's the unused list - buckets on the 41 * unused list move to the free list, optionally being discarded in the process. 42 * 43 * It's also important to ensure that gens don't wrap around - with respect to 44 * either the oldest gen in the btree or the gen on disk. This is quite 45 * difficult to do in practice, but we explicitly guard against it anyways - if 46 * a bucket is in danger of wrapping around we simply skip invalidating it that 47 * time around, and we garbage collect or rewrite the priorities sooner than we 48 * would have otherwise. 49 * 50 * bch_bucket_alloc() allocates a single bucket from a specific cache. 51 * 52 * bch_bucket_alloc_set() allocates one or more buckets from different caches 53 * out of a cache set. 54 * 55 * free_some_buckets() drives all the processes described above. It's called 56 * from bch_bucket_alloc() and a few other places that need to make sure free 57 * buckets are ready. 58 * 59 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 60 * invalidated, and then invalidate them and stick them on the free_inc list - 61 * in either lru or fifo order. 62 */ 63 64 #include "bcache.h" 65 #include "btree.h" 66 67 #include <linux/blkdev.h> 68 #include <linux/kthread.h> 69 #include <linux/random.h> 70 #include <trace/events/bcache.h> 71 72 #define MAX_OPEN_BUCKETS 128 73 74 /* Bucket heap / gen */ 75 76 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 77 { 78 uint8_t ret = ++b->gen; 79 80 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 81 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 82 83 return ret; 84 } 85 86 void bch_rescale_priorities(struct cache_set *c, int sectors) 87 { 88 struct cache *ca; 89 struct bucket *b; 90 unsigned next = c->nbuckets * c->sb.bucket_size / 1024; 91 unsigned i; 92 int r; 93 94 atomic_sub(sectors, &c->rescale); 95 96 do { 97 r = atomic_read(&c->rescale); 98 99 if (r >= 0) 100 return; 101 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 102 103 mutex_lock(&c->bucket_lock); 104 105 c->min_prio = USHRT_MAX; 106 107 for_each_cache(ca, c, i) 108 for_each_bucket(b, ca) 109 if (b->prio && 110 b->prio != BTREE_PRIO && 111 !atomic_read(&b->pin)) { 112 b->prio--; 113 c->min_prio = min(c->min_prio, b->prio); 114 } 115 116 mutex_unlock(&c->bucket_lock); 117 } 118 119 /* 120 * Background allocation thread: scans for buckets to be invalidated, 121 * invalidates them, rewrites prios/gens (marking them as invalidated on disk), 122 * then optionally issues discard commands to the newly free buckets, then puts 123 * them on the various freelists. 124 */ 125 126 static inline bool can_inc_bucket_gen(struct bucket *b) 127 { 128 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX; 129 } 130 131 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b) 132 { 133 BUG_ON(!ca->set->gc_mark_valid); 134 135 return (!GC_MARK(b) || 136 GC_MARK(b) == GC_MARK_RECLAIMABLE) && 137 !atomic_read(&b->pin) && 138 can_inc_bucket_gen(b); 139 } 140 141 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 142 { 143 lockdep_assert_held(&ca->set->bucket_lock); 144 BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE); 145 146 if (GC_SECTORS_USED(b)) 147 trace_bcache_invalidate(ca, b - ca->buckets); 148 149 bch_inc_gen(ca, b); 150 b->prio = INITIAL_PRIO; 151 atomic_inc(&b->pin); 152 } 153 154 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b) 155 { 156 __bch_invalidate_one_bucket(ca, b); 157 158 fifo_push(&ca->free_inc, b - ca->buckets); 159 } 160 161 /* 162 * Determines what order we're going to reuse buckets, smallest bucket_prio() 163 * first: we also take into account the number of sectors of live data in that 164 * bucket, and in order for that multiply to make sense we have to scale bucket 165 * 166 * Thus, we scale the bucket priorities so that the bucket with the smallest 167 * prio is worth 1/8th of what INITIAL_PRIO is worth. 168 */ 169 170 #define bucket_prio(b) \ 171 ({ \ 172 unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ 173 \ 174 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ 175 }) 176 177 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) 178 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) 179 180 static void invalidate_buckets_lru(struct cache *ca) 181 { 182 struct bucket *b; 183 ssize_t i; 184 185 ca->heap.used = 0; 186 187 for_each_bucket(b, ca) { 188 if (!bch_can_invalidate_bucket(ca, b)) 189 continue; 190 191 if (!heap_full(&ca->heap)) 192 heap_add(&ca->heap, b, bucket_max_cmp); 193 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { 194 ca->heap.data[0] = b; 195 heap_sift(&ca->heap, 0, bucket_max_cmp); 196 } 197 } 198 199 for (i = ca->heap.used / 2 - 1; i >= 0; --i) 200 heap_sift(&ca->heap, i, bucket_min_cmp); 201 202 while (!fifo_full(&ca->free_inc)) { 203 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { 204 /* 205 * We don't want to be calling invalidate_buckets() 206 * multiple times when it can't do anything 207 */ 208 ca->invalidate_needs_gc = 1; 209 wake_up_gc(ca->set); 210 return; 211 } 212 213 bch_invalidate_one_bucket(ca, b); 214 } 215 } 216 217 static void invalidate_buckets_fifo(struct cache *ca) 218 { 219 struct bucket *b; 220 size_t checked = 0; 221 222 while (!fifo_full(&ca->free_inc)) { 223 if (ca->fifo_last_bucket < ca->sb.first_bucket || 224 ca->fifo_last_bucket >= ca->sb.nbuckets) 225 ca->fifo_last_bucket = ca->sb.first_bucket; 226 227 b = ca->buckets + ca->fifo_last_bucket++; 228 229 if (bch_can_invalidate_bucket(ca, b)) 230 bch_invalidate_one_bucket(ca, b); 231 232 if (++checked >= ca->sb.nbuckets) { 233 ca->invalidate_needs_gc = 1; 234 wake_up_gc(ca->set); 235 return; 236 } 237 } 238 } 239 240 static void invalidate_buckets_random(struct cache *ca) 241 { 242 struct bucket *b; 243 size_t checked = 0; 244 245 while (!fifo_full(&ca->free_inc)) { 246 size_t n; 247 get_random_bytes(&n, sizeof(n)); 248 249 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 250 n += ca->sb.first_bucket; 251 252 b = ca->buckets + n; 253 254 if (bch_can_invalidate_bucket(ca, b)) 255 bch_invalidate_one_bucket(ca, b); 256 257 if (++checked >= ca->sb.nbuckets / 2) { 258 ca->invalidate_needs_gc = 1; 259 wake_up_gc(ca->set); 260 return; 261 } 262 } 263 } 264 265 static void invalidate_buckets(struct cache *ca) 266 { 267 BUG_ON(ca->invalidate_needs_gc); 268 269 switch (CACHE_REPLACEMENT(&ca->sb)) { 270 case CACHE_REPLACEMENT_LRU: 271 invalidate_buckets_lru(ca); 272 break; 273 case CACHE_REPLACEMENT_FIFO: 274 invalidate_buckets_fifo(ca); 275 break; 276 case CACHE_REPLACEMENT_RANDOM: 277 invalidate_buckets_random(ca); 278 break; 279 } 280 } 281 282 #define allocator_wait(ca, cond) \ 283 do { \ 284 while (1) { \ 285 set_current_state(TASK_INTERRUPTIBLE); \ 286 if (cond) \ 287 break; \ 288 \ 289 mutex_unlock(&(ca)->set->bucket_lock); \ 290 if (kthread_should_stop()) \ 291 return 0; \ 292 \ 293 schedule(); \ 294 mutex_lock(&(ca)->set->bucket_lock); \ 295 } \ 296 __set_current_state(TASK_RUNNING); \ 297 } while (0) 298 299 static int bch_allocator_push(struct cache *ca, long bucket) 300 { 301 unsigned i; 302 303 /* Prios/gens are actually the most important reserve */ 304 if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) 305 return true; 306 307 for (i = 0; i < RESERVE_NR; i++) 308 if (fifo_push(&ca->free[i], bucket)) 309 return true; 310 311 return false; 312 } 313 314 static int bch_allocator_thread(void *arg) 315 { 316 struct cache *ca = arg; 317 318 mutex_lock(&ca->set->bucket_lock); 319 320 while (1) { 321 /* 322 * First, we pull buckets off of the unused and free_inc lists, 323 * possibly issue discards to them, then we add the bucket to 324 * the free list: 325 */ 326 while (!fifo_empty(&ca->free_inc)) { 327 long bucket; 328 329 fifo_pop(&ca->free_inc, bucket); 330 331 if (ca->discard) { 332 mutex_unlock(&ca->set->bucket_lock); 333 blkdev_issue_discard(ca->bdev, 334 bucket_to_sector(ca->set, bucket), 335 ca->sb.bucket_size, GFP_KERNEL, 0); 336 mutex_lock(&ca->set->bucket_lock); 337 } 338 339 allocator_wait(ca, bch_allocator_push(ca, bucket)); 340 wake_up(&ca->set->btree_cache_wait); 341 wake_up(&ca->set->bucket_wait); 342 } 343 344 /* 345 * We've run out of free buckets, we need to find some buckets 346 * we can invalidate. First, invalidate them in memory and add 347 * them to the free_inc list: 348 */ 349 350 retry_invalidate: 351 allocator_wait(ca, ca->set->gc_mark_valid && 352 !ca->invalidate_needs_gc); 353 invalidate_buckets(ca); 354 355 /* 356 * Now, we write their new gens to disk so we can start writing 357 * new stuff to them: 358 */ 359 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 360 if (CACHE_SYNC(&ca->set->sb)) { 361 /* 362 * This could deadlock if an allocation with a btree 363 * node locked ever blocked - having the btree node 364 * locked would block garbage collection, but here we're 365 * waiting on garbage collection before we invalidate 366 * and free anything. 367 * 368 * But this should be safe since the btree code always 369 * uses btree_check_reserve() before allocating now, and 370 * if it fails it blocks without btree nodes locked. 371 */ 372 if (!fifo_full(&ca->free_inc)) 373 goto retry_invalidate; 374 375 bch_prio_write(ca); 376 } 377 } 378 } 379 380 /* Allocation */ 381 382 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait) 383 { 384 DEFINE_WAIT(w); 385 struct bucket *b; 386 long r; 387 388 /* fastpath */ 389 if (fifo_pop(&ca->free[RESERVE_NONE], r) || 390 fifo_pop(&ca->free[reserve], r)) 391 goto out; 392 393 if (!wait) { 394 trace_bcache_alloc_fail(ca, reserve); 395 return -1; 396 } 397 398 do { 399 prepare_to_wait(&ca->set->bucket_wait, &w, 400 TASK_UNINTERRUPTIBLE); 401 402 mutex_unlock(&ca->set->bucket_lock); 403 schedule(); 404 mutex_lock(&ca->set->bucket_lock); 405 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && 406 !fifo_pop(&ca->free[reserve], r)); 407 408 finish_wait(&ca->set->bucket_wait, &w); 409 out: 410 if (ca->alloc_thread) 411 wake_up_process(ca->alloc_thread); 412 413 trace_bcache_alloc(ca, reserve); 414 415 if (expensive_debug_checks(ca->set)) { 416 size_t iter; 417 long i; 418 unsigned j; 419 420 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 421 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 422 423 for (j = 0; j < RESERVE_NR; j++) 424 fifo_for_each(i, &ca->free[j], iter) 425 BUG_ON(i == r); 426 fifo_for_each(i, &ca->free_inc, iter) 427 BUG_ON(i == r); 428 } 429 430 b = ca->buckets + r; 431 432 BUG_ON(atomic_read(&b->pin) != 1); 433 434 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 435 436 if (reserve <= RESERVE_PRIO) { 437 SET_GC_MARK(b, GC_MARK_METADATA); 438 SET_GC_MOVE(b, 0); 439 b->prio = BTREE_PRIO; 440 } else { 441 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 442 SET_GC_MOVE(b, 0); 443 b->prio = INITIAL_PRIO; 444 } 445 446 if (ca->set->avail_nbuckets > 0) { 447 ca->set->avail_nbuckets--; 448 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 449 } 450 451 return r; 452 } 453 454 void __bch_bucket_free(struct cache *ca, struct bucket *b) 455 { 456 SET_GC_MARK(b, 0); 457 SET_GC_SECTORS_USED(b, 0); 458 459 if (ca->set->avail_nbuckets < ca->set->nbuckets) { 460 ca->set->avail_nbuckets++; 461 bch_update_bucket_in_use(ca->set, &ca->set->gc_stats); 462 } 463 } 464 465 void bch_bucket_free(struct cache_set *c, struct bkey *k) 466 { 467 unsigned i; 468 469 for (i = 0; i < KEY_PTRS(k); i++) 470 __bch_bucket_free(PTR_CACHE(c, k, i), 471 PTR_BUCKET(c, k, i)); 472 } 473 474 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, 475 struct bkey *k, int n, bool wait) 476 { 477 int i; 478 479 lockdep_assert_held(&c->bucket_lock); 480 BUG_ON(!n || n > c->caches_loaded || n > 8); 481 482 bkey_init(k); 483 484 /* sort by free space/prio of oldest data in caches */ 485 486 for (i = 0; i < n; i++) { 487 struct cache *ca = c->cache_by_alloc[i]; 488 long b = bch_bucket_alloc(ca, reserve, wait); 489 490 if (b == -1) 491 goto err; 492 493 k->ptr[i] = MAKE_PTR(ca->buckets[b].gen, 494 bucket_to_sector(c, b), 495 ca->sb.nr_this_dev); 496 497 SET_KEY_PTRS(k, i + 1); 498 } 499 500 return 0; 501 err: 502 bch_bucket_free(c, k); 503 bkey_put(c, k); 504 return -1; 505 } 506 507 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, 508 struct bkey *k, int n, bool wait) 509 { 510 int ret; 511 mutex_lock(&c->bucket_lock); 512 ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); 513 mutex_unlock(&c->bucket_lock); 514 return ret; 515 } 516 517 /* Sector allocator */ 518 519 struct open_bucket { 520 struct list_head list; 521 unsigned last_write_point; 522 unsigned sectors_free; 523 BKEY_PADDED(key); 524 }; 525 526 /* 527 * We keep multiple buckets open for writes, and try to segregate different 528 * write streams for better cache utilization: first we look for a bucket where 529 * the last write to it was sequential with the current write, and failing that 530 * we look for a bucket that was last used by the same task. 531 * 532 * The ideas is if you've got multiple tasks pulling data into the cache at the 533 * same time, you'll get better cache utilization if you try to segregate their 534 * data and preserve locality. 535 * 536 * For example, say you've starting Firefox at the same time you're copying a 537 * bunch of files. Firefox will likely end up being fairly hot and stay in the 538 * cache awhile, but the data you copied might not be; if you wrote all that 539 * data to the same buckets it'd get invalidated at the same time. 540 * 541 * Both of those tasks will be doing fairly random IO so we can't rely on 542 * detecting sequential IO to segregate their data, but going off of the task 543 * should be a sane heuristic. 544 */ 545 static struct open_bucket *pick_data_bucket(struct cache_set *c, 546 const struct bkey *search, 547 unsigned write_point, 548 struct bkey *alloc) 549 { 550 struct open_bucket *ret, *ret_task = NULL; 551 552 list_for_each_entry_reverse(ret, &c->data_buckets, list) 553 if (!bkey_cmp(&ret->key, search)) 554 goto found; 555 else if (ret->last_write_point == write_point) 556 ret_task = ret; 557 558 ret = ret_task ?: list_first_entry(&c->data_buckets, 559 struct open_bucket, list); 560 found: 561 if (!ret->sectors_free && KEY_PTRS(alloc)) { 562 ret->sectors_free = c->sb.bucket_size; 563 bkey_copy(&ret->key, alloc); 564 bkey_init(alloc); 565 } 566 567 if (!ret->sectors_free) 568 ret = NULL; 569 570 return ret; 571 } 572 573 /* 574 * Allocates some space in the cache to write to, and k to point to the newly 575 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 576 * end of the newly allocated space). 577 * 578 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 579 * sectors were actually allocated. 580 * 581 * If s->writeback is true, will not fail. 582 */ 583 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors, 584 unsigned write_point, unsigned write_prio, bool wait) 585 { 586 struct open_bucket *b; 587 BKEY_PADDED(key) alloc; 588 unsigned i; 589 590 /* 591 * We might have to allocate a new bucket, which we can't do with a 592 * spinlock held. So if we have to allocate, we drop the lock, allocate 593 * and then retry. KEY_PTRS() indicates whether alloc points to 594 * allocated bucket(s). 595 */ 596 597 bkey_init(&alloc.key); 598 spin_lock(&c->data_bucket_lock); 599 600 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { 601 unsigned watermark = write_prio 602 ? RESERVE_MOVINGGC 603 : RESERVE_NONE; 604 605 spin_unlock(&c->data_bucket_lock); 606 607 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) 608 return false; 609 610 spin_lock(&c->data_bucket_lock); 611 } 612 613 /* 614 * If we had to allocate, we might race and not need to allocate the 615 * second time we call pick_data_bucket(). If we allocated a bucket but 616 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 617 */ 618 if (KEY_PTRS(&alloc.key)) 619 bkey_put(c, &alloc.key); 620 621 for (i = 0; i < KEY_PTRS(&b->key); i++) 622 EBUG_ON(ptr_stale(c, &b->key, i)); 623 624 /* Set up the pointer to the space we're allocating: */ 625 626 for (i = 0; i < KEY_PTRS(&b->key); i++) 627 k->ptr[i] = b->key.ptr[i]; 628 629 sectors = min(sectors, b->sectors_free); 630 631 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 632 SET_KEY_SIZE(k, sectors); 633 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 634 635 /* 636 * Move b to the end of the lru, and keep track of what this bucket was 637 * last used for: 638 */ 639 list_move_tail(&b->list, &c->data_buckets); 640 bkey_copy_key(&b->key, k); 641 b->last_write_point = write_point; 642 643 b->sectors_free -= sectors; 644 645 for (i = 0; i < KEY_PTRS(&b->key); i++) { 646 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 647 648 atomic_long_add(sectors, 649 &PTR_CACHE(c, &b->key, i)->sectors_written); 650 } 651 652 if (b->sectors_free < c->sb.block_size) 653 b->sectors_free = 0; 654 655 /* 656 * k takes refcounts on the buckets it points to until it's inserted 657 * into the btree, but if we're done with this bucket we just transfer 658 * get_data_bucket()'s refcount. 659 */ 660 if (b->sectors_free) 661 for (i = 0; i < KEY_PTRS(&b->key); i++) 662 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 663 664 spin_unlock(&c->data_bucket_lock); 665 return true; 666 } 667 668 /* Init */ 669 670 void bch_open_buckets_free(struct cache_set *c) 671 { 672 struct open_bucket *b; 673 674 while (!list_empty(&c->data_buckets)) { 675 b = list_first_entry(&c->data_buckets, 676 struct open_bucket, list); 677 list_del(&b->list); 678 kfree(b); 679 } 680 } 681 682 int bch_open_buckets_alloc(struct cache_set *c) 683 { 684 int i; 685 686 spin_lock_init(&c->data_bucket_lock); 687 688 for (i = 0; i < MAX_OPEN_BUCKETS; i++) { 689 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 690 if (!b) 691 return -ENOMEM; 692 693 list_add(&b->list, &c->data_buckets); 694 } 695 696 return 0; 697 } 698 699 int bch_cache_allocator_start(struct cache *ca) 700 { 701 struct task_struct *k = kthread_run(bch_allocator_thread, 702 ca, "bcache_allocator"); 703 if (IS_ERR(k)) 704 return PTR_ERR(k); 705 706 ca->alloc_thread = k; 707 return 0; 708 } 709