1 /* 2 * Primary bucket allocation code 3 * 4 * Copyright 2012 Google, Inc. 5 * 6 * Allocation in bcache is done in terms of buckets: 7 * 8 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in 9 * btree pointers - they must match for the pointer to be considered valid. 10 * 11 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a 12 * bucket simply by incrementing its gen. 13 * 14 * The gens (along with the priorities; it's really the gens are important but 15 * the code is named as if it's the priorities) are written in an arbitrary list 16 * of buckets on disk, with a pointer to them in the journal header. 17 * 18 * When we invalidate a bucket, we have to write its new gen to disk and wait 19 * for that write to complete before we use it - otherwise after a crash we 20 * could have pointers that appeared to be good but pointed to data that had 21 * been overwritten. 22 * 23 * Since the gens and priorities are all stored contiguously on disk, we can 24 * batch this up: We fill up the free_inc list with freshly invalidated buckets, 25 * call prio_write(), and when prio_write() finishes we pull buckets off the 26 * free_inc list and optionally discard them. 27 * 28 * free_inc isn't the only freelist - if it was, we'd often to sleep while 29 * priorities and gens were being written before we could allocate. c->free is a 30 * smaller freelist, and buckets on that list are always ready to be used. 31 * 32 * If we've got discards enabled, that happens when a bucket moves from the 33 * free_inc list to the free list. 34 * 35 * There is another freelist, because sometimes we have buckets that we know 36 * have nothing pointing into them - these we can reuse without waiting for 37 * priorities to be rewritten. These come from freed btree nodes and buckets 38 * that garbage collection discovered no longer had valid keys pointing into 39 * them (because they were overwritten). That's the unused list - buckets on the 40 * unused list move to the free list, optionally being discarded in the process. 41 * 42 * It's also important to ensure that gens don't wrap around - with respect to 43 * either the oldest gen in the btree or the gen on disk. This is quite 44 * difficult to do in practice, but we explicitly guard against it anyways - if 45 * a bucket is in danger of wrapping around we simply skip invalidating it that 46 * time around, and we garbage collect or rewrite the priorities sooner than we 47 * would have otherwise. 48 * 49 * bch_bucket_alloc() allocates a single bucket from a specific cache. 50 * 51 * bch_bucket_alloc_set() allocates one or more buckets from different caches 52 * out of a cache set. 53 * 54 * free_some_buckets() drives all the processes described above. It's called 55 * from bch_bucket_alloc() and a few other places that need to make sure free 56 * buckets are ready. 57 * 58 * invalidate_buckets_(lru|fifo)() find buckets that are available to be 59 * invalidated, and then invalidate them and stick them on the free_inc list - 60 * in either lru or fifo order. 61 */ 62 63 #include "bcache.h" 64 #include "btree.h" 65 66 #include <linux/blkdev.h> 67 #include <linux/freezer.h> 68 #include <linux/kthread.h> 69 #include <linux/random.h> 70 #include <trace/events/bcache.h> 71 72 /* Bucket heap / gen */ 73 74 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b) 75 { 76 uint8_t ret = ++b->gen; 77 78 ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b)); 79 WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX); 80 81 if (CACHE_SYNC(&ca->set->sb)) { 82 ca->need_save_prio = max(ca->need_save_prio, 83 bucket_disk_gen(b)); 84 WARN_ON_ONCE(ca->need_save_prio > BUCKET_DISK_GEN_MAX); 85 } 86 87 return ret; 88 } 89 90 void bch_rescale_priorities(struct cache_set *c, int sectors) 91 { 92 struct cache *ca; 93 struct bucket *b; 94 unsigned next = c->nbuckets * c->sb.bucket_size / 1024; 95 unsigned i; 96 int r; 97 98 atomic_sub(sectors, &c->rescale); 99 100 do { 101 r = atomic_read(&c->rescale); 102 103 if (r >= 0) 104 return; 105 } while (atomic_cmpxchg(&c->rescale, r, r + next) != r); 106 107 mutex_lock(&c->bucket_lock); 108 109 c->min_prio = USHRT_MAX; 110 111 for_each_cache(ca, c, i) 112 for_each_bucket(b, ca) 113 if (b->prio && 114 b->prio != BTREE_PRIO && 115 !atomic_read(&b->pin)) { 116 b->prio--; 117 c->min_prio = min(c->min_prio, b->prio); 118 } 119 120 mutex_unlock(&c->bucket_lock); 121 } 122 123 /* Allocation */ 124 125 static inline bool can_inc_bucket_gen(struct bucket *b) 126 { 127 return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX && 128 bucket_disk_gen(b) < BUCKET_DISK_GEN_MAX; 129 } 130 131 bool bch_bucket_add_unused(struct cache *ca, struct bucket *b) 132 { 133 BUG_ON(GC_MARK(b) || GC_SECTORS_USED(b)); 134 135 if (CACHE_REPLACEMENT(&ca->sb) == CACHE_REPLACEMENT_FIFO) { 136 unsigned i; 137 138 for (i = 0; i < RESERVE_NONE; i++) 139 if (!fifo_full(&ca->free[i])) 140 goto add; 141 142 return false; 143 } 144 add: 145 b->prio = 0; 146 147 if (can_inc_bucket_gen(b) && 148 fifo_push(&ca->unused, b - ca->buckets)) { 149 atomic_inc(&b->pin); 150 return true; 151 } 152 153 return false; 154 } 155 156 static bool can_invalidate_bucket(struct cache *ca, struct bucket *b) 157 { 158 return GC_MARK(b) == GC_MARK_RECLAIMABLE && 159 !atomic_read(&b->pin) && 160 can_inc_bucket_gen(b); 161 } 162 163 static void invalidate_one_bucket(struct cache *ca, struct bucket *b) 164 { 165 bch_inc_gen(ca, b); 166 b->prio = INITIAL_PRIO; 167 atomic_inc(&b->pin); 168 fifo_push(&ca->free_inc, b - ca->buckets); 169 } 170 171 /* 172 * Determines what order we're going to reuse buckets, smallest bucket_prio() 173 * first: we also take into account the number of sectors of live data in that 174 * bucket, and in order for that multiply to make sense we have to scale bucket 175 * 176 * Thus, we scale the bucket priorities so that the bucket with the smallest 177 * prio is worth 1/8th of what INITIAL_PRIO is worth. 178 */ 179 180 #define bucket_prio(b) \ 181 ({ \ 182 unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8; \ 183 \ 184 (b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b); \ 185 }) 186 187 #define bucket_max_cmp(l, r) (bucket_prio(l) < bucket_prio(r)) 188 #define bucket_min_cmp(l, r) (bucket_prio(l) > bucket_prio(r)) 189 190 static void invalidate_buckets_lru(struct cache *ca) 191 { 192 struct bucket *b; 193 ssize_t i; 194 195 ca->heap.used = 0; 196 197 for_each_bucket(b, ca) { 198 /* 199 * If we fill up the unused list, if we then return before 200 * adding anything to the free_inc list we'll skip writing 201 * prios/gens and just go back to allocating from the unused 202 * list: 203 */ 204 if (fifo_full(&ca->unused)) 205 return; 206 207 if (!can_invalidate_bucket(ca, b)) 208 continue; 209 210 if (!GC_SECTORS_USED(b) && 211 bch_bucket_add_unused(ca, b)) 212 continue; 213 214 if (!heap_full(&ca->heap)) 215 heap_add(&ca->heap, b, bucket_max_cmp); 216 else if (bucket_max_cmp(b, heap_peek(&ca->heap))) { 217 ca->heap.data[0] = b; 218 heap_sift(&ca->heap, 0, bucket_max_cmp); 219 } 220 } 221 222 for (i = ca->heap.used / 2 - 1; i >= 0; --i) 223 heap_sift(&ca->heap, i, bucket_min_cmp); 224 225 while (!fifo_full(&ca->free_inc)) { 226 if (!heap_pop(&ca->heap, b, bucket_min_cmp)) { 227 /* 228 * We don't want to be calling invalidate_buckets() 229 * multiple times when it can't do anything 230 */ 231 ca->invalidate_needs_gc = 1; 232 wake_up_gc(ca->set); 233 return; 234 } 235 236 invalidate_one_bucket(ca, b); 237 } 238 } 239 240 static void invalidate_buckets_fifo(struct cache *ca) 241 { 242 struct bucket *b; 243 size_t checked = 0; 244 245 while (!fifo_full(&ca->free_inc)) { 246 if (ca->fifo_last_bucket < ca->sb.first_bucket || 247 ca->fifo_last_bucket >= ca->sb.nbuckets) 248 ca->fifo_last_bucket = ca->sb.first_bucket; 249 250 b = ca->buckets + ca->fifo_last_bucket++; 251 252 if (can_invalidate_bucket(ca, b)) 253 invalidate_one_bucket(ca, b); 254 255 if (++checked >= ca->sb.nbuckets) { 256 ca->invalidate_needs_gc = 1; 257 wake_up_gc(ca->set); 258 return; 259 } 260 } 261 } 262 263 static void invalidate_buckets_random(struct cache *ca) 264 { 265 struct bucket *b; 266 size_t checked = 0; 267 268 while (!fifo_full(&ca->free_inc)) { 269 size_t n; 270 get_random_bytes(&n, sizeof(n)); 271 272 n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket); 273 n += ca->sb.first_bucket; 274 275 b = ca->buckets + n; 276 277 if (can_invalidate_bucket(ca, b)) 278 invalidate_one_bucket(ca, b); 279 280 if (++checked >= ca->sb.nbuckets / 2) { 281 ca->invalidate_needs_gc = 1; 282 wake_up_gc(ca->set); 283 return; 284 } 285 } 286 } 287 288 static void invalidate_buckets(struct cache *ca) 289 { 290 if (ca->invalidate_needs_gc) 291 return; 292 293 switch (CACHE_REPLACEMENT(&ca->sb)) { 294 case CACHE_REPLACEMENT_LRU: 295 invalidate_buckets_lru(ca); 296 break; 297 case CACHE_REPLACEMENT_FIFO: 298 invalidate_buckets_fifo(ca); 299 break; 300 case CACHE_REPLACEMENT_RANDOM: 301 invalidate_buckets_random(ca); 302 break; 303 } 304 305 trace_bcache_alloc_invalidate(ca); 306 } 307 308 #define allocator_wait(ca, cond) \ 309 do { \ 310 while (1) { \ 311 set_current_state(TASK_INTERRUPTIBLE); \ 312 if (cond) \ 313 break; \ 314 \ 315 mutex_unlock(&(ca)->set->bucket_lock); \ 316 if (kthread_should_stop()) \ 317 return 0; \ 318 \ 319 try_to_freeze(); \ 320 schedule(); \ 321 mutex_lock(&(ca)->set->bucket_lock); \ 322 } \ 323 __set_current_state(TASK_RUNNING); \ 324 } while (0) 325 326 static int bch_allocator_push(struct cache *ca, long bucket) 327 { 328 unsigned i; 329 330 /* Prios/gens are actually the most important reserve */ 331 if (fifo_push(&ca->free[RESERVE_PRIO], bucket)) 332 return true; 333 334 for (i = 0; i < RESERVE_NR; i++) 335 if (fifo_push(&ca->free[i], bucket)) 336 return true; 337 338 return false; 339 } 340 341 static int bch_allocator_thread(void *arg) 342 { 343 struct cache *ca = arg; 344 345 mutex_lock(&ca->set->bucket_lock); 346 347 while (1) { 348 /* 349 * First, we pull buckets off of the unused and free_inc lists, 350 * possibly issue discards to them, then we add the bucket to 351 * the free list: 352 */ 353 while (1) { 354 long bucket; 355 356 if ((!atomic_read(&ca->set->prio_blocked) || 357 !CACHE_SYNC(&ca->set->sb)) && 358 !fifo_empty(&ca->unused)) 359 fifo_pop(&ca->unused, bucket); 360 else if (!fifo_empty(&ca->free_inc)) 361 fifo_pop(&ca->free_inc, bucket); 362 else 363 break; 364 365 if (ca->discard) { 366 mutex_unlock(&ca->set->bucket_lock); 367 blkdev_issue_discard(ca->bdev, 368 bucket_to_sector(ca->set, bucket), 369 ca->sb.block_size, GFP_KERNEL, 0); 370 mutex_lock(&ca->set->bucket_lock); 371 } 372 373 allocator_wait(ca, bch_allocator_push(ca, bucket)); 374 wake_up(&ca->set->bucket_wait); 375 } 376 377 /* 378 * We've run out of free buckets, we need to find some buckets 379 * we can invalidate. First, invalidate them in memory and add 380 * them to the free_inc list: 381 */ 382 383 allocator_wait(ca, ca->set->gc_mark_valid && 384 (ca->need_save_prio > 64 || 385 !ca->invalidate_needs_gc)); 386 invalidate_buckets(ca); 387 388 /* 389 * Now, we write their new gens to disk so we can start writing 390 * new stuff to them: 391 */ 392 allocator_wait(ca, !atomic_read(&ca->set->prio_blocked)); 393 if (CACHE_SYNC(&ca->set->sb) && 394 (!fifo_empty(&ca->free_inc) || 395 ca->need_save_prio > 64)) 396 bch_prio_write(ca); 397 } 398 } 399 400 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait) 401 { 402 DEFINE_WAIT(w); 403 struct bucket *b; 404 long r; 405 406 /* fastpath */ 407 if (fifo_pop(&ca->free[RESERVE_NONE], r) || 408 fifo_pop(&ca->free[reserve], r)) 409 goto out; 410 411 if (!wait) 412 return -1; 413 414 do { 415 prepare_to_wait(&ca->set->bucket_wait, &w, 416 TASK_UNINTERRUPTIBLE); 417 418 mutex_unlock(&ca->set->bucket_lock); 419 schedule(); 420 mutex_lock(&ca->set->bucket_lock); 421 } while (!fifo_pop(&ca->free[RESERVE_NONE], r) && 422 !fifo_pop(&ca->free[reserve], r)); 423 424 finish_wait(&ca->set->bucket_wait, &w); 425 out: 426 wake_up_process(ca->alloc_thread); 427 428 if (expensive_debug_checks(ca->set)) { 429 size_t iter; 430 long i; 431 unsigned j; 432 433 for (iter = 0; iter < prio_buckets(ca) * 2; iter++) 434 BUG_ON(ca->prio_buckets[iter] == (uint64_t) r); 435 436 for (j = 0; j < RESERVE_NR; j++) 437 fifo_for_each(i, &ca->free[j], iter) 438 BUG_ON(i == r); 439 fifo_for_each(i, &ca->free_inc, iter) 440 BUG_ON(i == r); 441 fifo_for_each(i, &ca->unused, iter) 442 BUG_ON(i == r); 443 } 444 445 b = ca->buckets + r; 446 447 BUG_ON(atomic_read(&b->pin) != 1); 448 449 SET_GC_SECTORS_USED(b, ca->sb.bucket_size); 450 451 if (reserve <= RESERVE_PRIO) { 452 SET_GC_MARK(b, GC_MARK_METADATA); 453 SET_GC_MOVE(b, 0); 454 b->prio = BTREE_PRIO; 455 } else { 456 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 457 SET_GC_MOVE(b, 0); 458 b->prio = INITIAL_PRIO; 459 } 460 461 return r; 462 } 463 464 void bch_bucket_free(struct cache_set *c, struct bkey *k) 465 { 466 unsigned i; 467 468 for (i = 0; i < KEY_PTRS(k); i++) { 469 struct bucket *b = PTR_BUCKET(c, k, i); 470 471 SET_GC_MARK(b, GC_MARK_RECLAIMABLE); 472 SET_GC_SECTORS_USED(b, 0); 473 bch_bucket_add_unused(PTR_CACHE(c, k, i), b); 474 } 475 } 476 477 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, 478 struct bkey *k, int n, bool wait) 479 { 480 int i; 481 482 lockdep_assert_held(&c->bucket_lock); 483 BUG_ON(!n || n > c->caches_loaded || n > 8); 484 485 bkey_init(k); 486 487 /* sort by free space/prio of oldest data in caches */ 488 489 for (i = 0; i < n; i++) { 490 struct cache *ca = c->cache_by_alloc[i]; 491 long b = bch_bucket_alloc(ca, reserve, wait); 492 493 if (b == -1) 494 goto err; 495 496 k->ptr[i] = PTR(ca->buckets[b].gen, 497 bucket_to_sector(c, b), 498 ca->sb.nr_this_dev); 499 500 SET_KEY_PTRS(k, i + 1); 501 } 502 503 return 0; 504 err: 505 bch_bucket_free(c, k); 506 bkey_put(c, k); 507 return -1; 508 } 509 510 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve, 511 struct bkey *k, int n, bool wait) 512 { 513 int ret; 514 mutex_lock(&c->bucket_lock); 515 ret = __bch_bucket_alloc_set(c, reserve, k, n, wait); 516 mutex_unlock(&c->bucket_lock); 517 return ret; 518 } 519 520 /* Sector allocator */ 521 522 struct open_bucket { 523 struct list_head list; 524 unsigned last_write_point; 525 unsigned sectors_free; 526 BKEY_PADDED(key); 527 }; 528 529 /* 530 * We keep multiple buckets open for writes, and try to segregate different 531 * write streams for better cache utilization: first we look for a bucket where 532 * the last write to it was sequential with the current write, and failing that 533 * we look for a bucket that was last used by the same task. 534 * 535 * The ideas is if you've got multiple tasks pulling data into the cache at the 536 * same time, you'll get better cache utilization if you try to segregate their 537 * data and preserve locality. 538 * 539 * For example, say you've starting Firefox at the same time you're copying a 540 * bunch of files. Firefox will likely end up being fairly hot and stay in the 541 * cache awhile, but the data you copied might not be; if you wrote all that 542 * data to the same buckets it'd get invalidated at the same time. 543 * 544 * Both of those tasks will be doing fairly random IO so we can't rely on 545 * detecting sequential IO to segregate their data, but going off of the task 546 * should be a sane heuristic. 547 */ 548 static struct open_bucket *pick_data_bucket(struct cache_set *c, 549 const struct bkey *search, 550 unsigned write_point, 551 struct bkey *alloc) 552 { 553 struct open_bucket *ret, *ret_task = NULL; 554 555 list_for_each_entry_reverse(ret, &c->data_buckets, list) 556 if (!bkey_cmp(&ret->key, search)) 557 goto found; 558 else if (ret->last_write_point == write_point) 559 ret_task = ret; 560 561 ret = ret_task ?: list_first_entry(&c->data_buckets, 562 struct open_bucket, list); 563 found: 564 if (!ret->sectors_free && KEY_PTRS(alloc)) { 565 ret->sectors_free = c->sb.bucket_size; 566 bkey_copy(&ret->key, alloc); 567 bkey_init(alloc); 568 } 569 570 if (!ret->sectors_free) 571 ret = NULL; 572 573 return ret; 574 } 575 576 /* 577 * Allocates some space in the cache to write to, and k to point to the newly 578 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 579 * end of the newly allocated space). 580 * 581 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 582 * sectors were actually allocated. 583 * 584 * If s->writeback is true, will not fail. 585 */ 586 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors, 587 unsigned write_point, unsigned write_prio, bool wait) 588 { 589 struct open_bucket *b; 590 BKEY_PADDED(key) alloc; 591 unsigned i; 592 593 /* 594 * We might have to allocate a new bucket, which we can't do with a 595 * spinlock held. So if we have to allocate, we drop the lock, allocate 596 * and then retry. KEY_PTRS() indicates whether alloc points to 597 * allocated bucket(s). 598 */ 599 600 bkey_init(&alloc.key); 601 spin_lock(&c->data_bucket_lock); 602 603 while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) { 604 unsigned watermark = write_prio 605 ? RESERVE_MOVINGGC 606 : RESERVE_NONE; 607 608 spin_unlock(&c->data_bucket_lock); 609 610 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait)) 611 return false; 612 613 spin_lock(&c->data_bucket_lock); 614 } 615 616 /* 617 * If we had to allocate, we might race and not need to allocate the 618 * second time we call find_data_bucket(). If we allocated a bucket but 619 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 620 */ 621 if (KEY_PTRS(&alloc.key)) 622 bkey_put(c, &alloc.key); 623 624 for (i = 0; i < KEY_PTRS(&b->key); i++) 625 EBUG_ON(ptr_stale(c, &b->key, i)); 626 627 /* Set up the pointer to the space we're allocating: */ 628 629 for (i = 0; i < KEY_PTRS(&b->key); i++) 630 k->ptr[i] = b->key.ptr[i]; 631 632 sectors = min(sectors, b->sectors_free); 633 634 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 635 SET_KEY_SIZE(k, sectors); 636 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 637 638 /* 639 * Move b to the end of the lru, and keep track of what this bucket was 640 * last used for: 641 */ 642 list_move_tail(&b->list, &c->data_buckets); 643 bkey_copy_key(&b->key, k); 644 b->last_write_point = write_point; 645 646 b->sectors_free -= sectors; 647 648 for (i = 0; i < KEY_PTRS(&b->key); i++) { 649 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 650 651 atomic_long_add(sectors, 652 &PTR_CACHE(c, &b->key, i)->sectors_written); 653 } 654 655 if (b->sectors_free < c->sb.block_size) 656 b->sectors_free = 0; 657 658 /* 659 * k takes refcounts on the buckets it points to until it's inserted 660 * into the btree, but if we're done with this bucket we just transfer 661 * get_data_bucket()'s refcount. 662 */ 663 if (b->sectors_free) 664 for (i = 0; i < KEY_PTRS(&b->key); i++) 665 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 666 667 spin_unlock(&c->data_bucket_lock); 668 return true; 669 } 670 671 /* Init */ 672 673 void bch_open_buckets_free(struct cache_set *c) 674 { 675 struct open_bucket *b; 676 677 while (!list_empty(&c->data_buckets)) { 678 b = list_first_entry(&c->data_buckets, 679 struct open_bucket, list); 680 list_del(&b->list); 681 kfree(b); 682 } 683 } 684 685 int bch_open_buckets_alloc(struct cache_set *c) 686 { 687 int i; 688 689 spin_lock_init(&c->data_bucket_lock); 690 691 for (i = 0; i < 6; i++) { 692 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 693 if (!b) 694 return -ENOMEM; 695 696 list_add(&b->list, &c->data_buckets); 697 } 698 699 return 0; 700 } 701 702 int bch_cache_allocator_start(struct cache *ca) 703 { 704 struct task_struct *k = kthread_run(bch_allocator_thread, 705 ca, "bcache_allocator"); 706 if (IS_ERR(k)) 707 return PTR_ERR(k); 708 709 ca->alloc_thread = k; 710 return 0; 711 } 712 713 int bch_cache_allocator_init(struct cache *ca) 714 { 715 /* 716 * Reserve: 717 * Prio/gen writes first 718 * Then 8 for btree allocations 719 * Then half for the moving garbage collector 720 */ 721 #if 0 722 ca->watermark[WATERMARK_PRIO] = 0; 723 724 ca->watermark[WATERMARK_METADATA] = prio_buckets(ca); 725 726 ca->watermark[WATERMARK_MOVINGGC] = 8 + 727 ca->watermark[WATERMARK_METADATA]; 728 729 ca->watermark[WATERMARK_NONE] = ca->free.size / 2 + 730 ca->watermark[WATERMARK_MOVINGGC]; 731 #endif 732 return 0; 733 } 734