1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2016 Broadcom 4 */ 5 6 /* 7 * Broadcom PDC Mailbox Driver 8 * The PDC provides a ring based programming interface to one or more hardware 9 * offload engines. For example, the PDC driver works with both SPU-M and SPU2 10 * cryptographic offload hardware. In some chips the PDC is referred to as MDE, 11 * and in others the FA2/FA+ hardware is used with this PDC driver. 12 * 13 * The PDC driver registers with the Linux mailbox framework as a mailbox 14 * controller, once for each PDC instance. Ring 0 for each PDC is registered as 15 * a mailbox channel. The PDC driver uses interrupts to determine when data 16 * transfers to and from an offload engine are complete. The PDC driver uses 17 * threaded IRQs so that response messages are handled outside of interrupt 18 * context. 19 * 20 * The PDC driver allows multiple messages to be pending in the descriptor 21 * rings. The tx_msg_start descriptor index indicates where the last message 22 * starts. The txin_numd value at this index indicates how many descriptor 23 * indexes make up the message. Similar state is kept on the receive side. When 24 * an rx interrupt indicates a response is ready, the PDC driver processes numd 25 * descriptors from the tx and rx ring, thus processing one response at a time. 26 */ 27 28 #include <linux/errno.h> 29 #include <linux/module.h> 30 #include <linux/init.h> 31 #include <linux/slab.h> 32 #include <linux/debugfs.h> 33 #include <linux/interrupt.h> 34 #include <linux/wait.h> 35 #include <linux/platform_device.h> 36 #include <linux/io.h> 37 #include <linux/of.h> 38 #include <linux/of_device.h> 39 #include <linux/of_address.h> 40 #include <linux/of_irq.h> 41 #include <linux/mailbox_controller.h> 42 #include <linux/mailbox/brcm-message.h> 43 #include <linux/scatterlist.h> 44 #include <linux/dma-direction.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/dmapool.h> 47 48 #define PDC_SUCCESS 0 49 50 #define RING_ENTRY_SIZE sizeof(struct dma64dd) 51 52 /* # entries in PDC dma ring */ 53 #define PDC_RING_ENTRIES 512 54 /* 55 * Minimum number of ring descriptor entries that must be free to tell mailbox 56 * framework that it can submit another request 57 */ 58 #define PDC_RING_SPACE_MIN 15 59 60 #define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE) 61 /* Rings are 8k aligned */ 62 #define RING_ALIGN_ORDER 13 63 #define RING_ALIGN BIT(RING_ALIGN_ORDER) 64 65 #define RX_BUF_ALIGN_ORDER 5 66 #define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER) 67 68 /* descriptor bumping macros */ 69 #define XXD(x, max_mask) ((x) & (max_mask)) 70 #define TXD(x, max_mask) XXD((x), (max_mask)) 71 #define RXD(x, max_mask) XXD((x), (max_mask)) 72 #define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask)) 73 #define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask)) 74 #define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask)) 75 #define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask)) 76 #define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask)) 77 #define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask)) 78 79 /* Length of BCM header at start of SPU msg, in bytes */ 80 #define BCM_HDR_LEN 8 81 82 /* 83 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does 84 * not currently support use of multiple ringsets on a single PDC engine. 85 */ 86 #define PDC_RINGSET 0 87 88 /* 89 * Interrupt mask and status definitions. Enable interrupts for tx and rx on 90 * ring 0 91 */ 92 #define PDC_RCVINT_0 (16 + PDC_RINGSET) 93 #define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0) 94 #define PDC_INTMASK (PDC_RCVINTEN_0) 95 #define PDC_LAZY_FRAMECOUNT 1 96 #define PDC_LAZY_TIMEOUT 10000 97 #define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24)) 98 #define PDC_INTMASK_OFFSET 0x24 99 #define PDC_INTSTATUS_OFFSET 0x20 100 #define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET) 101 #define FA_RCVLAZY0_OFFSET 0x100 102 103 /* 104 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata 105 * before frame 106 */ 107 #define PDC_SPU2_RESP_HDR_LEN 17 108 #define PDC_CKSUM_CTRL BIT(27) 109 #define PDC_CKSUM_CTRL_OFFSET 0x400 110 111 #define PDC_SPUM_RESP_HDR_LEN 32 112 113 /* 114 * Sets the following bits for write to transmit control reg: 115 * 11 - PtyChkDisable - parity check is disabled 116 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory 117 */ 118 #define PDC_TX_CTL 0x000C0800 119 120 /* Bit in tx control reg to enable tx channel */ 121 #define PDC_TX_ENABLE 0x1 122 123 /* 124 * Sets the following bits for write to receive control reg: 125 * 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf 126 * 9 - SepRxHdrDescEn - place start of new frames only in descriptors 127 * that have StartOfFrame set 128 * 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all 129 * remaining bytes in current frame, report error 130 * in rx frame status for current frame 131 * 11 - PtyChkDisable - parity check is disabled 132 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory 133 */ 134 #define PDC_RX_CTL 0x000C0E00 135 136 /* Bit in rx control reg to enable rx channel */ 137 #define PDC_RX_ENABLE 0x1 138 139 #define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1) 140 141 /* descriptor flags */ 142 #define D64_CTRL1_EOT BIT(28) /* end of descriptor table */ 143 #define D64_CTRL1_IOC BIT(29) /* interrupt on complete */ 144 #define D64_CTRL1_EOF BIT(30) /* end of frame */ 145 #define D64_CTRL1_SOF BIT(31) /* start of frame */ 146 147 #define RX_STATUS_OVERFLOW 0x00800000 148 #define RX_STATUS_LEN 0x0000FFFF 149 150 #define PDC_TXREGS_OFFSET 0x200 151 #define PDC_RXREGS_OFFSET 0x220 152 153 /* Maximum size buffer the DMA engine can handle */ 154 #define PDC_DMA_BUF_MAX 16384 155 156 enum pdc_hw { 157 FA_HW, /* FA2/FA+ hardware (i.e. Northstar Plus) */ 158 PDC_HW /* PDC/MDE hardware (i.e. Northstar 2, Pegasus) */ 159 }; 160 161 struct pdc_dma_map { 162 void *ctx; /* opaque context associated with frame */ 163 }; 164 165 /* dma descriptor */ 166 struct dma64dd { 167 u32 ctrl1; /* misc control bits */ 168 u32 ctrl2; /* buffer count and address extension */ 169 u32 addrlow; /* memory address of the date buffer, bits 31:0 */ 170 u32 addrhigh; /* memory address of the date buffer, bits 63:32 */ 171 }; 172 173 /* dma registers per channel(xmt or rcv) */ 174 struct dma64_regs { 175 u32 control; /* enable, et al */ 176 u32 ptr; /* last descriptor posted to chip */ 177 u32 addrlow; /* descriptor ring base address low 32-bits */ 178 u32 addrhigh; /* descriptor ring base address bits 63:32 */ 179 u32 status0; /* last rx descriptor written by hw */ 180 u32 status1; /* driver does not use */ 181 }; 182 183 /* cpp contortions to concatenate w/arg prescan */ 184 #ifndef PAD 185 #define _PADLINE(line) pad ## line 186 #define _XSTR(line) _PADLINE(line) 187 #define PAD _XSTR(__LINE__) 188 #endif /* PAD */ 189 190 /* dma registers. matches hw layout. */ 191 struct dma64 { 192 struct dma64_regs dmaxmt; /* dma tx */ 193 u32 PAD[2]; 194 struct dma64_regs dmarcv; /* dma rx */ 195 u32 PAD[2]; 196 }; 197 198 /* PDC registers */ 199 struct pdc_regs { 200 u32 devcontrol; /* 0x000 */ 201 u32 devstatus; /* 0x004 */ 202 u32 PAD; 203 u32 biststatus; /* 0x00c */ 204 u32 PAD[4]; 205 u32 intstatus; /* 0x020 */ 206 u32 intmask; /* 0x024 */ 207 u32 gptimer; /* 0x028 */ 208 209 u32 PAD; 210 u32 intrcvlazy_0; /* 0x030 (Only in PDC, not FA2) */ 211 u32 intrcvlazy_1; /* 0x034 (Only in PDC, not FA2) */ 212 u32 intrcvlazy_2; /* 0x038 (Only in PDC, not FA2) */ 213 u32 intrcvlazy_3; /* 0x03c (Only in PDC, not FA2) */ 214 215 u32 PAD[48]; 216 u32 fa_intrecvlazy; /* 0x100 (Only in FA2, not PDC) */ 217 u32 flowctlthresh; /* 0x104 */ 218 u32 wrrthresh; /* 0x108 */ 219 u32 gmac_idle_cnt_thresh; /* 0x10c */ 220 221 u32 PAD[4]; 222 u32 ifioaccessaddr; /* 0x120 */ 223 u32 ifioaccessbyte; /* 0x124 */ 224 u32 ifioaccessdata; /* 0x128 */ 225 226 u32 PAD[21]; 227 u32 phyaccess; /* 0x180 */ 228 u32 PAD; 229 u32 phycontrol; /* 0x188 */ 230 u32 txqctl; /* 0x18c */ 231 u32 rxqctl; /* 0x190 */ 232 u32 gpioselect; /* 0x194 */ 233 u32 gpio_output_en; /* 0x198 */ 234 u32 PAD; /* 0x19c */ 235 u32 txq_rxq_mem_ctl; /* 0x1a0 */ 236 u32 memory_ecc_status; /* 0x1a4 */ 237 u32 serdes_ctl; /* 0x1a8 */ 238 u32 serdes_status0; /* 0x1ac */ 239 u32 serdes_status1; /* 0x1b0 */ 240 u32 PAD[11]; /* 0x1b4-1dc */ 241 u32 clk_ctl_st; /* 0x1e0 */ 242 u32 hw_war; /* 0x1e4 (Only in PDC, not FA2) */ 243 u32 pwrctl; /* 0x1e8 */ 244 u32 PAD[5]; 245 246 #define PDC_NUM_DMA_RINGS 4 247 struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */ 248 249 /* more registers follow, but we don't use them */ 250 }; 251 252 /* structure for allocating/freeing DMA rings */ 253 struct pdc_ring_alloc { 254 dma_addr_t dmabase; /* DMA address of start of ring */ 255 void *vbase; /* base kernel virtual address of ring */ 256 u32 size; /* ring allocation size in bytes */ 257 }; 258 259 /* 260 * context associated with a receive descriptor. 261 * @rxp_ctx: opaque context associated with frame that starts at each 262 * rx ring index. 263 * @dst_sg: Scatterlist used to form reply frames beginning at a given ring 264 * index. Retained in order to unmap each sg after reply is processed. 265 * @rxin_numd: Number of rx descriptors associated with the message that starts 266 * at a descriptor index. Not set for every index. For example, 267 * if descriptor index i points to a scatterlist with 4 entries, 268 * then the next three descriptor indexes don't have a value set. 269 * @resp_hdr: Virtual address of buffer used to catch DMA rx status 270 * @resp_hdr_daddr: physical address of DMA rx status buffer 271 */ 272 struct pdc_rx_ctx { 273 void *rxp_ctx; 274 struct scatterlist *dst_sg; 275 u32 rxin_numd; 276 void *resp_hdr; 277 dma_addr_t resp_hdr_daddr; 278 }; 279 280 /* PDC state structure */ 281 struct pdc_state { 282 /* Index of the PDC whose state is in this structure instance */ 283 u8 pdc_idx; 284 285 /* Platform device for this PDC instance */ 286 struct platform_device *pdev; 287 288 /* 289 * Each PDC instance has a mailbox controller. PDC receives request 290 * messages through mailboxes, and sends response messages through the 291 * mailbox framework. 292 */ 293 struct mbox_controller mbc; 294 295 unsigned int pdc_irq; 296 297 /* tasklet for deferred processing after DMA rx interrupt */ 298 struct tasklet_struct rx_tasklet; 299 300 /* Number of bytes of receive status prior to each rx frame */ 301 u32 rx_status_len; 302 /* Whether a BCM header is prepended to each frame */ 303 bool use_bcm_hdr; 304 /* Sum of length of BCM header and rx status header */ 305 u32 pdc_resp_hdr_len; 306 307 /* The base virtual address of DMA hw registers */ 308 void __iomem *pdc_reg_vbase; 309 310 /* Pool for allocation of DMA rings */ 311 struct dma_pool *ring_pool; 312 313 /* Pool for allocation of metadata buffers for response messages */ 314 struct dma_pool *rx_buf_pool; 315 316 /* 317 * The base virtual address of DMA tx/rx descriptor rings. Corresponding 318 * DMA address and size of ring allocation. 319 */ 320 struct pdc_ring_alloc tx_ring_alloc; 321 struct pdc_ring_alloc rx_ring_alloc; 322 323 struct pdc_regs *regs; /* start of PDC registers */ 324 325 struct dma64_regs *txregs_64; /* dma tx engine registers */ 326 struct dma64_regs *rxregs_64; /* dma rx engine registers */ 327 328 /* 329 * Arrays of PDC_RING_ENTRIES descriptors 330 * To use multiple ringsets, this needs to be extended 331 */ 332 struct dma64dd *txd_64; /* tx descriptor ring */ 333 struct dma64dd *rxd_64; /* rx descriptor ring */ 334 335 /* descriptor ring sizes */ 336 u32 ntxd; /* # tx descriptors */ 337 u32 nrxd; /* # rx descriptors */ 338 u32 nrxpost; /* # rx buffers to keep posted */ 339 u32 ntxpost; /* max number of tx buffers that can be posted */ 340 341 /* 342 * Index of next tx descriptor to reclaim. That is, the descriptor 343 * index of the oldest tx buffer for which the host has yet to process 344 * the corresponding response. 345 */ 346 u32 txin; 347 348 /* 349 * Index of the first receive descriptor for the sequence of 350 * message fragments currently under construction. Used to build up 351 * the rxin_numd count for a message. Updated to rxout when the host 352 * starts a new sequence of rx buffers for a new message. 353 */ 354 u32 tx_msg_start; 355 356 /* Index of next tx descriptor to post. */ 357 u32 txout; 358 359 /* 360 * Number of tx descriptors associated with the message that starts 361 * at this tx descriptor index. 362 */ 363 u32 txin_numd[PDC_RING_ENTRIES]; 364 365 /* 366 * Index of next rx descriptor to reclaim. This is the index of 367 * the next descriptor whose data has yet to be processed by the host. 368 */ 369 u32 rxin; 370 371 /* 372 * Index of the first receive descriptor for the sequence of 373 * message fragments currently under construction. Used to build up 374 * the rxin_numd count for a message. Updated to rxout when the host 375 * starts a new sequence of rx buffers for a new message. 376 */ 377 u32 rx_msg_start; 378 379 /* 380 * Saved value of current hardware rx descriptor index. 381 * The last rx buffer written by the hw is the index previous to 382 * this one. 383 */ 384 u32 last_rx_curr; 385 386 /* Index of next rx descriptor to post. */ 387 u32 rxout; 388 389 struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES]; 390 391 /* 392 * Scatterlists used to form request and reply frames beginning at a 393 * given ring index. Retained in order to unmap each sg after reply 394 * is processed 395 */ 396 struct scatterlist *src_sg[PDC_RING_ENTRIES]; 397 398 /* counters */ 399 u32 pdc_requests; /* number of request messages submitted */ 400 u32 pdc_replies; /* number of reply messages received */ 401 u32 last_tx_not_done; /* too few tx descriptors to indicate done */ 402 u32 tx_ring_full; /* unable to accept msg because tx ring full */ 403 u32 rx_ring_full; /* unable to accept msg because rx ring full */ 404 u32 txnobuf; /* unable to create tx descriptor */ 405 u32 rxnobuf; /* unable to create rx descriptor */ 406 u32 rx_oflow; /* count of rx overflows */ 407 408 /* hardware type - FA2 or PDC/MDE */ 409 enum pdc_hw hw_type; 410 }; 411 412 /* Global variables */ 413 414 struct pdc_globals { 415 /* Actual number of SPUs in hardware, as reported by device tree */ 416 u32 num_spu; 417 }; 418 419 static struct pdc_globals pdcg; 420 421 /* top level debug FS directory for PDC driver */ 422 static struct dentry *debugfs_dir; 423 424 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf, 425 size_t count, loff_t *offp) 426 { 427 struct pdc_state *pdcs; 428 char *buf; 429 ssize_t ret, out_offset, out_count; 430 431 out_count = 512; 432 433 buf = kmalloc(out_count, GFP_KERNEL); 434 if (!buf) 435 return -ENOMEM; 436 437 pdcs = filp->private_data; 438 out_offset = 0; 439 out_offset += snprintf(buf + out_offset, out_count - out_offset, 440 "SPU %u stats:\n", pdcs->pdc_idx); 441 out_offset += snprintf(buf + out_offset, out_count - out_offset, 442 "PDC requests....................%u\n", 443 pdcs->pdc_requests); 444 out_offset += snprintf(buf + out_offset, out_count - out_offset, 445 "PDC responses...................%u\n", 446 pdcs->pdc_replies); 447 out_offset += snprintf(buf + out_offset, out_count - out_offset, 448 "Tx not done.....................%u\n", 449 pdcs->last_tx_not_done); 450 out_offset += snprintf(buf + out_offset, out_count - out_offset, 451 "Tx ring full....................%u\n", 452 pdcs->tx_ring_full); 453 out_offset += snprintf(buf + out_offset, out_count - out_offset, 454 "Rx ring full....................%u\n", 455 pdcs->rx_ring_full); 456 out_offset += snprintf(buf + out_offset, out_count - out_offset, 457 "Tx desc write fail. Ring full...%u\n", 458 pdcs->txnobuf); 459 out_offset += snprintf(buf + out_offset, out_count - out_offset, 460 "Rx desc write fail. Ring full...%u\n", 461 pdcs->rxnobuf); 462 out_offset += snprintf(buf + out_offset, out_count - out_offset, 463 "Receive overflow................%u\n", 464 pdcs->rx_oflow); 465 out_offset += snprintf(buf + out_offset, out_count - out_offset, 466 "Num frags in rx ring............%u\n", 467 NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, 468 pdcs->nrxpost)); 469 470 if (out_offset > out_count) 471 out_offset = out_count; 472 473 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 474 kfree(buf); 475 return ret; 476 } 477 478 static const struct file_operations pdc_debugfs_stats = { 479 .owner = THIS_MODULE, 480 .open = simple_open, 481 .read = pdc_debugfs_read, 482 }; 483 484 /** 485 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level 486 * directory has not yet been created, create it now. Create a stats file in 487 * this directory for a SPU. 488 * @pdcs: PDC state structure 489 */ 490 static void pdc_setup_debugfs(struct pdc_state *pdcs) 491 { 492 char spu_stats_name[16]; 493 494 if (!debugfs_initialized()) 495 return; 496 497 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx); 498 if (!debugfs_dir) 499 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); 500 501 /* S_IRUSR == 0400 */ 502 debugfs_create_file(spu_stats_name, 0400, debugfs_dir, pdcs, 503 &pdc_debugfs_stats); 504 } 505 506 static void pdc_free_debugfs(void) 507 { 508 debugfs_remove_recursive(debugfs_dir); 509 debugfs_dir = NULL; 510 } 511 512 /** 513 * pdc_build_rxd() - Build DMA descriptor to receive SPU result. 514 * @pdcs: PDC state for SPU that will generate result 515 * @dma_addr: DMA address of buffer that descriptor is being built for 516 * @buf_len: Length of the receive buffer, in bytes 517 * @flags: Flags to be stored in descriptor 518 */ 519 static inline void 520 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr, 521 u32 buf_len, u32 flags) 522 { 523 struct device *dev = &pdcs->pdev->dev; 524 struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout]; 525 526 dev_dbg(dev, 527 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n", 528 pdcs->pdc_idx, pdcs->rxout, buf_len, flags); 529 530 rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr)); 531 rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr)); 532 rxd->ctrl1 = cpu_to_le32(flags); 533 rxd->ctrl2 = cpu_to_le32(buf_len); 534 535 /* bump ring index and return */ 536 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost); 537 } 538 539 /** 540 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to 541 * hardware. 542 * @pdcs: PDC state for the SPU that will process this request 543 * @dma_addr: DMA address of packet to be transmitted 544 * @buf_len: Length of tx buffer, in bytes 545 * @flags: Flags to be stored in descriptor 546 */ 547 static inline void 548 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len, 549 u32 flags) 550 { 551 struct device *dev = &pdcs->pdev->dev; 552 struct dma64dd *txd = &pdcs->txd_64[pdcs->txout]; 553 554 dev_dbg(dev, 555 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n", 556 pdcs->pdc_idx, pdcs->txout, buf_len, flags); 557 558 txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr)); 559 txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr)); 560 txd->ctrl1 = cpu_to_le32(flags); 561 txd->ctrl2 = cpu_to_le32(buf_len); 562 563 /* bump ring index and return */ 564 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost); 565 } 566 567 /** 568 * pdc_receive_one() - Receive a response message from a given SPU. 569 * @pdcs: PDC state for the SPU to receive from 570 * 571 * When the return code indicates success, the response message is available in 572 * the receive buffers provided prior to submission of the request. 573 * 574 * Return: PDC_SUCCESS if one or more receive descriptors was processed 575 * -EAGAIN indicates that no response message is available 576 * -EIO an error occurred 577 */ 578 static int 579 pdc_receive_one(struct pdc_state *pdcs) 580 { 581 struct device *dev = &pdcs->pdev->dev; 582 struct mbox_controller *mbc; 583 struct mbox_chan *chan; 584 struct brcm_message mssg; 585 u32 len, rx_status; 586 u32 num_frags; 587 u8 *resp_hdr; /* virtual addr of start of resp message DMA header */ 588 u32 frags_rdy; /* number of fragments ready to read */ 589 u32 rx_idx; /* ring index of start of receive frame */ 590 dma_addr_t resp_hdr_daddr; 591 struct pdc_rx_ctx *rx_ctx; 592 593 mbc = &pdcs->mbc; 594 chan = &mbc->chans[0]; 595 mssg.type = BRCM_MESSAGE_SPU; 596 597 /* 598 * return if a complete response message is not yet ready. 599 * rxin_numd[rxin] is the number of fragments in the next msg 600 * to read. 601 */ 602 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost); 603 if ((frags_rdy == 0) || 604 (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd)) 605 /* No response ready */ 606 return -EAGAIN; 607 608 num_frags = pdcs->txin_numd[pdcs->txin]; 609 WARN_ON(num_frags == 0); 610 611 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin], 612 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE); 613 614 pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost; 615 616 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors", 617 pdcs->pdc_idx, num_frags); 618 619 rx_idx = pdcs->rxin; 620 rx_ctx = &pdcs->rx_ctx[rx_idx]; 621 num_frags = rx_ctx->rxin_numd; 622 /* Return opaque context with result */ 623 mssg.ctx = rx_ctx->rxp_ctx; 624 rx_ctx->rxp_ctx = NULL; 625 resp_hdr = rx_ctx->resp_hdr; 626 resp_hdr_daddr = rx_ctx->resp_hdr_daddr; 627 dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg), 628 DMA_FROM_DEVICE); 629 630 pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost; 631 632 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors", 633 pdcs->pdc_idx, num_frags); 634 635 dev_dbg(dev, 636 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n", 637 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin, 638 pdcs->rxout, pdcs->last_rx_curr); 639 640 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) { 641 /* 642 * For SPU-M, get length of response msg and rx overflow status. 643 */ 644 rx_status = *((u32 *)resp_hdr); 645 len = rx_status & RX_STATUS_LEN; 646 dev_dbg(dev, 647 "SPU response length %u bytes", len); 648 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) { 649 if (rx_status & RX_STATUS_OVERFLOW) { 650 dev_err_ratelimited(dev, 651 "crypto receive overflow"); 652 pdcs->rx_oflow++; 653 } else { 654 dev_info_ratelimited(dev, "crypto rx len = 0"); 655 } 656 return -EIO; 657 } 658 } 659 660 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr); 661 662 mbox_chan_received_data(chan, &mssg); 663 664 pdcs->pdc_replies++; 665 return PDC_SUCCESS; 666 } 667 668 /** 669 * pdc_receive() - Process as many responses as are available in the rx ring. 670 * @pdcs: PDC state 671 * 672 * Called within the hard IRQ. 673 * Return: 674 */ 675 static int 676 pdc_receive(struct pdc_state *pdcs) 677 { 678 int rx_status; 679 680 /* read last_rx_curr from register once */ 681 pdcs->last_rx_curr = 682 (ioread32(&pdcs->rxregs_64->status0) & 683 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE; 684 685 do { 686 /* Could be many frames ready */ 687 rx_status = pdc_receive_one(pdcs); 688 } while (rx_status == PDC_SUCCESS); 689 690 return 0; 691 } 692 693 /** 694 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit 695 * descriptors for a given SPU. The scatterlist buffers contain the data for a 696 * SPU request message. 697 * @spu_idx: The index of the SPU to submit the request to, [0, max_spu) 698 * @sg: Scatterlist whose buffers contain part of the SPU request 699 * 700 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors 701 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length. 702 * 703 * Return: PDC_SUCCESS if successful 704 * < 0 otherwise 705 */ 706 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg) 707 { 708 u32 flags = 0; 709 u32 eot; 710 u32 tx_avail; 711 712 /* 713 * Num descriptors needed. Conservatively assume we need a descriptor 714 * for every entry in sg. 715 */ 716 u32 num_desc; 717 u32 desc_w = 0; /* Number of tx descriptors written */ 718 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */ 719 dma_addr_t databufptr; /* DMA address to put in descriptor */ 720 721 num_desc = (u32)sg_nents(sg); 722 723 /* check whether enough tx descriptors are available */ 724 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout, 725 pdcs->ntxpost); 726 if (unlikely(num_desc > tx_avail)) { 727 pdcs->txnobuf++; 728 return -ENOSPC; 729 } 730 731 /* build tx descriptors */ 732 if (pdcs->tx_msg_start == pdcs->txout) { 733 /* Start of frame */ 734 pdcs->txin_numd[pdcs->tx_msg_start] = 0; 735 pdcs->src_sg[pdcs->txout] = sg; 736 flags = D64_CTRL1_SOF; 737 } 738 739 while (sg) { 740 if (unlikely(pdcs->txout == (pdcs->ntxd - 1))) 741 eot = D64_CTRL1_EOT; 742 else 743 eot = 0; 744 745 /* 746 * If sg buffer larger than PDC limit, split across 747 * multiple descriptors 748 */ 749 bufcnt = sg_dma_len(sg); 750 databufptr = sg_dma_address(sg); 751 while (bufcnt > PDC_DMA_BUF_MAX) { 752 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX, 753 flags | eot); 754 desc_w++; 755 bufcnt -= PDC_DMA_BUF_MAX; 756 databufptr += PDC_DMA_BUF_MAX; 757 if (unlikely(pdcs->txout == (pdcs->ntxd - 1))) 758 eot = D64_CTRL1_EOT; 759 else 760 eot = 0; 761 } 762 sg = sg_next(sg); 763 if (!sg) 764 /* Writing last descriptor for frame */ 765 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC); 766 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot); 767 desc_w++; 768 /* Clear start of frame after first descriptor */ 769 flags &= ~D64_CTRL1_SOF; 770 } 771 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w; 772 773 return PDC_SUCCESS; 774 } 775 776 /** 777 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx 778 * ring. 779 * @pdcs: PDC state for SPU to process the request 780 * 781 * Sets the index of the last descriptor written in both the rx and tx ring. 782 * 783 * Return: PDC_SUCCESS 784 */ 785 static int pdc_tx_list_final(struct pdc_state *pdcs) 786 { 787 /* 788 * write barrier to ensure all register writes are complete 789 * before chip starts to process new request 790 */ 791 wmb(); 792 iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr); 793 iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr); 794 pdcs->pdc_requests++; 795 796 return PDC_SUCCESS; 797 } 798 799 /** 800 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC. 801 * @pdcs: PDC state for SPU handling request 802 * @dst_sg: scatterlist providing rx buffers for response to be returned to 803 * mailbox client 804 * @ctx: Opaque context for this request 805 * 806 * Posts a single receive descriptor to hold the metadata that precedes a 807 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and 808 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and 809 * rx to indicate the start of a new message. 810 * 811 * Return: PDC_SUCCESS if successful 812 * < 0 if an error (e.g., rx ring is full) 813 */ 814 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg, 815 void *ctx) 816 { 817 u32 flags = 0; 818 u32 rx_avail; 819 u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */ 820 dma_addr_t daddr; 821 void *vaddr; 822 struct pdc_rx_ctx *rx_ctx; 823 824 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 825 pdcs->nrxpost); 826 if (unlikely(rx_pkt_cnt > rx_avail)) { 827 pdcs->rxnobuf++; 828 return -ENOSPC; 829 } 830 831 /* allocate a buffer for the dma rx status */ 832 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr); 833 if (unlikely(!vaddr)) 834 return -ENOMEM; 835 836 /* 837 * Update msg_start indexes for both tx and rx to indicate the start 838 * of a new sequence of descriptor indexes that contain the fragments 839 * of the same message. 840 */ 841 pdcs->rx_msg_start = pdcs->rxout; 842 pdcs->tx_msg_start = pdcs->txout; 843 844 /* This is always the first descriptor in the receive sequence */ 845 flags = D64_CTRL1_SOF; 846 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1; 847 848 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 849 flags |= D64_CTRL1_EOT; 850 851 rx_ctx = &pdcs->rx_ctx[pdcs->rxout]; 852 rx_ctx->rxp_ctx = ctx; 853 rx_ctx->dst_sg = dst_sg; 854 rx_ctx->resp_hdr = vaddr; 855 rx_ctx->resp_hdr_daddr = daddr; 856 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags); 857 return PDC_SUCCESS; 858 } 859 860 /** 861 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive 862 * descriptors for a given SPU. The caller must have already DMA mapped the 863 * scatterlist. 864 * @spu_idx: Indicates which SPU the buffers are for 865 * @sg: Scatterlist whose buffers are added to the receive ring 866 * 867 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX, 868 * multiple receive descriptors are written, each with a buffer <= 869 * PDC_DMA_BUF_MAX. 870 * 871 * Return: PDC_SUCCESS if successful 872 * < 0 otherwise (e.g., receive ring is full) 873 */ 874 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg) 875 { 876 u32 flags = 0; 877 u32 rx_avail; 878 879 /* 880 * Num descriptors needed. Conservatively assume we need a descriptor 881 * for every entry from our starting point in the scatterlist. 882 */ 883 u32 num_desc; 884 u32 desc_w = 0; /* Number of tx descriptors written */ 885 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */ 886 dma_addr_t databufptr; /* DMA address to put in descriptor */ 887 888 num_desc = (u32)sg_nents(sg); 889 890 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 891 pdcs->nrxpost); 892 if (unlikely(num_desc > rx_avail)) { 893 pdcs->rxnobuf++; 894 return -ENOSPC; 895 } 896 897 while (sg) { 898 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 899 flags = D64_CTRL1_EOT; 900 else 901 flags = 0; 902 903 /* 904 * If sg buffer larger than PDC limit, split across 905 * multiple descriptors 906 */ 907 bufcnt = sg_dma_len(sg); 908 databufptr = sg_dma_address(sg); 909 while (bufcnt > PDC_DMA_BUF_MAX) { 910 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags); 911 desc_w++; 912 bufcnt -= PDC_DMA_BUF_MAX; 913 databufptr += PDC_DMA_BUF_MAX; 914 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 915 flags = D64_CTRL1_EOT; 916 else 917 flags = 0; 918 } 919 pdc_build_rxd(pdcs, databufptr, bufcnt, flags); 920 desc_w++; 921 sg = sg_next(sg); 922 } 923 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w; 924 925 return PDC_SUCCESS; 926 } 927 928 /** 929 * pdc_irq_handler() - Interrupt handler called in interrupt context. 930 * @irq: Interrupt number that has fired 931 * @data: device struct for DMA engine that generated the interrupt 932 * 933 * We have to clear the device interrupt status flags here. So cache the 934 * status for later use in the thread function. Other than that, just return 935 * WAKE_THREAD to invoke the thread function. 936 * 937 * Return: IRQ_WAKE_THREAD if interrupt is ours 938 * IRQ_NONE otherwise 939 */ 940 static irqreturn_t pdc_irq_handler(int irq, void *data) 941 { 942 struct device *dev = (struct device *)data; 943 struct pdc_state *pdcs = dev_get_drvdata(dev); 944 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET); 945 946 if (unlikely(intstatus == 0)) 947 return IRQ_NONE; 948 949 /* Disable interrupts until soft handler runs */ 950 iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 951 952 /* Clear interrupt flags in device */ 953 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET); 954 955 /* Wakeup IRQ thread */ 956 tasklet_schedule(&pdcs->rx_tasklet); 957 return IRQ_HANDLED; 958 } 959 960 /** 961 * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after 962 * a DMA receive interrupt. Reenables the receive interrupt. 963 * @data: PDC state structure 964 */ 965 static void pdc_tasklet_cb(unsigned long data) 966 { 967 struct pdc_state *pdcs = (struct pdc_state *)data; 968 969 pdc_receive(pdcs); 970 971 /* reenable interrupts */ 972 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 973 } 974 975 /** 976 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of 977 * descriptors in one ringset. 978 * @pdcs: PDC instance state 979 * @ringset: index of ringset being used 980 * 981 * Return: PDC_SUCCESS if ring initialized 982 * < 0 otherwise 983 */ 984 static int pdc_ring_init(struct pdc_state *pdcs, int ringset) 985 { 986 int i; 987 int err = PDC_SUCCESS; 988 struct dma64 *dma_reg; 989 struct device *dev = &pdcs->pdev->dev; 990 struct pdc_ring_alloc tx; 991 struct pdc_ring_alloc rx; 992 993 /* Allocate tx ring */ 994 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase); 995 if (unlikely(!tx.vbase)) { 996 err = -ENOMEM; 997 goto done; 998 } 999 1000 /* Allocate rx ring */ 1001 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase); 1002 if (unlikely(!rx.vbase)) { 1003 err = -ENOMEM; 1004 goto fail_dealloc; 1005 } 1006 1007 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase); 1008 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase); 1009 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase); 1010 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase); 1011 1012 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx)); 1013 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx)); 1014 1015 pdcs->rxin = 0; 1016 pdcs->rx_msg_start = 0; 1017 pdcs->last_rx_curr = 0; 1018 pdcs->rxout = 0; 1019 pdcs->txin = 0; 1020 pdcs->tx_msg_start = 0; 1021 pdcs->txout = 0; 1022 1023 /* Set descriptor array base addresses */ 1024 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase; 1025 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase; 1026 1027 /* Tell device the base DMA address of each ring */ 1028 dma_reg = &pdcs->regs->dmaregs[ringset]; 1029 1030 /* But first disable DMA and set curptr to 0 for both TX & RX */ 1031 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1032 iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)), 1033 &dma_reg->dmarcv.control); 1034 iowrite32(0, &dma_reg->dmaxmt.ptr); 1035 iowrite32(0, &dma_reg->dmarcv.ptr); 1036 1037 /* Set base DMA addresses */ 1038 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase), 1039 &dma_reg->dmaxmt.addrlow); 1040 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase), 1041 &dma_reg->dmaxmt.addrhigh); 1042 1043 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase), 1044 &dma_reg->dmarcv.addrlow); 1045 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase), 1046 &dma_reg->dmarcv.addrhigh); 1047 1048 /* Re-enable DMA */ 1049 iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control); 1050 iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)), 1051 &dma_reg->dmarcv.control); 1052 1053 /* Initialize descriptors */ 1054 for (i = 0; i < PDC_RING_ENTRIES; i++) { 1055 /* Every tx descriptor can be used for start of frame. */ 1056 if (i != pdcs->ntxpost) { 1057 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF, 1058 &pdcs->txd_64[i].ctrl1); 1059 } else { 1060 /* Last descriptor in ringset. Set End of Table. */ 1061 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF | 1062 D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1); 1063 } 1064 1065 /* Every rx descriptor can be used for start of frame */ 1066 if (i != pdcs->nrxpost) { 1067 iowrite32(D64_CTRL1_SOF, 1068 &pdcs->rxd_64[i].ctrl1); 1069 } else { 1070 /* Last descriptor in ringset. Set End of Table. */ 1071 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT, 1072 &pdcs->rxd_64[i].ctrl1); 1073 } 1074 } 1075 return PDC_SUCCESS; 1076 1077 fail_dealloc: 1078 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase); 1079 done: 1080 return err; 1081 } 1082 1083 static void pdc_ring_free(struct pdc_state *pdcs) 1084 { 1085 if (pdcs->tx_ring_alloc.vbase) { 1086 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase, 1087 pdcs->tx_ring_alloc.dmabase); 1088 pdcs->tx_ring_alloc.vbase = NULL; 1089 } 1090 1091 if (pdcs->rx_ring_alloc.vbase) { 1092 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase, 1093 pdcs->rx_ring_alloc.dmabase); 1094 pdcs->rx_ring_alloc.vbase = NULL; 1095 } 1096 } 1097 1098 /** 1099 * pdc_desc_count() - Count the number of DMA descriptors that will be required 1100 * for a given scatterlist. Account for the max length of a DMA buffer. 1101 * @sg: Scatterlist to be DMA'd 1102 * Return: Number of descriptors required 1103 */ 1104 static u32 pdc_desc_count(struct scatterlist *sg) 1105 { 1106 u32 cnt = 0; 1107 1108 while (sg) { 1109 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1); 1110 sg = sg_next(sg); 1111 } 1112 return cnt; 1113 } 1114 1115 /** 1116 * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors 1117 * and the rx ring has room for rx_cnt descriptors. 1118 * @pdcs: PDC state 1119 * @tx_cnt: The number of descriptors required in the tx ring 1120 * @rx_cnt: The number of descriptors required i the rx ring 1121 * 1122 * Return: true if one of the rings does not have enough space 1123 * false if sufficient space is available in both rings 1124 */ 1125 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt) 1126 { 1127 u32 rx_avail; 1128 u32 tx_avail; 1129 bool full = false; 1130 1131 /* Check if the tx and rx rings are likely to have enough space */ 1132 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 1133 pdcs->nrxpost); 1134 if (unlikely(rx_cnt > rx_avail)) { 1135 pdcs->rx_ring_full++; 1136 full = true; 1137 } 1138 1139 if (likely(!full)) { 1140 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout, 1141 pdcs->ntxpost); 1142 if (unlikely(tx_cnt > tx_avail)) { 1143 pdcs->tx_ring_full++; 1144 full = true; 1145 } 1146 } 1147 return full; 1148 } 1149 1150 /** 1151 * pdc_last_tx_done() - If both the tx and rx rings have at least 1152 * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox 1153 * framework can submit another message. 1154 * @chan: mailbox channel to check 1155 * Return: true if PDC can accept another message on this channel 1156 */ 1157 static bool pdc_last_tx_done(struct mbox_chan *chan) 1158 { 1159 struct pdc_state *pdcs = chan->con_priv; 1160 bool ret; 1161 1162 if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN, 1163 PDC_RING_SPACE_MIN))) { 1164 pdcs->last_tx_not_done++; 1165 ret = false; 1166 } else { 1167 ret = true; 1168 } 1169 return ret; 1170 } 1171 1172 /** 1173 * pdc_send_data() - mailbox send_data function 1174 * @chan: The mailbox channel on which the data is sent. The channel 1175 * corresponds to a DMA ringset. 1176 * @data: The mailbox message to be sent. The message must be a 1177 * brcm_message structure. 1178 * 1179 * This function is registered as the send_data function for the mailbox 1180 * controller. From the destination scatterlist in the mailbox message, it 1181 * creates a sequence of receive descriptors in the rx ring. From the source 1182 * scatterlist, it creates a sequence of transmit descriptors in the tx ring. 1183 * After creating the descriptors, it writes the rx ptr and tx ptr registers to 1184 * initiate the DMA transfer. 1185 * 1186 * This function does the DMA map and unmap of the src and dst scatterlists in 1187 * the mailbox message. 1188 * 1189 * Return: 0 if successful 1190 * -ENOTSUPP if the mailbox message is a type this driver does not 1191 * support 1192 * < 0 if an error 1193 */ 1194 static int pdc_send_data(struct mbox_chan *chan, void *data) 1195 { 1196 struct pdc_state *pdcs = chan->con_priv; 1197 struct device *dev = &pdcs->pdev->dev; 1198 struct brcm_message *mssg = data; 1199 int err = PDC_SUCCESS; 1200 int src_nent; 1201 int dst_nent; 1202 int nent; 1203 u32 tx_desc_req; 1204 u32 rx_desc_req; 1205 1206 if (unlikely(mssg->type != BRCM_MESSAGE_SPU)) 1207 return -ENOTSUPP; 1208 1209 src_nent = sg_nents(mssg->spu.src); 1210 if (likely(src_nent)) { 1211 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE); 1212 if (unlikely(nent == 0)) 1213 return -EIO; 1214 } 1215 1216 dst_nent = sg_nents(mssg->spu.dst); 1217 if (likely(dst_nent)) { 1218 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent, 1219 DMA_FROM_DEVICE); 1220 if (unlikely(nent == 0)) { 1221 dma_unmap_sg(dev, mssg->spu.src, src_nent, 1222 DMA_TO_DEVICE); 1223 return -EIO; 1224 } 1225 } 1226 1227 /* 1228 * Check if the tx and rx rings have enough space. Do this prior to 1229 * writing any tx or rx descriptors. Need to ensure that we do not write 1230 * a partial set of descriptors, or write just rx descriptors but 1231 * corresponding tx descriptors don't fit. Note that we want this check 1232 * and the entire sequence of descriptor to happen without another 1233 * thread getting in. The channel spin lock in the mailbox framework 1234 * ensures this. 1235 */ 1236 tx_desc_req = pdc_desc_count(mssg->spu.src); 1237 rx_desc_req = pdc_desc_count(mssg->spu.dst); 1238 if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1))) 1239 return -ENOSPC; 1240 1241 /* Create rx descriptors to SPU catch response */ 1242 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx); 1243 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst); 1244 1245 /* Create tx descriptors to submit SPU request */ 1246 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src); 1247 err |= pdc_tx_list_final(pdcs); /* initiate transfer */ 1248 1249 if (unlikely(err)) 1250 dev_err(&pdcs->pdev->dev, 1251 "%s failed with error %d", __func__, err); 1252 1253 return err; 1254 } 1255 1256 static int pdc_startup(struct mbox_chan *chan) 1257 { 1258 return pdc_ring_init(chan->con_priv, PDC_RINGSET); 1259 } 1260 1261 static void pdc_shutdown(struct mbox_chan *chan) 1262 { 1263 struct pdc_state *pdcs = chan->con_priv; 1264 1265 if (!pdcs) 1266 return; 1267 1268 dev_dbg(&pdcs->pdev->dev, 1269 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx); 1270 pdc_ring_free(pdcs); 1271 } 1272 1273 /** 1274 * pdc_hw_init() - Use the given initialization parameters to initialize the 1275 * state for one of the PDCs. 1276 * @pdcs: state of the PDC 1277 */ 1278 static 1279 void pdc_hw_init(struct pdc_state *pdcs) 1280 { 1281 struct platform_device *pdev; 1282 struct device *dev; 1283 struct dma64 *dma_reg; 1284 int ringset = PDC_RINGSET; 1285 1286 pdev = pdcs->pdev; 1287 dev = &pdev->dev; 1288 1289 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx); 1290 dev_dbg(dev, "state structure: %p", 1291 pdcs); 1292 dev_dbg(dev, " - base virtual addr of hw regs %p", 1293 pdcs->pdc_reg_vbase); 1294 1295 /* initialize data structures */ 1296 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase; 1297 pdcs->txregs_64 = (struct dma64_regs *) 1298 (((u8 *)pdcs->pdc_reg_vbase) + 1299 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset)); 1300 pdcs->rxregs_64 = (struct dma64_regs *) 1301 (((u8 *)pdcs->pdc_reg_vbase) + 1302 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset)); 1303 1304 pdcs->ntxd = PDC_RING_ENTRIES; 1305 pdcs->nrxd = PDC_RING_ENTRIES; 1306 pdcs->ntxpost = PDC_RING_ENTRIES - 1; 1307 pdcs->nrxpost = PDC_RING_ENTRIES - 1; 1308 iowrite32(0, &pdcs->regs->intmask); 1309 1310 dma_reg = &pdcs->regs->dmaregs[ringset]; 1311 1312 /* Configure DMA but will enable later in pdc_ring_init() */ 1313 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1314 1315 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1), 1316 &dma_reg->dmarcv.control); 1317 1318 /* Reset current index pointers after making sure DMA is disabled */ 1319 iowrite32(0, &dma_reg->dmaxmt.ptr); 1320 iowrite32(0, &dma_reg->dmarcv.ptr); 1321 1322 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN) 1323 iowrite32(PDC_CKSUM_CTRL, 1324 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET); 1325 } 1326 1327 /** 1328 * pdc_hw_disable() - Disable the tx and rx control in the hw. 1329 * @pdcs: PDC state structure 1330 * 1331 */ 1332 static void pdc_hw_disable(struct pdc_state *pdcs) 1333 { 1334 struct dma64 *dma_reg; 1335 1336 dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET]; 1337 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1338 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1), 1339 &dma_reg->dmarcv.control); 1340 } 1341 1342 /** 1343 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata 1344 * header returned with each response message. 1345 * @pdcs: PDC state structure 1346 * 1347 * The metadata is not returned to the mailbox client. So the PDC driver 1348 * manages these buffers. 1349 * 1350 * Return: PDC_SUCCESS 1351 * -ENOMEM if pool creation fails 1352 */ 1353 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs) 1354 { 1355 struct platform_device *pdev; 1356 struct device *dev; 1357 1358 pdev = pdcs->pdev; 1359 dev = &pdev->dev; 1360 1361 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len; 1362 if (pdcs->use_bcm_hdr) 1363 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN; 1364 1365 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev, 1366 pdcs->pdc_resp_hdr_len, 1367 RX_BUF_ALIGN, 0); 1368 if (!pdcs->rx_buf_pool) 1369 return -ENOMEM; 1370 1371 return PDC_SUCCESS; 1372 } 1373 1374 /** 1375 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and 1376 * specify a threaded IRQ handler for deferred handling of interrupts outside of 1377 * interrupt context. 1378 * @pdcs: PDC state 1379 * 1380 * Set the interrupt mask for transmit and receive done. 1381 * Set the lazy interrupt frame count to generate an interrupt for just one pkt. 1382 * 1383 * Return: PDC_SUCCESS 1384 * <0 if threaded irq request fails 1385 */ 1386 static int pdc_interrupts_init(struct pdc_state *pdcs) 1387 { 1388 struct platform_device *pdev = pdcs->pdev; 1389 struct device *dev = &pdev->dev; 1390 struct device_node *dn = pdev->dev.of_node; 1391 int err; 1392 1393 /* interrupt configuration */ 1394 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 1395 1396 if (pdcs->hw_type == FA_HW) 1397 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + 1398 FA_RCVLAZY0_OFFSET); 1399 else 1400 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + 1401 PDC_RCVLAZY0_OFFSET); 1402 1403 /* read irq from device tree */ 1404 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0); 1405 dev_dbg(dev, "pdc device %s irq %u for pdcs %p", 1406 dev_name(dev), pdcs->pdc_irq, pdcs); 1407 1408 err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0, 1409 dev_name(dev), dev); 1410 if (err) { 1411 dev_err(dev, "IRQ %u request failed with err %d\n", 1412 pdcs->pdc_irq, err); 1413 return err; 1414 } 1415 return PDC_SUCCESS; 1416 } 1417 1418 static const struct mbox_chan_ops pdc_mbox_chan_ops = { 1419 .send_data = pdc_send_data, 1420 .last_tx_done = pdc_last_tx_done, 1421 .startup = pdc_startup, 1422 .shutdown = pdc_shutdown 1423 }; 1424 1425 /** 1426 * pdc_mb_init() - Initialize the mailbox controller. 1427 * @pdcs: PDC state 1428 * 1429 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel 1430 * driver only uses one ringset and thus one mb channel. PDC uses the transmit 1431 * complete interrupt to determine when a mailbox message has successfully been 1432 * transmitted. 1433 * 1434 * Return: 0 on success 1435 * < 0 if there is an allocation or registration failure 1436 */ 1437 static int pdc_mb_init(struct pdc_state *pdcs) 1438 { 1439 struct device *dev = &pdcs->pdev->dev; 1440 struct mbox_controller *mbc; 1441 int chan_index; 1442 int err; 1443 1444 mbc = &pdcs->mbc; 1445 mbc->dev = dev; 1446 mbc->ops = &pdc_mbox_chan_ops; 1447 mbc->num_chans = 1; 1448 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans), 1449 GFP_KERNEL); 1450 if (!mbc->chans) 1451 return -ENOMEM; 1452 1453 mbc->txdone_irq = false; 1454 mbc->txdone_poll = true; 1455 mbc->txpoll_period = 1; 1456 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++) 1457 mbc->chans[chan_index].con_priv = pdcs; 1458 1459 /* Register mailbox controller */ 1460 err = devm_mbox_controller_register(dev, mbc); 1461 if (err) { 1462 dev_crit(dev, 1463 "Failed to register PDC mailbox controller. Error %d.", 1464 err); 1465 return err; 1466 } 1467 return 0; 1468 } 1469 1470 /* Device tree API */ 1471 static const int pdc_hw = PDC_HW; 1472 static const int fa_hw = FA_HW; 1473 1474 static const struct of_device_id pdc_mbox_of_match[] = { 1475 {.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw}, 1476 {.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw}, 1477 { /* sentinel */ } 1478 }; 1479 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match); 1480 1481 /** 1482 * pdc_dt_read() - Read application-specific data from device tree. 1483 * @pdev: Platform device 1484 * @pdcs: PDC state 1485 * 1486 * Reads the number of bytes of receive status that precede each received frame. 1487 * Reads whether transmit and received frames should be preceded by an 8-byte 1488 * BCM header. 1489 * 1490 * Return: 0 if successful 1491 * -ENODEV if device not available 1492 */ 1493 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs) 1494 { 1495 struct device *dev = &pdev->dev; 1496 struct device_node *dn = pdev->dev.of_node; 1497 const struct of_device_id *match; 1498 const int *hw_type; 1499 int err; 1500 1501 err = of_property_read_u32(dn, "brcm,rx-status-len", 1502 &pdcs->rx_status_len); 1503 if (err < 0) 1504 dev_err(dev, 1505 "%s failed to get DMA receive status length from device tree", 1506 __func__); 1507 1508 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr"); 1509 1510 pdcs->hw_type = PDC_HW; 1511 1512 match = of_match_device(of_match_ptr(pdc_mbox_of_match), dev); 1513 if (match != NULL) { 1514 hw_type = match->data; 1515 pdcs->hw_type = *hw_type; 1516 } 1517 1518 return 0; 1519 } 1520 1521 /** 1522 * pdc_probe() - Probe function for PDC driver. 1523 * @pdev: PDC platform device 1524 * 1525 * Reserve and map register regions defined in device tree. 1526 * Allocate and initialize tx and rx DMA rings. 1527 * Initialize a mailbox controller for each PDC. 1528 * 1529 * Return: 0 if successful 1530 * < 0 if an error 1531 */ 1532 static int pdc_probe(struct platform_device *pdev) 1533 { 1534 int err = 0; 1535 struct device *dev = &pdev->dev; 1536 struct resource *pdc_regs; 1537 struct pdc_state *pdcs; 1538 1539 /* PDC state for one SPU */ 1540 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL); 1541 if (!pdcs) { 1542 err = -ENOMEM; 1543 goto cleanup; 1544 } 1545 1546 pdcs->pdev = pdev; 1547 platform_set_drvdata(pdev, pdcs); 1548 pdcs->pdc_idx = pdcg.num_spu; 1549 pdcg.num_spu++; 1550 1551 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39)); 1552 if (err) { 1553 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err); 1554 goto cleanup; 1555 } 1556 1557 /* Create DMA pool for tx ring */ 1558 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE, 1559 RING_ALIGN, 0); 1560 if (!pdcs->ring_pool) { 1561 err = -ENOMEM; 1562 goto cleanup; 1563 } 1564 1565 err = pdc_dt_read(pdev, pdcs); 1566 if (err) 1567 goto cleanup_ring_pool; 1568 1569 pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1570 if (!pdc_regs) { 1571 err = -ENODEV; 1572 goto cleanup_ring_pool; 1573 } 1574 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa", 1575 &pdc_regs->start, &pdc_regs->end); 1576 1577 pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs); 1578 if (IS_ERR(pdcs->pdc_reg_vbase)) { 1579 err = PTR_ERR(pdcs->pdc_reg_vbase); 1580 dev_err(&pdev->dev, "Failed to map registers: %d\n", err); 1581 goto cleanup_ring_pool; 1582 } 1583 1584 /* create rx buffer pool after dt read to know how big buffers are */ 1585 err = pdc_rx_buf_pool_create(pdcs); 1586 if (err) 1587 goto cleanup_ring_pool; 1588 1589 pdc_hw_init(pdcs); 1590 1591 /* Init tasklet for deferred DMA rx processing */ 1592 tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs); 1593 1594 err = pdc_interrupts_init(pdcs); 1595 if (err) 1596 goto cleanup_buf_pool; 1597 1598 /* Initialize mailbox controller */ 1599 err = pdc_mb_init(pdcs); 1600 if (err) 1601 goto cleanup_buf_pool; 1602 1603 pdc_setup_debugfs(pdcs); 1604 1605 dev_dbg(dev, "pdc_probe() successful"); 1606 return PDC_SUCCESS; 1607 1608 cleanup_buf_pool: 1609 tasklet_kill(&pdcs->rx_tasklet); 1610 dma_pool_destroy(pdcs->rx_buf_pool); 1611 1612 cleanup_ring_pool: 1613 dma_pool_destroy(pdcs->ring_pool); 1614 1615 cleanup: 1616 return err; 1617 } 1618 1619 static int pdc_remove(struct platform_device *pdev) 1620 { 1621 struct pdc_state *pdcs = platform_get_drvdata(pdev); 1622 1623 pdc_free_debugfs(); 1624 1625 tasklet_kill(&pdcs->rx_tasklet); 1626 1627 pdc_hw_disable(pdcs); 1628 1629 dma_pool_destroy(pdcs->rx_buf_pool); 1630 dma_pool_destroy(pdcs->ring_pool); 1631 return 0; 1632 } 1633 1634 static struct platform_driver pdc_mbox_driver = { 1635 .probe = pdc_probe, 1636 .remove = pdc_remove, 1637 .driver = { 1638 .name = "brcm-iproc-pdc-mbox", 1639 .of_match_table = of_match_ptr(pdc_mbox_of_match), 1640 }, 1641 }; 1642 module_platform_driver(pdc_mbox_driver); 1643 1644 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 1645 MODULE_DESCRIPTION("Broadcom PDC mailbox driver"); 1646 MODULE_LICENSE("GPL v2"); 1647