1 /* 2 * Copyright 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation (the "GPL"). 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License version 2 (GPLv2) for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * version 2 (GPLv2) along with this source code. 15 */ 16 17 /* 18 * Broadcom PDC Mailbox Driver 19 * The PDC provides a ring based programming interface to one or more hardware 20 * offload engines. For example, the PDC driver works with both SPU-M and SPU2 21 * cryptographic offload hardware. In some chips the PDC is referred to as MDE. 22 * 23 * The PDC driver registers with the Linux mailbox framework as a mailbox 24 * controller, once for each PDC instance. Ring 0 for each PDC is registered as 25 * a mailbox channel. The PDC driver uses interrupts to determine when data 26 * transfers to and from an offload engine are complete. The PDC driver uses 27 * threaded IRQs so that response messages are handled outside of interrupt 28 * context. 29 * 30 * The PDC driver allows multiple messages to be pending in the descriptor 31 * rings. The tx_msg_start descriptor index indicates where the last message 32 * starts. The txin_numd value at this index indicates how many descriptor 33 * indexes make up the message. Similar state is kept on the receive side. When 34 * an rx interrupt indicates a response is ready, the PDC driver processes numd 35 * descriptors from the tx and rx ring, thus processing one response at a time. 36 */ 37 38 #include <linux/errno.h> 39 #include <linux/module.h> 40 #include <linux/init.h> 41 #include <linux/slab.h> 42 #include <linux/debugfs.h> 43 #include <linux/interrupt.h> 44 #include <linux/wait.h> 45 #include <linux/platform_device.h> 46 #include <linux/io.h> 47 #include <linux/of.h> 48 #include <linux/of_device.h> 49 #include <linux/of_address.h> 50 #include <linux/of_irq.h> 51 #include <linux/mailbox_controller.h> 52 #include <linux/mailbox/brcm-message.h> 53 #include <linux/scatterlist.h> 54 #include <linux/dma-direction.h> 55 #include <linux/dma-mapping.h> 56 #include <linux/dmapool.h> 57 58 #define PDC_SUCCESS 0 59 60 #define RING_ENTRY_SIZE sizeof(struct dma64dd) 61 62 /* # entries in PDC dma ring */ 63 #define PDC_RING_ENTRIES 512 64 /* 65 * Minimum number of ring descriptor entries that must be free to tell mailbox 66 * framework that it can submit another request 67 */ 68 #define PDC_RING_SPACE_MIN 15 69 70 #define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE) 71 /* Rings are 8k aligned */ 72 #define RING_ALIGN_ORDER 13 73 #define RING_ALIGN BIT(RING_ALIGN_ORDER) 74 75 #define RX_BUF_ALIGN_ORDER 5 76 #define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER) 77 78 /* descriptor bumping macros */ 79 #define XXD(x, max_mask) ((x) & (max_mask)) 80 #define TXD(x, max_mask) XXD((x), (max_mask)) 81 #define RXD(x, max_mask) XXD((x), (max_mask)) 82 #define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask)) 83 #define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask)) 84 #define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask)) 85 #define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask)) 86 #define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask)) 87 #define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask)) 88 89 /* Length of BCM header at start of SPU msg, in bytes */ 90 #define BCM_HDR_LEN 8 91 92 /* 93 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does 94 * not currently support use of multiple ringsets on a single PDC engine. 95 */ 96 #define PDC_RINGSET 0 97 98 /* 99 * Interrupt mask and status definitions. Enable interrupts for tx and rx on 100 * ring 0 101 */ 102 #define PDC_RCVINT_0 (16 + PDC_RINGSET) 103 #define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0) 104 #define PDC_INTMASK (PDC_RCVINTEN_0) 105 #define PDC_LAZY_FRAMECOUNT 1 106 #define PDC_LAZY_TIMEOUT 10000 107 #define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24)) 108 #define PDC_INTMASK_OFFSET 0x24 109 #define PDC_INTSTATUS_OFFSET 0x20 110 #define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET) 111 112 /* 113 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata 114 * before frame 115 */ 116 #define PDC_SPU2_RESP_HDR_LEN 17 117 #define PDC_CKSUM_CTRL BIT(27) 118 #define PDC_CKSUM_CTRL_OFFSET 0x400 119 120 #define PDC_SPUM_RESP_HDR_LEN 32 121 122 /* 123 * Sets the following bits for write to transmit control reg: 124 * 11 - PtyChkDisable - parity check is disabled 125 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory 126 */ 127 #define PDC_TX_CTL 0x000C0800 128 129 /* Bit in tx control reg to enable tx channel */ 130 #define PDC_TX_ENABLE 0x1 131 132 /* 133 * Sets the following bits for write to receive control reg: 134 * 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf 135 * 9 - SepRxHdrDescEn - place start of new frames only in descriptors 136 * that have StartOfFrame set 137 * 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all 138 * remaining bytes in current frame, report error 139 * in rx frame status for current frame 140 * 11 - PtyChkDisable - parity check is disabled 141 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory 142 */ 143 #define PDC_RX_CTL 0x000C0E00 144 145 /* Bit in rx control reg to enable rx channel */ 146 #define PDC_RX_ENABLE 0x1 147 148 #define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1) 149 150 /* descriptor flags */ 151 #define D64_CTRL1_EOT BIT(28) /* end of descriptor table */ 152 #define D64_CTRL1_IOC BIT(29) /* interrupt on complete */ 153 #define D64_CTRL1_EOF BIT(30) /* end of frame */ 154 #define D64_CTRL1_SOF BIT(31) /* start of frame */ 155 156 #define RX_STATUS_OVERFLOW 0x00800000 157 #define RX_STATUS_LEN 0x0000FFFF 158 159 #define PDC_TXREGS_OFFSET 0x200 160 #define PDC_RXREGS_OFFSET 0x220 161 162 /* Maximum size buffer the DMA engine can handle */ 163 #define PDC_DMA_BUF_MAX 16384 164 165 struct pdc_dma_map { 166 void *ctx; /* opaque context associated with frame */ 167 }; 168 169 /* dma descriptor */ 170 struct dma64dd { 171 u32 ctrl1; /* misc control bits */ 172 u32 ctrl2; /* buffer count and address extension */ 173 u32 addrlow; /* memory address of the date buffer, bits 31:0 */ 174 u32 addrhigh; /* memory address of the date buffer, bits 63:32 */ 175 }; 176 177 /* dma registers per channel(xmt or rcv) */ 178 struct dma64_regs { 179 u32 control; /* enable, et al */ 180 u32 ptr; /* last descriptor posted to chip */ 181 u32 addrlow; /* descriptor ring base address low 32-bits */ 182 u32 addrhigh; /* descriptor ring base address bits 63:32 */ 183 u32 status0; /* last rx descriptor written by hw */ 184 u32 status1; /* driver does not use */ 185 }; 186 187 /* cpp contortions to concatenate w/arg prescan */ 188 #ifndef PAD 189 #define _PADLINE(line) pad ## line 190 #define _XSTR(line) _PADLINE(line) 191 #define PAD _XSTR(__LINE__) 192 #endif /* PAD */ 193 194 /* dma registers. matches hw layout. */ 195 struct dma64 { 196 struct dma64_regs dmaxmt; /* dma tx */ 197 u32 PAD[2]; 198 struct dma64_regs dmarcv; /* dma rx */ 199 u32 PAD[2]; 200 }; 201 202 /* PDC registers */ 203 struct pdc_regs { 204 u32 devcontrol; /* 0x000 */ 205 u32 devstatus; /* 0x004 */ 206 u32 PAD; 207 u32 biststatus; /* 0x00c */ 208 u32 PAD[4]; 209 u32 intstatus; /* 0x020 */ 210 u32 intmask; /* 0x024 */ 211 u32 gptimer; /* 0x028 */ 212 213 u32 PAD; 214 u32 intrcvlazy_0; /* 0x030 */ 215 u32 intrcvlazy_1; /* 0x034 */ 216 u32 intrcvlazy_2; /* 0x038 */ 217 u32 intrcvlazy_3; /* 0x03c */ 218 219 u32 PAD[48]; 220 u32 removed_intrecvlazy; /* 0x100 */ 221 u32 flowctlthresh; /* 0x104 */ 222 u32 wrrthresh; /* 0x108 */ 223 u32 gmac_idle_cnt_thresh; /* 0x10c */ 224 225 u32 PAD[4]; 226 u32 ifioaccessaddr; /* 0x120 */ 227 u32 ifioaccessbyte; /* 0x124 */ 228 u32 ifioaccessdata; /* 0x128 */ 229 230 u32 PAD[21]; 231 u32 phyaccess; /* 0x180 */ 232 u32 PAD; 233 u32 phycontrol; /* 0x188 */ 234 u32 txqctl; /* 0x18c */ 235 u32 rxqctl; /* 0x190 */ 236 u32 gpioselect; /* 0x194 */ 237 u32 gpio_output_en; /* 0x198 */ 238 u32 PAD; /* 0x19c */ 239 u32 txq_rxq_mem_ctl; /* 0x1a0 */ 240 u32 memory_ecc_status; /* 0x1a4 */ 241 u32 serdes_ctl; /* 0x1a8 */ 242 u32 serdes_status0; /* 0x1ac */ 243 u32 serdes_status1; /* 0x1b0 */ 244 u32 PAD[11]; /* 0x1b4-1dc */ 245 u32 clk_ctl_st; /* 0x1e0 */ 246 u32 hw_war; /* 0x1e4 */ 247 u32 pwrctl; /* 0x1e8 */ 248 u32 PAD[5]; 249 250 #define PDC_NUM_DMA_RINGS 4 251 struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */ 252 253 /* more registers follow, but we don't use them */ 254 }; 255 256 /* structure for allocating/freeing DMA rings */ 257 struct pdc_ring_alloc { 258 dma_addr_t dmabase; /* DMA address of start of ring */ 259 void *vbase; /* base kernel virtual address of ring */ 260 u32 size; /* ring allocation size in bytes */ 261 }; 262 263 /* 264 * context associated with a receive descriptor. 265 * @rxp_ctx: opaque context associated with frame that starts at each 266 * rx ring index. 267 * @dst_sg: Scatterlist used to form reply frames beginning at a given ring 268 * index. Retained in order to unmap each sg after reply is processed. 269 * @rxin_numd: Number of rx descriptors associated with the message that starts 270 * at a descriptor index. Not set for every index. For example, 271 * if descriptor index i points to a scatterlist with 4 entries, 272 * then the next three descriptor indexes don't have a value set. 273 * @resp_hdr: Virtual address of buffer used to catch DMA rx status 274 * @resp_hdr_daddr: physical address of DMA rx status buffer 275 */ 276 struct pdc_rx_ctx { 277 void *rxp_ctx; 278 struct scatterlist *dst_sg; 279 u32 rxin_numd; 280 void *resp_hdr; 281 dma_addr_t resp_hdr_daddr; 282 }; 283 284 /* PDC state structure */ 285 struct pdc_state { 286 /* Index of the PDC whose state is in this structure instance */ 287 u8 pdc_idx; 288 289 /* Platform device for this PDC instance */ 290 struct platform_device *pdev; 291 292 /* 293 * Each PDC instance has a mailbox controller. PDC receives request 294 * messages through mailboxes, and sends response messages through the 295 * mailbox framework. 296 */ 297 struct mbox_controller mbc; 298 299 unsigned int pdc_irq; 300 301 /* tasklet for deferred processing after DMA rx interrupt */ 302 struct tasklet_struct rx_tasklet; 303 304 /* Number of bytes of receive status prior to each rx frame */ 305 u32 rx_status_len; 306 /* Whether a BCM header is prepended to each frame */ 307 bool use_bcm_hdr; 308 /* Sum of length of BCM header and rx status header */ 309 u32 pdc_resp_hdr_len; 310 311 /* The base virtual address of DMA hw registers */ 312 void __iomem *pdc_reg_vbase; 313 314 /* Pool for allocation of DMA rings */ 315 struct dma_pool *ring_pool; 316 317 /* Pool for allocation of metadata buffers for response messages */ 318 struct dma_pool *rx_buf_pool; 319 320 /* 321 * The base virtual address of DMA tx/rx descriptor rings. Corresponding 322 * DMA address and size of ring allocation. 323 */ 324 struct pdc_ring_alloc tx_ring_alloc; 325 struct pdc_ring_alloc rx_ring_alloc; 326 327 struct pdc_regs *regs; /* start of PDC registers */ 328 329 struct dma64_regs *txregs_64; /* dma tx engine registers */ 330 struct dma64_regs *rxregs_64; /* dma rx engine registers */ 331 332 /* 333 * Arrays of PDC_RING_ENTRIES descriptors 334 * To use multiple ringsets, this needs to be extended 335 */ 336 struct dma64dd *txd_64; /* tx descriptor ring */ 337 struct dma64dd *rxd_64; /* rx descriptor ring */ 338 339 /* descriptor ring sizes */ 340 u32 ntxd; /* # tx descriptors */ 341 u32 nrxd; /* # rx descriptors */ 342 u32 nrxpost; /* # rx buffers to keep posted */ 343 u32 ntxpost; /* max number of tx buffers that can be posted */ 344 345 /* 346 * Index of next tx descriptor to reclaim. That is, the descriptor 347 * index of the oldest tx buffer for which the host has yet to process 348 * the corresponding response. 349 */ 350 u32 txin; 351 352 /* 353 * Index of the first receive descriptor for the sequence of 354 * message fragments currently under construction. Used to build up 355 * the rxin_numd count for a message. Updated to rxout when the host 356 * starts a new sequence of rx buffers for a new message. 357 */ 358 u32 tx_msg_start; 359 360 /* Index of next tx descriptor to post. */ 361 u32 txout; 362 363 /* 364 * Number of tx descriptors associated with the message that starts 365 * at this tx descriptor index. 366 */ 367 u32 txin_numd[PDC_RING_ENTRIES]; 368 369 /* 370 * Index of next rx descriptor to reclaim. This is the index of 371 * the next descriptor whose data has yet to be processed by the host. 372 */ 373 u32 rxin; 374 375 /* 376 * Index of the first receive descriptor for the sequence of 377 * message fragments currently under construction. Used to build up 378 * the rxin_numd count for a message. Updated to rxout when the host 379 * starts a new sequence of rx buffers for a new message. 380 */ 381 u32 rx_msg_start; 382 383 /* 384 * Saved value of current hardware rx descriptor index. 385 * The last rx buffer written by the hw is the index previous to 386 * this one. 387 */ 388 u32 last_rx_curr; 389 390 /* Index of next rx descriptor to post. */ 391 u32 rxout; 392 393 struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES]; 394 395 /* 396 * Scatterlists used to form request and reply frames beginning at a 397 * given ring index. Retained in order to unmap each sg after reply 398 * is processed 399 */ 400 struct scatterlist *src_sg[PDC_RING_ENTRIES]; 401 402 struct dentry *debugfs_stats; /* debug FS stats file for this PDC */ 403 404 /* counters */ 405 u32 pdc_requests; /* number of request messages submitted */ 406 u32 pdc_replies; /* number of reply messages received */ 407 u32 last_tx_not_done; /* too few tx descriptors to indicate done */ 408 u32 tx_ring_full; /* unable to accept msg because tx ring full */ 409 u32 rx_ring_full; /* unable to accept msg because rx ring full */ 410 u32 txnobuf; /* unable to create tx descriptor */ 411 u32 rxnobuf; /* unable to create rx descriptor */ 412 u32 rx_oflow; /* count of rx overflows */ 413 }; 414 415 /* Global variables */ 416 417 struct pdc_globals { 418 /* Actual number of SPUs in hardware, as reported by device tree */ 419 u32 num_spu; 420 }; 421 422 static struct pdc_globals pdcg; 423 424 /* top level debug FS directory for PDC driver */ 425 static struct dentry *debugfs_dir; 426 427 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf, 428 size_t count, loff_t *offp) 429 { 430 struct pdc_state *pdcs; 431 char *buf; 432 ssize_t ret, out_offset, out_count; 433 434 out_count = 512; 435 436 buf = kmalloc(out_count, GFP_KERNEL); 437 if (!buf) 438 return -ENOMEM; 439 440 pdcs = filp->private_data; 441 out_offset = 0; 442 out_offset += snprintf(buf + out_offset, out_count - out_offset, 443 "SPU %u stats:\n", pdcs->pdc_idx); 444 out_offset += snprintf(buf + out_offset, out_count - out_offset, 445 "PDC requests....................%u\n", 446 pdcs->pdc_requests); 447 out_offset += snprintf(buf + out_offset, out_count - out_offset, 448 "PDC responses...................%u\n", 449 pdcs->pdc_replies); 450 out_offset += snprintf(buf + out_offset, out_count - out_offset, 451 "Tx not done.....................%u\n", 452 pdcs->last_tx_not_done); 453 out_offset += snprintf(buf + out_offset, out_count - out_offset, 454 "Tx ring full....................%u\n", 455 pdcs->tx_ring_full); 456 out_offset += snprintf(buf + out_offset, out_count - out_offset, 457 "Rx ring full....................%u\n", 458 pdcs->rx_ring_full); 459 out_offset += snprintf(buf + out_offset, out_count - out_offset, 460 "Tx desc write fail. Ring full...%u\n", 461 pdcs->txnobuf); 462 out_offset += snprintf(buf + out_offset, out_count - out_offset, 463 "Rx desc write fail. Ring full...%u\n", 464 pdcs->rxnobuf); 465 out_offset += snprintf(buf + out_offset, out_count - out_offset, 466 "Receive overflow................%u\n", 467 pdcs->rx_oflow); 468 out_offset += snprintf(buf + out_offset, out_count - out_offset, 469 "Num frags in rx ring............%u\n", 470 NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, 471 pdcs->nrxpost)); 472 473 if (out_offset > out_count) 474 out_offset = out_count; 475 476 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 477 kfree(buf); 478 return ret; 479 } 480 481 static const struct file_operations pdc_debugfs_stats = { 482 .owner = THIS_MODULE, 483 .open = simple_open, 484 .read = pdc_debugfs_read, 485 }; 486 487 /** 488 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level 489 * directory has not yet been created, create it now. Create a stats file in 490 * this directory for a SPU. 491 * @pdcs: PDC state structure 492 */ 493 static void pdc_setup_debugfs(struct pdc_state *pdcs) 494 { 495 char spu_stats_name[16]; 496 497 if (!debugfs_initialized()) 498 return; 499 500 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx); 501 if (!debugfs_dir) 502 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); 503 504 /* S_IRUSR == 0400 */ 505 pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, 0400, 506 debugfs_dir, pdcs, 507 &pdc_debugfs_stats); 508 } 509 510 static void pdc_free_debugfs(void) 511 { 512 debugfs_remove_recursive(debugfs_dir); 513 debugfs_dir = NULL; 514 } 515 516 /** 517 * pdc_build_rxd() - Build DMA descriptor to receive SPU result. 518 * @pdcs: PDC state for SPU that will generate result 519 * @dma_addr: DMA address of buffer that descriptor is being built for 520 * @buf_len: Length of the receive buffer, in bytes 521 * @flags: Flags to be stored in descriptor 522 */ 523 static inline void 524 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr, 525 u32 buf_len, u32 flags) 526 { 527 struct device *dev = &pdcs->pdev->dev; 528 struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout]; 529 530 dev_dbg(dev, 531 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n", 532 pdcs->pdc_idx, pdcs->rxout, buf_len, flags); 533 534 rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr)); 535 rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr)); 536 rxd->ctrl1 = cpu_to_le32(flags); 537 rxd->ctrl2 = cpu_to_le32(buf_len); 538 539 /* bump ring index and return */ 540 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost); 541 } 542 543 /** 544 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to 545 * hardware. 546 * @pdcs: PDC state for the SPU that will process this request 547 * @dma_addr: DMA address of packet to be transmitted 548 * @buf_len: Length of tx buffer, in bytes 549 * @flags: Flags to be stored in descriptor 550 */ 551 static inline void 552 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len, 553 u32 flags) 554 { 555 struct device *dev = &pdcs->pdev->dev; 556 struct dma64dd *txd = &pdcs->txd_64[pdcs->txout]; 557 558 dev_dbg(dev, 559 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n", 560 pdcs->pdc_idx, pdcs->txout, buf_len, flags); 561 562 txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr)); 563 txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr)); 564 txd->ctrl1 = cpu_to_le32(flags); 565 txd->ctrl2 = cpu_to_le32(buf_len); 566 567 /* bump ring index and return */ 568 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost); 569 } 570 571 /** 572 * pdc_receive_one() - Receive a response message from a given SPU. 573 * @pdcs: PDC state for the SPU to receive from 574 * 575 * When the return code indicates success, the response message is available in 576 * the receive buffers provided prior to submission of the request. 577 * 578 * Return: PDC_SUCCESS if one or more receive descriptors was processed 579 * -EAGAIN indicates that no response message is available 580 * -EIO an error occurred 581 */ 582 static int 583 pdc_receive_one(struct pdc_state *pdcs) 584 { 585 struct device *dev = &pdcs->pdev->dev; 586 struct mbox_controller *mbc; 587 struct mbox_chan *chan; 588 struct brcm_message mssg; 589 u32 len, rx_status; 590 u32 num_frags; 591 u8 *resp_hdr; /* virtual addr of start of resp message DMA header */ 592 u32 frags_rdy; /* number of fragments ready to read */ 593 u32 rx_idx; /* ring index of start of receive frame */ 594 dma_addr_t resp_hdr_daddr; 595 struct pdc_rx_ctx *rx_ctx; 596 597 mbc = &pdcs->mbc; 598 chan = &mbc->chans[0]; 599 mssg.type = BRCM_MESSAGE_SPU; 600 601 /* 602 * return if a complete response message is not yet ready. 603 * rxin_numd[rxin] is the number of fragments in the next msg 604 * to read. 605 */ 606 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost); 607 if ((frags_rdy == 0) || 608 (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd)) 609 /* No response ready */ 610 return -EAGAIN; 611 612 num_frags = pdcs->txin_numd[pdcs->txin]; 613 WARN_ON(num_frags == 0); 614 615 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin], 616 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE); 617 618 pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost; 619 620 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors", 621 pdcs->pdc_idx, num_frags); 622 623 rx_idx = pdcs->rxin; 624 rx_ctx = &pdcs->rx_ctx[rx_idx]; 625 num_frags = rx_ctx->rxin_numd; 626 /* Return opaque context with result */ 627 mssg.ctx = rx_ctx->rxp_ctx; 628 rx_ctx->rxp_ctx = NULL; 629 resp_hdr = rx_ctx->resp_hdr; 630 resp_hdr_daddr = rx_ctx->resp_hdr_daddr; 631 dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg), 632 DMA_FROM_DEVICE); 633 634 pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost; 635 636 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors", 637 pdcs->pdc_idx, num_frags); 638 639 dev_dbg(dev, 640 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n", 641 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin, 642 pdcs->rxout, pdcs->last_rx_curr); 643 644 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) { 645 /* 646 * For SPU-M, get length of response msg and rx overflow status. 647 */ 648 rx_status = *((u32 *)resp_hdr); 649 len = rx_status & RX_STATUS_LEN; 650 dev_dbg(dev, 651 "SPU response length %u bytes", len); 652 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) { 653 if (rx_status & RX_STATUS_OVERFLOW) { 654 dev_err_ratelimited(dev, 655 "crypto receive overflow"); 656 pdcs->rx_oflow++; 657 } else { 658 dev_info_ratelimited(dev, "crypto rx len = 0"); 659 } 660 return -EIO; 661 } 662 } 663 664 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr); 665 666 mbox_chan_received_data(chan, &mssg); 667 668 pdcs->pdc_replies++; 669 return PDC_SUCCESS; 670 } 671 672 /** 673 * pdc_receive() - Process as many responses as are available in the rx ring. 674 * @pdcs: PDC state 675 * 676 * Called within the hard IRQ. 677 * Return: 678 */ 679 static int 680 pdc_receive(struct pdc_state *pdcs) 681 { 682 int rx_status; 683 684 /* read last_rx_curr from register once */ 685 pdcs->last_rx_curr = 686 (ioread32(&pdcs->rxregs_64->status0) & 687 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE; 688 689 do { 690 /* Could be many frames ready */ 691 rx_status = pdc_receive_one(pdcs); 692 } while (rx_status == PDC_SUCCESS); 693 694 return 0; 695 } 696 697 /** 698 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit 699 * descriptors for a given SPU. The scatterlist buffers contain the data for a 700 * SPU request message. 701 * @spu_idx: The index of the SPU to submit the request to, [0, max_spu) 702 * @sg: Scatterlist whose buffers contain part of the SPU request 703 * 704 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors 705 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length. 706 * 707 * Return: PDC_SUCCESS if successful 708 * < 0 otherwise 709 */ 710 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg) 711 { 712 u32 flags = 0; 713 u32 eot; 714 u32 tx_avail; 715 716 /* 717 * Num descriptors needed. Conservatively assume we need a descriptor 718 * for every entry in sg. 719 */ 720 u32 num_desc; 721 u32 desc_w = 0; /* Number of tx descriptors written */ 722 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */ 723 dma_addr_t databufptr; /* DMA address to put in descriptor */ 724 725 num_desc = (u32)sg_nents(sg); 726 727 /* check whether enough tx descriptors are available */ 728 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout, 729 pdcs->ntxpost); 730 if (unlikely(num_desc > tx_avail)) { 731 pdcs->txnobuf++; 732 return -ENOSPC; 733 } 734 735 /* build tx descriptors */ 736 if (pdcs->tx_msg_start == pdcs->txout) { 737 /* Start of frame */ 738 pdcs->txin_numd[pdcs->tx_msg_start] = 0; 739 pdcs->src_sg[pdcs->txout] = sg; 740 flags = D64_CTRL1_SOF; 741 } 742 743 while (sg) { 744 if (unlikely(pdcs->txout == (pdcs->ntxd - 1))) 745 eot = D64_CTRL1_EOT; 746 else 747 eot = 0; 748 749 /* 750 * If sg buffer larger than PDC limit, split across 751 * multiple descriptors 752 */ 753 bufcnt = sg_dma_len(sg); 754 databufptr = sg_dma_address(sg); 755 while (bufcnt > PDC_DMA_BUF_MAX) { 756 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX, 757 flags | eot); 758 desc_w++; 759 bufcnt -= PDC_DMA_BUF_MAX; 760 databufptr += PDC_DMA_BUF_MAX; 761 if (unlikely(pdcs->txout == (pdcs->ntxd - 1))) 762 eot = D64_CTRL1_EOT; 763 else 764 eot = 0; 765 } 766 sg = sg_next(sg); 767 if (!sg) 768 /* Writing last descriptor for frame */ 769 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC); 770 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot); 771 desc_w++; 772 /* Clear start of frame after first descriptor */ 773 flags &= ~D64_CTRL1_SOF; 774 } 775 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w; 776 777 return PDC_SUCCESS; 778 } 779 780 /** 781 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx 782 * ring. 783 * @pdcs: PDC state for SPU to process the request 784 * 785 * Sets the index of the last descriptor written in both the rx and tx ring. 786 * 787 * Return: PDC_SUCCESS 788 */ 789 static int pdc_tx_list_final(struct pdc_state *pdcs) 790 { 791 /* 792 * write barrier to ensure all register writes are complete 793 * before chip starts to process new request 794 */ 795 wmb(); 796 iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr); 797 iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr); 798 pdcs->pdc_requests++; 799 800 return PDC_SUCCESS; 801 } 802 803 /** 804 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC. 805 * @pdcs: PDC state for SPU handling request 806 * @dst_sg: scatterlist providing rx buffers for response to be returned to 807 * mailbox client 808 * @ctx: Opaque context for this request 809 * 810 * Posts a single receive descriptor to hold the metadata that precedes a 811 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and 812 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and 813 * rx to indicate the start of a new message. 814 * 815 * Return: PDC_SUCCESS if successful 816 * < 0 if an error (e.g., rx ring is full) 817 */ 818 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg, 819 void *ctx) 820 { 821 u32 flags = 0; 822 u32 rx_avail; 823 u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */ 824 dma_addr_t daddr; 825 void *vaddr; 826 struct pdc_rx_ctx *rx_ctx; 827 828 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 829 pdcs->nrxpost); 830 if (unlikely(rx_pkt_cnt > rx_avail)) { 831 pdcs->rxnobuf++; 832 return -ENOSPC; 833 } 834 835 /* allocate a buffer for the dma rx status */ 836 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr); 837 if (unlikely(!vaddr)) 838 return -ENOMEM; 839 840 /* 841 * Update msg_start indexes for both tx and rx to indicate the start 842 * of a new sequence of descriptor indexes that contain the fragments 843 * of the same message. 844 */ 845 pdcs->rx_msg_start = pdcs->rxout; 846 pdcs->tx_msg_start = pdcs->txout; 847 848 /* This is always the first descriptor in the receive sequence */ 849 flags = D64_CTRL1_SOF; 850 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1; 851 852 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 853 flags |= D64_CTRL1_EOT; 854 855 rx_ctx = &pdcs->rx_ctx[pdcs->rxout]; 856 rx_ctx->rxp_ctx = ctx; 857 rx_ctx->dst_sg = dst_sg; 858 rx_ctx->resp_hdr = vaddr; 859 rx_ctx->resp_hdr_daddr = daddr; 860 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags); 861 return PDC_SUCCESS; 862 } 863 864 /** 865 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive 866 * descriptors for a given SPU. The caller must have already DMA mapped the 867 * scatterlist. 868 * @spu_idx: Indicates which SPU the buffers are for 869 * @sg: Scatterlist whose buffers are added to the receive ring 870 * 871 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX, 872 * multiple receive descriptors are written, each with a buffer <= 873 * PDC_DMA_BUF_MAX. 874 * 875 * Return: PDC_SUCCESS if successful 876 * < 0 otherwise (e.g., receive ring is full) 877 */ 878 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg) 879 { 880 u32 flags = 0; 881 u32 rx_avail; 882 883 /* 884 * Num descriptors needed. Conservatively assume we need a descriptor 885 * for every entry from our starting point in the scatterlist. 886 */ 887 u32 num_desc; 888 u32 desc_w = 0; /* Number of tx descriptors written */ 889 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */ 890 dma_addr_t databufptr; /* DMA address to put in descriptor */ 891 892 num_desc = (u32)sg_nents(sg); 893 894 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 895 pdcs->nrxpost); 896 if (unlikely(num_desc > rx_avail)) { 897 pdcs->rxnobuf++; 898 return -ENOSPC; 899 } 900 901 while (sg) { 902 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 903 flags = D64_CTRL1_EOT; 904 else 905 flags = 0; 906 907 /* 908 * If sg buffer larger than PDC limit, split across 909 * multiple descriptors 910 */ 911 bufcnt = sg_dma_len(sg); 912 databufptr = sg_dma_address(sg); 913 while (bufcnt > PDC_DMA_BUF_MAX) { 914 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags); 915 desc_w++; 916 bufcnt -= PDC_DMA_BUF_MAX; 917 databufptr += PDC_DMA_BUF_MAX; 918 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 919 flags = D64_CTRL1_EOT; 920 else 921 flags = 0; 922 } 923 pdc_build_rxd(pdcs, databufptr, bufcnt, flags); 924 desc_w++; 925 sg = sg_next(sg); 926 } 927 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w; 928 929 return PDC_SUCCESS; 930 } 931 932 /** 933 * pdc_irq_handler() - Interrupt handler called in interrupt context. 934 * @irq: Interrupt number that has fired 935 * @data: device struct for DMA engine that generated the interrupt 936 * 937 * We have to clear the device interrupt status flags here. So cache the 938 * status for later use in the thread function. Other than that, just return 939 * WAKE_THREAD to invoke the thread function. 940 * 941 * Return: IRQ_WAKE_THREAD if interrupt is ours 942 * IRQ_NONE otherwise 943 */ 944 static irqreturn_t pdc_irq_handler(int irq, void *data) 945 { 946 struct device *dev = (struct device *)data; 947 struct pdc_state *pdcs = dev_get_drvdata(dev); 948 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET); 949 950 if (unlikely(intstatus == 0)) 951 return IRQ_NONE; 952 953 /* Disable interrupts until soft handler runs */ 954 iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 955 956 /* Clear interrupt flags in device */ 957 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET); 958 959 /* Wakeup IRQ thread */ 960 tasklet_schedule(&pdcs->rx_tasklet); 961 return IRQ_HANDLED; 962 } 963 964 /** 965 * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after 966 * a DMA receive interrupt. Reenables the receive interrupt. 967 * @data: PDC state structure 968 */ 969 static void pdc_tasklet_cb(unsigned long data) 970 { 971 struct pdc_state *pdcs = (struct pdc_state *)data; 972 973 pdc_receive(pdcs); 974 975 /* reenable interrupts */ 976 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 977 } 978 979 /** 980 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of 981 * descriptors in one ringset. 982 * @pdcs: PDC instance state 983 * @ringset: index of ringset being used 984 * 985 * Return: PDC_SUCCESS if ring initialized 986 * < 0 otherwise 987 */ 988 static int pdc_ring_init(struct pdc_state *pdcs, int ringset) 989 { 990 int i; 991 int err = PDC_SUCCESS; 992 struct dma64 *dma_reg; 993 struct device *dev = &pdcs->pdev->dev; 994 struct pdc_ring_alloc tx; 995 struct pdc_ring_alloc rx; 996 997 /* Allocate tx ring */ 998 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase); 999 if (unlikely(!tx.vbase)) { 1000 err = -ENOMEM; 1001 goto done; 1002 } 1003 1004 /* Allocate rx ring */ 1005 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase); 1006 if (unlikely(!rx.vbase)) { 1007 err = -ENOMEM; 1008 goto fail_dealloc; 1009 } 1010 1011 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase); 1012 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase); 1013 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase); 1014 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase); 1015 1016 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx)); 1017 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx)); 1018 1019 pdcs->rxin = 0; 1020 pdcs->rx_msg_start = 0; 1021 pdcs->last_rx_curr = 0; 1022 pdcs->rxout = 0; 1023 pdcs->txin = 0; 1024 pdcs->tx_msg_start = 0; 1025 pdcs->txout = 0; 1026 1027 /* Set descriptor array base addresses */ 1028 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase; 1029 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase; 1030 1031 /* Tell device the base DMA address of each ring */ 1032 dma_reg = &pdcs->regs->dmaregs[ringset]; 1033 1034 /* But first disable DMA and set curptr to 0 for both TX & RX */ 1035 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1036 iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)), 1037 &dma_reg->dmarcv.control); 1038 iowrite32(0, &dma_reg->dmaxmt.ptr); 1039 iowrite32(0, &dma_reg->dmarcv.ptr); 1040 1041 /* Set base DMA addresses */ 1042 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase), 1043 &dma_reg->dmaxmt.addrlow); 1044 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase), 1045 &dma_reg->dmaxmt.addrhigh); 1046 1047 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase), 1048 &dma_reg->dmarcv.addrlow); 1049 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase), 1050 &dma_reg->dmarcv.addrhigh); 1051 1052 /* Re-enable DMA */ 1053 iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control); 1054 iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)), 1055 &dma_reg->dmarcv.control); 1056 1057 /* Initialize descriptors */ 1058 for (i = 0; i < PDC_RING_ENTRIES; i++) { 1059 /* Every tx descriptor can be used for start of frame. */ 1060 if (i != pdcs->ntxpost) { 1061 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF, 1062 &pdcs->txd_64[i].ctrl1); 1063 } else { 1064 /* Last descriptor in ringset. Set End of Table. */ 1065 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF | 1066 D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1); 1067 } 1068 1069 /* Every rx descriptor can be used for start of frame */ 1070 if (i != pdcs->nrxpost) { 1071 iowrite32(D64_CTRL1_SOF, 1072 &pdcs->rxd_64[i].ctrl1); 1073 } else { 1074 /* Last descriptor in ringset. Set End of Table. */ 1075 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT, 1076 &pdcs->rxd_64[i].ctrl1); 1077 } 1078 } 1079 return PDC_SUCCESS; 1080 1081 fail_dealloc: 1082 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase); 1083 done: 1084 return err; 1085 } 1086 1087 static void pdc_ring_free(struct pdc_state *pdcs) 1088 { 1089 if (pdcs->tx_ring_alloc.vbase) { 1090 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase, 1091 pdcs->tx_ring_alloc.dmabase); 1092 pdcs->tx_ring_alloc.vbase = NULL; 1093 } 1094 1095 if (pdcs->rx_ring_alloc.vbase) { 1096 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase, 1097 pdcs->rx_ring_alloc.dmabase); 1098 pdcs->rx_ring_alloc.vbase = NULL; 1099 } 1100 } 1101 1102 /** 1103 * pdc_desc_count() - Count the number of DMA descriptors that will be required 1104 * for a given scatterlist. Account for the max length of a DMA buffer. 1105 * @sg: Scatterlist to be DMA'd 1106 * Return: Number of descriptors required 1107 */ 1108 static u32 pdc_desc_count(struct scatterlist *sg) 1109 { 1110 u32 cnt = 0; 1111 1112 while (sg) { 1113 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1); 1114 sg = sg_next(sg); 1115 } 1116 return cnt; 1117 } 1118 1119 /** 1120 * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors 1121 * and the rx ring has room for rx_cnt descriptors. 1122 * @pdcs: PDC state 1123 * @tx_cnt: The number of descriptors required in the tx ring 1124 * @rx_cnt: The number of descriptors required i the rx ring 1125 * 1126 * Return: true if one of the rings does not have enough space 1127 * false if sufficient space is available in both rings 1128 */ 1129 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt) 1130 { 1131 u32 rx_avail; 1132 u32 tx_avail; 1133 bool full = false; 1134 1135 /* Check if the tx and rx rings are likely to have enough space */ 1136 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 1137 pdcs->nrxpost); 1138 if (unlikely(rx_cnt > rx_avail)) { 1139 pdcs->rx_ring_full++; 1140 full = true; 1141 } 1142 1143 if (likely(!full)) { 1144 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout, 1145 pdcs->ntxpost); 1146 if (unlikely(tx_cnt > tx_avail)) { 1147 pdcs->tx_ring_full++; 1148 full = true; 1149 } 1150 } 1151 return full; 1152 } 1153 1154 /** 1155 * pdc_last_tx_done() - If both the tx and rx rings have at least 1156 * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox 1157 * framework can submit another message. 1158 * @chan: mailbox channel to check 1159 * Return: true if PDC can accept another message on this channel 1160 */ 1161 static bool pdc_last_tx_done(struct mbox_chan *chan) 1162 { 1163 struct pdc_state *pdcs = chan->con_priv; 1164 bool ret; 1165 1166 if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN, 1167 PDC_RING_SPACE_MIN))) { 1168 pdcs->last_tx_not_done++; 1169 ret = false; 1170 } else { 1171 ret = true; 1172 } 1173 return ret; 1174 } 1175 1176 /** 1177 * pdc_send_data() - mailbox send_data function 1178 * @chan: The mailbox channel on which the data is sent. The channel 1179 * corresponds to a DMA ringset. 1180 * @data: The mailbox message to be sent. The message must be a 1181 * brcm_message structure. 1182 * 1183 * This function is registered as the send_data function for the mailbox 1184 * controller. From the destination scatterlist in the mailbox message, it 1185 * creates a sequence of receive descriptors in the rx ring. From the source 1186 * scatterlist, it creates a sequence of transmit descriptors in the tx ring. 1187 * After creating the descriptors, it writes the rx ptr and tx ptr registers to 1188 * initiate the DMA transfer. 1189 * 1190 * This function does the DMA map and unmap of the src and dst scatterlists in 1191 * the mailbox message. 1192 * 1193 * Return: 0 if successful 1194 * -ENOTSUPP if the mailbox message is a type this driver does not 1195 * support 1196 * < 0 if an error 1197 */ 1198 static int pdc_send_data(struct mbox_chan *chan, void *data) 1199 { 1200 struct pdc_state *pdcs = chan->con_priv; 1201 struct device *dev = &pdcs->pdev->dev; 1202 struct brcm_message *mssg = data; 1203 int err = PDC_SUCCESS; 1204 int src_nent; 1205 int dst_nent; 1206 int nent; 1207 u32 tx_desc_req; 1208 u32 rx_desc_req; 1209 1210 if (unlikely(mssg->type != BRCM_MESSAGE_SPU)) 1211 return -ENOTSUPP; 1212 1213 src_nent = sg_nents(mssg->spu.src); 1214 if (likely(src_nent)) { 1215 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE); 1216 if (unlikely(nent == 0)) 1217 return -EIO; 1218 } 1219 1220 dst_nent = sg_nents(mssg->spu.dst); 1221 if (likely(dst_nent)) { 1222 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent, 1223 DMA_FROM_DEVICE); 1224 if (unlikely(nent == 0)) { 1225 dma_unmap_sg(dev, mssg->spu.src, src_nent, 1226 DMA_TO_DEVICE); 1227 return -EIO; 1228 } 1229 } 1230 1231 /* 1232 * Check if the tx and rx rings have enough space. Do this prior to 1233 * writing any tx or rx descriptors. Need to ensure that we do not write 1234 * a partial set of descriptors, or write just rx descriptors but 1235 * corresponding tx descriptors don't fit. Note that we want this check 1236 * and the entire sequence of descriptor to happen without another 1237 * thread getting in. The channel spin lock in the mailbox framework 1238 * ensures this. 1239 */ 1240 tx_desc_req = pdc_desc_count(mssg->spu.src); 1241 rx_desc_req = pdc_desc_count(mssg->spu.dst); 1242 if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1))) 1243 return -ENOSPC; 1244 1245 /* Create rx descriptors to SPU catch response */ 1246 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx); 1247 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst); 1248 1249 /* Create tx descriptors to submit SPU request */ 1250 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src); 1251 err |= pdc_tx_list_final(pdcs); /* initiate transfer */ 1252 1253 if (unlikely(err)) 1254 dev_err(&pdcs->pdev->dev, 1255 "%s failed with error %d", __func__, err); 1256 1257 return err; 1258 } 1259 1260 static int pdc_startup(struct mbox_chan *chan) 1261 { 1262 return pdc_ring_init(chan->con_priv, PDC_RINGSET); 1263 } 1264 1265 static void pdc_shutdown(struct mbox_chan *chan) 1266 { 1267 struct pdc_state *pdcs = chan->con_priv; 1268 1269 if (!pdcs) 1270 return; 1271 1272 dev_dbg(&pdcs->pdev->dev, 1273 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx); 1274 pdc_ring_free(pdcs); 1275 } 1276 1277 /** 1278 * pdc_hw_init() - Use the given initialization parameters to initialize the 1279 * state for one of the PDCs. 1280 * @pdcs: state of the PDC 1281 */ 1282 static 1283 void pdc_hw_init(struct pdc_state *pdcs) 1284 { 1285 struct platform_device *pdev; 1286 struct device *dev; 1287 struct dma64 *dma_reg; 1288 int ringset = PDC_RINGSET; 1289 1290 pdev = pdcs->pdev; 1291 dev = &pdev->dev; 1292 1293 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx); 1294 dev_dbg(dev, "state structure: %p", 1295 pdcs); 1296 dev_dbg(dev, " - base virtual addr of hw regs %p", 1297 pdcs->pdc_reg_vbase); 1298 1299 /* initialize data structures */ 1300 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase; 1301 pdcs->txregs_64 = (struct dma64_regs *) 1302 (((u8 *)pdcs->pdc_reg_vbase) + 1303 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset)); 1304 pdcs->rxregs_64 = (struct dma64_regs *) 1305 (((u8 *)pdcs->pdc_reg_vbase) + 1306 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset)); 1307 1308 pdcs->ntxd = PDC_RING_ENTRIES; 1309 pdcs->nrxd = PDC_RING_ENTRIES; 1310 pdcs->ntxpost = PDC_RING_ENTRIES - 1; 1311 pdcs->nrxpost = PDC_RING_ENTRIES - 1; 1312 iowrite32(0, &pdcs->regs->intmask); 1313 1314 dma_reg = &pdcs->regs->dmaregs[ringset]; 1315 1316 /* Configure DMA but will enable later in pdc_ring_init() */ 1317 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1318 1319 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1), 1320 &dma_reg->dmarcv.control); 1321 1322 /* Reset current index pointers after making sure DMA is disabled */ 1323 iowrite32(0, &dma_reg->dmaxmt.ptr); 1324 iowrite32(0, &dma_reg->dmarcv.ptr); 1325 1326 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN) 1327 iowrite32(PDC_CKSUM_CTRL, 1328 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET); 1329 } 1330 1331 /** 1332 * pdc_hw_disable() - Disable the tx and rx control in the hw. 1333 * @pdcs: PDC state structure 1334 * 1335 */ 1336 static void pdc_hw_disable(struct pdc_state *pdcs) 1337 { 1338 struct dma64 *dma_reg; 1339 1340 dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET]; 1341 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1342 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1), 1343 &dma_reg->dmarcv.control); 1344 } 1345 1346 /** 1347 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata 1348 * header returned with each response message. 1349 * @pdcs: PDC state structure 1350 * 1351 * The metadata is not returned to the mailbox client. So the PDC driver 1352 * manages these buffers. 1353 * 1354 * Return: PDC_SUCCESS 1355 * -ENOMEM if pool creation fails 1356 */ 1357 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs) 1358 { 1359 struct platform_device *pdev; 1360 struct device *dev; 1361 1362 pdev = pdcs->pdev; 1363 dev = &pdev->dev; 1364 1365 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len; 1366 if (pdcs->use_bcm_hdr) 1367 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN; 1368 1369 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev, 1370 pdcs->pdc_resp_hdr_len, 1371 RX_BUF_ALIGN, 0); 1372 if (!pdcs->rx_buf_pool) 1373 return -ENOMEM; 1374 1375 return PDC_SUCCESS; 1376 } 1377 1378 /** 1379 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and 1380 * specify a threaded IRQ handler for deferred handling of interrupts outside of 1381 * interrupt context. 1382 * @pdcs: PDC state 1383 * 1384 * Set the interrupt mask for transmit and receive done. 1385 * Set the lazy interrupt frame count to generate an interrupt for just one pkt. 1386 * 1387 * Return: PDC_SUCCESS 1388 * <0 if threaded irq request fails 1389 */ 1390 static int pdc_interrupts_init(struct pdc_state *pdcs) 1391 { 1392 struct platform_device *pdev = pdcs->pdev; 1393 struct device *dev = &pdev->dev; 1394 struct device_node *dn = pdev->dev.of_node; 1395 int err; 1396 1397 /* interrupt configuration */ 1398 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 1399 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + PDC_RCVLAZY0_OFFSET); 1400 1401 /* read irq from device tree */ 1402 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0); 1403 dev_dbg(dev, "pdc device %s irq %u for pdcs %p", 1404 dev_name(dev), pdcs->pdc_irq, pdcs); 1405 1406 err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0, 1407 dev_name(dev), dev); 1408 if (err) { 1409 dev_err(dev, "IRQ %u request failed with err %d\n", 1410 pdcs->pdc_irq, err); 1411 return err; 1412 } 1413 return PDC_SUCCESS; 1414 } 1415 1416 static const struct mbox_chan_ops pdc_mbox_chan_ops = { 1417 .send_data = pdc_send_data, 1418 .last_tx_done = pdc_last_tx_done, 1419 .startup = pdc_startup, 1420 .shutdown = pdc_shutdown 1421 }; 1422 1423 /** 1424 * pdc_mb_init() - Initialize the mailbox controller. 1425 * @pdcs: PDC state 1426 * 1427 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel 1428 * driver only uses one ringset and thus one mb channel. PDC uses the transmit 1429 * complete interrupt to determine when a mailbox message has successfully been 1430 * transmitted. 1431 * 1432 * Return: 0 on success 1433 * < 0 if there is an allocation or registration failure 1434 */ 1435 static int pdc_mb_init(struct pdc_state *pdcs) 1436 { 1437 struct device *dev = &pdcs->pdev->dev; 1438 struct mbox_controller *mbc; 1439 int chan_index; 1440 int err; 1441 1442 mbc = &pdcs->mbc; 1443 mbc->dev = dev; 1444 mbc->ops = &pdc_mbox_chan_ops; 1445 mbc->num_chans = 1; 1446 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans), 1447 GFP_KERNEL); 1448 if (!mbc->chans) 1449 return -ENOMEM; 1450 1451 mbc->txdone_irq = false; 1452 mbc->txdone_poll = true; 1453 mbc->txpoll_period = 1; 1454 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++) 1455 mbc->chans[chan_index].con_priv = pdcs; 1456 1457 /* Register mailbox controller */ 1458 err = mbox_controller_register(mbc); 1459 if (err) { 1460 dev_crit(dev, 1461 "Failed to register PDC mailbox controller. Error %d.", 1462 err); 1463 return err; 1464 } 1465 return 0; 1466 } 1467 1468 /** 1469 * pdc_dt_read() - Read application-specific data from device tree. 1470 * @pdev: Platform device 1471 * @pdcs: PDC state 1472 * 1473 * Reads the number of bytes of receive status that precede each received frame. 1474 * Reads whether transmit and received frames should be preceded by an 8-byte 1475 * BCM header. 1476 * 1477 * Return: 0 if successful 1478 * -ENODEV if device not available 1479 */ 1480 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs) 1481 { 1482 struct device *dev = &pdev->dev; 1483 struct device_node *dn = pdev->dev.of_node; 1484 int err; 1485 1486 err = of_property_read_u32(dn, "brcm,rx-status-len", 1487 &pdcs->rx_status_len); 1488 if (err < 0) 1489 dev_err(dev, 1490 "%s failed to get DMA receive status length from device tree", 1491 __func__); 1492 1493 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr"); 1494 1495 return 0; 1496 } 1497 1498 /** 1499 * pdc_probe() - Probe function for PDC driver. 1500 * @pdev: PDC platform device 1501 * 1502 * Reserve and map register regions defined in device tree. 1503 * Allocate and initialize tx and rx DMA rings. 1504 * Initialize a mailbox controller for each PDC. 1505 * 1506 * Return: 0 if successful 1507 * < 0 if an error 1508 */ 1509 static int pdc_probe(struct platform_device *pdev) 1510 { 1511 int err = 0; 1512 struct device *dev = &pdev->dev; 1513 struct resource *pdc_regs; 1514 struct pdc_state *pdcs; 1515 1516 /* PDC state for one SPU */ 1517 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL); 1518 if (!pdcs) { 1519 err = -ENOMEM; 1520 goto cleanup; 1521 } 1522 1523 pdcs->pdev = pdev; 1524 platform_set_drvdata(pdev, pdcs); 1525 pdcs->pdc_idx = pdcg.num_spu; 1526 pdcg.num_spu++; 1527 1528 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 1529 if (err) { 1530 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err); 1531 goto cleanup; 1532 } 1533 1534 /* Create DMA pool for tx ring */ 1535 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE, 1536 RING_ALIGN, 0); 1537 if (!pdcs->ring_pool) { 1538 err = -ENOMEM; 1539 goto cleanup; 1540 } 1541 1542 err = pdc_dt_read(pdev, pdcs); 1543 if (err) 1544 goto cleanup_ring_pool; 1545 1546 pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1547 if (!pdc_regs) { 1548 err = -ENODEV; 1549 goto cleanup_ring_pool; 1550 } 1551 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa", 1552 &pdc_regs->start, &pdc_regs->end); 1553 1554 pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs); 1555 if (IS_ERR(pdcs->pdc_reg_vbase)) { 1556 err = PTR_ERR(pdcs->pdc_reg_vbase); 1557 dev_err(&pdev->dev, "Failed to map registers: %d\n", err); 1558 goto cleanup_ring_pool; 1559 } 1560 1561 /* create rx buffer pool after dt read to know how big buffers are */ 1562 err = pdc_rx_buf_pool_create(pdcs); 1563 if (err) 1564 goto cleanup_ring_pool; 1565 1566 pdc_hw_init(pdcs); 1567 1568 /* Init tasklet for deferred DMA rx processing */ 1569 tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs); 1570 1571 err = pdc_interrupts_init(pdcs); 1572 if (err) 1573 goto cleanup_buf_pool; 1574 1575 /* Initialize mailbox controller */ 1576 err = pdc_mb_init(pdcs); 1577 if (err) 1578 goto cleanup_buf_pool; 1579 1580 pdcs->debugfs_stats = NULL; 1581 pdc_setup_debugfs(pdcs); 1582 1583 dev_dbg(dev, "pdc_probe() successful"); 1584 return PDC_SUCCESS; 1585 1586 cleanup_buf_pool: 1587 tasklet_kill(&pdcs->rx_tasklet); 1588 dma_pool_destroy(pdcs->rx_buf_pool); 1589 1590 cleanup_ring_pool: 1591 dma_pool_destroy(pdcs->ring_pool); 1592 1593 cleanup: 1594 return err; 1595 } 1596 1597 static int pdc_remove(struct platform_device *pdev) 1598 { 1599 struct pdc_state *pdcs = platform_get_drvdata(pdev); 1600 1601 pdc_free_debugfs(); 1602 1603 tasklet_kill(&pdcs->rx_tasklet); 1604 1605 pdc_hw_disable(pdcs); 1606 1607 mbox_controller_unregister(&pdcs->mbc); 1608 1609 dma_pool_destroy(pdcs->rx_buf_pool); 1610 dma_pool_destroy(pdcs->ring_pool); 1611 return 0; 1612 } 1613 1614 static const struct of_device_id pdc_mbox_of_match[] = { 1615 {.compatible = "brcm,iproc-pdc-mbox"}, 1616 { /* sentinel */ } 1617 }; 1618 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match); 1619 1620 static struct platform_driver pdc_mbox_driver = { 1621 .probe = pdc_probe, 1622 .remove = pdc_remove, 1623 .driver = { 1624 .name = "brcm-iproc-pdc-mbox", 1625 .of_match_table = of_match_ptr(pdc_mbox_of_match), 1626 }, 1627 }; 1628 module_platform_driver(pdc_mbox_driver); 1629 1630 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 1631 MODULE_DESCRIPTION("Broadcom PDC mailbox driver"); 1632 MODULE_LICENSE("GPL v2"); 1633