1 /*
2  * Copyright 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation (the "GPL").
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License version 2 (GPLv2) for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * version 2 (GPLv2) along with this source code.
15  */
16 
17 /*
18  * Broadcom PDC Mailbox Driver
19  * The PDC provides a ring based programming interface to one or more hardware
20  * offload engines. For example, the PDC driver works with both SPU-M and SPU2
21  * cryptographic offload hardware. In some chips the PDC is referred to as MDE.
22  *
23  * The PDC driver registers with the Linux mailbox framework as a mailbox
24  * controller, once for each PDC instance. Ring 0 for each PDC is registered as
25  * a mailbox channel. The PDC driver uses interrupts to determine when data
26  * transfers to and from an offload engine are complete. The PDC driver uses
27  * threaded IRQs so that response messages are handled outside of interrupt
28  * context.
29  *
30  * The PDC driver allows multiple messages to be pending in the descriptor
31  * rings. The tx_msg_start descriptor index indicates where the last message
32  * starts. The txin_numd value at this index indicates how many descriptor
33  * indexes make up the message. Similar state is kept on the receive side. When
34  * an rx interrupt indicates a response is ready, the PDC driver processes numd
35  * descriptors from the tx and rx ring, thus processing one response at a time.
36  */
37 
38 #include <linux/errno.h>
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/slab.h>
42 #include <linux/debugfs.h>
43 #include <linux/interrupt.h>
44 #include <linux/wait.h>
45 #include <linux/platform_device.h>
46 #include <linux/io.h>
47 #include <linux/of.h>
48 #include <linux/of_device.h>
49 #include <linux/of_address.h>
50 #include <linux/of_irq.h>
51 #include <linux/mailbox_controller.h>
52 #include <linux/mailbox/brcm-message.h>
53 #include <linux/scatterlist.h>
54 #include <linux/dma-direction.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/dmapool.h>
57 
58 #define PDC_SUCCESS  0
59 
60 #define RING_ENTRY_SIZE   sizeof(struct dma64dd)
61 
62 /* # entries in PDC dma ring */
63 #define PDC_RING_ENTRIES  512
64 /*
65  * Minimum number of ring descriptor entries that must be free to tell mailbox
66  * framework that it can submit another request
67  */
68 #define PDC_RING_SPACE_MIN  15
69 
70 #define PDC_RING_SIZE    (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
71 /* Rings are 8k aligned */
72 #define RING_ALIGN_ORDER  13
73 #define RING_ALIGN        BIT(RING_ALIGN_ORDER)
74 
75 #define RX_BUF_ALIGN_ORDER  5
76 #define RX_BUF_ALIGN	    BIT(RX_BUF_ALIGN_ORDER)
77 
78 /* descriptor bumping macros */
79 #define XXD(x, max_mask)              ((x) & (max_mask))
80 #define TXD(x, max_mask)              XXD((x), (max_mask))
81 #define RXD(x, max_mask)              XXD((x), (max_mask))
82 #define NEXTTXD(i, max_mask)          TXD((i) + 1, (max_mask))
83 #define PREVTXD(i, max_mask)          TXD((i) - 1, (max_mask))
84 #define NEXTRXD(i, max_mask)          RXD((i) + 1, (max_mask))
85 #define PREVRXD(i, max_mask)          RXD((i) - 1, (max_mask))
86 #define NTXDACTIVE(h, t, max_mask)    TXD((t) - (h), (max_mask))
87 #define NRXDACTIVE(h, t, max_mask)    RXD((t) - (h), (max_mask))
88 
89 /* Length of BCM header at start of SPU msg, in bytes */
90 #define BCM_HDR_LEN  8
91 
92 /*
93  * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
94  * not currently support use of multiple ringsets on a single PDC engine.
95  */
96 #define PDC_RINGSET  0
97 
98 /*
99  * Interrupt mask and status definitions. Enable interrupts for tx and rx on
100  * ring 0
101  */
102 #define PDC_RCVINT_0         (16 + PDC_RINGSET)
103 #define PDC_RCVINTEN_0       BIT(PDC_RCVINT_0)
104 #define PDC_INTMASK	     (PDC_RCVINTEN_0)
105 #define PDC_LAZY_FRAMECOUNT  1
106 #define PDC_LAZY_TIMEOUT     10000
107 #define PDC_LAZY_INT  (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
108 #define PDC_INTMASK_OFFSET   0x24
109 #define PDC_INTSTATUS_OFFSET 0x20
110 #define PDC_RCVLAZY0_OFFSET  (0x30 + 4 * PDC_RINGSET)
111 
112 /*
113  * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
114  * before frame
115  */
116 #define PDC_SPU2_RESP_HDR_LEN  17
117 #define PDC_CKSUM_CTRL         BIT(27)
118 #define PDC_CKSUM_CTRL_OFFSET  0x400
119 
120 #define PDC_SPUM_RESP_HDR_LEN  32
121 
122 /*
123  * Sets the following bits for write to transmit control reg:
124  * 11    - PtyChkDisable - parity check is disabled
125  * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
126  */
127 #define PDC_TX_CTL		0x000C0800
128 
129 /* Bit in tx control reg to enable tx channel */
130 #define PDC_TX_ENABLE		0x1
131 
132 /*
133  * Sets the following bits for write to receive control reg:
134  * 7:1   - RcvOffset - size in bytes of status region at start of rx frame buf
135  * 9     - SepRxHdrDescEn - place start of new frames only in descriptors
136  *                          that have StartOfFrame set
137  * 10    - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
138  *                         remaining bytes in current frame, report error
139  *                         in rx frame status for current frame
140  * 11    - PtyChkDisable - parity check is disabled
141  * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
142  */
143 #define PDC_RX_CTL		0x000C0E00
144 
145 /* Bit in rx control reg to enable rx channel */
146 #define PDC_RX_ENABLE		0x1
147 
148 #define CRYPTO_D64_RS0_CD_MASK   ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
149 
150 /* descriptor flags */
151 #define D64_CTRL1_EOT   BIT(28)	/* end of descriptor table */
152 #define D64_CTRL1_IOC   BIT(29)	/* interrupt on complete */
153 #define D64_CTRL1_EOF   BIT(30)	/* end of frame */
154 #define D64_CTRL1_SOF   BIT(31)	/* start of frame */
155 
156 #define RX_STATUS_OVERFLOW       0x00800000
157 #define RX_STATUS_LEN            0x0000FFFF
158 
159 #define PDC_TXREGS_OFFSET  0x200
160 #define PDC_RXREGS_OFFSET  0x220
161 
162 /* Maximum size buffer the DMA engine can handle */
163 #define PDC_DMA_BUF_MAX 16384
164 
165 struct pdc_dma_map {
166 	void *ctx;          /* opaque context associated with frame */
167 };
168 
169 /* dma descriptor */
170 struct dma64dd {
171 	u32 ctrl1;      /* misc control bits */
172 	u32 ctrl2;      /* buffer count and address extension */
173 	u32 addrlow;    /* memory address of the date buffer, bits 31:0 */
174 	u32 addrhigh;   /* memory address of the date buffer, bits 63:32 */
175 };
176 
177 /* dma registers per channel(xmt or rcv) */
178 struct dma64_regs {
179 	u32  control;   /* enable, et al */
180 	u32  ptr;       /* last descriptor posted to chip */
181 	u32  addrlow;   /* descriptor ring base address low 32-bits */
182 	u32  addrhigh;  /* descriptor ring base address bits 63:32 */
183 	u32  status0;   /* last rx descriptor written by hw */
184 	u32  status1;   /* driver does not use */
185 };
186 
187 /* cpp contortions to concatenate w/arg prescan */
188 #ifndef PAD
189 #define _PADLINE(line)  pad ## line
190 #define _XSTR(line)     _PADLINE(line)
191 #define PAD             _XSTR(__LINE__)
192 #endif  /* PAD */
193 
194 /* dma registers. matches hw layout. */
195 struct dma64 {
196 	struct dma64_regs dmaxmt;  /* dma tx */
197 	u32          PAD[2];
198 	struct dma64_regs dmarcv;  /* dma rx */
199 	u32          PAD[2];
200 };
201 
202 /* PDC registers */
203 struct pdc_regs {
204 	u32  devcontrol;             /* 0x000 */
205 	u32  devstatus;              /* 0x004 */
206 	u32  PAD;
207 	u32  biststatus;             /* 0x00c */
208 	u32  PAD[4];
209 	u32  intstatus;              /* 0x020 */
210 	u32  intmask;                /* 0x024 */
211 	u32  gptimer;                /* 0x028 */
212 
213 	u32  PAD;
214 	u32  intrcvlazy_0;           /* 0x030 */
215 	u32  intrcvlazy_1;           /* 0x034 */
216 	u32  intrcvlazy_2;           /* 0x038 */
217 	u32  intrcvlazy_3;           /* 0x03c */
218 
219 	u32  PAD[48];
220 	u32  removed_intrecvlazy;    /* 0x100 */
221 	u32  flowctlthresh;          /* 0x104 */
222 	u32  wrrthresh;              /* 0x108 */
223 	u32  gmac_idle_cnt_thresh;   /* 0x10c */
224 
225 	u32  PAD[4];
226 	u32  ifioaccessaddr;         /* 0x120 */
227 	u32  ifioaccessbyte;         /* 0x124 */
228 	u32  ifioaccessdata;         /* 0x128 */
229 
230 	u32  PAD[21];
231 	u32  phyaccess;              /* 0x180 */
232 	u32  PAD;
233 	u32  phycontrol;             /* 0x188 */
234 	u32  txqctl;                 /* 0x18c */
235 	u32  rxqctl;                 /* 0x190 */
236 	u32  gpioselect;             /* 0x194 */
237 	u32  gpio_output_en;         /* 0x198 */
238 	u32  PAD;                    /* 0x19c */
239 	u32  txq_rxq_mem_ctl;        /* 0x1a0 */
240 	u32  memory_ecc_status;      /* 0x1a4 */
241 	u32  serdes_ctl;             /* 0x1a8 */
242 	u32  serdes_status0;         /* 0x1ac */
243 	u32  serdes_status1;         /* 0x1b0 */
244 	u32  PAD[11];                /* 0x1b4-1dc */
245 	u32  clk_ctl_st;             /* 0x1e0 */
246 	u32  hw_war;                 /* 0x1e4 */
247 	u32  pwrctl;                 /* 0x1e8 */
248 	u32  PAD[5];
249 
250 #define PDC_NUM_DMA_RINGS   4
251 	struct dma64 dmaregs[PDC_NUM_DMA_RINGS];  /* 0x0200 - 0x2fc */
252 
253 	/* more registers follow, but we don't use them */
254 };
255 
256 /* structure for allocating/freeing DMA rings */
257 struct pdc_ring_alloc {
258 	dma_addr_t  dmabase; /* DMA address of start of ring */
259 	void	   *vbase;   /* base kernel virtual address of ring */
260 	u32	    size;    /* ring allocation size in bytes */
261 };
262 
263 /*
264  * context associated with a receive descriptor.
265  * @rxp_ctx: opaque context associated with frame that starts at each
266  *           rx ring index.
267  * @dst_sg:  Scatterlist used to form reply frames beginning at a given ring
268  *           index. Retained in order to unmap each sg after reply is processed.
269  * @rxin_numd: Number of rx descriptors associated with the message that starts
270  *             at a descriptor index. Not set for every index. For example,
271  *             if descriptor index i points to a scatterlist with 4 entries,
272  *             then the next three descriptor indexes don't have a value set.
273  * @resp_hdr: Virtual address of buffer used to catch DMA rx status
274  * @resp_hdr_daddr: physical address of DMA rx status buffer
275  */
276 struct pdc_rx_ctx {
277 	void *rxp_ctx;
278 	struct scatterlist *dst_sg;
279 	u32  rxin_numd;
280 	void *resp_hdr;
281 	dma_addr_t resp_hdr_daddr;
282 };
283 
284 /* PDC state structure */
285 struct pdc_state {
286 	/* Index of the PDC whose state is in this structure instance */
287 	u8 pdc_idx;
288 
289 	/* Platform device for this PDC instance */
290 	struct platform_device *pdev;
291 
292 	/*
293 	 * Each PDC instance has a mailbox controller. PDC receives request
294 	 * messages through mailboxes, and sends response messages through the
295 	 * mailbox framework.
296 	 */
297 	struct mbox_controller mbc;
298 
299 	unsigned int pdc_irq;
300 
301 	/* tasklet for deferred processing after DMA rx interrupt */
302 	struct tasklet_struct rx_tasklet;
303 
304 	/* Number of bytes of receive status prior to each rx frame */
305 	u32 rx_status_len;
306 	/* Whether a BCM header is prepended to each frame */
307 	bool use_bcm_hdr;
308 	/* Sum of length of BCM header and rx status header */
309 	u32 pdc_resp_hdr_len;
310 
311 	/* The base virtual address of DMA hw registers */
312 	void __iomem *pdc_reg_vbase;
313 
314 	/* Pool for allocation of DMA rings */
315 	struct dma_pool *ring_pool;
316 
317 	/* Pool for allocation of metadata buffers for response messages */
318 	struct dma_pool *rx_buf_pool;
319 
320 	/*
321 	 * The base virtual address of DMA tx/rx descriptor rings. Corresponding
322 	 * DMA address and size of ring allocation.
323 	 */
324 	struct pdc_ring_alloc tx_ring_alloc;
325 	struct pdc_ring_alloc rx_ring_alloc;
326 
327 	struct pdc_regs *regs;    /* start of PDC registers */
328 
329 	struct dma64_regs *txregs_64; /* dma tx engine registers */
330 	struct dma64_regs *rxregs_64; /* dma rx engine registers */
331 
332 	/*
333 	 * Arrays of PDC_RING_ENTRIES descriptors
334 	 * To use multiple ringsets, this needs to be extended
335 	 */
336 	struct dma64dd   *txd_64;  /* tx descriptor ring */
337 	struct dma64dd   *rxd_64;  /* rx descriptor ring */
338 
339 	/* descriptor ring sizes */
340 	u32      ntxd;       /* # tx descriptors */
341 	u32      nrxd;       /* # rx descriptors */
342 	u32      nrxpost;    /* # rx buffers to keep posted */
343 	u32      ntxpost;    /* max number of tx buffers that can be posted */
344 
345 	/*
346 	 * Index of next tx descriptor to reclaim. That is, the descriptor
347 	 * index of the oldest tx buffer for which the host has yet to process
348 	 * the corresponding response.
349 	 */
350 	u32  txin;
351 
352 	/*
353 	 * Index of the first receive descriptor for the sequence of
354 	 * message fragments currently under construction. Used to build up
355 	 * the rxin_numd count for a message. Updated to rxout when the host
356 	 * starts a new sequence of rx buffers for a new message.
357 	 */
358 	u32  tx_msg_start;
359 
360 	/* Index of next tx descriptor to post. */
361 	u32  txout;
362 
363 	/*
364 	 * Number of tx descriptors associated with the message that starts
365 	 * at this tx descriptor index.
366 	 */
367 	u32      txin_numd[PDC_RING_ENTRIES];
368 
369 	/*
370 	 * Index of next rx descriptor to reclaim. This is the index of
371 	 * the next descriptor whose data has yet to be processed by the host.
372 	 */
373 	u32  rxin;
374 
375 	/*
376 	 * Index of the first receive descriptor for the sequence of
377 	 * message fragments currently under construction. Used to build up
378 	 * the rxin_numd count for a message. Updated to rxout when the host
379 	 * starts a new sequence of rx buffers for a new message.
380 	 */
381 	u32  rx_msg_start;
382 
383 	/*
384 	 * Saved value of current hardware rx descriptor index.
385 	 * The last rx buffer written by the hw is the index previous to
386 	 * this one.
387 	 */
388 	u32  last_rx_curr;
389 
390 	/* Index of next rx descriptor to post. */
391 	u32  rxout;
392 
393 	struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES];
394 
395 	/*
396 	 * Scatterlists used to form request and reply frames beginning at a
397 	 * given ring index. Retained in order to unmap each sg after reply
398 	 * is processed
399 	 */
400 	struct scatterlist *src_sg[PDC_RING_ENTRIES];
401 
402 	struct dentry *debugfs_stats;  /* debug FS stats file for this PDC */
403 
404 	/* counters */
405 	u32  pdc_requests;     /* number of request messages submitted */
406 	u32  pdc_replies;      /* number of reply messages received */
407 	u32  last_tx_not_done; /* too few tx descriptors to indicate done */
408 	u32  tx_ring_full;     /* unable to accept msg because tx ring full */
409 	u32  rx_ring_full;     /* unable to accept msg because rx ring full */
410 	u32  txnobuf;          /* unable to create tx descriptor */
411 	u32  rxnobuf;          /* unable to create rx descriptor */
412 	u32  rx_oflow;         /* count of rx overflows */
413 };
414 
415 /* Global variables */
416 
417 struct pdc_globals {
418 	/* Actual number of SPUs in hardware, as reported by device tree */
419 	u32 num_spu;
420 };
421 
422 static struct pdc_globals pdcg;
423 
424 /* top level debug FS directory for PDC driver */
425 static struct dentry *debugfs_dir;
426 
427 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
428 				size_t count, loff_t *offp)
429 {
430 	struct pdc_state *pdcs;
431 	char *buf;
432 	ssize_t ret, out_offset, out_count;
433 
434 	out_count = 512;
435 
436 	buf = kmalloc(out_count, GFP_KERNEL);
437 	if (!buf)
438 		return -ENOMEM;
439 
440 	pdcs = filp->private_data;
441 	out_offset = 0;
442 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
443 			       "SPU %u stats:\n", pdcs->pdc_idx);
444 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
445 			       "PDC requests....................%u\n",
446 			       pdcs->pdc_requests);
447 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
448 			       "PDC responses...................%u\n",
449 			       pdcs->pdc_replies);
450 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
451 			       "Tx not done.....................%u\n",
452 			       pdcs->last_tx_not_done);
453 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
454 			       "Tx ring full....................%u\n",
455 			       pdcs->tx_ring_full);
456 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
457 			       "Rx ring full....................%u\n",
458 			       pdcs->rx_ring_full);
459 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
460 			       "Tx desc write fail. Ring full...%u\n",
461 			       pdcs->txnobuf);
462 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
463 			       "Rx desc write fail. Ring full...%u\n",
464 			       pdcs->rxnobuf);
465 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
466 			       "Receive overflow................%u\n",
467 			       pdcs->rx_oflow);
468 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
469 			       "Num frags in rx ring............%u\n",
470 			       NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
471 					  pdcs->nrxpost));
472 
473 	if (out_offset > out_count)
474 		out_offset = out_count;
475 
476 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
477 	kfree(buf);
478 	return ret;
479 }
480 
481 static const struct file_operations pdc_debugfs_stats = {
482 	.owner = THIS_MODULE,
483 	.open = simple_open,
484 	.read = pdc_debugfs_read,
485 };
486 
487 /**
488  * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
489  * directory has not yet been created, create it now. Create a stats file in
490  * this directory for a SPU.
491  * @pdcs: PDC state structure
492  */
493 static void pdc_setup_debugfs(struct pdc_state *pdcs)
494 {
495 	char spu_stats_name[16];
496 
497 	if (!debugfs_initialized())
498 		return;
499 
500 	snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
501 	if (!debugfs_dir)
502 		debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
503 
504 	/* S_IRUSR == 0400 */
505 	pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, 0400,
506 						  debugfs_dir, pdcs,
507 						  &pdc_debugfs_stats);
508 }
509 
510 static void pdc_free_debugfs(void)
511 {
512 	debugfs_remove_recursive(debugfs_dir);
513 	debugfs_dir = NULL;
514 }
515 
516 /**
517  * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
518  * @pdcs:      PDC state for SPU that will generate result
519  * @dma_addr:  DMA address of buffer that descriptor is being built for
520  * @buf_len:   Length of the receive buffer, in bytes
521  * @flags:     Flags to be stored in descriptor
522  */
523 static inline void
524 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
525 	      u32 buf_len, u32 flags)
526 {
527 	struct device *dev = &pdcs->pdev->dev;
528 	struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout];
529 
530 	dev_dbg(dev,
531 		"Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
532 		pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
533 
534 	rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
535 	rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
536 	rxd->ctrl1 = cpu_to_le32(flags);
537 	rxd->ctrl2 = cpu_to_le32(buf_len);
538 
539 	/* bump ring index and return */
540 	pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
541 }
542 
543 /**
544  * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
545  * hardware.
546  * @pdcs:        PDC state for the SPU that will process this request
547  * @dma_addr:    DMA address of packet to be transmitted
548  * @buf_len:     Length of tx buffer, in bytes
549  * @flags:       Flags to be stored in descriptor
550  */
551 static inline void
552 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
553 	      u32 flags)
554 {
555 	struct device *dev = &pdcs->pdev->dev;
556 	struct dma64dd *txd = &pdcs->txd_64[pdcs->txout];
557 
558 	dev_dbg(dev,
559 		"Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
560 		pdcs->pdc_idx, pdcs->txout, buf_len, flags);
561 
562 	txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
563 	txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
564 	txd->ctrl1 = cpu_to_le32(flags);
565 	txd->ctrl2 = cpu_to_le32(buf_len);
566 
567 	/* bump ring index and return */
568 	pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
569 }
570 
571 /**
572  * pdc_receive_one() - Receive a response message from a given SPU.
573  * @pdcs:    PDC state for the SPU to receive from
574  *
575  * When the return code indicates success, the response message is available in
576  * the receive buffers provided prior to submission of the request.
577  *
578  * Return:  PDC_SUCCESS if one or more receive descriptors was processed
579  *          -EAGAIN indicates that no response message is available
580  *          -EIO an error occurred
581  */
582 static int
583 pdc_receive_one(struct pdc_state *pdcs)
584 {
585 	struct device *dev = &pdcs->pdev->dev;
586 	struct mbox_controller *mbc;
587 	struct mbox_chan *chan;
588 	struct brcm_message mssg;
589 	u32 len, rx_status;
590 	u32 num_frags;
591 	u8 *resp_hdr;    /* virtual addr of start of resp message DMA header */
592 	u32 frags_rdy;   /* number of fragments ready to read */
593 	u32 rx_idx;      /* ring index of start of receive frame */
594 	dma_addr_t resp_hdr_daddr;
595 	struct pdc_rx_ctx *rx_ctx;
596 
597 	mbc = &pdcs->mbc;
598 	chan = &mbc->chans[0];
599 	mssg.type = BRCM_MESSAGE_SPU;
600 
601 	/*
602 	 * return if a complete response message is not yet ready.
603 	 * rxin_numd[rxin] is the number of fragments in the next msg
604 	 * to read.
605 	 */
606 	frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
607 	if ((frags_rdy == 0) ||
608 	    (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd))
609 		/* No response ready */
610 		return -EAGAIN;
611 
612 	num_frags = pdcs->txin_numd[pdcs->txin];
613 	WARN_ON(num_frags == 0);
614 
615 	dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
616 		     sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
617 
618 	pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost;
619 
620 	dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
621 		pdcs->pdc_idx, num_frags);
622 
623 	rx_idx = pdcs->rxin;
624 	rx_ctx = &pdcs->rx_ctx[rx_idx];
625 	num_frags = rx_ctx->rxin_numd;
626 	/* Return opaque context with result */
627 	mssg.ctx = rx_ctx->rxp_ctx;
628 	rx_ctx->rxp_ctx = NULL;
629 	resp_hdr = rx_ctx->resp_hdr;
630 	resp_hdr_daddr = rx_ctx->resp_hdr_daddr;
631 	dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg),
632 		     DMA_FROM_DEVICE);
633 
634 	pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost;
635 
636 	dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
637 		pdcs->pdc_idx, num_frags);
638 
639 	dev_dbg(dev,
640 		"PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
641 		pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
642 		pdcs->rxout, pdcs->last_rx_curr);
643 
644 	if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
645 		/*
646 		 * For SPU-M, get length of response msg and rx overflow status.
647 		 */
648 		rx_status = *((u32 *)resp_hdr);
649 		len = rx_status & RX_STATUS_LEN;
650 		dev_dbg(dev,
651 			"SPU response length %u bytes", len);
652 		if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
653 			if (rx_status & RX_STATUS_OVERFLOW) {
654 				dev_err_ratelimited(dev,
655 						    "crypto receive overflow");
656 				pdcs->rx_oflow++;
657 			} else {
658 				dev_info_ratelimited(dev, "crypto rx len = 0");
659 			}
660 			return -EIO;
661 		}
662 	}
663 
664 	dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
665 
666 	mbox_chan_received_data(chan, &mssg);
667 
668 	pdcs->pdc_replies++;
669 	return PDC_SUCCESS;
670 }
671 
672 /**
673  * pdc_receive() - Process as many responses as are available in the rx ring.
674  * @pdcs:  PDC state
675  *
676  * Called within the hard IRQ.
677  * Return:
678  */
679 static int
680 pdc_receive(struct pdc_state *pdcs)
681 {
682 	int rx_status;
683 
684 	/* read last_rx_curr from register once */
685 	pdcs->last_rx_curr =
686 	    (ioread32(&pdcs->rxregs_64->status0) &
687 	     CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
688 
689 	do {
690 		/* Could be many frames ready */
691 		rx_status = pdc_receive_one(pdcs);
692 	} while (rx_status == PDC_SUCCESS);
693 
694 	return 0;
695 }
696 
697 /**
698  * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
699  * descriptors for a given SPU. The scatterlist buffers contain the data for a
700  * SPU request message.
701  * @spu_idx:   The index of the SPU to submit the request to, [0, max_spu)
702  * @sg:        Scatterlist whose buffers contain part of the SPU request
703  *
704  * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
705  * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
706  *
707  * Return: PDC_SUCCESS if successful
708  *         < 0 otherwise
709  */
710 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
711 {
712 	u32 flags = 0;
713 	u32 eot;
714 	u32 tx_avail;
715 
716 	/*
717 	 * Num descriptors needed. Conservatively assume we need a descriptor
718 	 * for every entry in sg.
719 	 */
720 	u32 num_desc;
721 	u32 desc_w = 0;	/* Number of tx descriptors written */
722 	u32 bufcnt;	/* Number of bytes of buffer pointed to by descriptor */
723 	dma_addr_t databufptr;	/* DMA address to put in descriptor */
724 
725 	num_desc = (u32)sg_nents(sg);
726 
727 	/* check whether enough tx descriptors are available */
728 	tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
729 					      pdcs->ntxpost);
730 	if (unlikely(num_desc > tx_avail)) {
731 		pdcs->txnobuf++;
732 		return -ENOSPC;
733 	}
734 
735 	/* build tx descriptors */
736 	if (pdcs->tx_msg_start == pdcs->txout) {
737 		/* Start of frame */
738 		pdcs->txin_numd[pdcs->tx_msg_start] = 0;
739 		pdcs->src_sg[pdcs->txout] = sg;
740 		flags = D64_CTRL1_SOF;
741 	}
742 
743 	while (sg) {
744 		if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
745 			eot = D64_CTRL1_EOT;
746 		else
747 			eot = 0;
748 
749 		/*
750 		 * If sg buffer larger than PDC limit, split across
751 		 * multiple descriptors
752 		 */
753 		bufcnt = sg_dma_len(sg);
754 		databufptr = sg_dma_address(sg);
755 		while (bufcnt > PDC_DMA_BUF_MAX) {
756 			pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
757 				      flags | eot);
758 			desc_w++;
759 			bufcnt -= PDC_DMA_BUF_MAX;
760 			databufptr += PDC_DMA_BUF_MAX;
761 			if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
762 				eot = D64_CTRL1_EOT;
763 			else
764 				eot = 0;
765 		}
766 		sg = sg_next(sg);
767 		if (!sg)
768 			/* Writing last descriptor for frame */
769 			flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
770 		pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
771 		desc_w++;
772 		/* Clear start of frame after first descriptor */
773 		flags &= ~D64_CTRL1_SOF;
774 	}
775 	pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
776 
777 	return PDC_SUCCESS;
778 }
779 
780 /**
781  * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
782  * ring.
783  * @pdcs:  PDC state for SPU to process the request
784  *
785  * Sets the index of the last descriptor written in both the rx and tx ring.
786  *
787  * Return: PDC_SUCCESS
788  */
789 static int pdc_tx_list_final(struct pdc_state *pdcs)
790 {
791 	/*
792 	 * write barrier to ensure all register writes are complete
793 	 * before chip starts to process new request
794 	 */
795 	wmb();
796 	iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr);
797 	iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr);
798 	pdcs->pdc_requests++;
799 
800 	return PDC_SUCCESS;
801 }
802 
803 /**
804  * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
805  * @pdcs:   PDC state for SPU handling request
806  * @dst_sg: scatterlist providing rx buffers for response to be returned to
807  *	    mailbox client
808  * @ctx:    Opaque context for this request
809  *
810  * Posts a single receive descriptor to hold the metadata that precedes a
811  * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
812  * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
813  * rx to indicate the start of a new message.
814  *
815  * Return:  PDC_SUCCESS if successful
816  *          < 0 if an error (e.g., rx ring is full)
817  */
818 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
819 			    void *ctx)
820 {
821 	u32 flags = 0;
822 	u32 rx_avail;
823 	u32 rx_pkt_cnt = 1;	/* Adding a single rx buffer */
824 	dma_addr_t daddr;
825 	void *vaddr;
826 	struct pdc_rx_ctx *rx_ctx;
827 
828 	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
829 					      pdcs->nrxpost);
830 	if (unlikely(rx_pkt_cnt > rx_avail)) {
831 		pdcs->rxnobuf++;
832 		return -ENOSPC;
833 	}
834 
835 	/* allocate a buffer for the dma rx status */
836 	vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
837 	if (unlikely(!vaddr))
838 		return -ENOMEM;
839 
840 	/*
841 	 * Update msg_start indexes for both tx and rx to indicate the start
842 	 * of a new sequence of descriptor indexes that contain the fragments
843 	 * of the same message.
844 	 */
845 	pdcs->rx_msg_start = pdcs->rxout;
846 	pdcs->tx_msg_start = pdcs->txout;
847 
848 	/* This is always the first descriptor in the receive sequence */
849 	flags = D64_CTRL1_SOF;
850 	pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1;
851 
852 	if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
853 		flags |= D64_CTRL1_EOT;
854 
855 	rx_ctx = &pdcs->rx_ctx[pdcs->rxout];
856 	rx_ctx->rxp_ctx = ctx;
857 	rx_ctx->dst_sg = dst_sg;
858 	rx_ctx->resp_hdr = vaddr;
859 	rx_ctx->resp_hdr_daddr = daddr;
860 	pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
861 	return PDC_SUCCESS;
862 }
863 
864 /**
865  * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
866  * descriptors for a given SPU. The caller must have already DMA mapped the
867  * scatterlist.
868  * @spu_idx:    Indicates which SPU the buffers are for
869  * @sg:         Scatterlist whose buffers are added to the receive ring
870  *
871  * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
872  * multiple receive descriptors are written, each with a buffer <=
873  * PDC_DMA_BUF_MAX.
874  *
875  * Return: PDC_SUCCESS if successful
876  *         < 0 otherwise (e.g., receive ring is full)
877  */
878 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
879 {
880 	u32 flags = 0;
881 	u32 rx_avail;
882 
883 	/*
884 	 * Num descriptors needed. Conservatively assume we need a descriptor
885 	 * for every entry from our starting point in the scatterlist.
886 	 */
887 	u32 num_desc;
888 	u32 desc_w = 0;	/* Number of tx descriptors written */
889 	u32 bufcnt;	/* Number of bytes of buffer pointed to by descriptor */
890 	dma_addr_t databufptr;	/* DMA address to put in descriptor */
891 
892 	num_desc = (u32)sg_nents(sg);
893 
894 	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
895 					      pdcs->nrxpost);
896 	if (unlikely(num_desc > rx_avail)) {
897 		pdcs->rxnobuf++;
898 		return -ENOSPC;
899 	}
900 
901 	while (sg) {
902 		if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
903 			flags = D64_CTRL1_EOT;
904 		else
905 			flags = 0;
906 
907 		/*
908 		 * If sg buffer larger than PDC limit, split across
909 		 * multiple descriptors
910 		 */
911 		bufcnt = sg_dma_len(sg);
912 		databufptr = sg_dma_address(sg);
913 		while (bufcnt > PDC_DMA_BUF_MAX) {
914 			pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
915 			desc_w++;
916 			bufcnt -= PDC_DMA_BUF_MAX;
917 			databufptr += PDC_DMA_BUF_MAX;
918 			if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
919 				flags = D64_CTRL1_EOT;
920 			else
921 				flags = 0;
922 		}
923 		pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
924 		desc_w++;
925 		sg = sg_next(sg);
926 	}
927 	pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w;
928 
929 	return PDC_SUCCESS;
930 }
931 
932 /**
933  * pdc_irq_handler() - Interrupt handler called in interrupt context.
934  * @irq:      Interrupt number that has fired
935  * @data:     device struct for DMA engine that generated the interrupt
936  *
937  * We have to clear the device interrupt status flags here. So cache the
938  * status for later use in the thread function. Other than that, just return
939  * WAKE_THREAD to invoke the thread function.
940  *
941  * Return: IRQ_WAKE_THREAD if interrupt is ours
942  *         IRQ_NONE otherwise
943  */
944 static irqreturn_t pdc_irq_handler(int irq, void *data)
945 {
946 	struct device *dev = (struct device *)data;
947 	struct pdc_state *pdcs = dev_get_drvdata(dev);
948 	u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
949 
950 	if (unlikely(intstatus == 0))
951 		return IRQ_NONE;
952 
953 	/* Disable interrupts until soft handler runs */
954 	iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
955 
956 	/* Clear interrupt flags in device */
957 	iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
958 
959 	/* Wakeup IRQ thread */
960 	tasklet_schedule(&pdcs->rx_tasklet);
961 	return IRQ_HANDLED;
962 }
963 
964 /**
965  * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after
966  * a DMA receive interrupt. Reenables the receive interrupt.
967  * @data: PDC state structure
968  */
969 static void pdc_tasklet_cb(unsigned long data)
970 {
971 	struct pdc_state *pdcs = (struct pdc_state *)data;
972 
973 	pdc_receive(pdcs);
974 
975 	/* reenable interrupts */
976 	iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
977 }
978 
979 /**
980  * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
981  * descriptors in one ringset.
982  * @pdcs:    PDC instance state
983  * @ringset: index of ringset being used
984  *
985  * Return: PDC_SUCCESS if ring initialized
986  *         < 0 otherwise
987  */
988 static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
989 {
990 	int i;
991 	int err = PDC_SUCCESS;
992 	struct dma64 *dma_reg;
993 	struct device *dev = &pdcs->pdev->dev;
994 	struct pdc_ring_alloc tx;
995 	struct pdc_ring_alloc rx;
996 
997 	/* Allocate tx ring */
998 	tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
999 	if (unlikely(!tx.vbase)) {
1000 		err = -ENOMEM;
1001 		goto done;
1002 	}
1003 
1004 	/* Allocate rx ring */
1005 	rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1006 	if (unlikely(!rx.vbase)) {
1007 		err = -ENOMEM;
1008 		goto fail_dealloc;
1009 	}
1010 
1011 	dev_dbg(dev, " - base DMA addr of tx ring      %pad", &tx.dmabase);
1012 	dev_dbg(dev, " - base virtual addr of tx ring  %p", tx.vbase);
1013 	dev_dbg(dev, " - base DMA addr of rx ring      %pad", &rx.dmabase);
1014 	dev_dbg(dev, " - base virtual addr of rx ring  %p", rx.vbase);
1015 
1016 	memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1017 	memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1018 
1019 	pdcs->rxin = 0;
1020 	pdcs->rx_msg_start = 0;
1021 	pdcs->last_rx_curr = 0;
1022 	pdcs->rxout = 0;
1023 	pdcs->txin = 0;
1024 	pdcs->tx_msg_start = 0;
1025 	pdcs->txout = 0;
1026 
1027 	/* Set descriptor array base addresses */
1028 	pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1029 	pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1030 
1031 	/* Tell device the base DMA address of each ring */
1032 	dma_reg = &pdcs->regs->dmaregs[ringset];
1033 
1034 	/* But first disable DMA and set curptr to 0 for both TX & RX */
1035 	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1036 	iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)),
1037 		  &dma_reg->dmarcv.control);
1038 	iowrite32(0, &dma_reg->dmaxmt.ptr);
1039 	iowrite32(0, &dma_reg->dmarcv.ptr);
1040 
1041 	/* Set base DMA addresses */
1042 	iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1043 		  &dma_reg->dmaxmt.addrlow);
1044 	iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1045 		  &dma_reg->dmaxmt.addrhigh);
1046 
1047 	iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1048 		  &dma_reg->dmarcv.addrlow);
1049 	iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1050 		  &dma_reg->dmarcv.addrhigh);
1051 
1052 	/* Re-enable DMA */
1053 	iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control);
1054 	iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)),
1055 		  &dma_reg->dmarcv.control);
1056 
1057 	/* Initialize descriptors */
1058 	for (i = 0; i < PDC_RING_ENTRIES; i++) {
1059 		/* Every tx descriptor can be used for start of frame. */
1060 		if (i != pdcs->ntxpost) {
1061 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1062 				  &pdcs->txd_64[i].ctrl1);
1063 		} else {
1064 			/* Last descriptor in ringset. Set End of Table. */
1065 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1066 				  D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1);
1067 		}
1068 
1069 		/* Every rx descriptor can be used for start of frame */
1070 		if (i != pdcs->nrxpost) {
1071 			iowrite32(D64_CTRL1_SOF,
1072 				  &pdcs->rxd_64[i].ctrl1);
1073 		} else {
1074 			/* Last descriptor in ringset. Set End of Table. */
1075 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1076 				  &pdcs->rxd_64[i].ctrl1);
1077 		}
1078 	}
1079 	return PDC_SUCCESS;
1080 
1081 fail_dealloc:
1082 	dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1083 done:
1084 	return err;
1085 }
1086 
1087 static void pdc_ring_free(struct pdc_state *pdcs)
1088 {
1089 	if (pdcs->tx_ring_alloc.vbase) {
1090 		dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1091 			      pdcs->tx_ring_alloc.dmabase);
1092 		pdcs->tx_ring_alloc.vbase = NULL;
1093 	}
1094 
1095 	if (pdcs->rx_ring_alloc.vbase) {
1096 		dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1097 			      pdcs->rx_ring_alloc.dmabase);
1098 		pdcs->rx_ring_alloc.vbase = NULL;
1099 	}
1100 }
1101 
1102 /**
1103  * pdc_desc_count() - Count the number of DMA descriptors that will be required
1104  * for a given scatterlist. Account for the max length of a DMA buffer.
1105  * @sg:    Scatterlist to be DMA'd
1106  * Return: Number of descriptors required
1107  */
1108 static u32 pdc_desc_count(struct scatterlist *sg)
1109 {
1110 	u32 cnt = 0;
1111 
1112 	while (sg) {
1113 		cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1);
1114 		sg = sg_next(sg);
1115 	}
1116 	return cnt;
1117 }
1118 
1119 /**
1120  * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors
1121  * and the rx ring has room for rx_cnt descriptors.
1122  * @pdcs:  PDC state
1123  * @tx_cnt: The number of descriptors required in the tx ring
1124  * @rx_cnt: The number of descriptors required i the rx ring
1125  *
1126  * Return: true if one of the rings does not have enough space
1127  *         false if sufficient space is available in both rings
1128  */
1129 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt)
1130 {
1131 	u32 rx_avail;
1132 	u32 tx_avail;
1133 	bool full = false;
1134 
1135 	/* Check if the tx and rx rings are likely to have enough space */
1136 	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
1137 					      pdcs->nrxpost);
1138 	if (unlikely(rx_cnt > rx_avail)) {
1139 		pdcs->rx_ring_full++;
1140 		full = true;
1141 	}
1142 
1143 	if (likely(!full)) {
1144 		tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
1145 						      pdcs->ntxpost);
1146 		if (unlikely(tx_cnt > tx_avail)) {
1147 			pdcs->tx_ring_full++;
1148 			full = true;
1149 		}
1150 	}
1151 	return full;
1152 }
1153 
1154 /**
1155  * pdc_last_tx_done() - If both the tx and rx rings have at least
1156  * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox
1157  * framework can submit another message.
1158  * @chan:  mailbox channel to check
1159  * Return: true if PDC can accept another message on this channel
1160  */
1161 static bool pdc_last_tx_done(struct mbox_chan *chan)
1162 {
1163 	struct pdc_state *pdcs = chan->con_priv;
1164 	bool ret;
1165 
1166 	if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN,
1167 				    PDC_RING_SPACE_MIN))) {
1168 		pdcs->last_tx_not_done++;
1169 		ret = false;
1170 	} else {
1171 		ret = true;
1172 	}
1173 	return ret;
1174 }
1175 
1176 /**
1177  * pdc_send_data() - mailbox send_data function
1178  * @chan:	The mailbox channel on which the data is sent. The channel
1179  *              corresponds to a DMA ringset.
1180  * @data:	The mailbox message to be sent. The message must be a
1181  *              brcm_message structure.
1182  *
1183  * This function is registered as the send_data function for the mailbox
1184  * controller. From the destination scatterlist in the mailbox message, it
1185  * creates a sequence of receive descriptors in the rx ring. From the source
1186  * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1187  * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1188  * initiate the DMA transfer.
1189  *
1190  * This function does the DMA map and unmap of the src and dst scatterlists in
1191  * the mailbox message.
1192  *
1193  * Return: 0 if successful
1194  *	   -ENOTSUPP if the mailbox message is a type this driver does not
1195  *			support
1196  *         < 0 if an error
1197  */
1198 static int pdc_send_data(struct mbox_chan *chan, void *data)
1199 {
1200 	struct pdc_state *pdcs = chan->con_priv;
1201 	struct device *dev = &pdcs->pdev->dev;
1202 	struct brcm_message *mssg = data;
1203 	int err = PDC_SUCCESS;
1204 	int src_nent;
1205 	int dst_nent;
1206 	int nent;
1207 	u32 tx_desc_req;
1208 	u32 rx_desc_req;
1209 
1210 	if (unlikely(mssg->type != BRCM_MESSAGE_SPU))
1211 		return -ENOTSUPP;
1212 
1213 	src_nent = sg_nents(mssg->spu.src);
1214 	if (likely(src_nent)) {
1215 		nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1216 		if (unlikely(nent == 0))
1217 			return -EIO;
1218 	}
1219 
1220 	dst_nent = sg_nents(mssg->spu.dst);
1221 	if (likely(dst_nent)) {
1222 		nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1223 				  DMA_FROM_DEVICE);
1224 		if (unlikely(nent == 0)) {
1225 			dma_unmap_sg(dev, mssg->spu.src, src_nent,
1226 				     DMA_TO_DEVICE);
1227 			return -EIO;
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * Check if the tx and rx rings have enough space. Do this prior to
1233 	 * writing any tx or rx descriptors. Need to ensure that we do not write
1234 	 * a partial set of descriptors, or write just rx descriptors but
1235 	 * corresponding tx descriptors don't fit. Note that we want this check
1236 	 * and the entire sequence of descriptor to happen without another
1237 	 * thread getting in. The channel spin lock in the mailbox framework
1238 	 * ensures this.
1239 	 */
1240 	tx_desc_req = pdc_desc_count(mssg->spu.src);
1241 	rx_desc_req = pdc_desc_count(mssg->spu.dst);
1242 	if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1)))
1243 		return -ENOSPC;
1244 
1245 	/* Create rx descriptors to SPU catch response */
1246 	err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1247 	err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1248 
1249 	/* Create tx descriptors to submit SPU request */
1250 	err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1251 	err |= pdc_tx_list_final(pdcs);	/* initiate transfer */
1252 
1253 	if (unlikely(err))
1254 		dev_err(&pdcs->pdev->dev,
1255 			"%s failed with error %d", __func__, err);
1256 
1257 	return err;
1258 }
1259 
1260 static int pdc_startup(struct mbox_chan *chan)
1261 {
1262 	return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1263 }
1264 
1265 static void pdc_shutdown(struct mbox_chan *chan)
1266 {
1267 	struct pdc_state *pdcs = chan->con_priv;
1268 
1269 	if (!pdcs)
1270 		return;
1271 
1272 	dev_dbg(&pdcs->pdev->dev,
1273 		"Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1274 	pdc_ring_free(pdcs);
1275 }
1276 
1277 /**
1278  * pdc_hw_init() - Use the given initialization parameters to initialize the
1279  * state for one of the PDCs.
1280  * @pdcs:  state of the PDC
1281  */
1282 static
1283 void pdc_hw_init(struct pdc_state *pdcs)
1284 {
1285 	struct platform_device *pdev;
1286 	struct device *dev;
1287 	struct dma64 *dma_reg;
1288 	int ringset = PDC_RINGSET;
1289 
1290 	pdev = pdcs->pdev;
1291 	dev = &pdev->dev;
1292 
1293 	dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1294 	dev_dbg(dev, "state structure:                   %p",
1295 		pdcs);
1296 	dev_dbg(dev, " - base virtual addr of hw regs    %p",
1297 		pdcs->pdc_reg_vbase);
1298 
1299 	/* initialize data structures */
1300 	pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1301 	pdcs->txregs_64 = (struct dma64_regs *)
1302 	    (((u8 *)pdcs->pdc_reg_vbase) +
1303 		     PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1304 	pdcs->rxregs_64 = (struct dma64_regs *)
1305 	    (((u8 *)pdcs->pdc_reg_vbase) +
1306 		     PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1307 
1308 	pdcs->ntxd = PDC_RING_ENTRIES;
1309 	pdcs->nrxd = PDC_RING_ENTRIES;
1310 	pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1311 	pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1312 	iowrite32(0, &pdcs->regs->intmask);
1313 
1314 	dma_reg = &pdcs->regs->dmaregs[ringset];
1315 
1316 	/* Configure DMA but will enable later in pdc_ring_init() */
1317 	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1318 
1319 	iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1320 		  &dma_reg->dmarcv.control);
1321 
1322 	/* Reset current index pointers after making sure DMA is disabled */
1323 	iowrite32(0, &dma_reg->dmaxmt.ptr);
1324 	iowrite32(0, &dma_reg->dmarcv.ptr);
1325 
1326 	if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1327 		iowrite32(PDC_CKSUM_CTRL,
1328 			  pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1329 }
1330 
1331 /**
1332  * pdc_hw_disable() - Disable the tx and rx control in the hw.
1333  * @pdcs: PDC state structure
1334  *
1335  */
1336 static void pdc_hw_disable(struct pdc_state *pdcs)
1337 {
1338 	struct dma64 *dma_reg;
1339 
1340 	dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET];
1341 	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1342 	iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1343 		  &dma_reg->dmarcv.control);
1344 }
1345 
1346 /**
1347  * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1348  * header returned with each response message.
1349  * @pdcs: PDC state structure
1350  *
1351  * The metadata is not returned to the mailbox client. So the PDC driver
1352  * manages these buffers.
1353  *
1354  * Return: PDC_SUCCESS
1355  *         -ENOMEM if pool creation fails
1356  */
1357 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1358 {
1359 	struct platform_device *pdev;
1360 	struct device *dev;
1361 
1362 	pdev = pdcs->pdev;
1363 	dev = &pdev->dev;
1364 
1365 	pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1366 	if (pdcs->use_bcm_hdr)
1367 		pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1368 
1369 	pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1370 					    pdcs->pdc_resp_hdr_len,
1371 					    RX_BUF_ALIGN, 0);
1372 	if (!pdcs->rx_buf_pool)
1373 		return -ENOMEM;
1374 
1375 	return PDC_SUCCESS;
1376 }
1377 
1378 /**
1379  * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1380  * specify a threaded IRQ handler for deferred handling of interrupts outside of
1381  * interrupt context.
1382  * @pdcs:   PDC state
1383  *
1384  * Set the interrupt mask for transmit and receive done.
1385  * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1386  *
1387  * Return:  PDC_SUCCESS
1388  *          <0 if threaded irq request fails
1389  */
1390 static int pdc_interrupts_init(struct pdc_state *pdcs)
1391 {
1392 	struct platform_device *pdev = pdcs->pdev;
1393 	struct device *dev = &pdev->dev;
1394 	struct device_node *dn = pdev->dev.of_node;
1395 	int err;
1396 
1397 	/* interrupt configuration */
1398 	iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1399 	iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + PDC_RCVLAZY0_OFFSET);
1400 
1401 	/* read irq from device tree */
1402 	pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1403 	dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1404 		dev_name(dev), pdcs->pdc_irq, pdcs);
1405 
1406 	err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0,
1407 			       dev_name(dev), dev);
1408 	if (err) {
1409 		dev_err(dev, "IRQ %u request failed with err %d\n",
1410 			pdcs->pdc_irq, err);
1411 		return err;
1412 	}
1413 	return PDC_SUCCESS;
1414 }
1415 
1416 static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1417 	.send_data = pdc_send_data,
1418 	.last_tx_done = pdc_last_tx_done,
1419 	.startup = pdc_startup,
1420 	.shutdown = pdc_shutdown
1421 };
1422 
1423 /**
1424  * pdc_mb_init() - Initialize the mailbox controller.
1425  * @pdcs:  PDC state
1426  *
1427  * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1428  * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1429  * complete interrupt to determine when a mailbox message has successfully been
1430  * transmitted.
1431  *
1432  * Return: 0 on success
1433  *         < 0 if there is an allocation or registration failure
1434  */
1435 static int pdc_mb_init(struct pdc_state *pdcs)
1436 {
1437 	struct device *dev = &pdcs->pdev->dev;
1438 	struct mbox_controller *mbc;
1439 	int chan_index;
1440 	int err;
1441 
1442 	mbc = &pdcs->mbc;
1443 	mbc->dev = dev;
1444 	mbc->ops = &pdc_mbox_chan_ops;
1445 	mbc->num_chans = 1;
1446 	mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1447 				  GFP_KERNEL);
1448 	if (!mbc->chans)
1449 		return -ENOMEM;
1450 
1451 	mbc->txdone_irq = false;
1452 	mbc->txdone_poll = true;
1453 	mbc->txpoll_period = 1;
1454 	for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1455 		mbc->chans[chan_index].con_priv = pdcs;
1456 
1457 	/* Register mailbox controller */
1458 	err = mbox_controller_register(mbc);
1459 	if (err) {
1460 		dev_crit(dev,
1461 			 "Failed to register PDC mailbox controller. Error %d.",
1462 			 err);
1463 		return err;
1464 	}
1465 	return 0;
1466 }
1467 
1468 /**
1469  * pdc_dt_read() - Read application-specific data from device tree.
1470  * @pdev:  Platform device
1471  * @pdcs:  PDC state
1472  *
1473  * Reads the number of bytes of receive status that precede each received frame.
1474  * Reads whether transmit and received frames should be preceded by an 8-byte
1475  * BCM header.
1476  *
1477  * Return: 0 if successful
1478  *         -ENODEV if device not available
1479  */
1480 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1481 {
1482 	struct device *dev = &pdev->dev;
1483 	struct device_node *dn = pdev->dev.of_node;
1484 	int err;
1485 
1486 	err = of_property_read_u32(dn, "brcm,rx-status-len",
1487 				   &pdcs->rx_status_len);
1488 	if (err < 0)
1489 		dev_err(dev,
1490 			"%s failed to get DMA receive status length from device tree",
1491 			__func__);
1492 
1493 	pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1494 
1495 	return 0;
1496 }
1497 
1498 /**
1499  * pdc_probe() - Probe function for PDC driver.
1500  * @pdev:   PDC platform device
1501  *
1502  * Reserve and map register regions defined in device tree.
1503  * Allocate and initialize tx and rx DMA rings.
1504  * Initialize a mailbox controller for each PDC.
1505  *
1506  * Return: 0 if successful
1507  *         < 0 if an error
1508  */
1509 static int pdc_probe(struct platform_device *pdev)
1510 {
1511 	int err = 0;
1512 	struct device *dev = &pdev->dev;
1513 	struct resource *pdc_regs;
1514 	struct pdc_state *pdcs;
1515 
1516 	/* PDC state for one SPU */
1517 	pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1518 	if (!pdcs) {
1519 		err = -ENOMEM;
1520 		goto cleanup;
1521 	}
1522 
1523 	pdcs->pdev = pdev;
1524 	platform_set_drvdata(pdev, pdcs);
1525 	pdcs->pdc_idx = pdcg.num_spu;
1526 	pdcg.num_spu++;
1527 
1528 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
1529 	if (err) {
1530 		dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1531 		goto cleanup;
1532 	}
1533 
1534 	/* Create DMA pool for tx ring */
1535 	pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1536 					  RING_ALIGN, 0);
1537 	if (!pdcs->ring_pool) {
1538 		err = -ENOMEM;
1539 		goto cleanup;
1540 	}
1541 
1542 	err = pdc_dt_read(pdev, pdcs);
1543 	if (err)
1544 		goto cleanup_ring_pool;
1545 
1546 	pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1547 	if (!pdc_regs) {
1548 		err = -ENODEV;
1549 		goto cleanup_ring_pool;
1550 	}
1551 	dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1552 		&pdc_regs->start, &pdc_regs->end);
1553 
1554 	pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1555 	if (IS_ERR(pdcs->pdc_reg_vbase)) {
1556 		err = PTR_ERR(pdcs->pdc_reg_vbase);
1557 		dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
1558 		goto cleanup_ring_pool;
1559 	}
1560 
1561 	/* create rx buffer pool after dt read to know how big buffers are */
1562 	err = pdc_rx_buf_pool_create(pdcs);
1563 	if (err)
1564 		goto cleanup_ring_pool;
1565 
1566 	pdc_hw_init(pdcs);
1567 
1568 	/* Init tasklet for deferred DMA rx processing */
1569 	tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs);
1570 
1571 	err = pdc_interrupts_init(pdcs);
1572 	if (err)
1573 		goto cleanup_buf_pool;
1574 
1575 	/* Initialize mailbox controller */
1576 	err = pdc_mb_init(pdcs);
1577 	if (err)
1578 		goto cleanup_buf_pool;
1579 
1580 	pdcs->debugfs_stats = NULL;
1581 	pdc_setup_debugfs(pdcs);
1582 
1583 	dev_dbg(dev, "pdc_probe() successful");
1584 	return PDC_SUCCESS;
1585 
1586 cleanup_buf_pool:
1587 	tasklet_kill(&pdcs->rx_tasklet);
1588 	dma_pool_destroy(pdcs->rx_buf_pool);
1589 
1590 cleanup_ring_pool:
1591 	dma_pool_destroy(pdcs->ring_pool);
1592 
1593 cleanup:
1594 	return err;
1595 }
1596 
1597 static int pdc_remove(struct platform_device *pdev)
1598 {
1599 	struct pdc_state *pdcs = platform_get_drvdata(pdev);
1600 
1601 	pdc_free_debugfs();
1602 
1603 	tasklet_kill(&pdcs->rx_tasklet);
1604 
1605 	pdc_hw_disable(pdcs);
1606 
1607 	mbox_controller_unregister(&pdcs->mbc);
1608 
1609 	dma_pool_destroy(pdcs->rx_buf_pool);
1610 	dma_pool_destroy(pdcs->ring_pool);
1611 	return 0;
1612 }
1613 
1614 static const struct of_device_id pdc_mbox_of_match[] = {
1615 	{.compatible = "brcm,iproc-pdc-mbox"},
1616 	{ /* sentinel */ }
1617 };
1618 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1619 
1620 static struct platform_driver pdc_mbox_driver = {
1621 	.probe = pdc_probe,
1622 	.remove = pdc_remove,
1623 	.driver = {
1624 		   .name = "brcm-iproc-pdc-mbox",
1625 		   .of_match_table = of_match_ptr(pdc_mbox_of_match),
1626 		   },
1627 };
1628 module_platform_driver(pdc_mbox_driver);
1629 
1630 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1631 MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1632 MODULE_LICENSE("GPL v2");
1633