1 /* 2 * Copyright 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation (the "GPL"). 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License version 2 (GPLv2) for more details. 12 * 13 * You should have received a copy of the GNU General Public License 14 * version 2 (GPLv2) along with this source code. 15 */ 16 17 /* 18 * Broadcom PDC Mailbox Driver 19 * The PDC provides a ring based programming interface to one or more hardware 20 * offload engines. For example, the PDC driver works with both SPU-M and SPU2 21 * cryptographic offload hardware. In some chips the PDC is referred to as MDE, 22 * and in others the FA2/FA+ hardware is used with this PDC driver. 23 * 24 * The PDC driver registers with the Linux mailbox framework as a mailbox 25 * controller, once for each PDC instance. Ring 0 for each PDC is registered as 26 * a mailbox channel. The PDC driver uses interrupts to determine when data 27 * transfers to and from an offload engine are complete. The PDC driver uses 28 * threaded IRQs so that response messages are handled outside of interrupt 29 * context. 30 * 31 * The PDC driver allows multiple messages to be pending in the descriptor 32 * rings. The tx_msg_start descriptor index indicates where the last message 33 * starts. The txin_numd value at this index indicates how many descriptor 34 * indexes make up the message. Similar state is kept on the receive side. When 35 * an rx interrupt indicates a response is ready, the PDC driver processes numd 36 * descriptors from the tx and rx ring, thus processing one response at a time. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/module.h> 41 #include <linux/init.h> 42 #include <linux/slab.h> 43 #include <linux/debugfs.h> 44 #include <linux/interrupt.h> 45 #include <linux/wait.h> 46 #include <linux/platform_device.h> 47 #include <linux/io.h> 48 #include <linux/of.h> 49 #include <linux/of_device.h> 50 #include <linux/of_address.h> 51 #include <linux/of_irq.h> 52 #include <linux/mailbox_controller.h> 53 #include <linux/mailbox/brcm-message.h> 54 #include <linux/scatterlist.h> 55 #include <linux/dma-direction.h> 56 #include <linux/dma-mapping.h> 57 #include <linux/dmapool.h> 58 59 #define PDC_SUCCESS 0 60 61 #define RING_ENTRY_SIZE sizeof(struct dma64dd) 62 63 /* # entries in PDC dma ring */ 64 #define PDC_RING_ENTRIES 512 65 /* 66 * Minimum number of ring descriptor entries that must be free to tell mailbox 67 * framework that it can submit another request 68 */ 69 #define PDC_RING_SPACE_MIN 15 70 71 #define PDC_RING_SIZE (PDC_RING_ENTRIES * RING_ENTRY_SIZE) 72 /* Rings are 8k aligned */ 73 #define RING_ALIGN_ORDER 13 74 #define RING_ALIGN BIT(RING_ALIGN_ORDER) 75 76 #define RX_BUF_ALIGN_ORDER 5 77 #define RX_BUF_ALIGN BIT(RX_BUF_ALIGN_ORDER) 78 79 /* descriptor bumping macros */ 80 #define XXD(x, max_mask) ((x) & (max_mask)) 81 #define TXD(x, max_mask) XXD((x), (max_mask)) 82 #define RXD(x, max_mask) XXD((x), (max_mask)) 83 #define NEXTTXD(i, max_mask) TXD((i) + 1, (max_mask)) 84 #define PREVTXD(i, max_mask) TXD((i) - 1, (max_mask)) 85 #define NEXTRXD(i, max_mask) RXD((i) + 1, (max_mask)) 86 #define PREVRXD(i, max_mask) RXD((i) - 1, (max_mask)) 87 #define NTXDACTIVE(h, t, max_mask) TXD((t) - (h), (max_mask)) 88 #define NRXDACTIVE(h, t, max_mask) RXD((t) - (h), (max_mask)) 89 90 /* Length of BCM header at start of SPU msg, in bytes */ 91 #define BCM_HDR_LEN 8 92 93 /* 94 * PDC driver reserves ringset 0 on each SPU for its own use. The driver does 95 * not currently support use of multiple ringsets on a single PDC engine. 96 */ 97 #define PDC_RINGSET 0 98 99 /* 100 * Interrupt mask and status definitions. Enable interrupts for tx and rx on 101 * ring 0 102 */ 103 #define PDC_RCVINT_0 (16 + PDC_RINGSET) 104 #define PDC_RCVINTEN_0 BIT(PDC_RCVINT_0) 105 #define PDC_INTMASK (PDC_RCVINTEN_0) 106 #define PDC_LAZY_FRAMECOUNT 1 107 #define PDC_LAZY_TIMEOUT 10000 108 #define PDC_LAZY_INT (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24)) 109 #define PDC_INTMASK_OFFSET 0x24 110 #define PDC_INTSTATUS_OFFSET 0x20 111 #define PDC_RCVLAZY0_OFFSET (0x30 + 4 * PDC_RINGSET) 112 #define FA_RCVLAZY0_OFFSET 0x100 113 114 /* 115 * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata 116 * before frame 117 */ 118 #define PDC_SPU2_RESP_HDR_LEN 17 119 #define PDC_CKSUM_CTRL BIT(27) 120 #define PDC_CKSUM_CTRL_OFFSET 0x400 121 122 #define PDC_SPUM_RESP_HDR_LEN 32 123 124 /* 125 * Sets the following bits for write to transmit control reg: 126 * 11 - PtyChkDisable - parity check is disabled 127 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory 128 */ 129 #define PDC_TX_CTL 0x000C0800 130 131 /* Bit in tx control reg to enable tx channel */ 132 #define PDC_TX_ENABLE 0x1 133 134 /* 135 * Sets the following bits for write to receive control reg: 136 * 7:1 - RcvOffset - size in bytes of status region at start of rx frame buf 137 * 9 - SepRxHdrDescEn - place start of new frames only in descriptors 138 * that have StartOfFrame set 139 * 10 - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all 140 * remaining bytes in current frame, report error 141 * in rx frame status for current frame 142 * 11 - PtyChkDisable - parity check is disabled 143 * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory 144 */ 145 #define PDC_RX_CTL 0x000C0E00 146 147 /* Bit in rx control reg to enable rx channel */ 148 #define PDC_RX_ENABLE 0x1 149 150 #define CRYPTO_D64_RS0_CD_MASK ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1) 151 152 /* descriptor flags */ 153 #define D64_CTRL1_EOT BIT(28) /* end of descriptor table */ 154 #define D64_CTRL1_IOC BIT(29) /* interrupt on complete */ 155 #define D64_CTRL1_EOF BIT(30) /* end of frame */ 156 #define D64_CTRL1_SOF BIT(31) /* start of frame */ 157 158 #define RX_STATUS_OVERFLOW 0x00800000 159 #define RX_STATUS_LEN 0x0000FFFF 160 161 #define PDC_TXREGS_OFFSET 0x200 162 #define PDC_RXREGS_OFFSET 0x220 163 164 /* Maximum size buffer the DMA engine can handle */ 165 #define PDC_DMA_BUF_MAX 16384 166 167 enum pdc_hw { 168 FA_HW, /* FA2/FA+ hardware (i.e. Northstar Plus) */ 169 PDC_HW /* PDC/MDE hardware (i.e. Northstar 2, Pegasus) */ 170 }; 171 172 struct pdc_dma_map { 173 void *ctx; /* opaque context associated with frame */ 174 }; 175 176 /* dma descriptor */ 177 struct dma64dd { 178 u32 ctrl1; /* misc control bits */ 179 u32 ctrl2; /* buffer count and address extension */ 180 u32 addrlow; /* memory address of the date buffer, bits 31:0 */ 181 u32 addrhigh; /* memory address of the date buffer, bits 63:32 */ 182 }; 183 184 /* dma registers per channel(xmt or rcv) */ 185 struct dma64_regs { 186 u32 control; /* enable, et al */ 187 u32 ptr; /* last descriptor posted to chip */ 188 u32 addrlow; /* descriptor ring base address low 32-bits */ 189 u32 addrhigh; /* descriptor ring base address bits 63:32 */ 190 u32 status0; /* last rx descriptor written by hw */ 191 u32 status1; /* driver does not use */ 192 }; 193 194 /* cpp contortions to concatenate w/arg prescan */ 195 #ifndef PAD 196 #define _PADLINE(line) pad ## line 197 #define _XSTR(line) _PADLINE(line) 198 #define PAD _XSTR(__LINE__) 199 #endif /* PAD */ 200 201 /* dma registers. matches hw layout. */ 202 struct dma64 { 203 struct dma64_regs dmaxmt; /* dma tx */ 204 u32 PAD[2]; 205 struct dma64_regs dmarcv; /* dma rx */ 206 u32 PAD[2]; 207 }; 208 209 /* PDC registers */ 210 struct pdc_regs { 211 u32 devcontrol; /* 0x000 */ 212 u32 devstatus; /* 0x004 */ 213 u32 PAD; 214 u32 biststatus; /* 0x00c */ 215 u32 PAD[4]; 216 u32 intstatus; /* 0x020 */ 217 u32 intmask; /* 0x024 */ 218 u32 gptimer; /* 0x028 */ 219 220 u32 PAD; 221 u32 intrcvlazy_0; /* 0x030 (Only in PDC, not FA2) */ 222 u32 intrcvlazy_1; /* 0x034 (Only in PDC, not FA2) */ 223 u32 intrcvlazy_2; /* 0x038 (Only in PDC, not FA2) */ 224 u32 intrcvlazy_3; /* 0x03c (Only in PDC, not FA2) */ 225 226 u32 PAD[48]; 227 u32 fa_intrecvlazy; /* 0x100 (Only in FA2, not PDC) */ 228 u32 flowctlthresh; /* 0x104 */ 229 u32 wrrthresh; /* 0x108 */ 230 u32 gmac_idle_cnt_thresh; /* 0x10c */ 231 232 u32 PAD[4]; 233 u32 ifioaccessaddr; /* 0x120 */ 234 u32 ifioaccessbyte; /* 0x124 */ 235 u32 ifioaccessdata; /* 0x128 */ 236 237 u32 PAD[21]; 238 u32 phyaccess; /* 0x180 */ 239 u32 PAD; 240 u32 phycontrol; /* 0x188 */ 241 u32 txqctl; /* 0x18c */ 242 u32 rxqctl; /* 0x190 */ 243 u32 gpioselect; /* 0x194 */ 244 u32 gpio_output_en; /* 0x198 */ 245 u32 PAD; /* 0x19c */ 246 u32 txq_rxq_mem_ctl; /* 0x1a0 */ 247 u32 memory_ecc_status; /* 0x1a4 */ 248 u32 serdes_ctl; /* 0x1a8 */ 249 u32 serdes_status0; /* 0x1ac */ 250 u32 serdes_status1; /* 0x1b0 */ 251 u32 PAD[11]; /* 0x1b4-1dc */ 252 u32 clk_ctl_st; /* 0x1e0 */ 253 u32 hw_war; /* 0x1e4 (Only in PDC, not FA2) */ 254 u32 pwrctl; /* 0x1e8 */ 255 u32 PAD[5]; 256 257 #define PDC_NUM_DMA_RINGS 4 258 struct dma64 dmaregs[PDC_NUM_DMA_RINGS]; /* 0x0200 - 0x2fc */ 259 260 /* more registers follow, but we don't use them */ 261 }; 262 263 /* structure for allocating/freeing DMA rings */ 264 struct pdc_ring_alloc { 265 dma_addr_t dmabase; /* DMA address of start of ring */ 266 void *vbase; /* base kernel virtual address of ring */ 267 u32 size; /* ring allocation size in bytes */ 268 }; 269 270 /* 271 * context associated with a receive descriptor. 272 * @rxp_ctx: opaque context associated with frame that starts at each 273 * rx ring index. 274 * @dst_sg: Scatterlist used to form reply frames beginning at a given ring 275 * index. Retained in order to unmap each sg after reply is processed. 276 * @rxin_numd: Number of rx descriptors associated with the message that starts 277 * at a descriptor index. Not set for every index. For example, 278 * if descriptor index i points to a scatterlist with 4 entries, 279 * then the next three descriptor indexes don't have a value set. 280 * @resp_hdr: Virtual address of buffer used to catch DMA rx status 281 * @resp_hdr_daddr: physical address of DMA rx status buffer 282 */ 283 struct pdc_rx_ctx { 284 void *rxp_ctx; 285 struct scatterlist *dst_sg; 286 u32 rxin_numd; 287 void *resp_hdr; 288 dma_addr_t resp_hdr_daddr; 289 }; 290 291 /* PDC state structure */ 292 struct pdc_state { 293 /* Index of the PDC whose state is in this structure instance */ 294 u8 pdc_idx; 295 296 /* Platform device for this PDC instance */ 297 struct platform_device *pdev; 298 299 /* 300 * Each PDC instance has a mailbox controller. PDC receives request 301 * messages through mailboxes, and sends response messages through the 302 * mailbox framework. 303 */ 304 struct mbox_controller mbc; 305 306 unsigned int pdc_irq; 307 308 /* tasklet for deferred processing after DMA rx interrupt */ 309 struct tasklet_struct rx_tasklet; 310 311 /* Number of bytes of receive status prior to each rx frame */ 312 u32 rx_status_len; 313 /* Whether a BCM header is prepended to each frame */ 314 bool use_bcm_hdr; 315 /* Sum of length of BCM header and rx status header */ 316 u32 pdc_resp_hdr_len; 317 318 /* The base virtual address of DMA hw registers */ 319 void __iomem *pdc_reg_vbase; 320 321 /* Pool for allocation of DMA rings */ 322 struct dma_pool *ring_pool; 323 324 /* Pool for allocation of metadata buffers for response messages */ 325 struct dma_pool *rx_buf_pool; 326 327 /* 328 * The base virtual address of DMA tx/rx descriptor rings. Corresponding 329 * DMA address and size of ring allocation. 330 */ 331 struct pdc_ring_alloc tx_ring_alloc; 332 struct pdc_ring_alloc rx_ring_alloc; 333 334 struct pdc_regs *regs; /* start of PDC registers */ 335 336 struct dma64_regs *txregs_64; /* dma tx engine registers */ 337 struct dma64_regs *rxregs_64; /* dma rx engine registers */ 338 339 /* 340 * Arrays of PDC_RING_ENTRIES descriptors 341 * To use multiple ringsets, this needs to be extended 342 */ 343 struct dma64dd *txd_64; /* tx descriptor ring */ 344 struct dma64dd *rxd_64; /* rx descriptor ring */ 345 346 /* descriptor ring sizes */ 347 u32 ntxd; /* # tx descriptors */ 348 u32 nrxd; /* # rx descriptors */ 349 u32 nrxpost; /* # rx buffers to keep posted */ 350 u32 ntxpost; /* max number of tx buffers that can be posted */ 351 352 /* 353 * Index of next tx descriptor to reclaim. That is, the descriptor 354 * index of the oldest tx buffer for which the host has yet to process 355 * the corresponding response. 356 */ 357 u32 txin; 358 359 /* 360 * Index of the first receive descriptor for the sequence of 361 * message fragments currently under construction. Used to build up 362 * the rxin_numd count for a message. Updated to rxout when the host 363 * starts a new sequence of rx buffers for a new message. 364 */ 365 u32 tx_msg_start; 366 367 /* Index of next tx descriptor to post. */ 368 u32 txout; 369 370 /* 371 * Number of tx descriptors associated with the message that starts 372 * at this tx descriptor index. 373 */ 374 u32 txin_numd[PDC_RING_ENTRIES]; 375 376 /* 377 * Index of next rx descriptor to reclaim. This is the index of 378 * the next descriptor whose data has yet to be processed by the host. 379 */ 380 u32 rxin; 381 382 /* 383 * Index of the first receive descriptor for the sequence of 384 * message fragments currently under construction. Used to build up 385 * the rxin_numd count for a message. Updated to rxout when the host 386 * starts a new sequence of rx buffers for a new message. 387 */ 388 u32 rx_msg_start; 389 390 /* 391 * Saved value of current hardware rx descriptor index. 392 * The last rx buffer written by the hw is the index previous to 393 * this one. 394 */ 395 u32 last_rx_curr; 396 397 /* Index of next rx descriptor to post. */ 398 u32 rxout; 399 400 struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES]; 401 402 /* 403 * Scatterlists used to form request and reply frames beginning at a 404 * given ring index. Retained in order to unmap each sg after reply 405 * is processed 406 */ 407 struct scatterlist *src_sg[PDC_RING_ENTRIES]; 408 409 struct dentry *debugfs_stats; /* debug FS stats file for this PDC */ 410 411 /* counters */ 412 u32 pdc_requests; /* number of request messages submitted */ 413 u32 pdc_replies; /* number of reply messages received */ 414 u32 last_tx_not_done; /* too few tx descriptors to indicate done */ 415 u32 tx_ring_full; /* unable to accept msg because tx ring full */ 416 u32 rx_ring_full; /* unable to accept msg because rx ring full */ 417 u32 txnobuf; /* unable to create tx descriptor */ 418 u32 rxnobuf; /* unable to create rx descriptor */ 419 u32 rx_oflow; /* count of rx overflows */ 420 421 /* hardware type - FA2 or PDC/MDE */ 422 enum pdc_hw hw_type; 423 }; 424 425 /* Global variables */ 426 427 struct pdc_globals { 428 /* Actual number of SPUs in hardware, as reported by device tree */ 429 u32 num_spu; 430 }; 431 432 static struct pdc_globals pdcg; 433 434 /* top level debug FS directory for PDC driver */ 435 static struct dentry *debugfs_dir; 436 437 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf, 438 size_t count, loff_t *offp) 439 { 440 struct pdc_state *pdcs; 441 char *buf; 442 ssize_t ret, out_offset, out_count; 443 444 out_count = 512; 445 446 buf = kmalloc(out_count, GFP_KERNEL); 447 if (!buf) 448 return -ENOMEM; 449 450 pdcs = filp->private_data; 451 out_offset = 0; 452 out_offset += snprintf(buf + out_offset, out_count - out_offset, 453 "SPU %u stats:\n", pdcs->pdc_idx); 454 out_offset += snprintf(buf + out_offset, out_count - out_offset, 455 "PDC requests....................%u\n", 456 pdcs->pdc_requests); 457 out_offset += snprintf(buf + out_offset, out_count - out_offset, 458 "PDC responses...................%u\n", 459 pdcs->pdc_replies); 460 out_offset += snprintf(buf + out_offset, out_count - out_offset, 461 "Tx not done.....................%u\n", 462 pdcs->last_tx_not_done); 463 out_offset += snprintf(buf + out_offset, out_count - out_offset, 464 "Tx ring full....................%u\n", 465 pdcs->tx_ring_full); 466 out_offset += snprintf(buf + out_offset, out_count - out_offset, 467 "Rx ring full....................%u\n", 468 pdcs->rx_ring_full); 469 out_offset += snprintf(buf + out_offset, out_count - out_offset, 470 "Tx desc write fail. Ring full...%u\n", 471 pdcs->txnobuf); 472 out_offset += snprintf(buf + out_offset, out_count - out_offset, 473 "Rx desc write fail. Ring full...%u\n", 474 pdcs->rxnobuf); 475 out_offset += snprintf(buf + out_offset, out_count - out_offset, 476 "Receive overflow................%u\n", 477 pdcs->rx_oflow); 478 out_offset += snprintf(buf + out_offset, out_count - out_offset, 479 "Num frags in rx ring............%u\n", 480 NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, 481 pdcs->nrxpost)); 482 483 if (out_offset > out_count) 484 out_offset = out_count; 485 486 ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); 487 kfree(buf); 488 return ret; 489 } 490 491 static const struct file_operations pdc_debugfs_stats = { 492 .owner = THIS_MODULE, 493 .open = simple_open, 494 .read = pdc_debugfs_read, 495 }; 496 497 /** 498 * pdc_setup_debugfs() - Create the debug FS directories. If the top-level 499 * directory has not yet been created, create it now. Create a stats file in 500 * this directory for a SPU. 501 * @pdcs: PDC state structure 502 */ 503 static void pdc_setup_debugfs(struct pdc_state *pdcs) 504 { 505 char spu_stats_name[16]; 506 507 if (!debugfs_initialized()) 508 return; 509 510 snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx); 511 if (!debugfs_dir) 512 debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); 513 514 /* S_IRUSR == 0400 */ 515 pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, 0400, 516 debugfs_dir, pdcs, 517 &pdc_debugfs_stats); 518 } 519 520 static void pdc_free_debugfs(void) 521 { 522 debugfs_remove_recursive(debugfs_dir); 523 debugfs_dir = NULL; 524 } 525 526 /** 527 * pdc_build_rxd() - Build DMA descriptor to receive SPU result. 528 * @pdcs: PDC state for SPU that will generate result 529 * @dma_addr: DMA address of buffer that descriptor is being built for 530 * @buf_len: Length of the receive buffer, in bytes 531 * @flags: Flags to be stored in descriptor 532 */ 533 static inline void 534 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr, 535 u32 buf_len, u32 flags) 536 { 537 struct device *dev = &pdcs->pdev->dev; 538 struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout]; 539 540 dev_dbg(dev, 541 "Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n", 542 pdcs->pdc_idx, pdcs->rxout, buf_len, flags); 543 544 rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr)); 545 rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr)); 546 rxd->ctrl1 = cpu_to_le32(flags); 547 rxd->ctrl2 = cpu_to_le32(buf_len); 548 549 /* bump ring index and return */ 550 pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost); 551 } 552 553 /** 554 * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to 555 * hardware. 556 * @pdcs: PDC state for the SPU that will process this request 557 * @dma_addr: DMA address of packet to be transmitted 558 * @buf_len: Length of tx buffer, in bytes 559 * @flags: Flags to be stored in descriptor 560 */ 561 static inline void 562 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len, 563 u32 flags) 564 { 565 struct device *dev = &pdcs->pdev->dev; 566 struct dma64dd *txd = &pdcs->txd_64[pdcs->txout]; 567 568 dev_dbg(dev, 569 "Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n", 570 pdcs->pdc_idx, pdcs->txout, buf_len, flags); 571 572 txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr)); 573 txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr)); 574 txd->ctrl1 = cpu_to_le32(flags); 575 txd->ctrl2 = cpu_to_le32(buf_len); 576 577 /* bump ring index and return */ 578 pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost); 579 } 580 581 /** 582 * pdc_receive_one() - Receive a response message from a given SPU. 583 * @pdcs: PDC state for the SPU to receive from 584 * 585 * When the return code indicates success, the response message is available in 586 * the receive buffers provided prior to submission of the request. 587 * 588 * Return: PDC_SUCCESS if one or more receive descriptors was processed 589 * -EAGAIN indicates that no response message is available 590 * -EIO an error occurred 591 */ 592 static int 593 pdc_receive_one(struct pdc_state *pdcs) 594 { 595 struct device *dev = &pdcs->pdev->dev; 596 struct mbox_controller *mbc; 597 struct mbox_chan *chan; 598 struct brcm_message mssg; 599 u32 len, rx_status; 600 u32 num_frags; 601 u8 *resp_hdr; /* virtual addr of start of resp message DMA header */ 602 u32 frags_rdy; /* number of fragments ready to read */ 603 u32 rx_idx; /* ring index of start of receive frame */ 604 dma_addr_t resp_hdr_daddr; 605 struct pdc_rx_ctx *rx_ctx; 606 607 mbc = &pdcs->mbc; 608 chan = &mbc->chans[0]; 609 mssg.type = BRCM_MESSAGE_SPU; 610 611 /* 612 * return if a complete response message is not yet ready. 613 * rxin_numd[rxin] is the number of fragments in the next msg 614 * to read. 615 */ 616 frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost); 617 if ((frags_rdy == 0) || 618 (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd)) 619 /* No response ready */ 620 return -EAGAIN; 621 622 num_frags = pdcs->txin_numd[pdcs->txin]; 623 WARN_ON(num_frags == 0); 624 625 dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin], 626 sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE); 627 628 pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost; 629 630 dev_dbg(dev, "PDC %u reclaimed %d tx descriptors", 631 pdcs->pdc_idx, num_frags); 632 633 rx_idx = pdcs->rxin; 634 rx_ctx = &pdcs->rx_ctx[rx_idx]; 635 num_frags = rx_ctx->rxin_numd; 636 /* Return opaque context with result */ 637 mssg.ctx = rx_ctx->rxp_ctx; 638 rx_ctx->rxp_ctx = NULL; 639 resp_hdr = rx_ctx->resp_hdr; 640 resp_hdr_daddr = rx_ctx->resp_hdr_daddr; 641 dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg), 642 DMA_FROM_DEVICE); 643 644 pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost; 645 646 dev_dbg(dev, "PDC %u reclaimed %d rx descriptors", 647 pdcs->pdc_idx, num_frags); 648 649 dev_dbg(dev, 650 "PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n", 651 pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin, 652 pdcs->rxout, pdcs->last_rx_curr); 653 654 if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) { 655 /* 656 * For SPU-M, get length of response msg and rx overflow status. 657 */ 658 rx_status = *((u32 *)resp_hdr); 659 len = rx_status & RX_STATUS_LEN; 660 dev_dbg(dev, 661 "SPU response length %u bytes", len); 662 if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) { 663 if (rx_status & RX_STATUS_OVERFLOW) { 664 dev_err_ratelimited(dev, 665 "crypto receive overflow"); 666 pdcs->rx_oflow++; 667 } else { 668 dev_info_ratelimited(dev, "crypto rx len = 0"); 669 } 670 return -EIO; 671 } 672 } 673 674 dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr); 675 676 mbox_chan_received_data(chan, &mssg); 677 678 pdcs->pdc_replies++; 679 return PDC_SUCCESS; 680 } 681 682 /** 683 * pdc_receive() - Process as many responses as are available in the rx ring. 684 * @pdcs: PDC state 685 * 686 * Called within the hard IRQ. 687 * Return: 688 */ 689 static int 690 pdc_receive(struct pdc_state *pdcs) 691 { 692 int rx_status; 693 694 /* read last_rx_curr from register once */ 695 pdcs->last_rx_curr = 696 (ioread32(&pdcs->rxregs_64->status0) & 697 CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE; 698 699 do { 700 /* Could be many frames ready */ 701 rx_status = pdc_receive_one(pdcs); 702 } while (rx_status == PDC_SUCCESS); 703 704 return 0; 705 } 706 707 /** 708 * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit 709 * descriptors for a given SPU. The scatterlist buffers contain the data for a 710 * SPU request message. 711 * @spu_idx: The index of the SPU to submit the request to, [0, max_spu) 712 * @sg: Scatterlist whose buffers contain part of the SPU request 713 * 714 * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors 715 * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length. 716 * 717 * Return: PDC_SUCCESS if successful 718 * < 0 otherwise 719 */ 720 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg) 721 { 722 u32 flags = 0; 723 u32 eot; 724 u32 tx_avail; 725 726 /* 727 * Num descriptors needed. Conservatively assume we need a descriptor 728 * for every entry in sg. 729 */ 730 u32 num_desc; 731 u32 desc_w = 0; /* Number of tx descriptors written */ 732 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */ 733 dma_addr_t databufptr; /* DMA address to put in descriptor */ 734 735 num_desc = (u32)sg_nents(sg); 736 737 /* check whether enough tx descriptors are available */ 738 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout, 739 pdcs->ntxpost); 740 if (unlikely(num_desc > tx_avail)) { 741 pdcs->txnobuf++; 742 return -ENOSPC; 743 } 744 745 /* build tx descriptors */ 746 if (pdcs->tx_msg_start == pdcs->txout) { 747 /* Start of frame */ 748 pdcs->txin_numd[pdcs->tx_msg_start] = 0; 749 pdcs->src_sg[pdcs->txout] = sg; 750 flags = D64_CTRL1_SOF; 751 } 752 753 while (sg) { 754 if (unlikely(pdcs->txout == (pdcs->ntxd - 1))) 755 eot = D64_CTRL1_EOT; 756 else 757 eot = 0; 758 759 /* 760 * If sg buffer larger than PDC limit, split across 761 * multiple descriptors 762 */ 763 bufcnt = sg_dma_len(sg); 764 databufptr = sg_dma_address(sg); 765 while (bufcnt > PDC_DMA_BUF_MAX) { 766 pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX, 767 flags | eot); 768 desc_w++; 769 bufcnt -= PDC_DMA_BUF_MAX; 770 databufptr += PDC_DMA_BUF_MAX; 771 if (unlikely(pdcs->txout == (pdcs->ntxd - 1))) 772 eot = D64_CTRL1_EOT; 773 else 774 eot = 0; 775 } 776 sg = sg_next(sg); 777 if (!sg) 778 /* Writing last descriptor for frame */ 779 flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC); 780 pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot); 781 desc_w++; 782 /* Clear start of frame after first descriptor */ 783 flags &= ~D64_CTRL1_SOF; 784 } 785 pdcs->txin_numd[pdcs->tx_msg_start] += desc_w; 786 787 return PDC_SUCCESS; 788 } 789 790 /** 791 * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx 792 * ring. 793 * @pdcs: PDC state for SPU to process the request 794 * 795 * Sets the index of the last descriptor written in both the rx and tx ring. 796 * 797 * Return: PDC_SUCCESS 798 */ 799 static int pdc_tx_list_final(struct pdc_state *pdcs) 800 { 801 /* 802 * write barrier to ensure all register writes are complete 803 * before chip starts to process new request 804 */ 805 wmb(); 806 iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr); 807 iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr); 808 pdcs->pdc_requests++; 809 810 return PDC_SUCCESS; 811 } 812 813 /** 814 * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC. 815 * @pdcs: PDC state for SPU handling request 816 * @dst_sg: scatterlist providing rx buffers for response to be returned to 817 * mailbox client 818 * @ctx: Opaque context for this request 819 * 820 * Posts a single receive descriptor to hold the metadata that precedes a 821 * response. For example, with SPU-M, the metadata is a 32-byte DMA header and 822 * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and 823 * rx to indicate the start of a new message. 824 * 825 * Return: PDC_SUCCESS if successful 826 * < 0 if an error (e.g., rx ring is full) 827 */ 828 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg, 829 void *ctx) 830 { 831 u32 flags = 0; 832 u32 rx_avail; 833 u32 rx_pkt_cnt = 1; /* Adding a single rx buffer */ 834 dma_addr_t daddr; 835 void *vaddr; 836 struct pdc_rx_ctx *rx_ctx; 837 838 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 839 pdcs->nrxpost); 840 if (unlikely(rx_pkt_cnt > rx_avail)) { 841 pdcs->rxnobuf++; 842 return -ENOSPC; 843 } 844 845 /* allocate a buffer for the dma rx status */ 846 vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr); 847 if (unlikely(!vaddr)) 848 return -ENOMEM; 849 850 /* 851 * Update msg_start indexes for both tx and rx to indicate the start 852 * of a new sequence of descriptor indexes that contain the fragments 853 * of the same message. 854 */ 855 pdcs->rx_msg_start = pdcs->rxout; 856 pdcs->tx_msg_start = pdcs->txout; 857 858 /* This is always the first descriptor in the receive sequence */ 859 flags = D64_CTRL1_SOF; 860 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1; 861 862 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 863 flags |= D64_CTRL1_EOT; 864 865 rx_ctx = &pdcs->rx_ctx[pdcs->rxout]; 866 rx_ctx->rxp_ctx = ctx; 867 rx_ctx->dst_sg = dst_sg; 868 rx_ctx->resp_hdr = vaddr; 869 rx_ctx->resp_hdr_daddr = daddr; 870 pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags); 871 return PDC_SUCCESS; 872 } 873 874 /** 875 * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive 876 * descriptors for a given SPU. The caller must have already DMA mapped the 877 * scatterlist. 878 * @spu_idx: Indicates which SPU the buffers are for 879 * @sg: Scatterlist whose buffers are added to the receive ring 880 * 881 * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX, 882 * multiple receive descriptors are written, each with a buffer <= 883 * PDC_DMA_BUF_MAX. 884 * 885 * Return: PDC_SUCCESS if successful 886 * < 0 otherwise (e.g., receive ring is full) 887 */ 888 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg) 889 { 890 u32 flags = 0; 891 u32 rx_avail; 892 893 /* 894 * Num descriptors needed. Conservatively assume we need a descriptor 895 * for every entry from our starting point in the scatterlist. 896 */ 897 u32 num_desc; 898 u32 desc_w = 0; /* Number of tx descriptors written */ 899 u32 bufcnt; /* Number of bytes of buffer pointed to by descriptor */ 900 dma_addr_t databufptr; /* DMA address to put in descriptor */ 901 902 num_desc = (u32)sg_nents(sg); 903 904 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 905 pdcs->nrxpost); 906 if (unlikely(num_desc > rx_avail)) { 907 pdcs->rxnobuf++; 908 return -ENOSPC; 909 } 910 911 while (sg) { 912 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 913 flags = D64_CTRL1_EOT; 914 else 915 flags = 0; 916 917 /* 918 * If sg buffer larger than PDC limit, split across 919 * multiple descriptors 920 */ 921 bufcnt = sg_dma_len(sg); 922 databufptr = sg_dma_address(sg); 923 while (bufcnt > PDC_DMA_BUF_MAX) { 924 pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags); 925 desc_w++; 926 bufcnt -= PDC_DMA_BUF_MAX; 927 databufptr += PDC_DMA_BUF_MAX; 928 if (unlikely(pdcs->rxout == (pdcs->nrxd - 1))) 929 flags = D64_CTRL1_EOT; 930 else 931 flags = 0; 932 } 933 pdc_build_rxd(pdcs, databufptr, bufcnt, flags); 934 desc_w++; 935 sg = sg_next(sg); 936 } 937 pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w; 938 939 return PDC_SUCCESS; 940 } 941 942 /** 943 * pdc_irq_handler() - Interrupt handler called in interrupt context. 944 * @irq: Interrupt number that has fired 945 * @data: device struct for DMA engine that generated the interrupt 946 * 947 * We have to clear the device interrupt status flags here. So cache the 948 * status for later use in the thread function. Other than that, just return 949 * WAKE_THREAD to invoke the thread function. 950 * 951 * Return: IRQ_WAKE_THREAD if interrupt is ours 952 * IRQ_NONE otherwise 953 */ 954 static irqreturn_t pdc_irq_handler(int irq, void *data) 955 { 956 struct device *dev = (struct device *)data; 957 struct pdc_state *pdcs = dev_get_drvdata(dev); 958 u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET); 959 960 if (unlikely(intstatus == 0)) 961 return IRQ_NONE; 962 963 /* Disable interrupts until soft handler runs */ 964 iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 965 966 /* Clear interrupt flags in device */ 967 iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET); 968 969 /* Wakeup IRQ thread */ 970 tasklet_schedule(&pdcs->rx_tasklet); 971 return IRQ_HANDLED; 972 } 973 974 /** 975 * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after 976 * a DMA receive interrupt. Reenables the receive interrupt. 977 * @data: PDC state structure 978 */ 979 static void pdc_tasklet_cb(unsigned long data) 980 { 981 struct pdc_state *pdcs = (struct pdc_state *)data; 982 983 pdc_receive(pdcs); 984 985 /* reenable interrupts */ 986 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 987 } 988 989 /** 990 * pdc_ring_init() - Allocate DMA rings and initialize constant fields of 991 * descriptors in one ringset. 992 * @pdcs: PDC instance state 993 * @ringset: index of ringset being used 994 * 995 * Return: PDC_SUCCESS if ring initialized 996 * < 0 otherwise 997 */ 998 static int pdc_ring_init(struct pdc_state *pdcs, int ringset) 999 { 1000 int i; 1001 int err = PDC_SUCCESS; 1002 struct dma64 *dma_reg; 1003 struct device *dev = &pdcs->pdev->dev; 1004 struct pdc_ring_alloc tx; 1005 struct pdc_ring_alloc rx; 1006 1007 /* Allocate tx ring */ 1008 tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase); 1009 if (unlikely(!tx.vbase)) { 1010 err = -ENOMEM; 1011 goto done; 1012 } 1013 1014 /* Allocate rx ring */ 1015 rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase); 1016 if (unlikely(!rx.vbase)) { 1017 err = -ENOMEM; 1018 goto fail_dealloc; 1019 } 1020 1021 dev_dbg(dev, " - base DMA addr of tx ring %pad", &tx.dmabase); 1022 dev_dbg(dev, " - base virtual addr of tx ring %p", tx.vbase); 1023 dev_dbg(dev, " - base DMA addr of rx ring %pad", &rx.dmabase); 1024 dev_dbg(dev, " - base virtual addr of rx ring %p", rx.vbase); 1025 1026 memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx)); 1027 memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx)); 1028 1029 pdcs->rxin = 0; 1030 pdcs->rx_msg_start = 0; 1031 pdcs->last_rx_curr = 0; 1032 pdcs->rxout = 0; 1033 pdcs->txin = 0; 1034 pdcs->tx_msg_start = 0; 1035 pdcs->txout = 0; 1036 1037 /* Set descriptor array base addresses */ 1038 pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase; 1039 pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase; 1040 1041 /* Tell device the base DMA address of each ring */ 1042 dma_reg = &pdcs->regs->dmaregs[ringset]; 1043 1044 /* But first disable DMA and set curptr to 0 for both TX & RX */ 1045 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1046 iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)), 1047 &dma_reg->dmarcv.control); 1048 iowrite32(0, &dma_reg->dmaxmt.ptr); 1049 iowrite32(0, &dma_reg->dmarcv.ptr); 1050 1051 /* Set base DMA addresses */ 1052 iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase), 1053 &dma_reg->dmaxmt.addrlow); 1054 iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase), 1055 &dma_reg->dmaxmt.addrhigh); 1056 1057 iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase), 1058 &dma_reg->dmarcv.addrlow); 1059 iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase), 1060 &dma_reg->dmarcv.addrhigh); 1061 1062 /* Re-enable DMA */ 1063 iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control); 1064 iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)), 1065 &dma_reg->dmarcv.control); 1066 1067 /* Initialize descriptors */ 1068 for (i = 0; i < PDC_RING_ENTRIES; i++) { 1069 /* Every tx descriptor can be used for start of frame. */ 1070 if (i != pdcs->ntxpost) { 1071 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF, 1072 &pdcs->txd_64[i].ctrl1); 1073 } else { 1074 /* Last descriptor in ringset. Set End of Table. */ 1075 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF | 1076 D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1); 1077 } 1078 1079 /* Every rx descriptor can be used for start of frame */ 1080 if (i != pdcs->nrxpost) { 1081 iowrite32(D64_CTRL1_SOF, 1082 &pdcs->rxd_64[i].ctrl1); 1083 } else { 1084 /* Last descriptor in ringset. Set End of Table. */ 1085 iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT, 1086 &pdcs->rxd_64[i].ctrl1); 1087 } 1088 } 1089 return PDC_SUCCESS; 1090 1091 fail_dealloc: 1092 dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase); 1093 done: 1094 return err; 1095 } 1096 1097 static void pdc_ring_free(struct pdc_state *pdcs) 1098 { 1099 if (pdcs->tx_ring_alloc.vbase) { 1100 dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase, 1101 pdcs->tx_ring_alloc.dmabase); 1102 pdcs->tx_ring_alloc.vbase = NULL; 1103 } 1104 1105 if (pdcs->rx_ring_alloc.vbase) { 1106 dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase, 1107 pdcs->rx_ring_alloc.dmabase); 1108 pdcs->rx_ring_alloc.vbase = NULL; 1109 } 1110 } 1111 1112 /** 1113 * pdc_desc_count() - Count the number of DMA descriptors that will be required 1114 * for a given scatterlist. Account for the max length of a DMA buffer. 1115 * @sg: Scatterlist to be DMA'd 1116 * Return: Number of descriptors required 1117 */ 1118 static u32 pdc_desc_count(struct scatterlist *sg) 1119 { 1120 u32 cnt = 0; 1121 1122 while (sg) { 1123 cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1); 1124 sg = sg_next(sg); 1125 } 1126 return cnt; 1127 } 1128 1129 /** 1130 * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors 1131 * and the rx ring has room for rx_cnt descriptors. 1132 * @pdcs: PDC state 1133 * @tx_cnt: The number of descriptors required in the tx ring 1134 * @rx_cnt: The number of descriptors required i the rx ring 1135 * 1136 * Return: true if one of the rings does not have enough space 1137 * false if sufficient space is available in both rings 1138 */ 1139 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt) 1140 { 1141 u32 rx_avail; 1142 u32 tx_avail; 1143 bool full = false; 1144 1145 /* Check if the tx and rx rings are likely to have enough space */ 1146 rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout, 1147 pdcs->nrxpost); 1148 if (unlikely(rx_cnt > rx_avail)) { 1149 pdcs->rx_ring_full++; 1150 full = true; 1151 } 1152 1153 if (likely(!full)) { 1154 tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout, 1155 pdcs->ntxpost); 1156 if (unlikely(tx_cnt > tx_avail)) { 1157 pdcs->tx_ring_full++; 1158 full = true; 1159 } 1160 } 1161 return full; 1162 } 1163 1164 /** 1165 * pdc_last_tx_done() - If both the tx and rx rings have at least 1166 * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox 1167 * framework can submit another message. 1168 * @chan: mailbox channel to check 1169 * Return: true if PDC can accept another message on this channel 1170 */ 1171 static bool pdc_last_tx_done(struct mbox_chan *chan) 1172 { 1173 struct pdc_state *pdcs = chan->con_priv; 1174 bool ret; 1175 1176 if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN, 1177 PDC_RING_SPACE_MIN))) { 1178 pdcs->last_tx_not_done++; 1179 ret = false; 1180 } else { 1181 ret = true; 1182 } 1183 return ret; 1184 } 1185 1186 /** 1187 * pdc_send_data() - mailbox send_data function 1188 * @chan: The mailbox channel on which the data is sent. The channel 1189 * corresponds to a DMA ringset. 1190 * @data: The mailbox message to be sent. The message must be a 1191 * brcm_message structure. 1192 * 1193 * This function is registered as the send_data function for the mailbox 1194 * controller. From the destination scatterlist in the mailbox message, it 1195 * creates a sequence of receive descriptors in the rx ring. From the source 1196 * scatterlist, it creates a sequence of transmit descriptors in the tx ring. 1197 * After creating the descriptors, it writes the rx ptr and tx ptr registers to 1198 * initiate the DMA transfer. 1199 * 1200 * This function does the DMA map and unmap of the src and dst scatterlists in 1201 * the mailbox message. 1202 * 1203 * Return: 0 if successful 1204 * -ENOTSUPP if the mailbox message is a type this driver does not 1205 * support 1206 * < 0 if an error 1207 */ 1208 static int pdc_send_data(struct mbox_chan *chan, void *data) 1209 { 1210 struct pdc_state *pdcs = chan->con_priv; 1211 struct device *dev = &pdcs->pdev->dev; 1212 struct brcm_message *mssg = data; 1213 int err = PDC_SUCCESS; 1214 int src_nent; 1215 int dst_nent; 1216 int nent; 1217 u32 tx_desc_req; 1218 u32 rx_desc_req; 1219 1220 if (unlikely(mssg->type != BRCM_MESSAGE_SPU)) 1221 return -ENOTSUPP; 1222 1223 src_nent = sg_nents(mssg->spu.src); 1224 if (likely(src_nent)) { 1225 nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE); 1226 if (unlikely(nent == 0)) 1227 return -EIO; 1228 } 1229 1230 dst_nent = sg_nents(mssg->spu.dst); 1231 if (likely(dst_nent)) { 1232 nent = dma_map_sg(dev, mssg->spu.dst, dst_nent, 1233 DMA_FROM_DEVICE); 1234 if (unlikely(nent == 0)) { 1235 dma_unmap_sg(dev, mssg->spu.src, src_nent, 1236 DMA_TO_DEVICE); 1237 return -EIO; 1238 } 1239 } 1240 1241 /* 1242 * Check if the tx and rx rings have enough space. Do this prior to 1243 * writing any tx or rx descriptors. Need to ensure that we do not write 1244 * a partial set of descriptors, or write just rx descriptors but 1245 * corresponding tx descriptors don't fit. Note that we want this check 1246 * and the entire sequence of descriptor to happen without another 1247 * thread getting in. The channel spin lock in the mailbox framework 1248 * ensures this. 1249 */ 1250 tx_desc_req = pdc_desc_count(mssg->spu.src); 1251 rx_desc_req = pdc_desc_count(mssg->spu.dst); 1252 if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1))) 1253 return -ENOSPC; 1254 1255 /* Create rx descriptors to SPU catch response */ 1256 err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx); 1257 err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst); 1258 1259 /* Create tx descriptors to submit SPU request */ 1260 err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src); 1261 err |= pdc_tx_list_final(pdcs); /* initiate transfer */ 1262 1263 if (unlikely(err)) 1264 dev_err(&pdcs->pdev->dev, 1265 "%s failed with error %d", __func__, err); 1266 1267 return err; 1268 } 1269 1270 static int pdc_startup(struct mbox_chan *chan) 1271 { 1272 return pdc_ring_init(chan->con_priv, PDC_RINGSET); 1273 } 1274 1275 static void pdc_shutdown(struct mbox_chan *chan) 1276 { 1277 struct pdc_state *pdcs = chan->con_priv; 1278 1279 if (!pdcs) 1280 return; 1281 1282 dev_dbg(&pdcs->pdev->dev, 1283 "Shutdown mailbox channel for PDC %u", pdcs->pdc_idx); 1284 pdc_ring_free(pdcs); 1285 } 1286 1287 /** 1288 * pdc_hw_init() - Use the given initialization parameters to initialize the 1289 * state for one of the PDCs. 1290 * @pdcs: state of the PDC 1291 */ 1292 static 1293 void pdc_hw_init(struct pdc_state *pdcs) 1294 { 1295 struct platform_device *pdev; 1296 struct device *dev; 1297 struct dma64 *dma_reg; 1298 int ringset = PDC_RINGSET; 1299 1300 pdev = pdcs->pdev; 1301 dev = &pdev->dev; 1302 1303 dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx); 1304 dev_dbg(dev, "state structure: %p", 1305 pdcs); 1306 dev_dbg(dev, " - base virtual addr of hw regs %p", 1307 pdcs->pdc_reg_vbase); 1308 1309 /* initialize data structures */ 1310 pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase; 1311 pdcs->txregs_64 = (struct dma64_regs *) 1312 (((u8 *)pdcs->pdc_reg_vbase) + 1313 PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset)); 1314 pdcs->rxregs_64 = (struct dma64_regs *) 1315 (((u8 *)pdcs->pdc_reg_vbase) + 1316 PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset)); 1317 1318 pdcs->ntxd = PDC_RING_ENTRIES; 1319 pdcs->nrxd = PDC_RING_ENTRIES; 1320 pdcs->ntxpost = PDC_RING_ENTRIES - 1; 1321 pdcs->nrxpost = PDC_RING_ENTRIES - 1; 1322 iowrite32(0, &pdcs->regs->intmask); 1323 1324 dma_reg = &pdcs->regs->dmaregs[ringset]; 1325 1326 /* Configure DMA but will enable later in pdc_ring_init() */ 1327 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1328 1329 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1), 1330 &dma_reg->dmarcv.control); 1331 1332 /* Reset current index pointers after making sure DMA is disabled */ 1333 iowrite32(0, &dma_reg->dmaxmt.ptr); 1334 iowrite32(0, &dma_reg->dmarcv.ptr); 1335 1336 if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN) 1337 iowrite32(PDC_CKSUM_CTRL, 1338 pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET); 1339 } 1340 1341 /** 1342 * pdc_hw_disable() - Disable the tx and rx control in the hw. 1343 * @pdcs: PDC state structure 1344 * 1345 */ 1346 static void pdc_hw_disable(struct pdc_state *pdcs) 1347 { 1348 struct dma64 *dma_reg; 1349 1350 dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET]; 1351 iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control); 1352 iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1), 1353 &dma_reg->dmarcv.control); 1354 } 1355 1356 /** 1357 * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata 1358 * header returned with each response message. 1359 * @pdcs: PDC state structure 1360 * 1361 * The metadata is not returned to the mailbox client. So the PDC driver 1362 * manages these buffers. 1363 * 1364 * Return: PDC_SUCCESS 1365 * -ENOMEM if pool creation fails 1366 */ 1367 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs) 1368 { 1369 struct platform_device *pdev; 1370 struct device *dev; 1371 1372 pdev = pdcs->pdev; 1373 dev = &pdev->dev; 1374 1375 pdcs->pdc_resp_hdr_len = pdcs->rx_status_len; 1376 if (pdcs->use_bcm_hdr) 1377 pdcs->pdc_resp_hdr_len += BCM_HDR_LEN; 1378 1379 pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev, 1380 pdcs->pdc_resp_hdr_len, 1381 RX_BUF_ALIGN, 0); 1382 if (!pdcs->rx_buf_pool) 1383 return -ENOMEM; 1384 1385 return PDC_SUCCESS; 1386 } 1387 1388 /** 1389 * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and 1390 * specify a threaded IRQ handler for deferred handling of interrupts outside of 1391 * interrupt context. 1392 * @pdcs: PDC state 1393 * 1394 * Set the interrupt mask for transmit and receive done. 1395 * Set the lazy interrupt frame count to generate an interrupt for just one pkt. 1396 * 1397 * Return: PDC_SUCCESS 1398 * <0 if threaded irq request fails 1399 */ 1400 static int pdc_interrupts_init(struct pdc_state *pdcs) 1401 { 1402 struct platform_device *pdev = pdcs->pdev; 1403 struct device *dev = &pdev->dev; 1404 struct device_node *dn = pdev->dev.of_node; 1405 int err; 1406 1407 /* interrupt configuration */ 1408 iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET); 1409 1410 if (pdcs->hw_type == FA_HW) 1411 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + 1412 FA_RCVLAZY0_OFFSET); 1413 else 1414 iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase + 1415 PDC_RCVLAZY0_OFFSET); 1416 1417 /* read irq from device tree */ 1418 pdcs->pdc_irq = irq_of_parse_and_map(dn, 0); 1419 dev_dbg(dev, "pdc device %s irq %u for pdcs %p", 1420 dev_name(dev), pdcs->pdc_irq, pdcs); 1421 1422 err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0, 1423 dev_name(dev), dev); 1424 if (err) { 1425 dev_err(dev, "IRQ %u request failed with err %d\n", 1426 pdcs->pdc_irq, err); 1427 return err; 1428 } 1429 return PDC_SUCCESS; 1430 } 1431 1432 static const struct mbox_chan_ops pdc_mbox_chan_ops = { 1433 .send_data = pdc_send_data, 1434 .last_tx_done = pdc_last_tx_done, 1435 .startup = pdc_startup, 1436 .shutdown = pdc_shutdown 1437 }; 1438 1439 /** 1440 * pdc_mb_init() - Initialize the mailbox controller. 1441 * @pdcs: PDC state 1442 * 1443 * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel 1444 * driver only uses one ringset and thus one mb channel. PDC uses the transmit 1445 * complete interrupt to determine when a mailbox message has successfully been 1446 * transmitted. 1447 * 1448 * Return: 0 on success 1449 * < 0 if there is an allocation or registration failure 1450 */ 1451 static int pdc_mb_init(struct pdc_state *pdcs) 1452 { 1453 struct device *dev = &pdcs->pdev->dev; 1454 struct mbox_controller *mbc; 1455 int chan_index; 1456 int err; 1457 1458 mbc = &pdcs->mbc; 1459 mbc->dev = dev; 1460 mbc->ops = &pdc_mbox_chan_ops; 1461 mbc->num_chans = 1; 1462 mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans), 1463 GFP_KERNEL); 1464 if (!mbc->chans) 1465 return -ENOMEM; 1466 1467 mbc->txdone_irq = false; 1468 mbc->txdone_poll = true; 1469 mbc->txpoll_period = 1; 1470 for (chan_index = 0; chan_index < mbc->num_chans; chan_index++) 1471 mbc->chans[chan_index].con_priv = pdcs; 1472 1473 /* Register mailbox controller */ 1474 err = mbox_controller_register(mbc); 1475 if (err) { 1476 dev_crit(dev, 1477 "Failed to register PDC mailbox controller. Error %d.", 1478 err); 1479 return err; 1480 } 1481 return 0; 1482 } 1483 1484 /* Device tree API */ 1485 static const int pdc_hw = PDC_HW; 1486 static const int fa_hw = FA_HW; 1487 1488 static const struct of_device_id pdc_mbox_of_match[] = { 1489 {.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw}, 1490 {.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw}, 1491 { /* sentinel */ } 1492 }; 1493 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match); 1494 1495 /** 1496 * pdc_dt_read() - Read application-specific data from device tree. 1497 * @pdev: Platform device 1498 * @pdcs: PDC state 1499 * 1500 * Reads the number of bytes of receive status that precede each received frame. 1501 * Reads whether transmit and received frames should be preceded by an 8-byte 1502 * BCM header. 1503 * 1504 * Return: 0 if successful 1505 * -ENODEV if device not available 1506 */ 1507 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs) 1508 { 1509 struct device *dev = &pdev->dev; 1510 struct device_node *dn = pdev->dev.of_node; 1511 const struct of_device_id *match; 1512 const int *hw_type; 1513 int err; 1514 1515 err = of_property_read_u32(dn, "brcm,rx-status-len", 1516 &pdcs->rx_status_len); 1517 if (err < 0) 1518 dev_err(dev, 1519 "%s failed to get DMA receive status length from device tree", 1520 __func__); 1521 1522 pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr"); 1523 1524 pdcs->hw_type = PDC_HW; 1525 1526 match = of_match_device(of_match_ptr(pdc_mbox_of_match), dev); 1527 if (match != NULL) { 1528 hw_type = match->data; 1529 pdcs->hw_type = *hw_type; 1530 } 1531 1532 return 0; 1533 } 1534 1535 /** 1536 * pdc_probe() - Probe function for PDC driver. 1537 * @pdev: PDC platform device 1538 * 1539 * Reserve and map register regions defined in device tree. 1540 * Allocate and initialize tx and rx DMA rings. 1541 * Initialize a mailbox controller for each PDC. 1542 * 1543 * Return: 0 if successful 1544 * < 0 if an error 1545 */ 1546 static int pdc_probe(struct platform_device *pdev) 1547 { 1548 int err = 0; 1549 struct device *dev = &pdev->dev; 1550 struct resource *pdc_regs; 1551 struct pdc_state *pdcs; 1552 1553 /* PDC state for one SPU */ 1554 pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL); 1555 if (!pdcs) { 1556 err = -ENOMEM; 1557 goto cleanup; 1558 } 1559 1560 pdcs->pdev = pdev; 1561 platform_set_drvdata(pdev, pdcs); 1562 pdcs->pdc_idx = pdcg.num_spu; 1563 pdcg.num_spu++; 1564 1565 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39)); 1566 if (err) { 1567 dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err); 1568 goto cleanup; 1569 } 1570 1571 /* Create DMA pool for tx ring */ 1572 pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE, 1573 RING_ALIGN, 0); 1574 if (!pdcs->ring_pool) { 1575 err = -ENOMEM; 1576 goto cleanup; 1577 } 1578 1579 err = pdc_dt_read(pdev, pdcs); 1580 if (err) 1581 goto cleanup_ring_pool; 1582 1583 pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1584 if (!pdc_regs) { 1585 err = -ENODEV; 1586 goto cleanup_ring_pool; 1587 } 1588 dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa", 1589 &pdc_regs->start, &pdc_regs->end); 1590 1591 pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs); 1592 if (IS_ERR(pdcs->pdc_reg_vbase)) { 1593 err = PTR_ERR(pdcs->pdc_reg_vbase); 1594 dev_err(&pdev->dev, "Failed to map registers: %d\n", err); 1595 goto cleanup_ring_pool; 1596 } 1597 1598 /* create rx buffer pool after dt read to know how big buffers are */ 1599 err = pdc_rx_buf_pool_create(pdcs); 1600 if (err) 1601 goto cleanup_ring_pool; 1602 1603 pdc_hw_init(pdcs); 1604 1605 /* Init tasklet for deferred DMA rx processing */ 1606 tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs); 1607 1608 err = pdc_interrupts_init(pdcs); 1609 if (err) 1610 goto cleanup_buf_pool; 1611 1612 /* Initialize mailbox controller */ 1613 err = pdc_mb_init(pdcs); 1614 if (err) 1615 goto cleanup_buf_pool; 1616 1617 pdcs->debugfs_stats = NULL; 1618 pdc_setup_debugfs(pdcs); 1619 1620 dev_dbg(dev, "pdc_probe() successful"); 1621 return PDC_SUCCESS; 1622 1623 cleanup_buf_pool: 1624 tasklet_kill(&pdcs->rx_tasklet); 1625 dma_pool_destroy(pdcs->rx_buf_pool); 1626 1627 cleanup_ring_pool: 1628 dma_pool_destroy(pdcs->ring_pool); 1629 1630 cleanup: 1631 return err; 1632 } 1633 1634 static int pdc_remove(struct platform_device *pdev) 1635 { 1636 struct pdc_state *pdcs = platform_get_drvdata(pdev); 1637 1638 pdc_free_debugfs(); 1639 1640 tasklet_kill(&pdcs->rx_tasklet); 1641 1642 pdc_hw_disable(pdcs); 1643 1644 mbox_controller_unregister(&pdcs->mbc); 1645 1646 dma_pool_destroy(pdcs->rx_buf_pool); 1647 dma_pool_destroy(pdcs->ring_pool); 1648 return 0; 1649 } 1650 1651 static struct platform_driver pdc_mbox_driver = { 1652 .probe = pdc_probe, 1653 .remove = pdc_remove, 1654 .driver = { 1655 .name = "brcm-iproc-pdc-mbox", 1656 .of_match_table = of_match_ptr(pdc_mbox_of_match), 1657 }, 1658 }; 1659 module_platform_driver(pdc_mbox_driver); 1660 1661 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>"); 1662 MODULE_DESCRIPTION("Broadcom PDC mailbox driver"); 1663 MODULE_LICENSE("GPL v2"); 1664