1 /*
2  * Copyright 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation (the "GPL").
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License version 2 (GPLv2) for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * version 2 (GPLv2) along with this source code.
15  */
16 
17 /*
18  * Broadcom PDC Mailbox Driver
19  * The PDC provides a ring based programming interface to one or more hardware
20  * offload engines. For example, the PDC driver works with both SPU-M and SPU2
21  * cryptographic offload hardware. In some chips the PDC is referred to as MDE,
22  * and in others the FA2/FA+ hardware is used with this PDC driver.
23  *
24  * The PDC driver registers with the Linux mailbox framework as a mailbox
25  * controller, once for each PDC instance. Ring 0 for each PDC is registered as
26  * a mailbox channel. The PDC driver uses interrupts to determine when data
27  * transfers to and from an offload engine are complete. The PDC driver uses
28  * threaded IRQs so that response messages are handled outside of interrupt
29  * context.
30  *
31  * The PDC driver allows multiple messages to be pending in the descriptor
32  * rings. The tx_msg_start descriptor index indicates where the last message
33  * starts. The txin_numd value at this index indicates how many descriptor
34  * indexes make up the message. Similar state is kept on the receive side. When
35  * an rx interrupt indicates a response is ready, the PDC driver processes numd
36  * descriptors from the tx and rx ring, thus processing one response at a time.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/module.h>
41 #include <linux/init.h>
42 #include <linux/slab.h>
43 #include <linux/debugfs.h>
44 #include <linux/interrupt.h>
45 #include <linux/wait.h>
46 #include <linux/platform_device.h>
47 #include <linux/io.h>
48 #include <linux/of.h>
49 #include <linux/of_device.h>
50 #include <linux/of_address.h>
51 #include <linux/of_irq.h>
52 #include <linux/mailbox_controller.h>
53 #include <linux/mailbox/brcm-message.h>
54 #include <linux/scatterlist.h>
55 #include <linux/dma-direction.h>
56 #include <linux/dma-mapping.h>
57 #include <linux/dmapool.h>
58 
59 #define PDC_SUCCESS  0
60 
61 #define RING_ENTRY_SIZE   sizeof(struct dma64dd)
62 
63 /* # entries in PDC dma ring */
64 #define PDC_RING_ENTRIES  512
65 /*
66  * Minimum number of ring descriptor entries that must be free to tell mailbox
67  * framework that it can submit another request
68  */
69 #define PDC_RING_SPACE_MIN  15
70 
71 #define PDC_RING_SIZE    (PDC_RING_ENTRIES * RING_ENTRY_SIZE)
72 /* Rings are 8k aligned */
73 #define RING_ALIGN_ORDER  13
74 #define RING_ALIGN        BIT(RING_ALIGN_ORDER)
75 
76 #define RX_BUF_ALIGN_ORDER  5
77 #define RX_BUF_ALIGN	    BIT(RX_BUF_ALIGN_ORDER)
78 
79 /* descriptor bumping macros */
80 #define XXD(x, max_mask)              ((x) & (max_mask))
81 #define TXD(x, max_mask)              XXD((x), (max_mask))
82 #define RXD(x, max_mask)              XXD((x), (max_mask))
83 #define NEXTTXD(i, max_mask)          TXD((i) + 1, (max_mask))
84 #define PREVTXD(i, max_mask)          TXD((i) - 1, (max_mask))
85 #define NEXTRXD(i, max_mask)          RXD((i) + 1, (max_mask))
86 #define PREVRXD(i, max_mask)          RXD((i) - 1, (max_mask))
87 #define NTXDACTIVE(h, t, max_mask)    TXD((t) - (h), (max_mask))
88 #define NRXDACTIVE(h, t, max_mask)    RXD((t) - (h), (max_mask))
89 
90 /* Length of BCM header at start of SPU msg, in bytes */
91 #define BCM_HDR_LEN  8
92 
93 /*
94  * PDC driver reserves ringset 0 on each SPU for its own use. The driver does
95  * not currently support use of multiple ringsets on a single PDC engine.
96  */
97 #define PDC_RINGSET  0
98 
99 /*
100  * Interrupt mask and status definitions. Enable interrupts for tx and rx on
101  * ring 0
102  */
103 #define PDC_RCVINT_0         (16 + PDC_RINGSET)
104 #define PDC_RCVINTEN_0       BIT(PDC_RCVINT_0)
105 #define PDC_INTMASK	     (PDC_RCVINTEN_0)
106 #define PDC_LAZY_FRAMECOUNT  1
107 #define PDC_LAZY_TIMEOUT     10000
108 #define PDC_LAZY_INT  (PDC_LAZY_TIMEOUT | (PDC_LAZY_FRAMECOUNT << 24))
109 #define PDC_INTMASK_OFFSET   0x24
110 #define PDC_INTSTATUS_OFFSET 0x20
111 #define PDC_RCVLAZY0_OFFSET  (0x30 + 4 * PDC_RINGSET)
112 #define FA_RCVLAZY0_OFFSET   0x100
113 
114 /*
115  * For SPU2, configure MDE_CKSUM_CONTROL to write 17 bytes of metadata
116  * before frame
117  */
118 #define PDC_SPU2_RESP_HDR_LEN  17
119 #define PDC_CKSUM_CTRL         BIT(27)
120 #define PDC_CKSUM_CTRL_OFFSET  0x400
121 
122 #define PDC_SPUM_RESP_HDR_LEN  32
123 
124 /*
125  * Sets the following bits for write to transmit control reg:
126  * 11    - PtyChkDisable - parity check is disabled
127  * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
128  */
129 #define PDC_TX_CTL		0x000C0800
130 
131 /* Bit in tx control reg to enable tx channel */
132 #define PDC_TX_ENABLE		0x1
133 
134 /*
135  * Sets the following bits for write to receive control reg:
136  * 7:1   - RcvOffset - size in bytes of status region at start of rx frame buf
137  * 9     - SepRxHdrDescEn - place start of new frames only in descriptors
138  *                          that have StartOfFrame set
139  * 10    - OflowContinue - on rx FIFO overflow, clear rx fifo, discard all
140  *                         remaining bytes in current frame, report error
141  *                         in rx frame status for current frame
142  * 11    - PtyChkDisable - parity check is disabled
143  * 20:18 - BurstLen = 3 -> 2^7 = 128 byte data reads from memory
144  */
145 #define PDC_RX_CTL		0x000C0E00
146 
147 /* Bit in rx control reg to enable rx channel */
148 #define PDC_RX_ENABLE		0x1
149 
150 #define CRYPTO_D64_RS0_CD_MASK   ((PDC_RING_ENTRIES * RING_ENTRY_SIZE) - 1)
151 
152 /* descriptor flags */
153 #define D64_CTRL1_EOT   BIT(28)	/* end of descriptor table */
154 #define D64_CTRL1_IOC   BIT(29)	/* interrupt on complete */
155 #define D64_CTRL1_EOF   BIT(30)	/* end of frame */
156 #define D64_CTRL1_SOF   BIT(31)	/* start of frame */
157 
158 #define RX_STATUS_OVERFLOW       0x00800000
159 #define RX_STATUS_LEN            0x0000FFFF
160 
161 #define PDC_TXREGS_OFFSET  0x200
162 #define PDC_RXREGS_OFFSET  0x220
163 
164 /* Maximum size buffer the DMA engine can handle */
165 #define PDC_DMA_BUF_MAX 16384
166 
167 enum pdc_hw {
168 	FA_HW,		/* FA2/FA+ hardware (i.e. Northstar Plus) */
169 	PDC_HW		/* PDC/MDE hardware (i.e. Northstar 2, Pegasus) */
170 };
171 
172 struct pdc_dma_map {
173 	void *ctx;          /* opaque context associated with frame */
174 };
175 
176 /* dma descriptor */
177 struct dma64dd {
178 	u32 ctrl1;      /* misc control bits */
179 	u32 ctrl2;      /* buffer count and address extension */
180 	u32 addrlow;    /* memory address of the date buffer, bits 31:0 */
181 	u32 addrhigh;   /* memory address of the date buffer, bits 63:32 */
182 };
183 
184 /* dma registers per channel(xmt or rcv) */
185 struct dma64_regs {
186 	u32  control;   /* enable, et al */
187 	u32  ptr;       /* last descriptor posted to chip */
188 	u32  addrlow;   /* descriptor ring base address low 32-bits */
189 	u32  addrhigh;  /* descriptor ring base address bits 63:32 */
190 	u32  status0;   /* last rx descriptor written by hw */
191 	u32  status1;   /* driver does not use */
192 };
193 
194 /* cpp contortions to concatenate w/arg prescan */
195 #ifndef PAD
196 #define _PADLINE(line)  pad ## line
197 #define _XSTR(line)     _PADLINE(line)
198 #define PAD             _XSTR(__LINE__)
199 #endif  /* PAD */
200 
201 /* dma registers. matches hw layout. */
202 struct dma64 {
203 	struct dma64_regs dmaxmt;  /* dma tx */
204 	u32          PAD[2];
205 	struct dma64_regs dmarcv;  /* dma rx */
206 	u32          PAD[2];
207 };
208 
209 /* PDC registers */
210 struct pdc_regs {
211 	u32  devcontrol;             /* 0x000 */
212 	u32  devstatus;              /* 0x004 */
213 	u32  PAD;
214 	u32  biststatus;             /* 0x00c */
215 	u32  PAD[4];
216 	u32  intstatus;              /* 0x020 */
217 	u32  intmask;                /* 0x024 */
218 	u32  gptimer;                /* 0x028 */
219 
220 	u32  PAD;
221 	u32  intrcvlazy_0;           /* 0x030 (Only in PDC, not FA2) */
222 	u32  intrcvlazy_1;           /* 0x034 (Only in PDC, not FA2) */
223 	u32  intrcvlazy_2;           /* 0x038 (Only in PDC, not FA2) */
224 	u32  intrcvlazy_3;           /* 0x03c (Only in PDC, not FA2) */
225 
226 	u32  PAD[48];
227 	u32  fa_intrecvlazy;         /* 0x100 (Only in FA2, not PDC) */
228 	u32  flowctlthresh;          /* 0x104 */
229 	u32  wrrthresh;              /* 0x108 */
230 	u32  gmac_idle_cnt_thresh;   /* 0x10c */
231 
232 	u32  PAD[4];
233 	u32  ifioaccessaddr;         /* 0x120 */
234 	u32  ifioaccessbyte;         /* 0x124 */
235 	u32  ifioaccessdata;         /* 0x128 */
236 
237 	u32  PAD[21];
238 	u32  phyaccess;              /* 0x180 */
239 	u32  PAD;
240 	u32  phycontrol;             /* 0x188 */
241 	u32  txqctl;                 /* 0x18c */
242 	u32  rxqctl;                 /* 0x190 */
243 	u32  gpioselect;             /* 0x194 */
244 	u32  gpio_output_en;         /* 0x198 */
245 	u32  PAD;                    /* 0x19c */
246 	u32  txq_rxq_mem_ctl;        /* 0x1a0 */
247 	u32  memory_ecc_status;      /* 0x1a4 */
248 	u32  serdes_ctl;             /* 0x1a8 */
249 	u32  serdes_status0;         /* 0x1ac */
250 	u32  serdes_status1;         /* 0x1b0 */
251 	u32  PAD[11];                /* 0x1b4-1dc */
252 	u32  clk_ctl_st;             /* 0x1e0 */
253 	u32  hw_war;                 /* 0x1e4 (Only in PDC, not FA2) */
254 	u32  pwrctl;                 /* 0x1e8 */
255 	u32  PAD[5];
256 
257 #define PDC_NUM_DMA_RINGS   4
258 	struct dma64 dmaregs[PDC_NUM_DMA_RINGS];  /* 0x0200 - 0x2fc */
259 
260 	/* more registers follow, but we don't use them */
261 };
262 
263 /* structure for allocating/freeing DMA rings */
264 struct pdc_ring_alloc {
265 	dma_addr_t  dmabase; /* DMA address of start of ring */
266 	void	   *vbase;   /* base kernel virtual address of ring */
267 	u32	    size;    /* ring allocation size in bytes */
268 };
269 
270 /*
271  * context associated with a receive descriptor.
272  * @rxp_ctx: opaque context associated with frame that starts at each
273  *           rx ring index.
274  * @dst_sg:  Scatterlist used to form reply frames beginning at a given ring
275  *           index. Retained in order to unmap each sg after reply is processed.
276  * @rxin_numd: Number of rx descriptors associated with the message that starts
277  *             at a descriptor index. Not set for every index. For example,
278  *             if descriptor index i points to a scatterlist with 4 entries,
279  *             then the next three descriptor indexes don't have a value set.
280  * @resp_hdr: Virtual address of buffer used to catch DMA rx status
281  * @resp_hdr_daddr: physical address of DMA rx status buffer
282  */
283 struct pdc_rx_ctx {
284 	void *rxp_ctx;
285 	struct scatterlist *dst_sg;
286 	u32  rxin_numd;
287 	void *resp_hdr;
288 	dma_addr_t resp_hdr_daddr;
289 };
290 
291 /* PDC state structure */
292 struct pdc_state {
293 	/* Index of the PDC whose state is in this structure instance */
294 	u8 pdc_idx;
295 
296 	/* Platform device for this PDC instance */
297 	struct platform_device *pdev;
298 
299 	/*
300 	 * Each PDC instance has a mailbox controller. PDC receives request
301 	 * messages through mailboxes, and sends response messages through the
302 	 * mailbox framework.
303 	 */
304 	struct mbox_controller mbc;
305 
306 	unsigned int pdc_irq;
307 
308 	/* tasklet for deferred processing after DMA rx interrupt */
309 	struct tasklet_struct rx_tasklet;
310 
311 	/* Number of bytes of receive status prior to each rx frame */
312 	u32 rx_status_len;
313 	/* Whether a BCM header is prepended to each frame */
314 	bool use_bcm_hdr;
315 	/* Sum of length of BCM header and rx status header */
316 	u32 pdc_resp_hdr_len;
317 
318 	/* The base virtual address of DMA hw registers */
319 	void __iomem *pdc_reg_vbase;
320 
321 	/* Pool for allocation of DMA rings */
322 	struct dma_pool *ring_pool;
323 
324 	/* Pool for allocation of metadata buffers for response messages */
325 	struct dma_pool *rx_buf_pool;
326 
327 	/*
328 	 * The base virtual address of DMA tx/rx descriptor rings. Corresponding
329 	 * DMA address and size of ring allocation.
330 	 */
331 	struct pdc_ring_alloc tx_ring_alloc;
332 	struct pdc_ring_alloc rx_ring_alloc;
333 
334 	struct pdc_regs *regs;    /* start of PDC registers */
335 
336 	struct dma64_regs *txregs_64; /* dma tx engine registers */
337 	struct dma64_regs *rxregs_64; /* dma rx engine registers */
338 
339 	/*
340 	 * Arrays of PDC_RING_ENTRIES descriptors
341 	 * To use multiple ringsets, this needs to be extended
342 	 */
343 	struct dma64dd   *txd_64;  /* tx descriptor ring */
344 	struct dma64dd   *rxd_64;  /* rx descriptor ring */
345 
346 	/* descriptor ring sizes */
347 	u32      ntxd;       /* # tx descriptors */
348 	u32      nrxd;       /* # rx descriptors */
349 	u32      nrxpost;    /* # rx buffers to keep posted */
350 	u32      ntxpost;    /* max number of tx buffers that can be posted */
351 
352 	/*
353 	 * Index of next tx descriptor to reclaim. That is, the descriptor
354 	 * index of the oldest tx buffer for which the host has yet to process
355 	 * the corresponding response.
356 	 */
357 	u32  txin;
358 
359 	/*
360 	 * Index of the first receive descriptor for the sequence of
361 	 * message fragments currently under construction. Used to build up
362 	 * the rxin_numd count for a message. Updated to rxout when the host
363 	 * starts a new sequence of rx buffers for a new message.
364 	 */
365 	u32  tx_msg_start;
366 
367 	/* Index of next tx descriptor to post. */
368 	u32  txout;
369 
370 	/*
371 	 * Number of tx descriptors associated with the message that starts
372 	 * at this tx descriptor index.
373 	 */
374 	u32      txin_numd[PDC_RING_ENTRIES];
375 
376 	/*
377 	 * Index of next rx descriptor to reclaim. This is the index of
378 	 * the next descriptor whose data has yet to be processed by the host.
379 	 */
380 	u32  rxin;
381 
382 	/*
383 	 * Index of the first receive descriptor for the sequence of
384 	 * message fragments currently under construction. Used to build up
385 	 * the rxin_numd count for a message. Updated to rxout when the host
386 	 * starts a new sequence of rx buffers for a new message.
387 	 */
388 	u32  rx_msg_start;
389 
390 	/*
391 	 * Saved value of current hardware rx descriptor index.
392 	 * The last rx buffer written by the hw is the index previous to
393 	 * this one.
394 	 */
395 	u32  last_rx_curr;
396 
397 	/* Index of next rx descriptor to post. */
398 	u32  rxout;
399 
400 	struct pdc_rx_ctx rx_ctx[PDC_RING_ENTRIES];
401 
402 	/*
403 	 * Scatterlists used to form request and reply frames beginning at a
404 	 * given ring index. Retained in order to unmap each sg after reply
405 	 * is processed
406 	 */
407 	struct scatterlist *src_sg[PDC_RING_ENTRIES];
408 
409 	struct dentry *debugfs_stats;  /* debug FS stats file for this PDC */
410 
411 	/* counters */
412 	u32  pdc_requests;     /* number of request messages submitted */
413 	u32  pdc_replies;      /* number of reply messages received */
414 	u32  last_tx_not_done; /* too few tx descriptors to indicate done */
415 	u32  tx_ring_full;     /* unable to accept msg because tx ring full */
416 	u32  rx_ring_full;     /* unable to accept msg because rx ring full */
417 	u32  txnobuf;          /* unable to create tx descriptor */
418 	u32  rxnobuf;          /* unable to create rx descriptor */
419 	u32  rx_oflow;         /* count of rx overflows */
420 
421 	/* hardware type - FA2 or PDC/MDE */
422 	enum pdc_hw hw_type;
423 };
424 
425 /* Global variables */
426 
427 struct pdc_globals {
428 	/* Actual number of SPUs in hardware, as reported by device tree */
429 	u32 num_spu;
430 };
431 
432 static struct pdc_globals pdcg;
433 
434 /* top level debug FS directory for PDC driver */
435 static struct dentry *debugfs_dir;
436 
437 static ssize_t pdc_debugfs_read(struct file *filp, char __user *ubuf,
438 				size_t count, loff_t *offp)
439 {
440 	struct pdc_state *pdcs;
441 	char *buf;
442 	ssize_t ret, out_offset, out_count;
443 
444 	out_count = 512;
445 
446 	buf = kmalloc(out_count, GFP_KERNEL);
447 	if (!buf)
448 		return -ENOMEM;
449 
450 	pdcs = filp->private_data;
451 	out_offset = 0;
452 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
453 			       "SPU %u stats:\n", pdcs->pdc_idx);
454 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
455 			       "PDC requests....................%u\n",
456 			       pdcs->pdc_requests);
457 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
458 			       "PDC responses...................%u\n",
459 			       pdcs->pdc_replies);
460 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
461 			       "Tx not done.....................%u\n",
462 			       pdcs->last_tx_not_done);
463 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
464 			       "Tx ring full....................%u\n",
465 			       pdcs->tx_ring_full);
466 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
467 			       "Rx ring full....................%u\n",
468 			       pdcs->rx_ring_full);
469 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
470 			       "Tx desc write fail. Ring full...%u\n",
471 			       pdcs->txnobuf);
472 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
473 			       "Rx desc write fail. Ring full...%u\n",
474 			       pdcs->rxnobuf);
475 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
476 			       "Receive overflow................%u\n",
477 			       pdcs->rx_oflow);
478 	out_offset += snprintf(buf + out_offset, out_count - out_offset,
479 			       "Num frags in rx ring............%u\n",
480 			       NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr,
481 					  pdcs->nrxpost));
482 
483 	if (out_offset > out_count)
484 		out_offset = out_count;
485 
486 	ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset);
487 	kfree(buf);
488 	return ret;
489 }
490 
491 static const struct file_operations pdc_debugfs_stats = {
492 	.owner = THIS_MODULE,
493 	.open = simple_open,
494 	.read = pdc_debugfs_read,
495 };
496 
497 /**
498  * pdc_setup_debugfs() - Create the debug FS directories. If the top-level
499  * directory has not yet been created, create it now. Create a stats file in
500  * this directory for a SPU.
501  * @pdcs: PDC state structure
502  */
503 static void pdc_setup_debugfs(struct pdc_state *pdcs)
504 {
505 	char spu_stats_name[16];
506 
507 	if (!debugfs_initialized())
508 		return;
509 
510 	snprintf(spu_stats_name, 16, "pdc%d_stats", pdcs->pdc_idx);
511 	if (!debugfs_dir)
512 		debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL);
513 
514 	/* S_IRUSR == 0400 */
515 	pdcs->debugfs_stats = debugfs_create_file(spu_stats_name, 0400,
516 						  debugfs_dir, pdcs,
517 						  &pdc_debugfs_stats);
518 }
519 
520 static void pdc_free_debugfs(void)
521 {
522 	debugfs_remove_recursive(debugfs_dir);
523 	debugfs_dir = NULL;
524 }
525 
526 /**
527  * pdc_build_rxd() - Build DMA descriptor to receive SPU result.
528  * @pdcs:      PDC state for SPU that will generate result
529  * @dma_addr:  DMA address of buffer that descriptor is being built for
530  * @buf_len:   Length of the receive buffer, in bytes
531  * @flags:     Flags to be stored in descriptor
532  */
533 static inline void
534 pdc_build_rxd(struct pdc_state *pdcs, dma_addr_t dma_addr,
535 	      u32 buf_len, u32 flags)
536 {
537 	struct device *dev = &pdcs->pdev->dev;
538 	struct dma64dd *rxd = &pdcs->rxd_64[pdcs->rxout];
539 
540 	dev_dbg(dev,
541 		"Writing rx descriptor for PDC %u at index %u with length %u. flags %#x\n",
542 		pdcs->pdc_idx, pdcs->rxout, buf_len, flags);
543 
544 	rxd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
545 	rxd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
546 	rxd->ctrl1 = cpu_to_le32(flags);
547 	rxd->ctrl2 = cpu_to_le32(buf_len);
548 
549 	/* bump ring index and return */
550 	pdcs->rxout = NEXTRXD(pdcs->rxout, pdcs->nrxpost);
551 }
552 
553 /**
554  * pdc_build_txd() - Build a DMA descriptor to transmit a SPU request to
555  * hardware.
556  * @pdcs:        PDC state for the SPU that will process this request
557  * @dma_addr:    DMA address of packet to be transmitted
558  * @buf_len:     Length of tx buffer, in bytes
559  * @flags:       Flags to be stored in descriptor
560  */
561 static inline void
562 pdc_build_txd(struct pdc_state *pdcs, dma_addr_t dma_addr, u32 buf_len,
563 	      u32 flags)
564 {
565 	struct device *dev = &pdcs->pdev->dev;
566 	struct dma64dd *txd = &pdcs->txd_64[pdcs->txout];
567 
568 	dev_dbg(dev,
569 		"Writing tx descriptor for PDC %u at index %u with length %u, flags %#x\n",
570 		pdcs->pdc_idx, pdcs->txout, buf_len, flags);
571 
572 	txd->addrlow = cpu_to_le32(lower_32_bits(dma_addr));
573 	txd->addrhigh = cpu_to_le32(upper_32_bits(dma_addr));
574 	txd->ctrl1 = cpu_to_le32(flags);
575 	txd->ctrl2 = cpu_to_le32(buf_len);
576 
577 	/* bump ring index and return */
578 	pdcs->txout = NEXTTXD(pdcs->txout, pdcs->ntxpost);
579 }
580 
581 /**
582  * pdc_receive_one() - Receive a response message from a given SPU.
583  * @pdcs:    PDC state for the SPU to receive from
584  *
585  * When the return code indicates success, the response message is available in
586  * the receive buffers provided prior to submission of the request.
587  *
588  * Return:  PDC_SUCCESS if one or more receive descriptors was processed
589  *          -EAGAIN indicates that no response message is available
590  *          -EIO an error occurred
591  */
592 static int
593 pdc_receive_one(struct pdc_state *pdcs)
594 {
595 	struct device *dev = &pdcs->pdev->dev;
596 	struct mbox_controller *mbc;
597 	struct mbox_chan *chan;
598 	struct brcm_message mssg;
599 	u32 len, rx_status;
600 	u32 num_frags;
601 	u8 *resp_hdr;    /* virtual addr of start of resp message DMA header */
602 	u32 frags_rdy;   /* number of fragments ready to read */
603 	u32 rx_idx;      /* ring index of start of receive frame */
604 	dma_addr_t resp_hdr_daddr;
605 	struct pdc_rx_ctx *rx_ctx;
606 
607 	mbc = &pdcs->mbc;
608 	chan = &mbc->chans[0];
609 	mssg.type = BRCM_MESSAGE_SPU;
610 
611 	/*
612 	 * return if a complete response message is not yet ready.
613 	 * rxin_numd[rxin] is the number of fragments in the next msg
614 	 * to read.
615 	 */
616 	frags_rdy = NRXDACTIVE(pdcs->rxin, pdcs->last_rx_curr, pdcs->nrxpost);
617 	if ((frags_rdy == 0) ||
618 	    (frags_rdy < pdcs->rx_ctx[pdcs->rxin].rxin_numd))
619 		/* No response ready */
620 		return -EAGAIN;
621 
622 	num_frags = pdcs->txin_numd[pdcs->txin];
623 	WARN_ON(num_frags == 0);
624 
625 	dma_unmap_sg(dev, pdcs->src_sg[pdcs->txin],
626 		     sg_nents(pdcs->src_sg[pdcs->txin]), DMA_TO_DEVICE);
627 
628 	pdcs->txin = (pdcs->txin + num_frags) & pdcs->ntxpost;
629 
630 	dev_dbg(dev, "PDC %u reclaimed %d tx descriptors",
631 		pdcs->pdc_idx, num_frags);
632 
633 	rx_idx = pdcs->rxin;
634 	rx_ctx = &pdcs->rx_ctx[rx_idx];
635 	num_frags = rx_ctx->rxin_numd;
636 	/* Return opaque context with result */
637 	mssg.ctx = rx_ctx->rxp_ctx;
638 	rx_ctx->rxp_ctx = NULL;
639 	resp_hdr = rx_ctx->resp_hdr;
640 	resp_hdr_daddr = rx_ctx->resp_hdr_daddr;
641 	dma_unmap_sg(dev, rx_ctx->dst_sg, sg_nents(rx_ctx->dst_sg),
642 		     DMA_FROM_DEVICE);
643 
644 	pdcs->rxin = (pdcs->rxin + num_frags) & pdcs->nrxpost;
645 
646 	dev_dbg(dev, "PDC %u reclaimed %d rx descriptors",
647 		pdcs->pdc_idx, num_frags);
648 
649 	dev_dbg(dev,
650 		"PDC %u txin %u, txout %u, rxin %u, rxout %u, last_rx_curr %u\n",
651 		pdcs->pdc_idx, pdcs->txin, pdcs->txout, pdcs->rxin,
652 		pdcs->rxout, pdcs->last_rx_curr);
653 
654 	if (pdcs->pdc_resp_hdr_len == PDC_SPUM_RESP_HDR_LEN) {
655 		/*
656 		 * For SPU-M, get length of response msg and rx overflow status.
657 		 */
658 		rx_status = *((u32 *)resp_hdr);
659 		len = rx_status & RX_STATUS_LEN;
660 		dev_dbg(dev,
661 			"SPU response length %u bytes", len);
662 		if (unlikely(((rx_status & RX_STATUS_OVERFLOW) || (!len)))) {
663 			if (rx_status & RX_STATUS_OVERFLOW) {
664 				dev_err_ratelimited(dev,
665 						    "crypto receive overflow");
666 				pdcs->rx_oflow++;
667 			} else {
668 				dev_info_ratelimited(dev, "crypto rx len = 0");
669 			}
670 			return -EIO;
671 		}
672 	}
673 
674 	dma_pool_free(pdcs->rx_buf_pool, resp_hdr, resp_hdr_daddr);
675 
676 	mbox_chan_received_data(chan, &mssg);
677 
678 	pdcs->pdc_replies++;
679 	return PDC_SUCCESS;
680 }
681 
682 /**
683  * pdc_receive() - Process as many responses as are available in the rx ring.
684  * @pdcs:  PDC state
685  *
686  * Called within the hard IRQ.
687  * Return:
688  */
689 static int
690 pdc_receive(struct pdc_state *pdcs)
691 {
692 	int rx_status;
693 
694 	/* read last_rx_curr from register once */
695 	pdcs->last_rx_curr =
696 	    (ioread32(&pdcs->rxregs_64->status0) &
697 	     CRYPTO_D64_RS0_CD_MASK) / RING_ENTRY_SIZE;
698 
699 	do {
700 		/* Could be many frames ready */
701 		rx_status = pdc_receive_one(pdcs);
702 	} while (rx_status == PDC_SUCCESS);
703 
704 	return 0;
705 }
706 
707 /**
708  * pdc_tx_list_sg_add() - Add the buffers in a scatterlist to the transmit
709  * descriptors for a given SPU. The scatterlist buffers contain the data for a
710  * SPU request message.
711  * @spu_idx:   The index of the SPU to submit the request to, [0, max_spu)
712  * @sg:        Scatterlist whose buffers contain part of the SPU request
713  *
714  * If a scatterlist buffer is larger than PDC_DMA_BUF_MAX, multiple descriptors
715  * are written for that buffer, each <= PDC_DMA_BUF_MAX byte in length.
716  *
717  * Return: PDC_SUCCESS if successful
718  *         < 0 otherwise
719  */
720 static int pdc_tx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
721 {
722 	u32 flags = 0;
723 	u32 eot;
724 	u32 tx_avail;
725 
726 	/*
727 	 * Num descriptors needed. Conservatively assume we need a descriptor
728 	 * for every entry in sg.
729 	 */
730 	u32 num_desc;
731 	u32 desc_w = 0;	/* Number of tx descriptors written */
732 	u32 bufcnt;	/* Number of bytes of buffer pointed to by descriptor */
733 	dma_addr_t databufptr;	/* DMA address to put in descriptor */
734 
735 	num_desc = (u32)sg_nents(sg);
736 
737 	/* check whether enough tx descriptors are available */
738 	tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
739 					      pdcs->ntxpost);
740 	if (unlikely(num_desc > tx_avail)) {
741 		pdcs->txnobuf++;
742 		return -ENOSPC;
743 	}
744 
745 	/* build tx descriptors */
746 	if (pdcs->tx_msg_start == pdcs->txout) {
747 		/* Start of frame */
748 		pdcs->txin_numd[pdcs->tx_msg_start] = 0;
749 		pdcs->src_sg[pdcs->txout] = sg;
750 		flags = D64_CTRL1_SOF;
751 	}
752 
753 	while (sg) {
754 		if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
755 			eot = D64_CTRL1_EOT;
756 		else
757 			eot = 0;
758 
759 		/*
760 		 * If sg buffer larger than PDC limit, split across
761 		 * multiple descriptors
762 		 */
763 		bufcnt = sg_dma_len(sg);
764 		databufptr = sg_dma_address(sg);
765 		while (bufcnt > PDC_DMA_BUF_MAX) {
766 			pdc_build_txd(pdcs, databufptr, PDC_DMA_BUF_MAX,
767 				      flags | eot);
768 			desc_w++;
769 			bufcnt -= PDC_DMA_BUF_MAX;
770 			databufptr += PDC_DMA_BUF_MAX;
771 			if (unlikely(pdcs->txout == (pdcs->ntxd - 1)))
772 				eot = D64_CTRL1_EOT;
773 			else
774 				eot = 0;
775 		}
776 		sg = sg_next(sg);
777 		if (!sg)
778 			/* Writing last descriptor for frame */
779 			flags |= (D64_CTRL1_EOF | D64_CTRL1_IOC);
780 		pdc_build_txd(pdcs, databufptr, bufcnt, flags | eot);
781 		desc_w++;
782 		/* Clear start of frame after first descriptor */
783 		flags &= ~D64_CTRL1_SOF;
784 	}
785 	pdcs->txin_numd[pdcs->tx_msg_start] += desc_w;
786 
787 	return PDC_SUCCESS;
788 }
789 
790 /**
791  * pdc_tx_list_final() - Initiate DMA transfer of last frame written to tx
792  * ring.
793  * @pdcs:  PDC state for SPU to process the request
794  *
795  * Sets the index of the last descriptor written in both the rx and tx ring.
796  *
797  * Return: PDC_SUCCESS
798  */
799 static int pdc_tx_list_final(struct pdc_state *pdcs)
800 {
801 	/*
802 	 * write barrier to ensure all register writes are complete
803 	 * before chip starts to process new request
804 	 */
805 	wmb();
806 	iowrite32(pdcs->rxout << 4, &pdcs->rxregs_64->ptr);
807 	iowrite32(pdcs->txout << 4, &pdcs->txregs_64->ptr);
808 	pdcs->pdc_requests++;
809 
810 	return PDC_SUCCESS;
811 }
812 
813 /**
814  * pdc_rx_list_init() - Start a new receive descriptor list for a given PDC.
815  * @pdcs:   PDC state for SPU handling request
816  * @dst_sg: scatterlist providing rx buffers for response to be returned to
817  *	    mailbox client
818  * @ctx:    Opaque context for this request
819  *
820  * Posts a single receive descriptor to hold the metadata that precedes a
821  * response. For example, with SPU-M, the metadata is a 32-byte DMA header and
822  * an 8-byte BCM header. Moves the msg_start descriptor indexes for both tx and
823  * rx to indicate the start of a new message.
824  *
825  * Return:  PDC_SUCCESS if successful
826  *          < 0 if an error (e.g., rx ring is full)
827  */
828 static int pdc_rx_list_init(struct pdc_state *pdcs, struct scatterlist *dst_sg,
829 			    void *ctx)
830 {
831 	u32 flags = 0;
832 	u32 rx_avail;
833 	u32 rx_pkt_cnt = 1;	/* Adding a single rx buffer */
834 	dma_addr_t daddr;
835 	void *vaddr;
836 	struct pdc_rx_ctx *rx_ctx;
837 
838 	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
839 					      pdcs->nrxpost);
840 	if (unlikely(rx_pkt_cnt > rx_avail)) {
841 		pdcs->rxnobuf++;
842 		return -ENOSPC;
843 	}
844 
845 	/* allocate a buffer for the dma rx status */
846 	vaddr = dma_pool_zalloc(pdcs->rx_buf_pool, GFP_ATOMIC, &daddr);
847 	if (unlikely(!vaddr))
848 		return -ENOMEM;
849 
850 	/*
851 	 * Update msg_start indexes for both tx and rx to indicate the start
852 	 * of a new sequence of descriptor indexes that contain the fragments
853 	 * of the same message.
854 	 */
855 	pdcs->rx_msg_start = pdcs->rxout;
856 	pdcs->tx_msg_start = pdcs->txout;
857 
858 	/* This is always the first descriptor in the receive sequence */
859 	flags = D64_CTRL1_SOF;
860 	pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd = 1;
861 
862 	if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
863 		flags |= D64_CTRL1_EOT;
864 
865 	rx_ctx = &pdcs->rx_ctx[pdcs->rxout];
866 	rx_ctx->rxp_ctx = ctx;
867 	rx_ctx->dst_sg = dst_sg;
868 	rx_ctx->resp_hdr = vaddr;
869 	rx_ctx->resp_hdr_daddr = daddr;
870 	pdc_build_rxd(pdcs, daddr, pdcs->pdc_resp_hdr_len, flags);
871 	return PDC_SUCCESS;
872 }
873 
874 /**
875  * pdc_rx_list_sg_add() - Add the buffers in a scatterlist to the receive
876  * descriptors for a given SPU. The caller must have already DMA mapped the
877  * scatterlist.
878  * @spu_idx:    Indicates which SPU the buffers are for
879  * @sg:         Scatterlist whose buffers are added to the receive ring
880  *
881  * If a receive buffer in the scatterlist is larger than PDC_DMA_BUF_MAX,
882  * multiple receive descriptors are written, each with a buffer <=
883  * PDC_DMA_BUF_MAX.
884  *
885  * Return: PDC_SUCCESS if successful
886  *         < 0 otherwise (e.g., receive ring is full)
887  */
888 static int pdc_rx_list_sg_add(struct pdc_state *pdcs, struct scatterlist *sg)
889 {
890 	u32 flags = 0;
891 	u32 rx_avail;
892 
893 	/*
894 	 * Num descriptors needed. Conservatively assume we need a descriptor
895 	 * for every entry from our starting point in the scatterlist.
896 	 */
897 	u32 num_desc;
898 	u32 desc_w = 0;	/* Number of tx descriptors written */
899 	u32 bufcnt;	/* Number of bytes of buffer pointed to by descriptor */
900 	dma_addr_t databufptr;	/* DMA address to put in descriptor */
901 
902 	num_desc = (u32)sg_nents(sg);
903 
904 	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
905 					      pdcs->nrxpost);
906 	if (unlikely(num_desc > rx_avail)) {
907 		pdcs->rxnobuf++;
908 		return -ENOSPC;
909 	}
910 
911 	while (sg) {
912 		if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
913 			flags = D64_CTRL1_EOT;
914 		else
915 			flags = 0;
916 
917 		/*
918 		 * If sg buffer larger than PDC limit, split across
919 		 * multiple descriptors
920 		 */
921 		bufcnt = sg_dma_len(sg);
922 		databufptr = sg_dma_address(sg);
923 		while (bufcnt > PDC_DMA_BUF_MAX) {
924 			pdc_build_rxd(pdcs, databufptr, PDC_DMA_BUF_MAX, flags);
925 			desc_w++;
926 			bufcnt -= PDC_DMA_BUF_MAX;
927 			databufptr += PDC_DMA_BUF_MAX;
928 			if (unlikely(pdcs->rxout == (pdcs->nrxd - 1)))
929 				flags = D64_CTRL1_EOT;
930 			else
931 				flags = 0;
932 		}
933 		pdc_build_rxd(pdcs, databufptr, bufcnt, flags);
934 		desc_w++;
935 		sg = sg_next(sg);
936 	}
937 	pdcs->rx_ctx[pdcs->rx_msg_start].rxin_numd += desc_w;
938 
939 	return PDC_SUCCESS;
940 }
941 
942 /**
943  * pdc_irq_handler() - Interrupt handler called in interrupt context.
944  * @irq:      Interrupt number that has fired
945  * @data:     device struct for DMA engine that generated the interrupt
946  *
947  * We have to clear the device interrupt status flags here. So cache the
948  * status for later use in the thread function. Other than that, just return
949  * WAKE_THREAD to invoke the thread function.
950  *
951  * Return: IRQ_WAKE_THREAD if interrupt is ours
952  *         IRQ_NONE otherwise
953  */
954 static irqreturn_t pdc_irq_handler(int irq, void *data)
955 {
956 	struct device *dev = (struct device *)data;
957 	struct pdc_state *pdcs = dev_get_drvdata(dev);
958 	u32 intstatus = ioread32(pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
959 
960 	if (unlikely(intstatus == 0))
961 		return IRQ_NONE;
962 
963 	/* Disable interrupts until soft handler runs */
964 	iowrite32(0, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
965 
966 	/* Clear interrupt flags in device */
967 	iowrite32(intstatus, pdcs->pdc_reg_vbase + PDC_INTSTATUS_OFFSET);
968 
969 	/* Wakeup IRQ thread */
970 	tasklet_schedule(&pdcs->rx_tasklet);
971 	return IRQ_HANDLED;
972 }
973 
974 /**
975  * pdc_tasklet_cb() - Tasklet callback that runs the deferred processing after
976  * a DMA receive interrupt. Reenables the receive interrupt.
977  * @data: PDC state structure
978  */
979 static void pdc_tasklet_cb(unsigned long data)
980 {
981 	struct pdc_state *pdcs = (struct pdc_state *)data;
982 
983 	pdc_receive(pdcs);
984 
985 	/* reenable interrupts */
986 	iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
987 }
988 
989 /**
990  * pdc_ring_init() - Allocate DMA rings and initialize constant fields of
991  * descriptors in one ringset.
992  * @pdcs:    PDC instance state
993  * @ringset: index of ringset being used
994  *
995  * Return: PDC_SUCCESS if ring initialized
996  *         < 0 otherwise
997  */
998 static int pdc_ring_init(struct pdc_state *pdcs, int ringset)
999 {
1000 	int i;
1001 	int err = PDC_SUCCESS;
1002 	struct dma64 *dma_reg;
1003 	struct device *dev = &pdcs->pdev->dev;
1004 	struct pdc_ring_alloc tx;
1005 	struct pdc_ring_alloc rx;
1006 
1007 	/* Allocate tx ring */
1008 	tx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &tx.dmabase);
1009 	if (unlikely(!tx.vbase)) {
1010 		err = -ENOMEM;
1011 		goto done;
1012 	}
1013 
1014 	/* Allocate rx ring */
1015 	rx.vbase = dma_pool_zalloc(pdcs->ring_pool, GFP_KERNEL, &rx.dmabase);
1016 	if (unlikely(!rx.vbase)) {
1017 		err = -ENOMEM;
1018 		goto fail_dealloc;
1019 	}
1020 
1021 	dev_dbg(dev, " - base DMA addr of tx ring      %pad", &tx.dmabase);
1022 	dev_dbg(dev, " - base virtual addr of tx ring  %p", tx.vbase);
1023 	dev_dbg(dev, " - base DMA addr of rx ring      %pad", &rx.dmabase);
1024 	dev_dbg(dev, " - base virtual addr of rx ring  %p", rx.vbase);
1025 
1026 	memcpy(&pdcs->tx_ring_alloc, &tx, sizeof(tx));
1027 	memcpy(&pdcs->rx_ring_alloc, &rx, sizeof(rx));
1028 
1029 	pdcs->rxin = 0;
1030 	pdcs->rx_msg_start = 0;
1031 	pdcs->last_rx_curr = 0;
1032 	pdcs->rxout = 0;
1033 	pdcs->txin = 0;
1034 	pdcs->tx_msg_start = 0;
1035 	pdcs->txout = 0;
1036 
1037 	/* Set descriptor array base addresses */
1038 	pdcs->txd_64 = (struct dma64dd *)pdcs->tx_ring_alloc.vbase;
1039 	pdcs->rxd_64 = (struct dma64dd *)pdcs->rx_ring_alloc.vbase;
1040 
1041 	/* Tell device the base DMA address of each ring */
1042 	dma_reg = &pdcs->regs->dmaregs[ringset];
1043 
1044 	/* But first disable DMA and set curptr to 0 for both TX & RX */
1045 	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1046 	iowrite32((PDC_RX_CTL + (pdcs->rx_status_len << 1)),
1047 		  &dma_reg->dmarcv.control);
1048 	iowrite32(0, &dma_reg->dmaxmt.ptr);
1049 	iowrite32(0, &dma_reg->dmarcv.ptr);
1050 
1051 	/* Set base DMA addresses */
1052 	iowrite32(lower_32_bits(pdcs->tx_ring_alloc.dmabase),
1053 		  &dma_reg->dmaxmt.addrlow);
1054 	iowrite32(upper_32_bits(pdcs->tx_ring_alloc.dmabase),
1055 		  &dma_reg->dmaxmt.addrhigh);
1056 
1057 	iowrite32(lower_32_bits(pdcs->rx_ring_alloc.dmabase),
1058 		  &dma_reg->dmarcv.addrlow);
1059 	iowrite32(upper_32_bits(pdcs->rx_ring_alloc.dmabase),
1060 		  &dma_reg->dmarcv.addrhigh);
1061 
1062 	/* Re-enable DMA */
1063 	iowrite32(PDC_TX_CTL | PDC_TX_ENABLE, &dma_reg->dmaxmt.control);
1064 	iowrite32((PDC_RX_CTL | PDC_RX_ENABLE | (pdcs->rx_status_len << 1)),
1065 		  &dma_reg->dmarcv.control);
1066 
1067 	/* Initialize descriptors */
1068 	for (i = 0; i < PDC_RING_ENTRIES; i++) {
1069 		/* Every tx descriptor can be used for start of frame. */
1070 		if (i != pdcs->ntxpost) {
1071 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF,
1072 				  &pdcs->txd_64[i].ctrl1);
1073 		} else {
1074 			/* Last descriptor in ringset. Set End of Table. */
1075 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOF |
1076 				  D64_CTRL1_EOT, &pdcs->txd_64[i].ctrl1);
1077 		}
1078 
1079 		/* Every rx descriptor can be used for start of frame */
1080 		if (i != pdcs->nrxpost) {
1081 			iowrite32(D64_CTRL1_SOF,
1082 				  &pdcs->rxd_64[i].ctrl1);
1083 		} else {
1084 			/* Last descriptor in ringset. Set End of Table. */
1085 			iowrite32(D64_CTRL1_SOF | D64_CTRL1_EOT,
1086 				  &pdcs->rxd_64[i].ctrl1);
1087 		}
1088 	}
1089 	return PDC_SUCCESS;
1090 
1091 fail_dealloc:
1092 	dma_pool_free(pdcs->ring_pool, tx.vbase, tx.dmabase);
1093 done:
1094 	return err;
1095 }
1096 
1097 static void pdc_ring_free(struct pdc_state *pdcs)
1098 {
1099 	if (pdcs->tx_ring_alloc.vbase) {
1100 		dma_pool_free(pdcs->ring_pool, pdcs->tx_ring_alloc.vbase,
1101 			      pdcs->tx_ring_alloc.dmabase);
1102 		pdcs->tx_ring_alloc.vbase = NULL;
1103 	}
1104 
1105 	if (pdcs->rx_ring_alloc.vbase) {
1106 		dma_pool_free(pdcs->ring_pool, pdcs->rx_ring_alloc.vbase,
1107 			      pdcs->rx_ring_alloc.dmabase);
1108 		pdcs->rx_ring_alloc.vbase = NULL;
1109 	}
1110 }
1111 
1112 /**
1113  * pdc_desc_count() - Count the number of DMA descriptors that will be required
1114  * for a given scatterlist. Account for the max length of a DMA buffer.
1115  * @sg:    Scatterlist to be DMA'd
1116  * Return: Number of descriptors required
1117  */
1118 static u32 pdc_desc_count(struct scatterlist *sg)
1119 {
1120 	u32 cnt = 0;
1121 
1122 	while (sg) {
1123 		cnt += ((sg->length / PDC_DMA_BUF_MAX) + 1);
1124 		sg = sg_next(sg);
1125 	}
1126 	return cnt;
1127 }
1128 
1129 /**
1130  * pdc_rings_full() - Check whether the tx ring has room for tx_cnt descriptors
1131  * and the rx ring has room for rx_cnt descriptors.
1132  * @pdcs:  PDC state
1133  * @tx_cnt: The number of descriptors required in the tx ring
1134  * @rx_cnt: The number of descriptors required i the rx ring
1135  *
1136  * Return: true if one of the rings does not have enough space
1137  *         false if sufficient space is available in both rings
1138  */
1139 static bool pdc_rings_full(struct pdc_state *pdcs, int tx_cnt, int rx_cnt)
1140 {
1141 	u32 rx_avail;
1142 	u32 tx_avail;
1143 	bool full = false;
1144 
1145 	/* Check if the tx and rx rings are likely to have enough space */
1146 	rx_avail = pdcs->nrxpost - NRXDACTIVE(pdcs->rxin, pdcs->rxout,
1147 					      pdcs->nrxpost);
1148 	if (unlikely(rx_cnt > rx_avail)) {
1149 		pdcs->rx_ring_full++;
1150 		full = true;
1151 	}
1152 
1153 	if (likely(!full)) {
1154 		tx_avail = pdcs->ntxpost - NTXDACTIVE(pdcs->txin, pdcs->txout,
1155 						      pdcs->ntxpost);
1156 		if (unlikely(tx_cnt > tx_avail)) {
1157 			pdcs->tx_ring_full++;
1158 			full = true;
1159 		}
1160 	}
1161 	return full;
1162 }
1163 
1164 /**
1165  * pdc_last_tx_done() - If both the tx and rx rings have at least
1166  * PDC_RING_SPACE_MIN descriptors available, then indicate that the mailbox
1167  * framework can submit another message.
1168  * @chan:  mailbox channel to check
1169  * Return: true if PDC can accept another message on this channel
1170  */
1171 static bool pdc_last_tx_done(struct mbox_chan *chan)
1172 {
1173 	struct pdc_state *pdcs = chan->con_priv;
1174 	bool ret;
1175 
1176 	if (unlikely(pdc_rings_full(pdcs, PDC_RING_SPACE_MIN,
1177 				    PDC_RING_SPACE_MIN))) {
1178 		pdcs->last_tx_not_done++;
1179 		ret = false;
1180 	} else {
1181 		ret = true;
1182 	}
1183 	return ret;
1184 }
1185 
1186 /**
1187  * pdc_send_data() - mailbox send_data function
1188  * @chan:	The mailbox channel on which the data is sent. The channel
1189  *              corresponds to a DMA ringset.
1190  * @data:	The mailbox message to be sent. The message must be a
1191  *              brcm_message structure.
1192  *
1193  * This function is registered as the send_data function for the mailbox
1194  * controller. From the destination scatterlist in the mailbox message, it
1195  * creates a sequence of receive descriptors in the rx ring. From the source
1196  * scatterlist, it creates a sequence of transmit descriptors in the tx ring.
1197  * After creating the descriptors, it writes the rx ptr and tx ptr registers to
1198  * initiate the DMA transfer.
1199  *
1200  * This function does the DMA map and unmap of the src and dst scatterlists in
1201  * the mailbox message.
1202  *
1203  * Return: 0 if successful
1204  *	   -ENOTSUPP if the mailbox message is a type this driver does not
1205  *			support
1206  *         < 0 if an error
1207  */
1208 static int pdc_send_data(struct mbox_chan *chan, void *data)
1209 {
1210 	struct pdc_state *pdcs = chan->con_priv;
1211 	struct device *dev = &pdcs->pdev->dev;
1212 	struct brcm_message *mssg = data;
1213 	int err = PDC_SUCCESS;
1214 	int src_nent;
1215 	int dst_nent;
1216 	int nent;
1217 	u32 tx_desc_req;
1218 	u32 rx_desc_req;
1219 
1220 	if (unlikely(mssg->type != BRCM_MESSAGE_SPU))
1221 		return -ENOTSUPP;
1222 
1223 	src_nent = sg_nents(mssg->spu.src);
1224 	if (likely(src_nent)) {
1225 		nent = dma_map_sg(dev, mssg->spu.src, src_nent, DMA_TO_DEVICE);
1226 		if (unlikely(nent == 0))
1227 			return -EIO;
1228 	}
1229 
1230 	dst_nent = sg_nents(mssg->spu.dst);
1231 	if (likely(dst_nent)) {
1232 		nent = dma_map_sg(dev, mssg->spu.dst, dst_nent,
1233 				  DMA_FROM_DEVICE);
1234 		if (unlikely(nent == 0)) {
1235 			dma_unmap_sg(dev, mssg->spu.src, src_nent,
1236 				     DMA_TO_DEVICE);
1237 			return -EIO;
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * Check if the tx and rx rings have enough space. Do this prior to
1243 	 * writing any tx or rx descriptors. Need to ensure that we do not write
1244 	 * a partial set of descriptors, or write just rx descriptors but
1245 	 * corresponding tx descriptors don't fit. Note that we want this check
1246 	 * and the entire sequence of descriptor to happen without another
1247 	 * thread getting in. The channel spin lock in the mailbox framework
1248 	 * ensures this.
1249 	 */
1250 	tx_desc_req = pdc_desc_count(mssg->spu.src);
1251 	rx_desc_req = pdc_desc_count(mssg->spu.dst);
1252 	if (unlikely(pdc_rings_full(pdcs, tx_desc_req, rx_desc_req + 1)))
1253 		return -ENOSPC;
1254 
1255 	/* Create rx descriptors to SPU catch response */
1256 	err = pdc_rx_list_init(pdcs, mssg->spu.dst, mssg->ctx);
1257 	err |= pdc_rx_list_sg_add(pdcs, mssg->spu.dst);
1258 
1259 	/* Create tx descriptors to submit SPU request */
1260 	err |= pdc_tx_list_sg_add(pdcs, mssg->spu.src);
1261 	err |= pdc_tx_list_final(pdcs);	/* initiate transfer */
1262 
1263 	if (unlikely(err))
1264 		dev_err(&pdcs->pdev->dev,
1265 			"%s failed with error %d", __func__, err);
1266 
1267 	return err;
1268 }
1269 
1270 static int pdc_startup(struct mbox_chan *chan)
1271 {
1272 	return pdc_ring_init(chan->con_priv, PDC_RINGSET);
1273 }
1274 
1275 static void pdc_shutdown(struct mbox_chan *chan)
1276 {
1277 	struct pdc_state *pdcs = chan->con_priv;
1278 
1279 	if (!pdcs)
1280 		return;
1281 
1282 	dev_dbg(&pdcs->pdev->dev,
1283 		"Shutdown mailbox channel for PDC %u", pdcs->pdc_idx);
1284 	pdc_ring_free(pdcs);
1285 }
1286 
1287 /**
1288  * pdc_hw_init() - Use the given initialization parameters to initialize the
1289  * state for one of the PDCs.
1290  * @pdcs:  state of the PDC
1291  */
1292 static
1293 void pdc_hw_init(struct pdc_state *pdcs)
1294 {
1295 	struct platform_device *pdev;
1296 	struct device *dev;
1297 	struct dma64 *dma_reg;
1298 	int ringset = PDC_RINGSET;
1299 
1300 	pdev = pdcs->pdev;
1301 	dev = &pdev->dev;
1302 
1303 	dev_dbg(dev, "PDC %u initial values:", pdcs->pdc_idx);
1304 	dev_dbg(dev, "state structure:                   %p",
1305 		pdcs);
1306 	dev_dbg(dev, " - base virtual addr of hw regs    %p",
1307 		pdcs->pdc_reg_vbase);
1308 
1309 	/* initialize data structures */
1310 	pdcs->regs = (struct pdc_regs *)pdcs->pdc_reg_vbase;
1311 	pdcs->txregs_64 = (struct dma64_regs *)
1312 	    (((u8 *)pdcs->pdc_reg_vbase) +
1313 		     PDC_TXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1314 	pdcs->rxregs_64 = (struct dma64_regs *)
1315 	    (((u8 *)pdcs->pdc_reg_vbase) +
1316 		     PDC_RXREGS_OFFSET + (sizeof(struct dma64) * ringset));
1317 
1318 	pdcs->ntxd = PDC_RING_ENTRIES;
1319 	pdcs->nrxd = PDC_RING_ENTRIES;
1320 	pdcs->ntxpost = PDC_RING_ENTRIES - 1;
1321 	pdcs->nrxpost = PDC_RING_ENTRIES - 1;
1322 	iowrite32(0, &pdcs->regs->intmask);
1323 
1324 	dma_reg = &pdcs->regs->dmaregs[ringset];
1325 
1326 	/* Configure DMA but will enable later in pdc_ring_init() */
1327 	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1328 
1329 	iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1330 		  &dma_reg->dmarcv.control);
1331 
1332 	/* Reset current index pointers after making sure DMA is disabled */
1333 	iowrite32(0, &dma_reg->dmaxmt.ptr);
1334 	iowrite32(0, &dma_reg->dmarcv.ptr);
1335 
1336 	if (pdcs->pdc_resp_hdr_len == PDC_SPU2_RESP_HDR_LEN)
1337 		iowrite32(PDC_CKSUM_CTRL,
1338 			  pdcs->pdc_reg_vbase + PDC_CKSUM_CTRL_OFFSET);
1339 }
1340 
1341 /**
1342  * pdc_hw_disable() - Disable the tx and rx control in the hw.
1343  * @pdcs: PDC state structure
1344  *
1345  */
1346 static void pdc_hw_disable(struct pdc_state *pdcs)
1347 {
1348 	struct dma64 *dma_reg;
1349 
1350 	dma_reg = &pdcs->regs->dmaregs[PDC_RINGSET];
1351 	iowrite32(PDC_TX_CTL, &dma_reg->dmaxmt.control);
1352 	iowrite32(PDC_RX_CTL + (pdcs->rx_status_len << 1),
1353 		  &dma_reg->dmarcv.control);
1354 }
1355 
1356 /**
1357  * pdc_rx_buf_pool_create() - Pool of receive buffers used to catch the metadata
1358  * header returned with each response message.
1359  * @pdcs: PDC state structure
1360  *
1361  * The metadata is not returned to the mailbox client. So the PDC driver
1362  * manages these buffers.
1363  *
1364  * Return: PDC_SUCCESS
1365  *         -ENOMEM if pool creation fails
1366  */
1367 static int pdc_rx_buf_pool_create(struct pdc_state *pdcs)
1368 {
1369 	struct platform_device *pdev;
1370 	struct device *dev;
1371 
1372 	pdev = pdcs->pdev;
1373 	dev = &pdev->dev;
1374 
1375 	pdcs->pdc_resp_hdr_len = pdcs->rx_status_len;
1376 	if (pdcs->use_bcm_hdr)
1377 		pdcs->pdc_resp_hdr_len += BCM_HDR_LEN;
1378 
1379 	pdcs->rx_buf_pool = dma_pool_create("pdc rx bufs", dev,
1380 					    pdcs->pdc_resp_hdr_len,
1381 					    RX_BUF_ALIGN, 0);
1382 	if (!pdcs->rx_buf_pool)
1383 		return -ENOMEM;
1384 
1385 	return PDC_SUCCESS;
1386 }
1387 
1388 /**
1389  * pdc_interrupts_init() - Initialize the interrupt configuration for a PDC and
1390  * specify a threaded IRQ handler for deferred handling of interrupts outside of
1391  * interrupt context.
1392  * @pdcs:   PDC state
1393  *
1394  * Set the interrupt mask for transmit and receive done.
1395  * Set the lazy interrupt frame count to generate an interrupt for just one pkt.
1396  *
1397  * Return:  PDC_SUCCESS
1398  *          <0 if threaded irq request fails
1399  */
1400 static int pdc_interrupts_init(struct pdc_state *pdcs)
1401 {
1402 	struct platform_device *pdev = pdcs->pdev;
1403 	struct device *dev = &pdev->dev;
1404 	struct device_node *dn = pdev->dev.of_node;
1405 	int err;
1406 
1407 	/* interrupt configuration */
1408 	iowrite32(PDC_INTMASK, pdcs->pdc_reg_vbase + PDC_INTMASK_OFFSET);
1409 
1410 	if (pdcs->hw_type == FA_HW)
1411 		iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1412 			  FA_RCVLAZY0_OFFSET);
1413 	else
1414 		iowrite32(PDC_LAZY_INT, pdcs->pdc_reg_vbase +
1415 			  PDC_RCVLAZY0_OFFSET);
1416 
1417 	/* read irq from device tree */
1418 	pdcs->pdc_irq = irq_of_parse_and_map(dn, 0);
1419 	dev_dbg(dev, "pdc device %s irq %u for pdcs %p",
1420 		dev_name(dev), pdcs->pdc_irq, pdcs);
1421 
1422 	err = devm_request_irq(dev, pdcs->pdc_irq, pdc_irq_handler, 0,
1423 			       dev_name(dev), dev);
1424 	if (err) {
1425 		dev_err(dev, "IRQ %u request failed with err %d\n",
1426 			pdcs->pdc_irq, err);
1427 		return err;
1428 	}
1429 	return PDC_SUCCESS;
1430 }
1431 
1432 static const struct mbox_chan_ops pdc_mbox_chan_ops = {
1433 	.send_data = pdc_send_data,
1434 	.last_tx_done = pdc_last_tx_done,
1435 	.startup = pdc_startup,
1436 	.shutdown = pdc_shutdown
1437 };
1438 
1439 /**
1440  * pdc_mb_init() - Initialize the mailbox controller.
1441  * @pdcs:  PDC state
1442  *
1443  * Each PDC is a mailbox controller. Each ringset is a mailbox channel. Kernel
1444  * driver only uses one ringset and thus one mb channel. PDC uses the transmit
1445  * complete interrupt to determine when a mailbox message has successfully been
1446  * transmitted.
1447  *
1448  * Return: 0 on success
1449  *         < 0 if there is an allocation or registration failure
1450  */
1451 static int pdc_mb_init(struct pdc_state *pdcs)
1452 {
1453 	struct device *dev = &pdcs->pdev->dev;
1454 	struct mbox_controller *mbc;
1455 	int chan_index;
1456 	int err;
1457 
1458 	mbc = &pdcs->mbc;
1459 	mbc->dev = dev;
1460 	mbc->ops = &pdc_mbox_chan_ops;
1461 	mbc->num_chans = 1;
1462 	mbc->chans = devm_kcalloc(dev, mbc->num_chans, sizeof(*mbc->chans),
1463 				  GFP_KERNEL);
1464 	if (!mbc->chans)
1465 		return -ENOMEM;
1466 
1467 	mbc->txdone_irq = false;
1468 	mbc->txdone_poll = true;
1469 	mbc->txpoll_period = 1;
1470 	for (chan_index = 0; chan_index < mbc->num_chans; chan_index++)
1471 		mbc->chans[chan_index].con_priv = pdcs;
1472 
1473 	/* Register mailbox controller */
1474 	err = mbox_controller_register(mbc);
1475 	if (err) {
1476 		dev_crit(dev,
1477 			 "Failed to register PDC mailbox controller. Error %d.",
1478 			 err);
1479 		return err;
1480 	}
1481 	return 0;
1482 }
1483 
1484 /* Device tree API */
1485 static const int pdc_hw = PDC_HW;
1486 static const int fa_hw = FA_HW;
1487 
1488 static const struct of_device_id pdc_mbox_of_match[] = {
1489 	{.compatible = "brcm,iproc-pdc-mbox", .data = &pdc_hw},
1490 	{.compatible = "brcm,iproc-fa2-mbox", .data = &fa_hw},
1491 	{ /* sentinel */ }
1492 };
1493 MODULE_DEVICE_TABLE(of, pdc_mbox_of_match);
1494 
1495 /**
1496  * pdc_dt_read() - Read application-specific data from device tree.
1497  * @pdev:  Platform device
1498  * @pdcs:  PDC state
1499  *
1500  * Reads the number of bytes of receive status that precede each received frame.
1501  * Reads whether transmit and received frames should be preceded by an 8-byte
1502  * BCM header.
1503  *
1504  * Return: 0 if successful
1505  *         -ENODEV if device not available
1506  */
1507 static int pdc_dt_read(struct platform_device *pdev, struct pdc_state *pdcs)
1508 {
1509 	struct device *dev = &pdev->dev;
1510 	struct device_node *dn = pdev->dev.of_node;
1511 	const struct of_device_id *match;
1512 	const int *hw_type;
1513 	int err;
1514 
1515 	err = of_property_read_u32(dn, "brcm,rx-status-len",
1516 				   &pdcs->rx_status_len);
1517 	if (err < 0)
1518 		dev_err(dev,
1519 			"%s failed to get DMA receive status length from device tree",
1520 			__func__);
1521 
1522 	pdcs->use_bcm_hdr = of_property_read_bool(dn, "brcm,use-bcm-hdr");
1523 
1524 	pdcs->hw_type = PDC_HW;
1525 
1526 	match = of_match_device(of_match_ptr(pdc_mbox_of_match), dev);
1527 	if (match != NULL) {
1528 		hw_type = match->data;
1529 		pdcs->hw_type = *hw_type;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 /**
1536  * pdc_probe() - Probe function for PDC driver.
1537  * @pdev:   PDC platform device
1538  *
1539  * Reserve and map register regions defined in device tree.
1540  * Allocate and initialize tx and rx DMA rings.
1541  * Initialize a mailbox controller for each PDC.
1542  *
1543  * Return: 0 if successful
1544  *         < 0 if an error
1545  */
1546 static int pdc_probe(struct platform_device *pdev)
1547 {
1548 	int err = 0;
1549 	struct device *dev = &pdev->dev;
1550 	struct resource *pdc_regs;
1551 	struct pdc_state *pdcs;
1552 
1553 	/* PDC state for one SPU */
1554 	pdcs = devm_kzalloc(dev, sizeof(*pdcs), GFP_KERNEL);
1555 	if (!pdcs) {
1556 		err = -ENOMEM;
1557 		goto cleanup;
1558 	}
1559 
1560 	pdcs->pdev = pdev;
1561 	platform_set_drvdata(pdev, pdcs);
1562 	pdcs->pdc_idx = pdcg.num_spu;
1563 	pdcg.num_spu++;
1564 
1565 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(39));
1566 	if (err) {
1567 		dev_warn(dev, "PDC device cannot perform DMA. Error %d.", err);
1568 		goto cleanup;
1569 	}
1570 
1571 	/* Create DMA pool for tx ring */
1572 	pdcs->ring_pool = dma_pool_create("pdc rings", dev, PDC_RING_SIZE,
1573 					  RING_ALIGN, 0);
1574 	if (!pdcs->ring_pool) {
1575 		err = -ENOMEM;
1576 		goto cleanup;
1577 	}
1578 
1579 	err = pdc_dt_read(pdev, pdcs);
1580 	if (err)
1581 		goto cleanup_ring_pool;
1582 
1583 	pdc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1584 	if (!pdc_regs) {
1585 		err = -ENODEV;
1586 		goto cleanup_ring_pool;
1587 	}
1588 	dev_dbg(dev, "PDC register region res.start = %pa, res.end = %pa",
1589 		&pdc_regs->start, &pdc_regs->end);
1590 
1591 	pdcs->pdc_reg_vbase = devm_ioremap_resource(&pdev->dev, pdc_regs);
1592 	if (IS_ERR(pdcs->pdc_reg_vbase)) {
1593 		err = PTR_ERR(pdcs->pdc_reg_vbase);
1594 		dev_err(&pdev->dev, "Failed to map registers: %d\n", err);
1595 		goto cleanup_ring_pool;
1596 	}
1597 
1598 	/* create rx buffer pool after dt read to know how big buffers are */
1599 	err = pdc_rx_buf_pool_create(pdcs);
1600 	if (err)
1601 		goto cleanup_ring_pool;
1602 
1603 	pdc_hw_init(pdcs);
1604 
1605 	/* Init tasklet for deferred DMA rx processing */
1606 	tasklet_init(&pdcs->rx_tasklet, pdc_tasklet_cb, (unsigned long)pdcs);
1607 
1608 	err = pdc_interrupts_init(pdcs);
1609 	if (err)
1610 		goto cleanup_buf_pool;
1611 
1612 	/* Initialize mailbox controller */
1613 	err = pdc_mb_init(pdcs);
1614 	if (err)
1615 		goto cleanup_buf_pool;
1616 
1617 	pdcs->debugfs_stats = NULL;
1618 	pdc_setup_debugfs(pdcs);
1619 
1620 	dev_dbg(dev, "pdc_probe() successful");
1621 	return PDC_SUCCESS;
1622 
1623 cleanup_buf_pool:
1624 	tasklet_kill(&pdcs->rx_tasklet);
1625 	dma_pool_destroy(pdcs->rx_buf_pool);
1626 
1627 cleanup_ring_pool:
1628 	dma_pool_destroy(pdcs->ring_pool);
1629 
1630 cleanup:
1631 	return err;
1632 }
1633 
1634 static int pdc_remove(struct platform_device *pdev)
1635 {
1636 	struct pdc_state *pdcs = platform_get_drvdata(pdev);
1637 
1638 	pdc_free_debugfs();
1639 
1640 	tasklet_kill(&pdcs->rx_tasklet);
1641 
1642 	pdc_hw_disable(pdcs);
1643 
1644 	mbox_controller_unregister(&pdcs->mbc);
1645 
1646 	dma_pool_destroy(pdcs->rx_buf_pool);
1647 	dma_pool_destroy(pdcs->ring_pool);
1648 	return 0;
1649 }
1650 
1651 static struct platform_driver pdc_mbox_driver = {
1652 	.probe = pdc_probe,
1653 	.remove = pdc_remove,
1654 	.driver = {
1655 		   .name = "brcm-iproc-pdc-mbox",
1656 		   .of_match_table = of_match_ptr(pdc_mbox_of_match),
1657 		   },
1658 };
1659 module_platform_driver(pdc_mbox_driver);
1660 
1661 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
1662 MODULE_DESCRIPTION("Broadcom PDC mailbox driver");
1663 MODULE_LICENSE("GPL v2");
1664