1 /* 2 * Device driver for the via-pmu on Apple Powermacs. 3 * 4 * The VIA (versatile interface adapter) interfaces to the PMU, 5 * a 6805 microprocessor core whose primary function is to control 6 * battery charging and system power on the PowerBook 3400 and 2400. 7 * The PMU also controls the ADB (Apple Desktop Bus) which connects 8 * to the keyboard and mouse, as well as the non-volatile RAM 9 * and the RTC (real time clock) chip. 10 * 11 * Copyright (C) 1998 Paul Mackerras and Fabio Riccardi. 12 * Copyright (C) 2001-2002 Benjamin Herrenschmidt 13 * Copyright (C) 2006-2007 Johannes Berg 14 * 15 * THIS DRIVER IS BECOMING A TOTAL MESS ! 16 * - Cleanup atomically disabling reply to PMU events after 17 * a sleep or a freq. switch 18 * 19 */ 20 #include <stdarg.h> 21 #include <linux/mutex.h> 22 #include <linux/types.h> 23 #include <linux/errno.h> 24 #include <linux/kernel.h> 25 #include <linux/delay.h> 26 #include <linux/sched.h> 27 #include <linux/miscdevice.h> 28 #include <linux/blkdev.h> 29 #include <linux/pci.h> 30 #include <linux/slab.h> 31 #include <linux/poll.h> 32 #include <linux/adb.h> 33 #include <linux/pmu.h> 34 #include <linux/cuda.h> 35 #include <linux/module.h> 36 #include <linux/spinlock.h> 37 #include <linux/pm.h> 38 #include <linux/proc_fs.h> 39 #include <linux/seq_file.h> 40 #include <linux/init.h> 41 #include <linux/interrupt.h> 42 #include <linux/device.h> 43 #include <linux/syscore_ops.h> 44 #include <linux/freezer.h> 45 #include <linux/syscalls.h> 46 #include <linux/suspend.h> 47 #include <linux/cpu.h> 48 #include <linux/compat.h> 49 #include <asm/prom.h> 50 #include <asm/machdep.h> 51 #include <asm/io.h> 52 #include <asm/pgtable.h> 53 #include <asm/sections.h> 54 #include <asm/irq.h> 55 #include <asm/pmac_feature.h> 56 #include <asm/pmac_pfunc.h> 57 #include <asm/pmac_low_i2c.h> 58 #include <asm/uaccess.h> 59 #include <asm/mmu_context.h> 60 #include <asm/cputable.h> 61 #include <asm/time.h> 62 #include <asm/backlight.h> 63 64 #include "via-pmu-event.h" 65 66 /* Some compile options */ 67 #undef DEBUG_SLEEP 68 69 /* Misc minor number allocated for /dev/pmu */ 70 #define PMU_MINOR 154 71 72 /* How many iterations between battery polls */ 73 #define BATTERY_POLLING_COUNT 2 74 75 static DEFINE_MUTEX(pmu_info_proc_mutex); 76 static volatile unsigned char __iomem *via; 77 78 /* VIA registers - spaced 0x200 bytes apart */ 79 #define RS 0x200 /* skip between registers */ 80 #define B 0 /* B-side data */ 81 #define A RS /* A-side data */ 82 #define DIRB (2*RS) /* B-side direction (1=output) */ 83 #define DIRA (3*RS) /* A-side direction (1=output) */ 84 #define T1CL (4*RS) /* Timer 1 ctr/latch (low 8 bits) */ 85 #define T1CH (5*RS) /* Timer 1 counter (high 8 bits) */ 86 #define T1LL (6*RS) /* Timer 1 latch (low 8 bits) */ 87 #define T1LH (7*RS) /* Timer 1 latch (high 8 bits) */ 88 #define T2CL (8*RS) /* Timer 2 ctr/latch (low 8 bits) */ 89 #define T2CH (9*RS) /* Timer 2 counter (high 8 bits) */ 90 #define SR (10*RS) /* Shift register */ 91 #define ACR (11*RS) /* Auxiliary control register */ 92 #define PCR (12*RS) /* Peripheral control register */ 93 #define IFR (13*RS) /* Interrupt flag register */ 94 #define IER (14*RS) /* Interrupt enable register */ 95 #define ANH (15*RS) /* A-side data, no handshake */ 96 97 /* Bits in B data register: both active low */ 98 #define TACK 0x08 /* Transfer acknowledge (input) */ 99 #define TREQ 0x10 /* Transfer request (output) */ 100 101 /* Bits in ACR */ 102 #define SR_CTRL 0x1c /* Shift register control bits */ 103 #define SR_EXT 0x0c /* Shift on external clock */ 104 #define SR_OUT 0x10 /* Shift out if 1 */ 105 106 /* Bits in IFR and IER */ 107 #define IER_SET 0x80 /* set bits in IER */ 108 #define IER_CLR 0 /* clear bits in IER */ 109 #define SR_INT 0x04 /* Shift register full/empty */ 110 #define CB2_INT 0x08 111 #define CB1_INT 0x10 /* transition on CB1 input */ 112 113 static volatile enum pmu_state { 114 idle, 115 sending, 116 intack, 117 reading, 118 reading_intr, 119 locked, 120 } pmu_state; 121 122 static volatile enum int_data_state { 123 int_data_empty, 124 int_data_fill, 125 int_data_ready, 126 int_data_flush 127 } int_data_state[2] = { int_data_empty, int_data_empty }; 128 129 static struct adb_request *current_req; 130 static struct adb_request *last_req; 131 static struct adb_request *req_awaiting_reply; 132 static unsigned char interrupt_data[2][32]; 133 static int interrupt_data_len[2]; 134 static int int_data_last; 135 static unsigned char *reply_ptr; 136 static int data_index; 137 static int data_len; 138 static volatile int adb_int_pending; 139 static volatile int disable_poll; 140 static struct device_node *vias; 141 static int pmu_kind = PMU_UNKNOWN; 142 static int pmu_fully_inited; 143 static int pmu_has_adb; 144 static struct device_node *gpio_node; 145 static unsigned char __iomem *gpio_reg; 146 static int gpio_irq = NO_IRQ; 147 static int gpio_irq_enabled = -1; 148 static volatile int pmu_suspended; 149 static spinlock_t pmu_lock; 150 static u8 pmu_intr_mask; 151 static int pmu_version; 152 static int drop_interrupts; 153 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) 154 static int option_lid_wakeup = 1; 155 #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */ 156 static unsigned long async_req_locks; 157 static unsigned int pmu_irq_stats[11]; 158 159 static struct proc_dir_entry *proc_pmu_root; 160 static struct proc_dir_entry *proc_pmu_info; 161 static struct proc_dir_entry *proc_pmu_irqstats; 162 static struct proc_dir_entry *proc_pmu_options; 163 static int option_server_mode; 164 165 int pmu_battery_count; 166 int pmu_cur_battery; 167 unsigned int pmu_power_flags = PMU_PWR_AC_PRESENT; 168 struct pmu_battery_info pmu_batteries[PMU_MAX_BATTERIES]; 169 static int query_batt_timer = BATTERY_POLLING_COUNT; 170 static struct adb_request batt_req; 171 static struct proc_dir_entry *proc_pmu_batt[PMU_MAX_BATTERIES]; 172 173 int __fake_sleep; 174 int asleep; 175 176 #ifdef CONFIG_ADB 177 static int adb_dev_map; 178 static int pmu_adb_flags; 179 180 static int pmu_probe(void); 181 static int pmu_init(void); 182 static int pmu_send_request(struct adb_request *req, int sync); 183 static int pmu_adb_autopoll(int devs); 184 static int pmu_adb_reset_bus(void); 185 #endif /* CONFIG_ADB */ 186 187 static int init_pmu(void); 188 static void pmu_start(void); 189 static irqreturn_t via_pmu_interrupt(int irq, void *arg); 190 static irqreturn_t gpio1_interrupt(int irq, void *arg); 191 static const struct file_operations pmu_info_proc_fops; 192 static const struct file_operations pmu_irqstats_proc_fops; 193 static void pmu_pass_intr(unsigned char *data, int len); 194 static const struct file_operations pmu_battery_proc_fops; 195 static const struct file_operations pmu_options_proc_fops; 196 197 #ifdef CONFIG_ADB 198 struct adb_driver via_pmu_driver = { 199 "PMU", 200 pmu_probe, 201 pmu_init, 202 pmu_send_request, 203 pmu_adb_autopoll, 204 pmu_poll_adb, 205 pmu_adb_reset_bus 206 }; 207 #endif /* CONFIG_ADB */ 208 209 extern void low_sleep_handler(void); 210 extern void enable_kernel_altivec(void); 211 extern void enable_kernel_fp(void); 212 213 #ifdef DEBUG_SLEEP 214 int pmu_polled_request(struct adb_request *req); 215 void pmu_blink(int n); 216 #endif 217 218 /* 219 * This table indicates for each PMU opcode: 220 * - the number of data bytes to be sent with the command, or -1 221 * if a length byte should be sent, 222 * - the number of response bytes which the PMU will return, or 223 * -1 if it will send a length byte. 224 */ 225 static const s8 pmu_data_len[256][2] = { 226 /* 0 1 2 3 4 5 6 7 */ 227 /*00*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 228 /*08*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, 229 /*10*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 230 /*18*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0}, 231 /*20*/ {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0}, 232 /*28*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1}, 233 /*30*/ { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 234 /*38*/ { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0}, 235 /*40*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 236 /*48*/ { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1}, 237 /*50*/ { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0}, 238 /*58*/ { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1}, 239 /*60*/ { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 240 /*68*/ { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1}, 241 /*70*/ { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 242 /*78*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1}, 243 /*80*/ { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 244 /*88*/ { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, 245 /*90*/ { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 246 /*98*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, 247 /*a0*/ { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0}, 248 /*a8*/ { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, 249 /*b0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 250 /*b8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, 251 /*c0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 252 /*c8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, 253 /*d0*/ { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 254 /*d8*/ { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1}, 255 /*e0*/ {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0}, 256 /*e8*/ { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0}, 257 /*f0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0}, 258 /*f8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1}, 259 }; 260 261 static char *pbook_type[] = { 262 "Unknown PowerBook", 263 "PowerBook 2400/3400/3500(G3)", 264 "PowerBook G3 Series", 265 "1999 PowerBook G3", 266 "Core99" 267 }; 268 269 int __init find_via_pmu(void) 270 { 271 u64 taddr; 272 const u32 *reg; 273 274 if (via != 0) 275 return 1; 276 vias = of_find_node_by_name(NULL, "via-pmu"); 277 if (vias == NULL) 278 return 0; 279 280 reg = of_get_property(vias, "reg", NULL); 281 if (reg == NULL) { 282 printk(KERN_ERR "via-pmu: No \"reg\" property !\n"); 283 goto fail; 284 } 285 taddr = of_translate_address(vias, reg); 286 if (taddr == OF_BAD_ADDR) { 287 printk(KERN_ERR "via-pmu: Can't translate address !\n"); 288 goto fail; 289 } 290 291 spin_lock_init(&pmu_lock); 292 293 pmu_has_adb = 1; 294 295 pmu_intr_mask = PMU_INT_PCEJECT | 296 PMU_INT_SNDBRT | 297 PMU_INT_ADB | 298 PMU_INT_TICK; 299 300 if (vias->parent->name && ((strcmp(vias->parent->name, "ohare") == 0) 301 || of_device_is_compatible(vias->parent, "ohare"))) 302 pmu_kind = PMU_OHARE_BASED; 303 else if (of_device_is_compatible(vias->parent, "paddington")) 304 pmu_kind = PMU_PADDINGTON_BASED; 305 else if (of_device_is_compatible(vias->parent, "heathrow")) 306 pmu_kind = PMU_HEATHROW_BASED; 307 else if (of_device_is_compatible(vias->parent, "Keylargo") 308 || of_device_is_compatible(vias->parent, "K2-Keylargo")) { 309 struct device_node *gpiop; 310 struct device_node *adbp; 311 u64 gaddr = OF_BAD_ADDR; 312 313 pmu_kind = PMU_KEYLARGO_BASED; 314 adbp = of_find_node_by_type(NULL, "adb"); 315 pmu_has_adb = (adbp != NULL); 316 of_node_put(adbp); 317 pmu_intr_mask = PMU_INT_PCEJECT | 318 PMU_INT_SNDBRT | 319 PMU_INT_ADB | 320 PMU_INT_TICK | 321 PMU_INT_ENVIRONMENT; 322 323 gpiop = of_find_node_by_name(NULL, "gpio"); 324 if (gpiop) { 325 reg = of_get_property(gpiop, "reg", NULL); 326 if (reg) 327 gaddr = of_translate_address(gpiop, reg); 328 if (gaddr != OF_BAD_ADDR) 329 gpio_reg = ioremap(gaddr, 0x10); 330 } 331 if (gpio_reg == NULL) { 332 printk(KERN_ERR "via-pmu: Can't find GPIO reg !\n"); 333 goto fail_gpio; 334 } 335 } else 336 pmu_kind = PMU_UNKNOWN; 337 338 via = ioremap(taddr, 0x2000); 339 if (via == NULL) { 340 printk(KERN_ERR "via-pmu: Can't map address !\n"); 341 goto fail; 342 } 343 344 out_8(&via[IER], IER_CLR | 0x7f); /* disable all intrs */ 345 out_8(&via[IFR], 0x7f); /* clear IFR */ 346 347 pmu_state = idle; 348 349 if (!init_pmu()) { 350 via = NULL; 351 return 0; 352 } 353 354 printk(KERN_INFO "PMU driver v%d initialized for %s, firmware: %02x\n", 355 PMU_DRIVER_VERSION, pbook_type[pmu_kind], pmu_version); 356 357 sys_ctrler = SYS_CTRLER_PMU; 358 359 return 1; 360 fail: 361 of_node_put(vias); 362 iounmap(gpio_reg); 363 gpio_reg = NULL; 364 fail_gpio: 365 vias = NULL; 366 return 0; 367 } 368 369 #ifdef CONFIG_ADB 370 static int pmu_probe(void) 371 { 372 return vias == NULL? -ENODEV: 0; 373 } 374 375 static int __init pmu_init(void) 376 { 377 if (vias == NULL) 378 return -ENODEV; 379 return 0; 380 } 381 #endif /* CONFIG_ADB */ 382 383 /* 384 * We can't wait until pmu_init gets called, that happens too late. 385 * It happens after IDE and SCSI initialization, which can take a few 386 * seconds, and by that time the PMU could have given up on us and 387 * turned us off. 388 * Thus this is called with arch_initcall rather than device_initcall. 389 */ 390 static int __init via_pmu_start(void) 391 { 392 unsigned int irq; 393 394 if (vias == NULL) 395 return -ENODEV; 396 397 batt_req.complete = 1; 398 399 irq = irq_of_parse_and_map(vias, 0); 400 if (irq == NO_IRQ) { 401 printk(KERN_ERR "via-pmu: can't map interrupt\n"); 402 return -ENODEV; 403 } 404 /* We set IRQF_NO_SUSPEND because we don't want the interrupt 405 * to be disabled between the 2 passes of driver suspend, we 406 * control our own disabling for that one 407 */ 408 if (request_irq(irq, via_pmu_interrupt, IRQF_NO_SUSPEND, 409 "VIA-PMU", (void *)0)) { 410 printk(KERN_ERR "via-pmu: can't request irq %d\n", irq); 411 return -ENODEV; 412 } 413 414 if (pmu_kind == PMU_KEYLARGO_BASED) { 415 gpio_node = of_find_node_by_name(NULL, "extint-gpio1"); 416 if (gpio_node == NULL) 417 gpio_node = of_find_node_by_name(NULL, 418 "pmu-interrupt"); 419 if (gpio_node) 420 gpio_irq = irq_of_parse_and_map(gpio_node, 0); 421 422 if (gpio_irq != NO_IRQ) { 423 if (request_irq(gpio_irq, gpio1_interrupt, IRQF_TIMER, 424 "GPIO1 ADB", (void *)0)) 425 printk(KERN_ERR "pmu: can't get irq %d" 426 " (GPIO1)\n", gpio_irq); 427 else 428 gpio_irq_enabled = 1; 429 } 430 } 431 432 /* Enable interrupts */ 433 out_8(&via[IER], IER_SET | SR_INT | CB1_INT); 434 435 pmu_fully_inited = 1; 436 437 /* Make sure PMU settle down before continuing. This is _very_ important 438 * since the IDE probe may shut interrupts down for quite a bit of time. If 439 * a PMU communication is pending while this happens, the PMU may timeout 440 * Not that on Core99 machines, the PMU keeps sending us environement 441 * messages, we should find a way to either fix IDE or make it call 442 * pmu_suspend() before masking interrupts. This can also happens while 443 * scolling with some fbdevs. 444 */ 445 do { 446 pmu_poll(); 447 } while (pmu_state != idle); 448 449 return 0; 450 } 451 452 arch_initcall(via_pmu_start); 453 454 /* 455 * This has to be done after pci_init, which is a subsys_initcall. 456 */ 457 static int __init via_pmu_dev_init(void) 458 { 459 if (vias == NULL) 460 return -ENODEV; 461 462 #ifdef CONFIG_PMAC_BACKLIGHT 463 /* Initialize backlight */ 464 pmu_backlight_init(); 465 #endif 466 467 #ifdef CONFIG_PPC32 468 if (of_machine_is_compatible("AAPL,3400/2400") || 469 of_machine_is_compatible("AAPL,3500")) { 470 int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO, 471 NULL, PMAC_MB_INFO_MODEL, 0); 472 pmu_battery_count = 1; 473 if (mb == PMAC_TYPE_COMET) 474 pmu_batteries[0].flags |= PMU_BATT_TYPE_COMET; 475 else 476 pmu_batteries[0].flags |= PMU_BATT_TYPE_HOOPER; 477 } else if (of_machine_is_compatible("AAPL,PowerBook1998") || 478 of_machine_is_compatible("PowerBook1,1")) { 479 pmu_battery_count = 2; 480 pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART; 481 pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART; 482 } else { 483 struct device_node* prim = 484 of_find_node_by_name(NULL, "power-mgt"); 485 const u32 *prim_info = NULL; 486 if (prim) 487 prim_info = of_get_property(prim, "prim-info", NULL); 488 if (prim_info) { 489 /* Other stuffs here yet unknown */ 490 pmu_battery_count = (prim_info[6] >> 16) & 0xff; 491 pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART; 492 if (pmu_battery_count > 1) 493 pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART; 494 } 495 of_node_put(prim); 496 } 497 #endif /* CONFIG_PPC32 */ 498 499 /* Create /proc/pmu */ 500 proc_pmu_root = proc_mkdir("pmu", NULL); 501 if (proc_pmu_root) { 502 long i; 503 504 for (i=0; i<pmu_battery_count; i++) { 505 char title[16]; 506 sprintf(title, "battery_%ld", i); 507 proc_pmu_batt[i] = proc_create_data(title, 0, proc_pmu_root, 508 &pmu_battery_proc_fops, (void *)i); 509 } 510 511 proc_pmu_info = proc_create("info", 0, proc_pmu_root, &pmu_info_proc_fops); 512 proc_pmu_irqstats = proc_create("interrupts", 0, proc_pmu_root, 513 &pmu_irqstats_proc_fops); 514 proc_pmu_options = proc_create("options", 0600, proc_pmu_root, 515 &pmu_options_proc_fops); 516 } 517 return 0; 518 } 519 520 device_initcall(via_pmu_dev_init); 521 522 static int 523 init_pmu(void) 524 { 525 int timeout; 526 struct adb_request req; 527 528 out_8(&via[B], via[B] | TREQ); /* negate TREQ */ 529 out_8(&via[DIRB], (via[DIRB] | TREQ) & ~TACK); /* TACK in, TREQ out */ 530 531 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask); 532 timeout = 100000; 533 while (!req.complete) { 534 if (--timeout < 0) { 535 printk(KERN_ERR "init_pmu: no response from PMU\n"); 536 return 0; 537 } 538 udelay(10); 539 pmu_poll(); 540 } 541 542 /* ack all pending interrupts */ 543 timeout = 100000; 544 interrupt_data[0][0] = 1; 545 while (interrupt_data[0][0] || pmu_state != idle) { 546 if (--timeout < 0) { 547 printk(KERN_ERR "init_pmu: timed out acking intrs\n"); 548 return 0; 549 } 550 if (pmu_state == idle) 551 adb_int_pending = 1; 552 via_pmu_interrupt(0, NULL); 553 udelay(10); 554 } 555 556 /* Tell PMU we are ready. */ 557 if (pmu_kind == PMU_KEYLARGO_BASED) { 558 pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2); 559 while (!req.complete) 560 pmu_poll(); 561 } 562 563 /* Read PMU version */ 564 pmu_request(&req, NULL, 1, PMU_GET_VERSION); 565 pmu_wait_complete(&req); 566 if (req.reply_len > 0) 567 pmu_version = req.reply[0]; 568 569 /* Read server mode setting */ 570 if (pmu_kind == PMU_KEYLARGO_BASED) { 571 pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, 572 PMU_PWR_GET_POWERUP_EVENTS); 573 pmu_wait_complete(&req); 574 if (req.reply_len == 2) { 575 if (req.reply[1] & PMU_PWR_WAKEUP_AC_INSERT) 576 option_server_mode = 1; 577 printk(KERN_INFO "via-pmu: Server Mode is %s\n", 578 option_server_mode ? "enabled" : "disabled"); 579 } 580 } 581 return 1; 582 } 583 584 int 585 pmu_get_model(void) 586 { 587 return pmu_kind; 588 } 589 590 static void pmu_set_server_mode(int server_mode) 591 { 592 struct adb_request req; 593 594 if (pmu_kind != PMU_KEYLARGO_BASED) 595 return; 596 597 option_server_mode = server_mode; 598 pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, PMU_PWR_GET_POWERUP_EVENTS); 599 pmu_wait_complete(&req); 600 if (req.reply_len < 2) 601 return; 602 if (server_mode) 603 pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, 604 PMU_PWR_SET_POWERUP_EVENTS, 605 req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); 606 else 607 pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, 608 PMU_PWR_CLR_POWERUP_EVENTS, 609 req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); 610 pmu_wait_complete(&req); 611 } 612 613 /* This new version of the code for 2400/3400/3500 powerbooks 614 * is inspired from the implementation in gkrellm-pmu 615 */ 616 static void 617 done_battery_state_ohare(struct adb_request* req) 618 { 619 /* format: 620 * [0] : flags 621 * 0x01 : AC indicator 622 * 0x02 : charging 623 * 0x04 : battery exist 624 * 0x08 : 625 * 0x10 : 626 * 0x20 : full charged 627 * 0x40 : pcharge reset 628 * 0x80 : battery exist 629 * 630 * [1][2] : battery voltage 631 * [3] : CPU temperature 632 * [4] : battery temperature 633 * [5] : current 634 * [6][7] : pcharge 635 * --tkoba 636 */ 637 unsigned int bat_flags = PMU_BATT_TYPE_HOOPER; 638 long pcharge, charge, vb, vmax, lmax; 639 long vmax_charging, vmax_charged; 640 long amperage, voltage, time, max; 641 int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO, 642 NULL, PMAC_MB_INFO_MODEL, 0); 643 644 if (req->reply[0] & 0x01) 645 pmu_power_flags |= PMU_PWR_AC_PRESENT; 646 else 647 pmu_power_flags &= ~PMU_PWR_AC_PRESENT; 648 649 if (mb == PMAC_TYPE_COMET) { 650 vmax_charged = 189; 651 vmax_charging = 213; 652 lmax = 6500; 653 } else { 654 vmax_charged = 330; 655 vmax_charging = 330; 656 lmax = 6500; 657 } 658 vmax = vmax_charged; 659 660 /* If battery installed */ 661 if (req->reply[0] & 0x04) { 662 bat_flags |= PMU_BATT_PRESENT; 663 if (req->reply[0] & 0x02) 664 bat_flags |= PMU_BATT_CHARGING; 665 vb = (req->reply[1] << 8) | req->reply[2]; 666 voltage = (vb * 265 + 72665) / 10; 667 amperage = req->reply[5]; 668 if ((req->reply[0] & 0x01) == 0) { 669 if (amperage > 200) 670 vb += ((amperage - 200) * 15)/100; 671 } else if (req->reply[0] & 0x02) { 672 vb = (vb * 97) / 100; 673 vmax = vmax_charging; 674 } 675 charge = (100 * vb) / vmax; 676 if (req->reply[0] & 0x40) { 677 pcharge = (req->reply[6] << 8) + req->reply[7]; 678 if (pcharge > lmax) 679 pcharge = lmax; 680 pcharge *= 100; 681 pcharge = 100 - pcharge / lmax; 682 if (pcharge < charge) 683 charge = pcharge; 684 } 685 if (amperage > 0) 686 time = (charge * 16440) / amperage; 687 else 688 time = 0; 689 max = 100; 690 amperage = -amperage; 691 } else 692 charge = max = amperage = voltage = time = 0; 693 694 pmu_batteries[pmu_cur_battery].flags = bat_flags; 695 pmu_batteries[pmu_cur_battery].charge = charge; 696 pmu_batteries[pmu_cur_battery].max_charge = max; 697 pmu_batteries[pmu_cur_battery].amperage = amperage; 698 pmu_batteries[pmu_cur_battery].voltage = voltage; 699 pmu_batteries[pmu_cur_battery].time_remaining = time; 700 701 clear_bit(0, &async_req_locks); 702 } 703 704 static void 705 done_battery_state_smart(struct adb_request* req) 706 { 707 /* format: 708 * [0] : format of this structure (known: 3,4,5) 709 * [1] : flags 710 * 711 * format 3 & 4: 712 * 713 * [2] : charge 714 * [3] : max charge 715 * [4] : current 716 * [5] : voltage 717 * 718 * format 5: 719 * 720 * [2][3] : charge 721 * [4][5] : max charge 722 * [6][7] : current 723 * [8][9] : voltage 724 */ 725 726 unsigned int bat_flags = PMU_BATT_TYPE_SMART; 727 int amperage; 728 unsigned int capa, max, voltage; 729 730 if (req->reply[1] & 0x01) 731 pmu_power_flags |= PMU_PWR_AC_PRESENT; 732 else 733 pmu_power_flags &= ~PMU_PWR_AC_PRESENT; 734 735 736 capa = max = amperage = voltage = 0; 737 738 if (req->reply[1] & 0x04) { 739 bat_flags |= PMU_BATT_PRESENT; 740 switch(req->reply[0]) { 741 case 3: 742 case 4: capa = req->reply[2]; 743 max = req->reply[3]; 744 amperage = *((signed char *)&req->reply[4]); 745 voltage = req->reply[5]; 746 break; 747 case 5: capa = (req->reply[2] << 8) | req->reply[3]; 748 max = (req->reply[4] << 8) | req->reply[5]; 749 amperage = *((signed short *)&req->reply[6]); 750 voltage = (req->reply[8] << 8) | req->reply[9]; 751 break; 752 default: 753 printk(KERN_WARNING "pmu.c : unrecognized battery info, len: %d, %02x %02x %02x %02x\n", 754 req->reply_len, req->reply[0], req->reply[1], req->reply[2], req->reply[3]); 755 break; 756 } 757 } 758 759 if ((req->reply[1] & 0x01) && (amperage > 0)) 760 bat_flags |= PMU_BATT_CHARGING; 761 762 pmu_batteries[pmu_cur_battery].flags = bat_flags; 763 pmu_batteries[pmu_cur_battery].charge = capa; 764 pmu_batteries[pmu_cur_battery].max_charge = max; 765 pmu_batteries[pmu_cur_battery].amperage = amperage; 766 pmu_batteries[pmu_cur_battery].voltage = voltage; 767 if (amperage) { 768 if ((req->reply[1] & 0x01) && (amperage > 0)) 769 pmu_batteries[pmu_cur_battery].time_remaining 770 = ((max-capa) * 3600) / amperage; 771 else 772 pmu_batteries[pmu_cur_battery].time_remaining 773 = (capa * 3600) / (-amperage); 774 } else 775 pmu_batteries[pmu_cur_battery].time_remaining = 0; 776 777 pmu_cur_battery = (pmu_cur_battery + 1) % pmu_battery_count; 778 779 clear_bit(0, &async_req_locks); 780 } 781 782 static void 783 query_battery_state(void) 784 { 785 if (test_and_set_bit(0, &async_req_locks)) 786 return; 787 if (pmu_kind == PMU_OHARE_BASED) 788 pmu_request(&batt_req, done_battery_state_ohare, 789 1, PMU_BATTERY_STATE); 790 else 791 pmu_request(&batt_req, done_battery_state_smart, 792 2, PMU_SMART_BATTERY_STATE, pmu_cur_battery+1); 793 } 794 795 static int pmu_info_proc_show(struct seq_file *m, void *v) 796 { 797 seq_printf(m, "PMU driver version : %d\n", PMU_DRIVER_VERSION); 798 seq_printf(m, "PMU firmware version : %02x\n", pmu_version); 799 seq_printf(m, "AC Power : %d\n", 800 ((pmu_power_flags & PMU_PWR_AC_PRESENT) != 0) || pmu_battery_count == 0); 801 seq_printf(m, "Battery count : %d\n", pmu_battery_count); 802 803 return 0; 804 } 805 806 static int pmu_info_proc_open(struct inode *inode, struct file *file) 807 { 808 return single_open(file, pmu_info_proc_show, NULL); 809 } 810 811 static const struct file_operations pmu_info_proc_fops = { 812 .owner = THIS_MODULE, 813 .open = pmu_info_proc_open, 814 .read = seq_read, 815 .llseek = seq_lseek, 816 .release = single_release, 817 }; 818 819 static int pmu_irqstats_proc_show(struct seq_file *m, void *v) 820 { 821 int i; 822 static const char *irq_names[] = { 823 "Total CB1 triggered events", 824 "Total GPIO1 triggered events", 825 "PC-Card eject button", 826 "Sound/Brightness button", 827 "ADB message", 828 "Battery state change", 829 "Environment interrupt", 830 "Tick timer", 831 "Ghost interrupt (zero len)", 832 "Empty interrupt (empty mask)", 833 "Max irqs in a row" 834 }; 835 836 for (i=0; i<11; i++) { 837 seq_printf(m, " %2u: %10u (%s)\n", 838 i, pmu_irq_stats[i], irq_names[i]); 839 } 840 return 0; 841 } 842 843 static int pmu_irqstats_proc_open(struct inode *inode, struct file *file) 844 { 845 return single_open(file, pmu_irqstats_proc_show, NULL); 846 } 847 848 static const struct file_operations pmu_irqstats_proc_fops = { 849 .owner = THIS_MODULE, 850 .open = pmu_irqstats_proc_open, 851 .read = seq_read, 852 .llseek = seq_lseek, 853 .release = single_release, 854 }; 855 856 static int pmu_battery_proc_show(struct seq_file *m, void *v) 857 { 858 long batnum = (long)m->private; 859 860 seq_putc(m, '\n'); 861 seq_printf(m, "flags : %08x\n", pmu_batteries[batnum].flags); 862 seq_printf(m, "charge : %d\n", pmu_batteries[batnum].charge); 863 seq_printf(m, "max_charge : %d\n", pmu_batteries[batnum].max_charge); 864 seq_printf(m, "current : %d\n", pmu_batteries[batnum].amperage); 865 seq_printf(m, "voltage : %d\n", pmu_batteries[batnum].voltage); 866 seq_printf(m, "time rem. : %d\n", pmu_batteries[batnum].time_remaining); 867 return 0; 868 } 869 870 static int pmu_battery_proc_open(struct inode *inode, struct file *file) 871 { 872 return single_open(file, pmu_battery_proc_show, PDE(inode)->data); 873 } 874 875 static const struct file_operations pmu_battery_proc_fops = { 876 .owner = THIS_MODULE, 877 .open = pmu_battery_proc_open, 878 .read = seq_read, 879 .llseek = seq_lseek, 880 .release = single_release, 881 }; 882 883 static int pmu_options_proc_show(struct seq_file *m, void *v) 884 { 885 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) 886 if (pmu_kind == PMU_KEYLARGO_BASED && 887 pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0) 888 seq_printf(m, "lid_wakeup=%d\n", option_lid_wakeup); 889 #endif 890 if (pmu_kind == PMU_KEYLARGO_BASED) 891 seq_printf(m, "server_mode=%d\n", option_server_mode); 892 893 return 0; 894 } 895 896 static int pmu_options_proc_open(struct inode *inode, struct file *file) 897 { 898 return single_open(file, pmu_options_proc_show, NULL); 899 } 900 901 static ssize_t pmu_options_proc_write(struct file *file, 902 const char __user *buffer, size_t count, loff_t *pos) 903 { 904 char tmp[33]; 905 char *label, *val; 906 size_t fcount = count; 907 908 if (!count) 909 return -EINVAL; 910 if (count > 32) 911 count = 32; 912 if (copy_from_user(tmp, buffer, count)) 913 return -EFAULT; 914 tmp[count] = 0; 915 916 label = tmp; 917 while(*label == ' ') 918 label++; 919 val = label; 920 while(*val && (*val != '=')) { 921 if (*val == ' ') 922 *val = 0; 923 val++; 924 } 925 if ((*val) == 0) 926 return -EINVAL; 927 *(val++) = 0; 928 while(*val == ' ') 929 val++; 930 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) 931 if (pmu_kind == PMU_KEYLARGO_BASED && 932 pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0) 933 if (!strcmp(label, "lid_wakeup")) 934 option_lid_wakeup = ((*val) == '1'); 935 #endif 936 if (pmu_kind == PMU_KEYLARGO_BASED && !strcmp(label, "server_mode")) { 937 int new_value; 938 new_value = ((*val) == '1'); 939 if (new_value != option_server_mode) 940 pmu_set_server_mode(new_value); 941 } 942 return fcount; 943 } 944 945 static const struct file_operations pmu_options_proc_fops = { 946 .owner = THIS_MODULE, 947 .open = pmu_options_proc_open, 948 .read = seq_read, 949 .llseek = seq_lseek, 950 .release = single_release, 951 .write = pmu_options_proc_write, 952 }; 953 954 #ifdef CONFIG_ADB 955 /* Send an ADB command */ 956 static int pmu_send_request(struct adb_request *req, int sync) 957 { 958 int i, ret; 959 960 if ((vias == NULL) || (!pmu_fully_inited)) { 961 req->complete = 1; 962 return -ENXIO; 963 } 964 965 ret = -EINVAL; 966 967 switch (req->data[0]) { 968 case PMU_PACKET: 969 for (i = 0; i < req->nbytes - 1; ++i) 970 req->data[i] = req->data[i+1]; 971 --req->nbytes; 972 if (pmu_data_len[req->data[0]][1] != 0) { 973 req->reply[0] = ADB_RET_OK; 974 req->reply_len = 1; 975 } else 976 req->reply_len = 0; 977 ret = pmu_queue_request(req); 978 break; 979 case CUDA_PACKET: 980 switch (req->data[1]) { 981 case CUDA_GET_TIME: 982 if (req->nbytes != 2) 983 break; 984 req->data[0] = PMU_READ_RTC; 985 req->nbytes = 1; 986 req->reply_len = 3; 987 req->reply[0] = CUDA_PACKET; 988 req->reply[1] = 0; 989 req->reply[2] = CUDA_GET_TIME; 990 ret = pmu_queue_request(req); 991 break; 992 case CUDA_SET_TIME: 993 if (req->nbytes != 6) 994 break; 995 req->data[0] = PMU_SET_RTC; 996 req->nbytes = 5; 997 for (i = 1; i <= 4; ++i) 998 req->data[i] = req->data[i+1]; 999 req->reply_len = 3; 1000 req->reply[0] = CUDA_PACKET; 1001 req->reply[1] = 0; 1002 req->reply[2] = CUDA_SET_TIME; 1003 ret = pmu_queue_request(req); 1004 break; 1005 } 1006 break; 1007 case ADB_PACKET: 1008 if (!pmu_has_adb) 1009 return -ENXIO; 1010 for (i = req->nbytes - 1; i > 1; --i) 1011 req->data[i+2] = req->data[i]; 1012 req->data[3] = req->nbytes - 2; 1013 req->data[2] = pmu_adb_flags; 1014 /*req->data[1] = req->data[1];*/ 1015 req->data[0] = PMU_ADB_CMD; 1016 req->nbytes += 2; 1017 req->reply_expected = 1; 1018 req->reply_len = 0; 1019 ret = pmu_queue_request(req); 1020 break; 1021 } 1022 if (ret) { 1023 req->complete = 1; 1024 return ret; 1025 } 1026 1027 if (sync) 1028 while (!req->complete) 1029 pmu_poll(); 1030 1031 return 0; 1032 } 1033 1034 /* Enable/disable autopolling */ 1035 static int __pmu_adb_autopoll(int devs) 1036 { 1037 struct adb_request req; 1038 1039 if (devs) { 1040 pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86, 1041 adb_dev_map >> 8, adb_dev_map); 1042 pmu_adb_flags = 2; 1043 } else { 1044 pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF); 1045 pmu_adb_flags = 0; 1046 } 1047 while (!req.complete) 1048 pmu_poll(); 1049 return 0; 1050 } 1051 1052 static int pmu_adb_autopoll(int devs) 1053 { 1054 if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb) 1055 return -ENXIO; 1056 1057 adb_dev_map = devs; 1058 return __pmu_adb_autopoll(devs); 1059 } 1060 1061 /* Reset the ADB bus */ 1062 static int pmu_adb_reset_bus(void) 1063 { 1064 struct adb_request req; 1065 int save_autopoll = adb_dev_map; 1066 1067 if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb) 1068 return -ENXIO; 1069 1070 /* anyone got a better idea?? */ 1071 __pmu_adb_autopoll(0); 1072 1073 req.nbytes = 4; 1074 req.done = NULL; 1075 req.data[0] = PMU_ADB_CMD; 1076 req.data[1] = ADB_BUSRESET; 1077 req.data[2] = 0; 1078 req.data[3] = 0; 1079 req.data[4] = 0; 1080 req.reply_len = 0; 1081 req.reply_expected = 1; 1082 if (pmu_queue_request(&req) != 0) { 1083 printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n"); 1084 return -EIO; 1085 } 1086 pmu_wait_complete(&req); 1087 1088 if (save_autopoll != 0) 1089 __pmu_adb_autopoll(save_autopoll); 1090 1091 return 0; 1092 } 1093 #endif /* CONFIG_ADB */ 1094 1095 /* Construct and send a pmu request */ 1096 int 1097 pmu_request(struct adb_request *req, void (*done)(struct adb_request *), 1098 int nbytes, ...) 1099 { 1100 va_list list; 1101 int i; 1102 1103 if (vias == NULL) 1104 return -ENXIO; 1105 1106 if (nbytes < 0 || nbytes > 32) { 1107 printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes); 1108 req->complete = 1; 1109 return -EINVAL; 1110 } 1111 req->nbytes = nbytes; 1112 req->done = done; 1113 va_start(list, nbytes); 1114 for (i = 0; i < nbytes; ++i) 1115 req->data[i] = va_arg(list, int); 1116 va_end(list); 1117 req->reply_len = 0; 1118 req->reply_expected = 0; 1119 return pmu_queue_request(req); 1120 } 1121 1122 int 1123 pmu_queue_request(struct adb_request *req) 1124 { 1125 unsigned long flags; 1126 int nsend; 1127 1128 if (via == NULL) { 1129 req->complete = 1; 1130 return -ENXIO; 1131 } 1132 if (req->nbytes <= 0) { 1133 req->complete = 1; 1134 return 0; 1135 } 1136 nsend = pmu_data_len[req->data[0]][0]; 1137 if (nsend >= 0 && req->nbytes != nsend + 1) { 1138 req->complete = 1; 1139 return -EINVAL; 1140 } 1141 1142 req->next = NULL; 1143 req->sent = 0; 1144 req->complete = 0; 1145 1146 spin_lock_irqsave(&pmu_lock, flags); 1147 if (current_req != 0) { 1148 last_req->next = req; 1149 last_req = req; 1150 } else { 1151 current_req = req; 1152 last_req = req; 1153 if (pmu_state == idle) 1154 pmu_start(); 1155 } 1156 spin_unlock_irqrestore(&pmu_lock, flags); 1157 1158 return 0; 1159 } 1160 1161 static inline void 1162 wait_for_ack(void) 1163 { 1164 /* Sightly increased the delay, I had one occurrence of the message 1165 * reported 1166 */ 1167 int timeout = 4000; 1168 while ((in_8(&via[B]) & TACK) == 0) { 1169 if (--timeout < 0) { 1170 printk(KERN_ERR "PMU not responding (!ack)\n"); 1171 return; 1172 } 1173 udelay(10); 1174 } 1175 } 1176 1177 /* New PMU seems to be very sensitive to those timings, so we make sure 1178 * PCI is flushed immediately */ 1179 static inline void 1180 send_byte(int x) 1181 { 1182 volatile unsigned char __iomem *v = via; 1183 1184 out_8(&v[ACR], in_8(&v[ACR]) | SR_OUT | SR_EXT); 1185 out_8(&v[SR], x); 1186 out_8(&v[B], in_8(&v[B]) & ~TREQ); /* assert TREQ */ 1187 (void)in_8(&v[B]); 1188 } 1189 1190 static inline void 1191 recv_byte(void) 1192 { 1193 volatile unsigned char __iomem *v = via; 1194 1195 out_8(&v[ACR], (in_8(&v[ACR]) & ~SR_OUT) | SR_EXT); 1196 in_8(&v[SR]); /* resets SR */ 1197 out_8(&v[B], in_8(&v[B]) & ~TREQ); 1198 (void)in_8(&v[B]); 1199 } 1200 1201 static inline void 1202 pmu_done(struct adb_request *req) 1203 { 1204 void (*done)(struct adb_request *) = req->done; 1205 mb(); 1206 req->complete = 1; 1207 /* Here, we assume that if the request has a done member, the 1208 * struct request will survive to setting req->complete to 1 1209 */ 1210 if (done) 1211 (*done)(req); 1212 } 1213 1214 static void 1215 pmu_start(void) 1216 { 1217 struct adb_request *req; 1218 1219 /* assert pmu_state == idle */ 1220 /* get the packet to send */ 1221 req = current_req; 1222 if (req == 0 || pmu_state != idle 1223 || (/*req->reply_expected && */req_awaiting_reply)) 1224 return; 1225 1226 pmu_state = sending; 1227 data_index = 1; 1228 data_len = pmu_data_len[req->data[0]][0]; 1229 1230 /* Sounds safer to make sure ACK is high before writing. This helped 1231 * kill a problem with ADB and some iBooks 1232 */ 1233 wait_for_ack(); 1234 /* set the shift register to shift out and send a byte */ 1235 send_byte(req->data[0]); 1236 } 1237 1238 void 1239 pmu_poll(void) 1240 { 1241 if (!via) 1242 return; 1243 if (disable_poll) 1244 return; 1245 via_pmu_interrupt(0, NULL); 1246 } 1247 1248 void 1249 pmu_poll_adb(void) 1250 { 1251 if (!via) 1252 return; 1253 if (disable_poll) 1254 return; 1255 /* Kicks ADB read when PMU is suspended */ 1256 adb_int_pending = 1; 1257 do { 1258 via_pmu_interrupt(0, NULL); 1259 } while (pmu_suspended && (adb_int_pending || pmu_state != idle 1260 || req_awaiting_reply)); 1261 } 1262 1263 void 1264 pmu_wait_complete(struct adb_request *req) 1265 { 1266 if (!via) 1267 return; 1268 while((pmu_state != idle && pmu_state != locked) || !req->complete) 1269 via_pmu_interrupt(0, NULL); 1270 } 1271 1272 /* This function loops until the PMU is idle and prevents it from 1273 * anwsering to ADB interrupts. pmu_request can still be called. 1274 * This is done to avoid spurrious shutdowns when we know we'll have 1275 * interrupts switched off for a long time 1276 */ 1277 void 1278 pmu_suspend(void) 1279 { 1280 unsigned long flags; 1281 1282 if (!via) 1283 return; 1284 1285 spin_lock_irqsave(&pmu_lock, flags); 1286 pmu_suspended++; 1287 if (pmu_suspended > 1) { 1288 spin_unlock_irqrestore(&pmu_lock, flags); 1289 return; 1290 } 1291 1292 do { 1293 spin_unlock_irqrestore(&pmu_lock, flags); 1294 if (req_awaiting_reply) 1295 adb_int_pending = 1; 1296 via_pmu_interrupt(0, NULL); 1297 spin_lock_irqsave(&pmu_lock, flags); 1298 if (!adb_int_pending && pmu_state == idle && !req_awaiting_reply) { 1299 if (gpio_irq >= 0) 1300 disable_irq_nosync(gpio_irq); 1301 out_8(&via[IER], CB1_INT | IER_CLR); 1302 spin_unlock_irqrestore(&pmu_lock, flags); 1303 break; 1304 } 1305 } while (1); 1306 } 1307 1308 void 1309 pmu_resume(void) 1310 { 1311 unsigned long flags; 1312 1313 if (!via || (pmu_suspended < 1)) 1314 return; 1315 1316 spin_lock_irqsave(&pmu_lock, flags); 1317 pmu_suspended--; 1318 if (pmu_suspended > 0) { 1319 spin_unlock_irqrestore(&pmu_lock, flags); 1320 return; 1321 } 1322 adb_int_pending = 1; 1323 if (gpio_irq >= 0) 1324 enable_irq(gpio_irq); 1325 out_8(&via[IER], CB1_INT | IER_SET); 1326 spin_unlock_irqrestore(&pmu_lock, flags); 1327 pmu_poll(); 1328 } 1329 1330 /* Interrupt data could be the result data from an ADB cmd */ 1331 static void 1332 pmu_handle_data(unsigned char *data, int len) 1333 { 1334 unsigned char ints, pirq; 1335 int i = 0; 1336 1337 asleep = 0; 1338 if (drop_interrupts || len < 1) { 1339 adb_int_pending = 0; 1340 pmu_irq_stats[8]++; 1341 return; 1342 } 1343 1344 /* Get PMU interrupt mask */ 1345 ints = data[0]; 1346 1347 /* Record zero interrupts for stats */ 1348 if (ints == 0) 1349 pmu_irq_stats[9]++; 1350 1351 /* Hack to deal with ADB autopoll flag */ 1352 if (ints & PMU_INT_ADB) 1353 ints &= ~(PMU_INT_ADB_AUTO | PMU_INT_AUTO_SRQ_POLL); 1354 1355 next: 1356 1357 if (ints == 0) { 1358 if (i > pmu_irq_stats[10]) 1359 pmu_irq_stats[10] = i; 1360 return; 1361 } 1362 1363 for (pirq = 0; pirq < 8; pirq++) 1364 if (ints & (1 << pirq)) 1365 break; 1366 pmu_irq_stats[pirq]++; 1367 i++; 1368 ints &= ~(1 << pirq); 1369 1370 /* Note: for some reason, we get an interrupt with len=1, 1371 * data[0]==0 after each normal ADB interrupt, at least 1372 * on the Pismo. Still investigating... --BenH 1373 */ 1374 if ((1 << pirq) & PMU_INT_ADB) { 1375 if ((data[0] & PMU_INT_ADB_AUTO) == 0) { 1376 struct adb_request *req = req_awaiting_reply; 1377 if (req == 0) { 1378 printk(KERN_ERR "PMU: extra ADB reply\n"); 1379 return; 1380 } 1381 req_awaiting_reply = NULL; 1382 if (len <= 2) 1383 req->reply_len = 0; 1384 else { 1385 memcpy(req->reply, data + 1, len - 1); 1386 req->reply_len = len - 1; 1387 } 1388 pmu_done(req); 1389 } else { 1390 if (len == 4 && data[1] == 0x2c) { 1391 extern int xmon_wants_key, xmon_adb_keycode; 1392 if (xmon_wants_key) { 1393 xmon_adb_keycode = data[2]; 1394 return; 1395 } 1396 } 1397 #ifdef CONFIG_ADB 1398 /* 1399 * XXX On the [23]400 the PMU gives us an up 1400 * event for keycodes 0x74 or 0x75 when the PC 1401 * card eject buttons are released, so we 1402 * ignore those events. 1403 */ 1404 if (!(pmu_kind == PMU_OHARE_BASED && len == 4 1405 && data[1] == 0x2c && data[3] == 0xff 1406 && (data[2] & ~1) == 0xf4)) 1407 adb_input(data+1, len-1, 1); 1408 #endif /* CONFIG_ADB */ 1409 } 1410 } 1411 /* Sound/brightness button pressed */ 1412 else if ((1 << pirq) & PMU_INT_SNDBRT) { 1413 #ifdef CONFIG_PMAC_BACKLIGHT 1414 if (len == 3) 1415 pmac_backlight_set_legacy_brightness_pmu(data[1] >> 4); 1416 #endif 1417 } 1418 /* Tick interrupt */ 1419 else if ((1 << pirq) & PMU_INT_TICK) { 1420 /* Environement or tick interrupt, query batteries */ 1421 if (pmu_battery_count) { 1422 if ((--query_batt_timer) == 0) { 1423 query_battery_state(); 1424 query_batt_timer = BATTERY_POLLING_COUNT; 1425 } 1426 } 1427 } 1428 else if ((1 << pirq) & PMU_INT_ENVIRONMENT) { 1429 if (pmu_battery_count) 1430 query_battery_state(); 1431 pmu_pass_intr(data, len); 1432 /* len == 6 is probably a bad check. But how do I 1433 * know what PMU versions send what events here? */ 1434 if (len == 6) { 1435 via_pmu_event(PMU_EVT_POWER, !!(data[1]&8)); 1436 via_pmu_event(PMU_EVT_LID, data[1]&1); 1437 } 1438 } else { 1439 pmu_pass_intr(data, len); 1440 } 1441 goto next; 1442 } 1443 1444 static struct adb_request* 1445 pmu_sr_intr(void) 1446 { 1447 struct adb_request *req; 1448 int bite = 0; 1449 1450 if (via[B] & TREQ) { 1451 printk(KERN_ERR "PMU: spurious SR intr (%x)\n", via[B]); 1452 out_8(&via[IFR], SR_INT); 1453 return NULL; 1454 } 1455 /* The ack may not yet be low when we get the interrupt */ 1456 while ((in_8(&via[B]) & TACK) != 0) 1457 ; 1458 1459 /* if reading grab the byte, and reset the interrupt */ 1460 if (pmu_state == reading || pmu_state == reading_intr) 1461 bite = in_8(&via[SR]); 1462 1463 /* reset TREQ and wait for TACK to go high */ 1464 out_8(&via[B], in_8(&via[B]) | TREQ); 1465 wait_for_ack(); 1466 1467 switch (pmu_state) { 1468 case sending: 1469 req = current_req; 1470 if (data_len < 0) { 1471 data_len = req->nbytes - 1; 1472 send_byte(data_len); 1473 break; 1474 } 1475 if (data_index <= data_len) { 1476 send_byte(req->data[data_index++]); 1477 break; 1478 } 1479 req->sent = 1; 1480 data_len = pmu_data_len[req->data[0]][1]; 1481 if (data_len == 0) { 1482 pmu_state = idle; 1483 current_req = req->next; 1484 if (req->reply_expected) 1485 req_awaiting_reply = req; 1486 else 1487 return req; 1488 } else { 1489 pmu_state = reading; 1490 data_index = 0; 1491 reply_ptr = req->reply + req->reply_len; 1492 recv_byte(); 1493 } 1494 break; 1495 1496 case intack: 1497 data_index = 0; 1498 data_len = -1; 1499 pmu_state = reading_intr; 1500 reply_ptr = interrupt_data[int_data_last]; 1501 recv_byte(); 1502 if (gpio_irq >= 0 && !gpio_irq_enabled) { 1503 enable_irq(gpio_irq); 1504 gpio_irq_enabled = 1; 1505 } 1506 break; 1507 1508 case reading: 1509 case reading_intr: 1510 if (data_len == -1) { 1511 data_len = bite; 1512 if (bite > 32) 1513 printk(KERN_ERR "PMU: bad reply len %d\n", bite); 1514 } else if (data_index < 32) { 1515 reply_ptr[data_index++] = bite; 1516 } 1517 if (data_index < data_len) { 1518 recv_byte(); 1519 break; 1520 } 1521 1522 if (pmu_state == reading_intr) { 1523 pmu_state = idle; 1524 int_data_state[int_data_last] = int_data_ready; 1525 interrupt_data_len[int_data_last] = data_len; 1526 } else { 1527 req = current_req; 1528 /* 1529 * For PMU sleep and freq change requests, we lock the 1530 * PMU until it's explicitly unlocked. This avoids any 1531 * spurrious event polling getting in 1532 */ 1533 current_req = req->next; 1534 req->reply_len += data_index; 1535 if (req->data[0] == PMU_SLEEP || req->data[0] == PMU_CPU_SPEED) 1536 pmu_state = locked; 1537 else 1538 pmu_state = idle; 1539 return req; 1540 } 1541 break; 1542 1543 default: 1544 printk(KERN_ERR "via_pmu_interrupt: unknown state %d?\n", 1545 pmu_state); 1546 } 1547 return NULL; 1548 } 1549 1550 static irqreturn_t 1551 via_pmu_interrupt(int irq, void *arg) 1552 { 1553 unsigned long flags; 1554 int intr; 1555 int nloop = 0; 1556 int int_data = -1; 1557 struct adb_request *req = NULL; 1558 int handled = 0; 1559 1560 /* This is a bit brutal, we can probably do better */ 1561 spin_lock_irqsave(&pmu_lock, flags); 1562 ++disable_poll; 1563 1564 for (;;) { 1565 intr = in_8(&via[IFR]) & (SR_INT | CB1_INT); 1566 if (intr == 0) 1567 break; 1568 handled = 1; 1569 if (++nloop > 1000) { 1570 printk(KERN_DEBUG "PMU: stuck in intr loop, " 1571 "intr=%x, ier=%x pmu_state=%d\n", 1572 intr, in_8(&via[IER]), pmu_state); 1573 break; 1574 } 1575 out_8(&via[IFR], intr); 1576 if (intr & CB1_INT) { 1577 adb_int_pending = 1; 1578 pmu_irq_stats[0]++; 1579 } 1580 if (intr & SR_INT) { 1581 req = pmu_sr_intr(); 1582 if (req) 1583 break; 1584 } 1585 } 1586 1587 recheck: 1588 if (pmu_state == idle) { 1589 if (adb_int_pending) { 1590 if (int_data_state[0] == int_data_empty) 1591 int_data_last = 0; 1592 else if (int_data_state[1] == int_data_empty) 1593 int_data_last = 1; 1594 else 1595 goto no_free_slot; 1596 pmu_state = intack; 1597 int_data_state[int_data_last] = int_data_fill; 1598 /* Sounds safer to make sure ACK is high before writing. 1599 * This helped kill a problem with ADB and some iBooks 1600 */ 1601 wait_for_ack(); 1602 send_byte(PMU_INT_ACK); 1603 adb_int_pending = 0; 1604 } else if (current_req) 1605 pmu_start(); 1606 } 1607 no_free_slot: 1608 /* Mark the oldest buffer for flushing */ 1609 if (int_data_state[!int_data_last] == int_data_ready) { 1610 int_data_state[!int_data_last] = int_data_flush; 1611 int_data = !int_data_last; 1612 } else if (int_data_state[int_data_last] == int_data_ready) { 1613 int_data_state[int_data_last] = int_data_flush; 1614 int_data = int_data_last; 1615 } 1616 --disable_poll; 1617 spin_unlock_irqrestore(&pmu_lock, flags); 1618 1619 /* Deal with completed PMU requests outside of the lock */ 1620 if (req) { 1621 pmu_done(req); 1622 req = NULL; 1623 } 1624 1625 /* Deal with interrupt datas outside of the lock */ 1626 if (int_data >= 0) { 1627 pmu_handle_data(interrupt_data[int_data], interrupt_data_len[int_data]); 1628 spin_lock_irqsave(&pmu_lock, flags); 1629 ++disable_poll; 1630 int_data_state[int_data] = int_data_empty; 1631 int_data = -1; 1632 goto recheck; 1633 } 1634 1635 return IRQ_RETVAL(handled); 1636 } 1637 1638 void 1639 pmu_unlock(void) 1640 { 1641 unsigned long flags; 1642 1643 spin_lock_irqsave(&pmu_lock, flags); 1644 if (pmu_state == locked) 1645 pmu_state = idle; 1646 adb_int_pending = 1; 1647 spin_unlock_irqrestore(&pmu_lock, flags); 1648 } 1649 1650 1651 static irqreturn_t 1652 gpio1_interrupt(int irq, void *arg) 1653 { 1654 unsigned long flags; 1655 1656 if ((in_8(gpio_reg + 0x9) & 0x02) == 0) { 1657 spin_lock_irqsave(&pmu_lock, flags); 1658 if (gpio_irq_enabled > 0) { 1659 disable_irq_nosync(gpio_irq); 1660 gpio_irq_enabled = 0; 1661 } 1662 pmu_irq_stats[1]++; 1663 adb_int_pending = 1; 1664 spin_unlock_irqrestore(&pmu_lock, flags); 1665 via_pmu_interrupt(0, NULL); 1666 return IRQ_HANDLED; 1667 } 1668 return IRQ_NONE; 1669 } 1670 1671 void 1672 pmu_enable_irled(int on) 1673 { 1674 struct adb_request req; 1675 1676 if (vias == NULL) 1677 return ; 1678 if (pmu_kind == PMU_KEYLARGO_BASED) 1679 return ; 1680 1681 pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED | 1682 (on ? PMU_POW_ON : PMU_POW_OFF)); 1683 pmu_wait_complete(&req); 1684 } 1685 1686 void 1687 pmu_restart(void) 1688 { 1689 struct adb_request req; 1690 1691 if (via == NULL) 1692 return; 1693 1694 local_irq_disable(); 1695 1696 drop_interrupts = 1; 1697 1698 if (pmu_kind != PMU_KEYLARGO_BASED) { 1699 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB | 1700 PMU_INT_TICK ); 1701 while(!req.complete) 1702 pmu_poll(); 1703 } 1704 1705 pmu_request(&req, NULL, 1, PMU_RESET); 1706 pmu_wait_complete(&req); 1707 for (;;) 1708 ; 1709 } 1710 1711 void 1712 pmu_shutdown(void) 1713 { 1714 struct adb_request req; 1715 1716 if (via == NULL) 1717 return; 1718 1719 local_irq_disable(); 1720 1721 drop_interrupts = 1; 1722 1723 if (pmu_kind != PMU_KEYLARGO_BASED) { 1724 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB | 1725 PMU_INT_TICK ); 1726 pmu_wait_complete(&req); 1727 } else { 1728 /* Disable server mode on shutdown or we'll just 1729 * wake up again 1730 */ 1731 pmu_set_server_mode(0); 1732 } 1733 1734 pmu_request(&req, NULL, 5, PMU_SHUTDOWN, 1735 'M', 'A', 'T', 'T'); 1736 pmu_wait_complete(&req); 1737 for (;;) 1738 ; 1739 } 1740 1741 int 1742 pmu_present(void) 1743 { 1744 return via != 0; 1745 } 1746 1747 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) 1748 /* 1749 * Put the powerbook to sleep. 1750 */ 1751 1752 static u32 save_via[8]; 1753 1754 static void 1755 save_via_state(void) 1756 { 1757 save_via[0] = in_8(&via[ANH]); 1758 save_via[1] = in_8(&via[DIRA]); 1759 save_via[2] = in_8(&via[B]); 1760 save_via[3] = in_8(&via[DIRB]); 1761 save_via[4] = in_8(&via[PCR]); 1762 save_via[5] = in_8(&via[ACR]); 1763 save_via[6] = in_8(&via[T1CL]); 1764 save_via[7] = in_8(&via[T1CH]); 1765 } 1766 static void 1767 restore_via_state(void) 1768 { 1769 out_8(&via[ANH], save_via[0]); 1770 out_8(&via[DIRA], save_via[1]); 1771 out_8(&via[B], save_via[2]); 1772 out_8(&via[DIRB], save_via[3]); 1773 out_8(&via[PCR], save_via[4]); 1774 out_8(&via[ACR], save_via[5]); 1775 out_8(&via[T1CL], save_via[6]); 1776 out_8(&via[T1CH], save_via[7]); 1777 out_8(&via[IER], IER_CLR | 0x7f); /* disable all intrs */ 1778 out_8(&via[IFR], 0x7f); /* clear IFR */ 1779 out_8(&via[IER], IER_SET | SR_INT | CB1_INT); 1780 } 1781 1782 #define GRACKLE_PM (1<<7) 1783 #define GRACKLE_DOZE (1<<5) 1784 #define GRACKLE_NAP (1<<4) 1785 #define GRACKLE_SLEEP (1<<3) 1786 1787 static int powerbook_sleep_grackle(void) 1788 { 1789 unsigned long save_l2cr; 1790 unsigned short pmcr1; 1791 struct adb_request req; 1792 struct pci_dev *grackle; 1793 1794 grackle = pci_get_bus_and_slot(0, 0); 1795 if (!grackle) 1796 return -ENODEV; 1797 1798 /* Turn off various things. Darwin does some retry tests here... */ 1799 pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, PMU_POW0_OFF|PMU_POW0_HARD_DRIVE); 1800 pmu_wait_complete(&req); 1801 pmu_request(&req, NULL, 2, PMU_POWER_CTRL, 1802 PMU_POW_OFF|PMU_POW_BACKLIGHT|PMU_POW_IRLED|PMU_POW_MEDIABAY); 1803 pmu_wait_complete(&req); 1804 1805 /* For 750, save backside cache setting and disable it */ 1806 save_l2cr = _get_L2CR(); /* (returns -1 if not available) */ 1807 1808 if (!__fake_sleep) { 1809 /* Ask the PMU to put us to sleep */ 1810 pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T'); 1811 pmu_wait_complete(&req); 1812 } 1813 1814 /* The VIA is supposed not to be restored correctly*/ 1815 save_via_state(); 1816 /* We shut down some HW */ 1817 pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1); 1818 1819 pci_read_config_word(grackle, 0x70, &pmcr1); 1820 /* Apparently, MacOS uses NAP mode for Grackle ??? */ 1821 pmcr1 &= ~(GRACKLE_DOZE|GRACKLE_SLEEP); 1822 pmcr1 |= GRACKLE_PM|GRACKLE_NAP; 1823 pci_write_config_word(grackle, 0x70, pmcr1); 1824 1825 /* Call low-level ASM sleep handler */ 1826 if (__fake_sleep) 1827 mdelay(5000); 1828 else 1829 low_sleep_handler(); 1830 1831 /* We're awake again, stop grackle PM */ 1832 pci_read_config_word(grackle, 0x70, &pmcr1); 1833 pmcr1 &= ~(GRACKLE_PM|GRACKLE_DOZE|GRACKLE_SLEEP|GRACKLE_NAP); 1834 pci_write_config_word(grackle, 0x70, pmcr1); 1835 1836 pci_dev_put(grackle); 1837 1838 /* Make sure the PMU is idle */ 1839 pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0); 1840 restore_via_state(); 1841 1842 /* Restore L2 cache */ 1843 if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0) 1844 _set_L2CR(save_l2cr); 1845 1846 /* Restore userland MMU context */ 1847 switch_mmu_context(NULL, current->active_mm); 1848 1849 /* Power things up */ 1850 pmu_unlock(); 1851 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask); 1852 pmu_wait_complete(&req); 1853 pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, 1854 PMU_POW0_ON|PMU_POW0_HARD_DRIVE); 1855 pmu_wait_complete(&req); 1856 pmu_request(&req, NULL, 2, PMU_POWER_CTRL, 1857 PMU_POW_ON|PMU_POW_BACKLIGHT|PMU_POW_CHARGER|PMU_POW_IRLED|PMU_POW_MEDIABAY); 1858 pmu_wait_complete(&req); 1859 1860 return 0; 1861 } 1862 1863 static int 1864 powerbook_sleep_Core99(void) 1865 { 1866 unsigned long save_l2cr; 1867 unsigned long save_l3cr; 1868 struct adb_request req; 1869 1870 if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0) { 1871 printk(KERN_ERR "Sleep mode not supported on this machine\n"); 1872 return -ENOSYS; 1873 } 1874 1875 if (num_online_cpus() > 1 || cpu_is_offline(0)) 1876 return -EAGAIN; 1877 1878 /* Stop environment and ADB interrupts */ 1879 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0); 1880 pmu_wait_complete(&req); 1881 1882 /* Tell PMU what events will wake us up */ 1883 pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_CLR_WAKEUP_EVENTS, 1884 0xff, 0xff); 1885 pmu_wait_complete(&req); 1886 pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_SET_WAKEUP_EVENTS, 1887 0, PMU_PWR_WAKEUP_KEY | 1888 (option_lid_wakeup ? PMU_PWR_WAKEUP_LID_OPEN : 0)); 1889 pmu_wait_complete(&req); 1890 1891 /* Save the state of the L2 and L3 caches */ 1892 save_l3cr = _get_L3CR(); /* (returns -1 if not available) */ 1893 save_l2cr = _get_L2CR(); /* (returns -1 if not available) */ 1894 1895 if (!__fake_sleep) { 1896 /* Ask the PMU to put us to sleep */ 1897 pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T'); 1898 pmu_wait_complete(&req); 1899 } 1900 1901 /* The VIA is supposed not to be restored correctly*/ 1902 save_via_state(); 1903 1904 /* Shut down various ASICs. There's a chance that we can no longer 1905 * talk to the PMU after this, so I moved it to _after_ sending the 1906 * sleep command to it. Still need to be checked. 1907 */ 1908 pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1); 1909 1910 /* Call low-level ASM sleep handler */ 1911 if (__fake_sleep) 1912 mdelay(5000); 1913 else 1914 low_sleep_handler(); 1915 1916 /* Restore Apple core ASICs state */ 1917 pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0); 1918 1919 /* Restore VIA */ 1920 restore_via_state(); 1921 1922 /* tweak LPJ before cpufreq is there */ 1923 loops_per_jiffy *= 2; 1924 1925 /* Restore video */ 1926 pmac_call_early_video_resume(); 1927 1928 /* Restore L2 cache */ 1929 if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0) 1930 _set_L2CR(save_l2cr); 1931 /* Restore L3 cache */ 1932 if (save_l3cr != 0xffffffff && (save_l3cr & L3CR_L3E) != 0) 1933 _set_L3CR(save_l3cr); 1934 1935 /* Restore userland MMU context */ 1936 switch_mmu_context(NULL, current->active_mm); 1937 1938 /* Tell PMU we are ready */ 1939 pmu_unlock(); 1940 pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2); 1941 pmu_wait_complete(&req); 1942 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask); 1943 pmu_wait_complete(&req); 1944 1945 /* Restore LPJ, cpufreq will adjust the cpu frequency */ 1946 loops_per_jiffy /= 2; 1947 1948 return 0; 1949 } 1950 1951 #define PB3400_MEM_CTRL 0xf8000000 1952 #define PB3400_MEM_CTRL_SLEEP 0x70 1953 1954 static void __iomem *pb3400_mem_ctrl; 1955 1956 static void powerbook_sleep_init_3400(void) 1957 { 1958 /* map in the memory controller registers */ 1959 pb3400_mem_ctrl = ioremap(PB3400_MEM_CTRL, 0x100); 1960 if (pb3400_mem_ctrl == NULL) 1961 printk(KERN_WARNING "ioremap failed: sleep won't be possible"); 1962 } 1963 1964 static int powerbook_sleep_3400(void) 1965 { 1966 int i, x; 1967 unsigned int hid0; 1968 unsigned long msr; 1969 struct adb_request sleep_req; 1970 unsigned int __iomem *mem_ctrl_sleep; 1971 1972 if (pb3400_mem_ctrl == NULL) 1973 return -ENOMEM; 1974 mem_ctrl_sleep = pb3400_mem_ctrl + PB3400_MEM_CTRL_SLEEP; 1975 1976 /* Set the memory controller to keep the memory refreshed 1977 while we're asleep */ 1978 for (i = 0x403f; i >= 0x4000; --i) { 1979 out_be32(mem_ctrl_sleep, i); 1980 do { 1981 x = (in_be32(mem_ctrl_sleep) >> 16) & 0x3ff; 1982 } while (x == 0); 1983 if (x >= 0x100) 1984 break; 1985 } 1986 1987 /* Ask the PMU to put us to sleep */ 1988 pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T'); 1989 pmu_wait_complete(&sleep_req); 1990 pmu_unlock(); 1991 1992 pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1); 1993 1994 asleep = 1; 1995 1996 /* Put the CPU into sleep mode */ 1997 hid0 = mfspr(SPRN_HID0); 1998 hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP; 1999 mtspr(SPRN_HID0, hid0); 2000 local_irq_enable(); 2001 msr = mfmsr() | MSR_POW; 2002 while (asleep) { 2003 mb(); 2004 mtmsr(msr); 2005 isync(); 2006 } 2007 local_irq_disable(); 2008 2009 /* OK, we're awake again, start restoring things */ 2010 out_be32(mem_ctrl_sleep, 0x3f); 2011 pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0); 2012 2013 return 0; 2014 } 2015 2016 #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */ 2017 2018 /* 2019 * Support for /dev/pmu device 2020 */ 2021 #define RB_SIZE 0x10 2022 struct pmu_private { 2023 struct list_head list; 2024 int rb_get; 2025 int rb_put; 2026 struct rb_entry { 2027 unsigned short len; 2028 unsigned char data[16]; 2029 } rb_buf[RB_SIZE]; 2030 wait_queue_head_t wait; 2031 spinlock_t lock; 2032 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) 2033 int backlight_locker; 2034 #endif 2035 }; 2036 2037 static LIST_HEAD(all_pmu_pvt); 2038 static DEFINE_SPINLOCK(all_pvt_lock); 2039 2040 static void 2041 pmu_pass_intr(unsigned char *data, int len) 2042 { 2043 struct pmu_private *pp; 2044 struct list_head *list; 2045 int i; 2046 unsigned long flags; 2047 2048 if (len > sizeof(pp->rb_buf[0].data)) 2049 len = sizeof(pp->rb_buf[0].data); 2050 spin_lock_irqsave(&all_pvt_lock, flags); 2051 for (list = &all_pmu_pvt; (list = list->next) != &all_pmu_pvt; ) { 2052 pp = list_entry(list, struct pmu_private, list); 2053 spin_lock(&pp->lock); 2054 i = pp->rb_put + 1; 2055 if (i >= RB_SIZE) 2056 i = 0; 2057 if (i != pp->rb_get) { 2058 struct rb_entry *rp = &pp->rb_buf[pp->rb_put]; 2059 rp->len = len; 2060 memcpy(rp->data, data, len); 2061 pp->rb_put = i; 2062 wake_up_interruptible(&pp->wait); 2063 } 2064 spin_unlock(&pp->lock); 2065 } 2066 spin_unlock_irqrestore(&all_pvt_lock, flags); 2067 } 2068 2069 static int 2070 pmu_open(struct inode *inode, struct file *file) 2071 { 2072 struct pmu_private *pp; 2073 unsigned long flags; 2074 2075 pp = kmalloc(sizeof(struct pmu_private), GFP_KERNEL); 2076 if (pp == 0) 2077 return -ENOMEM; 2078 pp->rb_get = pp->rb_put = 0; 2079 spin_lock_init(&pp->lock); 2080 init_waitqueue_head(&pp->wait); 2081 mutex_lock(&pmu_info_proc_mutex); 2082 spin_lock_irqsave(&all_pvt_lock, flags); 2083 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) 2084 pp->backlight_locker = 0; 2085 #endif 2086 list_add(&pp->list, &all_pmu_pvt); 2087 spin_unlock_irqrestore(&all_pvt_lock, flags); 2088 file->private_data = pp; 2089 mutex_unlock(&pmu_info_proc_mutex); 2090 return 0; 2091 } 2092 2093 static ssize_t 2094 pmu_read(struct file *file, char __user *buf, 2095 size_t count, loff_t *ppos) 2096 { 2097 struct pmu_private *pp = file->private_data; 2098 DECLARE_WAITQUEUE(wait, current); 2099 unsigned long flags; 2100 int ret = 0; 2101 2102 if (count < 1 || pp == 0) 2103 return -EINVAL; 2104 if (!access_ok(VERIFY_WRITE, buf, count)) 2105 return -EFAULT; 2106 2107 spin_lock_irqsave(&pp->lock, flags); 2108 add_wait_queue(&pp->wait, &wait); 2109 current->state = TASK_INTERRUPTIBLE; 2110 2111 for (;;) { 2112 ret = -EAGAIN; 2113 if (pp->rb_get != pp->rb_put) { 2114 int i = pp->rb_get; 2115 struct rb_entry *rp = &pp->rb_buf[i]; 2116 ret = rp->len; 2117 spin_unlock_irqrestore(&pp->lock, flags); 2118 if (ret > count) 2119 ret = count; 2120 if (ret > 0 && copy_to_user(buf, rp->data, ret)) 2121 ret = -EFAULT; 2122 if (++i >= RB_SIZE) 2123 i = 0; 2124 spin_lock_irqsave(&pp->lock, flags); 2125 pp->rb_get = i; 2126 } 2127 if (ret >= 0) 2128 break; 2129 if (file->f_flags & O_NONBLOCK) 2130 break; 2131 ret = -ERESTARTSYS; 2132 if (signal_pending(current)) 2133 break; 2134 spin_unlock_irqrestore(&pp->lock, flags); 2135 schedule(); 2136 spin_lock_irqsave(&pp->lock, flags); 2137 } 2138 current->state = TASK_RUNNING; 2139 remove_wait_queue(&pp->wait, &wait); 2140 spin_unlock_irqrestore(&pp->lock, flags); 2141 2142 return ret; 2143 } 2144 2145 static ssize_t 2146 pmu_write(struct file *file, const char __user *buf, 2147 size_t count, loff_t *ppos) 2148 { 2149 return 0; 2150 } 2151 2152 static unsigned int 2153 pmu_fpoll(struct file *filp, poll_table *wait) 2154 { 2155 struct pmu_private *pp = filp->private_data; 2156 unsigned int mask = 0; 2157 unsigned long flags; 2158 2159 if (pp == 0) 2160 return 0; 2161 poll_wait(filp, &pp->wait, wait); 2162 spin_lock_irqsave(&pp->lock, flags); 2163 if (pp->rb_get != pp->rb_put) 2164 mask |= POLLIN; 2165 spin_unlock_irqrestore(&pp->lock, flags); 2166 return mask; 2167 } 2168 2169 static int 2170 pmu_release(struct inode *inode, struct file *file) 2171 { 2172 struct pmu_private *pp = file->private_data; 2173 unsigned long flags; 2174 2175 if (pp != 0) { 2176 file->private_data = NULL; 2177 spin_lock_irqsave(&all_pvt_lock, flags); 2178 list_del(&pp->list); 2179 spin_unlock_irqrestore(&all_pvt_lock, flags); 2180 2181 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) 2182 if (pp->backlight_locker) 2183 pmac_backlight_enable(); 2184 #endif 2185 2186 kfree(pp); 2187 } 2188 return 0; 2189 } 2190 2191 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) 2192 static void pmac_suspend_disable_irqs(void) 2193 { 2194 /* Call platform functions marked "on sleep" */ 2195 pmac_pfunc_i2c_suspend(); 2196 pmac_pfunc_base_suspend(); 2197 } 2198 2199 static int powerbook_sleep(suspend_state_t state) 2200 { 2201 int error = 0; 2202 2203 /* Wait for completion of async requests */ 2204 while (!batt_req.complete) 2205 pmu_poll(); 2206 2207 /* Giveup the lazy FPU & vec so we don't have to back them 2208 * up from the low level code 2209 */ 2210 enable_kernel_fp(); 2211 2212 #ifdef CONFIG_ALTIVEC 2213 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2214 enable_kernel_altivec(); 2215 #endif /* CONFIG_ALTIVEC */ 2216 2217 switch (pmu_kind) { 2218 case PMU_OHARE_BASED: 2219 error = powerbook_sleep_3400(); 2220 break; 2221 case PMU_HEATHROW_BASED: 2222 case PMU_PADDINGTON_BASED: 2223 error = powerbook_sleep_grackle(); 2224 break; 2225 case PMU_KEYLARGO_BASED: 2226 error = powerbook_sleep_Core99(); 2227 break; 2228 default: 2229 return -ENOSYS; 2230 } 2231 2232 if (error) 2233 return error; 2234 2235 mdelay(100); 2236 2237 return 0; 2238 } 2239 2240 static void pmac_suspend_enable_irqs(void) 2241 { 2242 /* Force a poll of ADB interrupts */ 2243 adb_int_pending = 1; 2244 via_pmu_interrupt(0, NULL); 2245 2246 mdelay(10); 2247 2248 /* Call platform functions marked "on wake" */ 2249 pmac_pfunc_base_resume(); 2250 pmac_pfunc_i2c_resume(); 2251 } 2252 2253 static int pmu_sleep_valid(suspend_state_t state) 2254 { 2255 return state == PM_SUSPEND_MEM 2256 && (pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, -1) >= 0); 2257 } 2258 2259 static const struct platform_suspend_ops pmu_pm_ops = { 2260 .enter = powerbook_sleep, 2261 .valid = pmu_sleep_valid, 2262 }; 2263 2264 static int register_pmu_pm_ops(void) 2265 { 2266 if (pmu_kind == PMU_OHARE_BASED) 2267 powerbook_sleep_init_3400(); 2268 ppc_md.suspend_disable_irqs = pmac_suspend_disable_irqs; 2269 ppc_md.suspend_enable_irqs = pmac_suspend_enable_irqs; 2270 suspend_set_ops(&pmu_pm_ops); 2271 2272 return 0; 2273 } 2274 2275 device_initcall(register_pmu_pm_ops); 2276 #endif 2277 2278 static int pmu_ioctl(struct file *filp, 2279 u_int cmd, u_long arg) 2280 { 2281 __u32 __user *argp = (__u32 __user *)arg; 2282 int error = -EINVAL; 2283 2284 switch (cmd) { 2285 case PMU_IOC_SLEEP: 2286 if (!capable(CAP_SYS_ADMIN)) 2287 return -EACCES; 2288 return pm_suspend(PM_SUSPEND_MEM); 2289 case PMU_IOC_CAN_SLEEP: 2290 if (pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, -1) < 0) 2291 return put_user(0, argp); 2292 else 2293 return put_user(1, argp); 2294 2295 #ifdef CONFIG_PMAC_BACKLIGHT_LEGACY 2296 /* Compatibility ioctl's for backlight */ 2297 case PMU_IOC_GET_BACKLIGHT: 2298 { 2299 int brightness; 2300 2301 brightness = pmac_backlight_get_legacy_brightness(); 2302 if (brightness < 0) 2303 return brightness; 2304 else 2305 return put_user(brightness, argp); 2306 2307 } 2308 case PMU_IOC_SET_BACKLIGHT: 2309 { 2310 int brightness; 2311 2312 error = get_user(brightness, argp); 2313 if (error) 2314 return error; 2315 2316 return pmac_backlight_set_legacy_brightness(brightness); 2317 } 2318 #ifdef CONFIG_INPUT_ADBHID 2319 case PMU_IOC_GRAB_BACKLIGHT: { 2320 struct pmu_private *pp = filp->private_data; 2321 2322 if (pp->backlight_locker) 2323 return 0; 2324 2325 pp->backlight_locker = 1; 2326 pmac_backlight_disable(); 2327 2328 return 0; 2329 } 2330 #endif /* CONFIG_INPUT_ADBHID */ 2331 #endif /* CONFIG_PMAC_BACKLIGHT_LEGACY */ 2332 2333 case PMU_IOC_GET_MODEL: 2334 return put_user(pmu_kind, argp); 2335 case PMU_IOC_HAS_ADB: 2336 return put_user(pmu_has_adb, argp); 2337 } 2338 return error; 2339 } 2340 2341 static long pmu_unlocked_ioctl(struct file *filp, 2342 u_int cmd, u_long arg) 2343 { 2344 int ret; 2345 2346 mutex_lock(&pmu_info_proc_mutex); 2347 ret = pmu_ioctl(filp, cmd, arg); 2348 mutex_unlock(&pmu_info_proc_mutex); 2349 2350 return ret; 2351 } 2352 2353 #ifdef CONFIG_COMPAT 2354 #define PMU_IOC_GET_BACKLIGHT32 _IOR('B', 1, compat_size_t) 2355 #define PMU_IOC_SET_BACKLIGHT32 _IOW('B', 2, compat_size_t) 2356 #define PMU_IOC_GET_MODEL32 _IOR('B', 3, compat_size_t) 2357 #define PMU_IOC_HAS_ADB32 _IOR('B', 4, compat_size_t) 2358 #define PMU_IOC_CAN_SLEEP32 _IOR('B', 5, compat_size_t) 2359 #define PMU_IOC_GRAB_BACKLIGHT32 _IOR('B', 6, compat_size_t) 2360 2361 static long compat_pmu_ioctl (struct file *filp, u_int cmd, u_long arg) 2362 { 2363 switch (cmd) { 2364 case PMU_IOC_SLEEP: 2365 break; 2366 case PMU_IOC_GET_BACKLIGHT32: 2367 cmd = PMU_IOC_GET_BACKLIGHT; 2368 break; 2369 case PMU_IOC_SET_BACKLIGHT32: 2370 cmd = PMU_IOC_SET_BACKLIGHT; 2371 break; 2372 case PMU_IOC_GET_MODEL32: 2373 cmd = PMU_IOC_GET_MODEL; 2374 break; 2375 case PMU_IOC_HAS_ADB32: 2376 cmd = PMU_IOC_HAS_ADB; 2377 break; 2378 case PMU_IOC_CAN_SLEEP32: 2379 cmd = PMU_IOC_CAN_SLEEP; 2380 break; 2381 case PMU_IOC_GRAB_BACKLIGHT32: 2382 cmd = PMU_IOC_GRAB_BACKLIGHT; 2383 break; 2384 default: 2385 return -ENOIOCTLCMD; 2386 } 2387 return pmu_unlocked_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2388 } 2389 #endif 2390 2391 static const struct file_operations pmu_device_fops = { 2392 .read = pmu_read, 2393 .write = pmu_write, 2394 .poll = pmu_fpoll, 2395 .unlocked_ioctl = pmu_unlocked_ioctl, 2396 #ifdef CONFIG_COMPAT 2397 .compat_ioctl = compat_pmu_ioctl, 2398 #endif 2399 .open = pmu_open, 2400 .release = pmu_release, 2401 .llseek = noop_llseek, 2402 }; 2403 2404 static struct miscdevice pmu_device = { 2405 PMU_MINOR, "pmu", &pmu_device_fops 2406 }; 2407 2408 static int pmu_device_init(void) 2409 { 2410 if (!via) 2411 return 0; 2412 if (misc_register(&pmu_device) < 0) 2413 printk(KERN_ERR "via-pmu: cannot register misc device.\n"); 2414 return 0; 2415 } 2416 device_initcall(pmu_device_init); 2417 2418 2419 #ifdef DEBUG_SLEEP 2420 static inline void 2421 polled_handshake(volatile unsigned char __iomem *via) 2422 { 2423 via[B] &= ~TREQ; eieio(); 2424 while ((via[B] & TACK) != 0) 2425 ; 2426 via[B] |= TREQ; eieio(); 2427 while ((via[B] & TACK) == 0) 2428 ; 2429 } 2430 2431 static inline void 2432 polled_send_byte(volatile unsigned char __iomem *via, int x) 2433 { 2434 via[ACR] |= SR_OUT | SR_EXT; eieio(); 2435 via[SR] = x; eieio(); 2436 polled_handshake(via); 2437 } 2438 2439 static inline int 2440 polled_recv_byte(volatile unsigned char __iomem *via) 2441 { 2442 int x; 2443 2444 via[ACR] = (via[ACR] & ~SR_OUT) | SR_EXT; eieio(); 2445 x = via[SR]; eieio(); 2446 polled_handshake(via); 2447 x = via[SR]; eieio(); 2448 return x; 2449 } 2450 2451 int 2452 pmu_polled_request(struct adb_request *req) 2453 { 2454 unsigned long flags; 2455 int i, l, c; 2456 volatile unsigned char __iomem *v = via; 2457 2458 req->complete = 1; 2459 c = req->data[0]; 2460 l = pmu_data_len[c][0]; 2461 if (l >= 0 && req->nbytes != l + 1) 2462 return -EINVAL; 2463 2464 local_irq_save(flags); 2465 while (pmu_state != idle) 2466 pmu_poll(); 2467 2468 while ((via[B] & TACK) == 0) 2469 ; 2470 polled_send_byte(v, c); 2471 if (l < 0) { 2472 l = req->nbytes - 1; 2473 polled_send_byte(v, l); 2474 } 2475 for (i = 1; i <= l; ++i) 2476 polled_send_byte(v, req->data[i]); 2477 2478 l = pmu_data_len[c][1]; 2479 if (l < 0) 2480 l = polled_recv_byte(v); 2481 for (i = 0; i < l; ++i) 2482 req->reply[i + req->reply_len] = polled_recv_byte(v); 2483 2484 if (req->done) 2485 (*req->done)(req); 2486 2487 local_irq_restore(flags); 2488 return 0; 2489 } 2490 2491 /* N.B. This doesn't work on the 3400 */ 2492 void pmu_blink(int n) 2493 { 2494 struct adb_request req; 2495 2496 memset(&req, 0, sizeof(req)); 2497 2498 for (; n > 0; --n) { 2499 req.nbytes = 4; 2500 req.done = NULL; 2501 req.data[0] = 0xee; 2502 req.data[1] = 4; 2503 req.data[2] = 0; 2504 req.data[3] = 1; 2505 req.reply[0] = ADB_RET_OK; 2506 req.reply_len = 1; 2507 req.reply_expected = 0; 2508 pmu_polled_request(&req); 2509 mdelay(50); 2510 req.nbytes = 4; 2511 req.done = NULL; 2512 req.data[0] = 0xee; 2513 req.data[1] = 4; 2514 req.data[2] = 0; 2515 req.data[3] = 0; 2516 req.reply[0] = ADB_RET_OK; 2517 req.reply_len = 1; 2518 req.reply_expected = 0; 2519 pmu_polled_request(&req); 2520 mdelay(50); 2521 } 2522 mdelay(50); 2523 } 2524 #endif /* DEBUG_SLEEP */ 2525 2526 #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC32) 2527 int pmu_sys_suspended; 2528 2529 static int pmu_syscore_suspend(void) 2530 { 2531 /* Suspend PMU event interrupts */ 2532 pmu_suspend(); 2533 pmu_sys_suspended = 1; 2534 2535 #ifdef CONFIG_PMAC_BACKLIGHT 2536 /* Tell backlight code not to muck around with the chip anymore */ 2537 pmu_backlight_set_sleep(1); 2538 #endif 2539 2540 return 0; 2541 } 2542 2543 static void pmu_syscore_resume(void) 2544 { 2545 struct adb_request req; 2546 2547 if (!pmu_sys_suspended) 2548 return; 2549 2550 /* Tell PMU we are ready */ 2551 pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2); 2552 pmu_wait_complete(&req); 2553 2554 #ifdef CONFIG_PMAC_BACKLIGHT 2555 /* Tell backlight code it can use the chip again */ 2556 pmu_backlight_set_sleep(0); 2557 #endif 2558 /* Resume PMU event interrupts */ 2559 pmu_resume(); 2560 pmu_sys_suspended = 0; 2561 } 2562 2563 static struct syscore_ops pmu_syscore_ops = { 2564 .suspend = pmu_syscore_suspend, 2565 .resume = pmu_syscore_resume, 2566 }; 2567 2568 static int pmu_syscore_register(void) 2569 { 2570 register_syscore_ops(&pmu_syscore_ops); 2571 2572 return 0; 2573 } 2574 subsys_initcall(pmu_syscore_register); 2575 #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */ 2576 2577 EXPORT_SYMBOL(pmu_request); 2578 EXPORT_SYMBOL(pmu_queue_request); 2579 EXPORT_SYMBOL(pmu_poll); 2580 EXPORT_SYMBOL(pmu_poll_adb); 2581 EXPORT_SYMBOL(pmu_wait_complete); 2582 EXPORT_SYMBOL(pmu_suspend); 2583 EXPORT_SYMBOL(pmu_resume); 2584 EXPORT_SYMBOL(pmu_unlock); 2585 #if defined(CONFIG_PPC32) 2586 EXPORT_SYMBOL(pmu_enable_irled); 2587 EXPORT_SYMBOL(pmu_battery_count); 2588 EXPORT_SYMBOL(pmu_batteries); 2589 EXPORT_SYMBOL(pmu_power_flags); 2590 #endif /* CONFIG_SUSPEND && CONFIG_PPC32 */ 2591 2592