xref: /openbmc/linux/drivers/macintosh/smu.c (revision f42b3800)
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9 
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrupts off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21 
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/sysdev.h>
36 #include <linux/poll.h>
37 #include <linux/mutex.h>
38 
39 #include <asm/byteorder.h>
40 #include <asm/io.h>
41 #include <asm/prom.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
44 #include <asm/smu.h>
45 #include <asm/sections.h>
46 #include <asm/abs_addr.h>
47 #include <asm/uaccess.h>
48 #include <asm/of_device.h>
49 #include <asm/of_platform.h>
50 
51 #define VERSION "0.7"
52 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
53 
54 #undef DEBUG_SMU
55 
56 #ifdef DEBUG_SMU
57 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
58 #else
59 #define DPRINTK(fmt, args...) do { } while (0)
60 #endif
61 
62 /*
63  * This is the command buffer passed to the SMU hardware
64  */
65 #define SMU_MAX_DATA	254
66 
67 struct smu_cmd_buf {
68 	u8 cmd;
69 	u8 length;
70 	u8 data[SMU_MAX_DATA];
71 };
72 
73 struct smu_device {
74 	spinlock_t		lock;
75 	struct device_node	*of_node;
76 	struct of_device	*of_dev;
77 	int			doorbell;	/* doorbell gpio */
78 	u32 __iomem		*db_buf;	/* doorbell buffer */
79 	struct device_node	*db_node;
80 	unsigned int		db_irq;
81 	int			msg;
82 	struct device_node	*msg_node;
83 	unsigned int		msg_irq;
84 	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
85 	u32			cmd_buf_abs;	/* command buffer absolute */
86 	struct list_head	cmd_list;
87 	struct smu_cmd		*cmd_cur;	/* pending command */
88 	int			broken_nap;
89 	struct list_head	cmd_i2c_list;
90 	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
91 	struct timer_list	i2c_timer;
92 };
93 
94 /*
95  * I don't think there will ever be more than one SMU, so
96  * for now, just hard code that
97  */
98 static struct smu_device	*smu;
99 static DEFINE_MUTEX(smu_part_access);
100 static int smu_irq_inited;
101 
102 static void smu_i2c_retry(unsigned long data);
103 
104 /*
105  * SMU driver low level stuff
106  */
107 
108 static void smu_start_cmd(void)
109 {
110 	unsigned long faddr, fend;
111 	struct smu_cmd *cmd;
112 
113 	if (list_empty(&smu->cmd_list))
114 		return;
115 
116 	/* Fetch first command in queue */
117 	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
118 	smu->cmd_cur = cmd;
119 	list_del(&cmd->link);
120 
121 	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
122 		cmd->data_len);
123 	DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
124 		((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
125 		((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
126 		((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
127 		((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
128 
129 	/* Fill the SMU command buffer */
130 	smu->cmd_buf->cmd = cmd->cmd;
131 	smu->cmd_buf->length = cmd->data_len;
132 	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
133 
134 	/* Flush command and data to RAM */
135 	faddr = (unsigned long)smu->cmd_buf;
136 	fend = faddr + smu->cmd_buf->length + 2;
137 	flush_inval_dcache_range(faddr, fend);
138 
139 
140 	/* We also disable NAP mode for the duration of the command
141 	 * on U3 based machines.
142 	 * This is slightly racy as it can be written back to 1 by a sysctl
143 	 * but that never happens in practice. There seem to be an issue with
144 	 * U3 based machines such as the iMac G5 where napping for the
145 	 * whole duration of the command prevents the SMU from fetching it
146 	 * from memory. This might be related to the strange i2c based
147 	 * mechanism the SMU uses to access memory.
148 	 */
149 	if (smu->broken_nap)
150 		powersave_nap = 0;
151 
152 	/* This isn't exactly a DMA mapping here, I suspect
153 	 * the SMU is actually communicating with us via i2c to the
154 	 * northbridge or the CPU to access RAM.
155 	 */
156 	writel(smu->cmd_buf_abs, smu->db_buf);
157 
158 	/* Ring the SMU doorbell */
159 	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
160 }
161 
162 
163 static irqreturn_t smu_db_intr(int irq, void *arg)
164 {
165 	unsigned long flags;
166 	struct smu_cmd *cmd;
167 	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
168 	void *misc = NULL;
169 	u8 gpio;
170 	int rc = 0;
171 
172 	/* SMU completed the command, well, we hope, let's make sure
173 	 * of it
174 	 */
175 	spin_lock_irqsave(&smu->lock, flags);
176 
177 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
178 	if ((gpio & 7) != 7) {
179 		spin_unlock_irqrestore(&smu->lock, flags);
180 		return IRQ_HANDLED;
181 	}
182 
183 	cmd = smu->cmd_cur;
184 	smu->cmd_cur = NULL;
185 	if (cmd == NULL)
186 		goto bail;
187 
188 	if (rc == 0) {
189 		unsigned long faddr;
190 		int reply_len;
191 		u8 ack;
192 
193 		/* CPU might have brought back the cache line, so we need
194 		 * to flush again before peeking at the SMU response. We
195 		 * flush the entire buffer for now as we haven't read the
196 		 * reply length (it's only 2 cache lines anyway)
197 		 */
198 		faddr = (unsigned long)smu->cmd_buf;
199 		flush_inval_dcache_range(faddr, faddr + 256);
200 
201 		/* Now check ack */
202 		ack = (~cmd->cmd) & 0xff;
203 		if (ack != smu->cmd_buf->cmd) {
204 			DPRINTK("SMU: incorrect ack, want %x got %x\n",
205 				ack, smu->cmd_buf->cmd);
206 			rc = -EIO;
207 		}
208 		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
209 		DPRINTK("SMU: reply len: %d\n", reply_len);
210 		if (reply_len > cmd->reply_len) {
211 			printk(KERN_WARNING "SMU: reply buffer too small,"
212 			       "got %d bytes for a %d bytes buffer\n",
213 			       reply_len, cmd->reply_len);
214 			reply_len = cmd->reply_len;
215 		}
216 		cmd->reply_len = reply_len;
217 		if (cmd->reply_buf && reply_len)
218 			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
219 	}
220 
221 	/* Now complete the command. Write status last in order as we lost
222 	 * ownership of the command structure as soon as it's no longer -1
223 	 */
224 	done = cmd->done;
225 	misc = cmd->misc;
226 	mb();
227 	cmd->status = rc;
228 
229 	/* Re-enable NAP mode */
230 	if (smu->broken_nap)
231 		powersave_nap = 1;
232  bail:
233 	/* Start next command if any */
234 	smu_start_cmd();
235 	spin_unlock_irqrestore(&smu->lock, flags);
236 
237 	/* Call command completion handler if any */
238 	if (done)
239 		done(cmd, misc);
240 
241 	/* It's an edge interrupt, nothing to do */
242 	return IRQ_HANDLED;
243 }
244 
245 
246 static irqreturn_t smu_msg_intr(int irq, void *arg)
247 {
248 	/* I don't quite know what to do with this one, we seem to never
249 	 * receive it, so I suspect we have to arm it someway in the SMU
250 	 * to start getting events that way.
251 	 */
252 
253 	printk(KERN_INFO "SMU: message interrupt !\n");
254 
255 	/* It's an edge interrupt, nothing to do */
256 	return IRQ_HANDLED;
257 }
258 
259 
260 /*
261  * Queued command management.
262  *
263  */
264 
265 int smu_queue_cmd(struct smu_cmd *cmd)
266 {
267 	unsigned long flags;
268 
269 	if (smu == NULL)
270 		return -ENODEV;
271 	if (cmd->data_len > SMU_MAX_DATA ||
272 	    cmd->reply_len > SMU_MAX_DATA)
273 		return -EINVAL;
274 
275 	cmd->status = 1;
276 	spin_lock_irqsave(&smu->lock, flags);
277 	list_add_tail(&cmd->link, &smu->cmd_list);
278 	if (smu->cmd_cur == NULL)
279 		smu_start_cmd();
280 	spin_unlock_irqrestore(&smu->lock, flags);
281 
282 	/* Workaround for early calls when irq isn't available */
283 	if (!smu_irq_inited || smu->db_irq == NO_IRQ)
284 		smu_spinwait_cmd(cmd);
285 
286 	return 0;
287 }
288 EXPORT_SYMBOL(smu_queue_cmd);
289 
290 
291 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
292 		     unsigned int data_len,
293 		     void (*done)(struct smu_cmd *cmd, void *misc),
294 		     void *misc, ...)
295 {
296 	struct smu_cmd *cmd = &scmd->cmd;
297 	va_list list;
298 	int i;
299 
300 	if (data_len > sizeof(scmd->buffer))
301 		return -EINVAL;
302 
303 	memset(scmd, 0, sizeof(*scmd));
304 	cmd->cmd = command;
305 	cmd->data_len = data_len;
306 	cmd->data_buf = scmd->buffer;
307 	cmd->reply_len = sizeof(scmd->buffer);
308 	cmd->reply_buf = scmd->buffer;
309 	cmd->done = done;
310 	cmd->misc = misc;
311 
312 	va_start(list, misc);
313 	for (i = 0; i < data_len; ++i)
314 		scmd->buffer[i] = (u8)va_arg(list, int);
315 	va_end(list);
316 
317 	return smu_queue_cmd(cmd);
318 }
319 EXPORT_SYMBOL(smu_queue_simple);
320 
321 
322 void smu_poll(void)
323 {
324 	u8 gpio;
325 
326 	if (smu == NULL)
327 		return;
328 
329 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
330 	if ((gpio & 7) == 7)
331 		smu_db_intr(smu->db_irq, smu);
332 }
333 EXPORT_SYMBOL(smu_poll);
334 
335 
336 void smu_done_complete(struct smu_cmd *cmd, void *misc)
337 {
338 	struct completion *comp = misc;
339 
340 	complete(comp);
341 }
342 EXPORT_SYMBOL(smu_done_complete);
343 
344 
345 void smu_spinwait_cmd(struct smu_cmd *cmd)
346 {
347 	while(cmd->status == 1)
348 		smu_poll();
349 }
350 EXPORT_SYMBOL(smu_spinwait_cmd);
351 
352 
353 /* RTC low level commands */
354 static inline int bcd2hex (int n)
355 {
356 	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
357 }
358 
359 
360 static inline int hex2bcd (int n)
361 {
362 	return ((n / 10) << 4) + (n % 10);
363 }
364 
365 
366 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
367 					struct rtc_time *time)
368 {
369 	cmd_buf->cmd = 0x8e;
370 	cmd_buf->length = 8;
371 	cmd_buf->data[0] = 0x80;
372 	cmd_buf->data[1] = hex2bcd(time->tm_sec);
373 	cmd_buf->data[2] = hex2bcd(time->tm_min);
374 	cmd_buf->data[3] = hex2bcd(time->tm_hour);
375 	cmd_buf->data[4] = time->tm_wday;
376 	cmd_buf->data[5] = hex2bcd(time->tm_mday);
377 	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
378 	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
379 }
380 
381 
382 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
383 {
384 	struct smu_simple_cmd cmd;
385 	int rc;
386 
387 	if (smu == NULL)
388 		return -ENODEV;
389 
390 	memset(time, 0, sizeof(struct rtc_time));
391 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
392 			      SMU_CMD_RTC_GET_DATETIME);
393 	if (rc)
394 		return rc;
395 	smu_spinwait_simple(&cmd);
396 
397 	time->tm_sec = bcd2hex(cmd.buffer[0]);
398 	time->tm_min = bcd2hex(cmd.buffer[1]);
399 	time->tm_hour = bcd2hex(cmd.buffer[2]);
400 	time->tm_wday = bcd2hex(cmd.buffer[3]);
401 	time->tm_mday = bcd2hex(cmd.buffer[4]);
402 	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
403 	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
404 
405 	return 0;
406 }
407 
408 
409 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
410 {
411 	struct smu_simple_cmd cmd;
412 	int rc;
413 
414 	if (smu == NULL)
415 		return -ENODEV;
416 
417 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
418 			      SMU_CMD_RTC_SET_DATETIME,
419 			      hex2bcd(time->tm_sec),
420 			      hex2bcd(time->tm_min),
421 			      hex2bcd(time->tm_hour),
422 			      time->tm_wday,
423 			      hex2bcd(time->tm_mday),
424 			      hex2bcd(time->tm_mon) + 1,
425 			      hex2bcd(time->tm_year - 100));
426 	if (rc)
427 		return rc;
428 	smu_spinwait_simple(&cmd);
429 
430 	return 0;
431 }
432 
433 
434 void smu_shutdown(void)
435 {
436 	struct smu_simple_cmd cmd;
437 
438 	if (smu == NULL)
439 		return;
440 
441 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
442 			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
443 		return;
444 	smu_spinwait_simple(&cmd);
445 	for (;;)
446 		;
447 }
448 
449 
450 void smu_restart(void)
451 {
452 	struct smu_simple_cmd cmd;
453 
454 	if (smu == NULL)
455 		return;
456 
457 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
458 			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
459 		return;
460 	smu_spinwait_simple(&cmd);
461 	for (;;)
462 		;
463 }
464 
465 
466 int smu_present(void)
467 {
468 	return smu != NULL;
469 }
470 EXPORT_SYMBOL(smu_present);
471 
472 
473 int __init smu_init (void)
474 {
475 	struct device_node *np;
476 	const u32 *data;
477 
478         np = of_find_node_by_type(NULL, "smu");
479         if (np == NULL)
480 		return -ENODEV;
481 
482 	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
483 
484 	if (smu_cmdbuf_abs == 0) {
485 		printk(KERN_ERR "SMU: Command buffer not allocated !\n");
486 		return -EINVAL;
487 	}
488 
489 	smu = alloc_bootmem(sizeof(struct smu_device));
490 	if (smu == NULL)
491 		return -ENOMEM;
492 	memset(smu, 0, sizeof(*smu));
493 
494 	spin_lock_init(&smu->lock);
495 	INIT_LIST_HEAD(&smu->cmd_list);
496 	INIT_LIST_HEAD(&smu->cmd_i2c_list);
497 	smu->of_node = np;
498 	smu->db_irq = NO_IRQ;
499 	smu->msg_irq = NO_IRQ;
500 
501 	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
502 	 * 32 bits value safely
503 	 */
504 	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
505 	smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
506 
507 	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
508 	if (smu->db_node == NULL) {
509 		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
510 		goto fail;
511 	}
512 	data = of_get_property(smu->db_node, "reg", NULL);
513 	if (data == NULL) {
514 		of_node_put(smu->db_node);
515 		smu->db_node = NULL;
516 		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
517 		goto fail;
518 	}
519 
520 	/* Current setup has one doorbell GPIO that does both doorbell
521 	 * and ack. GPIOs are at 0x50, best would be to find that out
522 	 * in the device-tree though.
523 	 */
524 	smu->doorbell = *data;
525 	if (smu->doorbell < 0x50)
526 		smu->doorbell += 0x50;
527 
528 	/* Now look for the smu-interrupt GPIO */
529 	do {
530 		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
531 		if (smu->msg_node == NULL)
532 			break;
533 		data = of_get_property(smu->msg_node, "reg", NULL);
534 		if (data == NULL) {
535 			of_node_put(smu->msg_node);
536 			smu->msg_node = NULL;
537 			break;
538 		}
539 		smu->msg = *data;
540 		if (smu->msg < 0x50)
541 			smu->msg += 0x50;
542 	} while(0);
543 
544 	/* Doorbell buffer is currently hard-coded, I didn't find a proper
545 	 * device-tree entry giving the address. Best would probably to use
546 	 * an offset for K2 base though, but let's do it that way for now.
547 	 */
548 	smu->db_buf = ioremap(0x8000860c, 0x1000);
549 	if (smu->db_buf == NULL) {
550 		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
551 		goto fail;
552 	}
553 
554 	/* U3 has an issue with NAP mode when issuing SMU commands */
555 	smu->broken_nap = pmac_get_uninorth_variant() < 4;
556 	if (smu->broken_nap)
557 		printk(KERN_INFO "SMU: using NAP mode workaround\n");
558 
559 	sys_ctrler = SYS_CTRLER_SMU;
560 	return 0;
561 
562  fail:
563 	smu = NULL;
564 	return -ENXIO;
565 
566 }
567 
568 
569 static int smu_late_init(void)
570 {
571 	if (!smu)
572 		return 0;
573 
574 	init_timer(&smu->i2c_timer);
575 	smu->i2c_timer.function = smu_i2c_retry;
576 	smu->i2c_timer.data = (unsigned long)smu;
577 
578 	if (smu->db_node) {
579 		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
580 		if (smu->db_irq == NO_IRQ)
581 			printk(KERN_ERR "smu: failed to map irq for node %s\n",
582 			       smu->db_node->full_name);
583 	}
584 	if (smu->msg_node) {
585 		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
586 		if (smu->msg_irq == NO_IRQ)
587 			printk(KERN_ERR "smu: failed to map irq for node %s\n",
588 			       smu->msg_node->full_name);
589 	}
590 
591 	/*
592 	 * Try to request the interrupts
593 	 */
594 
595 	if (smu->db_irq != NO_IRQ) {
596 		if (request_irq(smu->db_irq, smu_db_intr,
597 				IRQF_SHARED, "SMU doorbell", smu) < 0) {
598 			printk(KERN_WARNING "SMU: can't "
599 			       "request interrupt %d\n",
600 			       smu->db_irq);
601 			smu->db_irq = NO_IRQ;
602 		}
603 	}
604 
605 	if (smu->msg_irq != NO_IRQ) {
606 		if (request_irq(smu->msg_irq, smu_msg_intr,
607 				IRQF_SHARED, "SMU message", smu) < 0) {
608 			printk(KERN_WARNING "SMU: can't "
609 			       "request interrupt %d\n",
610 			       smu->msg_irq);
611 			smu->msg_irq = NO_IRQ;
612 		}
613 	}
614 
615 	smu_irq_inited = 1;
616 	return 0;
617 }
618 /* This has to be before arch_initcall as the low i2c stuff relies on the
619  * above having been done before we reach arch_initcalls
620  */
621 core_initcall(smu_late_init);
622 
623 /*
624  * sysfs visibility
625  */
626 
627 static void smu_expose_childs(struct work_struct *unused)
628 {
629 	struct device_node *np;
630 
631 	for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
632 		if (of_device_is_compatible(np, "smu-sensors"))
633 			of_platform_device_create(np, "smu-sensors",
634 						  &smu->of_dev->dev);
635 }
636 
637 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
638 
639 static int smu_platform_probe(struct of_device* dev,
640 			      const struct of_device_id *match)
641 {
642 	if (!smu)
643 		return -ENODEV;
644 	smu->of_dev = dev;
645 
646 	/*
647 	 * Ok, we are matched, now expose all i2c busses. We have to defer
648 	 * that unfortunately or it would deadlock inside the device model
649 	 */
650 	schedule_work(&smu_expose_childs_work);
651 
652 	return 0;
653 }
654 
655 static struct of_device_id smu_platform_match[] =
656 {
657 	{
658 		.type		= "smu",
659 	},
660 	{},
661 };
662 
663 static struct of_platform_driver smu_of_platform_driver =
664 {
665 	.name 		= "smu",
666 	.match_table	= smu_platform_match,
667 	.probe		= smu_platform_probe,
668 };
669 
670 static int __init smu_init_sysfs(void)
671 {
672 	/*
673 	 * Due to sysfs bogosity, a sysdev is not a real device, so
674 	 * we should in fact create both if we want sysdev semantics
675 	 * for power management.
676 	 * For now, we don't power manage machines with an SMU chip,
677 	 * I'm a bit too far from figuring out how that works with those
678 	 * new chipsets, but that will come back and bite us
679 	 */
680 	of_register_platform_driver(&smu_of_platform_driver);
681 	return 0;
682 }
683 
684 device_initcall(smu_init_sysfs);
685 
686 struct of_device *smu_get_ofdev(void)
687 {
688 	if (!smu)
689 		return NULL;
690 	return smu->of_dev;
691 }
692 
693 EXPORT_SYMBOL_GPL(smu_get_ofdev);
694 
695 /*
696  * i2c interface
697  */
698 
699 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
700 {
701 	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
702 	void *misc = cmd->misc;
703 	unsigned long flags;
704 
705 	/* Check for read case */
706 	if (!fail && cmd->read) {
707 		if (cmd->pdata[0] < 1)
708 			fail = 1;
709 		else
710 			memcpy(cmd->info.data, &cmd->pdata[1],
711 			       cmd->info.datalen);
712 	}
713 
714 	DPRINTK("SMU: completing, success: %d\n", !fail);
715 
716 	/* Update status and mark no pending i2c command with lock
717 	 * held so nobody comes in while we dequeue an eventual
718 	 * pending next i2c command
719 	 */
720 	spin_lock_irqsave(&smu->lock, flags);
721 	smu->cmd_i2c_cur = NULL;
722 	wmb();
723 	cmd->status = fail ? -EIO : 0;
724 
725 	/* Is there another i2c command waiting ? */
726 	if (!list_empty(&smu->cmd_i2c_list)) {
727 		struct smu_i2c_cmd *newcmd;
728 
729 		/* Fetch it, new current, remove from list */
730 		newcmd = list_entry(smu->cmd_i2c_list.next,
731 				    struct smu_i2c_cmd, link);
732 		smu->cmd_i2c_cur = newcmd;
733 		list_del(&cmd->link);
734 
735 		/* Queue with low level smu */
736 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
737 		if (smu->cmd_cur == NULL)
738 			smu_start_cmd();
739 	}
740 	spin_unlock_irqrestore(&smu->lock, flags);
741 
742 	/* Call command completion handler if any */
743 	if (done)
744 		done(cmd, misc);
745 
746 }
747 
748 
749 static void smu_i2c_retry(unsigned long data)
750 {
751 	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
752 
753 	DPRINTK("SMU: i2c failure, requeuing...\n");
754 
755 	/* requeue command simply by resetting reply_len */
756 	cmd->pdata[0] = 0xff;
757 	cmd->scmd.reply_len = sizeof(cmd->pdata);
758 	smu_queue_cmd(&cmd->scmd);
759 }
760 
761 
762 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
763 {
764 	struct smu_i2c_cmd	*cmd = misc;
765 	int			fail = 0;
766 
767 	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
768 		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
769 
770 	/* Check for possible status */
771 	if (scmd->status < 0)
772 		fail = 1;
773 	else if (cmd->read) {
774 		if (cmd->stage == 0)
775 			fail = cmd->pdata[0] != 0;
776 		else
777 			fail = cmd->pdata[0] >= 0x80;
778 	} else {
779 		fail = cmd->pdata[0] != 0;
780 	}
781 
782 	/* Handle failures by requeuing command, after 5ms interval
783 	 */
784 	if (fail && --cmd->retries > 0) {
785 		DPRINTK("SMU: i2c failure, starting timer...\n");
786 		BUG_ON(cmd != smu->cmd_i2c_cur);
787 		if (!smu_irq_inited) {
788 			mdelay(5);
789 			smu_i2c_retry(0);
790 			return;
791 		}
792 		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
793 		return;
794 	}
795 
796 	/* If failure or stage 1, command is complete */
797 	if (fail || cmd->stage != 0) {
798 		smu_i2c_complete_command(cmd, fail);
799 		return;
800 	}
801 
802 	DPRINTK("SMU: going to stage 1\n");
803 
804 	/* Ok, initial command complete, now poll status */
805 	scmd->reply_buf = cmd->pdata;
806 	scmd->reply_len = sizeof(cmd->pdata);
807 	scmd->data_buf = cmd->pdata;
808 	scmd->data_len = 1;
809 	cmd->pdata[0] = 0;
810 	cmd->stage = 1;
811 	cmd->retries = 20;
812 	smu_queue_cmd(scmd);
813 }
814 
815 
816 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
817 {
818 	unsigned long flags;
819 
820 	if (smu == NULL)
821 		return -ENODEV;
822 
823 	/* Fill most fields of scmd */
824 	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
825 	cmd->scmd.done = smu_i2c_low_completion;
826 	cmd->scmd.misc = cmd;
827 	cmd->scmd.reply_buf = cmd->pdata;
828 	cmd->scmd.reply_len = sizeof(cmd->pdata);
829 	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
830 	cmd->scmd.status = 1;
831 	cmd->stage = 0;
832 	cmd->pdata[0] = 0xff;
833 	cmd->retries = 20;
834 	cmd->status = 1;
835 
836 	/* Check transfer type, sanitize some "info" fields
837 	 * based on transfer type and do more checking
838 	 */
839 	cmd->info.caddr = cmd->info.devaddr;
840 	cmd->read = cmd->info.devaddr & 0x01;
841 	switch(cmd->info.type) {
842 	case SMU_I2C_TRANSFER_SIMPLE:
843 		memset(&cmd->info.sublen, 0, 4);
844 		break;
845 	case SMU_I2C_TRANSFER_COMBINED:
846 		cmd->info.devaddr &= 0xfe;
847 	case SMU_I2C_TRANSFER_STDSUB:
848 		if (cmd->info.sublen > 3)
849 			return -EINVAL;
850 		break;
851 	default:
852 		return -EINVAL;
853 	}
854 
855 	/* Finish setting up command based on transfer direction
856 	 */
857 	if (cmd->read) {
858 		if (cmd->info.datalen > SMU_I2C_READ_MAX)
859 			return -EINVAL;
860 		memset(cmd->info.data, 0xff, cmd->info.datalen);
861 		cmd->scmd.data_len = 9;
862 	} else {
863 		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
864 			return -EINVAL;
865 		cmd->scmd.data_len = 9 + cmd->info.datalen;
866 	}
867 
868 	DPRINTK("SMU: i2c enqueuing command\n");
869 	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
870 		cmd->read ? "read" : "write", cmd->info.datalen,
871 		cmd->info.bus, cmd->info.caddr,
872 		cmd->info.subaddr[0], cmd->info.type);
873 
874 
875 	/* Enqueue command in i2c list, and if empty, enqueue also in
876 	 * main command list
877 	 */
878 	spin_lock_irqsave(&smu->lock, flags);
879 	if (smu->cmd_i2c_cur == NULL) {
880 		smu->cmd_i2c_cur = cmd;
881 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
882 		if (smu->cmd_cur == NULL)
883 			smu_start_cmd();
884 	} else
885 		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
886 	spin_unlock_irqrestore(&smu->lock, flags);
887 
888 	return 0;
889 }
890 
891 /*
892  * Handling of "partitions"
893  */
894 
895 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
896 {
897 	DECLARE_COMPLETION_ONSTACK(comp);
898 	unsigned int chunk;
899 	struct smu_cmd cmd;
900 	int rc;
901 	u8 params[8];
902 
903 	/* We currently use a chunk size of 0xe. We could check the
904 	 * SMU firmware version and use bigger sizes though
905 	 */
906 	chunk = 0xe;
907 
908 	while (len) {
909 		unsigned int clen = min(len, chunk);
910 
911 		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
912 		cmd.data_len = 7;
913 		cmd.data_buf = params;
914 		cmd.reply_len = chunk;
915 		cmd.reply_buf = dest;
916 		cmd.done = smu_done_complete;
917 		cmd.misc = &comp;
918 		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
919 		params[1] = 0x4;
920 		*((u32 *)&params[2]) = addr;
921 		params[6] = clen;
922 
923 		rc = smu_queue_cmd(&cmd);
924 		if (rc)
925 			return rc;
926 		wait_for_completion(&comp);
927 		if (cmd.status != 0)
928 			return rc;
929 		if (cmd.reply_len != clen) {
930 			printk(KERN_DEBUG "SMU: short read in "
931 			       "smu_read_datablock, got: %d, want: %d\n",
932 			       cmd.reply_len, clen);
933 			return -EIO;
934 		}
935 		len -= clen;
936 		addr += clen;
937 		dest += clen;
938 	}
939 	return 0;
940 }
941 
942 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
943 {
944 	DECLARE_COMPLETION_ONSTACK(comp);
945 	struct smu_simple_cmd cmd;
946 	unsigned int addr, len, tlen;
947 	struct smu_sdbp_header *hdr;
948 	struct property *prop;
949 
950 	/* First query the partition info */
951 	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
952 	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
953 			 smu_done_complete, &comp,
954 			 SMU_CMD_PARTITION_LATEST, id);
955 	wait_for_completion(&comp);
956 	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
957 		cmd.cmd.status, cmd.cmd.reply_len);
958 
959 	/* Partition doesn't exist (or other error) */
960 	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
961 		return NULL;
962 
963 	/* Fetch address and length from reply */
964 	addr = *((u16 *)cmd.buffer);
965 	len = cmd.buffer[3] << 2;
966 	/* Calucluate total length to allocate, including the 17 bytes
967 	 * for "sdb-partition-XX" that we append at the end of the buffer
968 	 */
969 	tlen = sizeof(struct property) + len + 18;
970 
971 	prop = kzalloc(tlen, GFP_KERNEL);
972 	if (prop == NULL)
973 		return NULL;
974 	hdr = (struct smu_sdbp_header *)(prop + 1);
975 	prop->name = ((char *)prop) + tlen - 18;
976 	sprintf(prop->name, "sdb-partition-%02x", id);
977 	prop->length = len;
978 	prop->value = hdr;
979 	prop->next = NULL;
980 
981 	/* Read the datablock */
982 	if (smu_read_datablock((u8 *)hdr, addr, len)) {
983 		printk(KERN_DEBUG "SMU: datablock read failed while reading "
984 		       "partition %02x !\n", id);
985 		goto failure;
986 	}
987 
988 	/* Got it, check a few things and create the property */
989 	if (hdr->id != id) {
990 		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
991 		       "%02x !\n", id, hdr->id);
992 		goto failure;
993 	}
994 	if (prom_add_property(smu->of_node, prop)) {
995 		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
996 		       "property !\n", id);
997 		goto failure;
998 	}
999 
1000 	return hdr;
1001  failure:
1002 	kfree(prop);
1003 	return NULL;
1004 }
1005 
1006 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1007  * when interruptible is 1
1008  */
1009 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1010 		unsigned int *size, int interruptible)
1011 {
1012 	char pname[32];
1013 	const struct smu_sdbp_header *part;
1014 
1015 	if (!smu)
1016 		return NULL;
1017 
1018 	sprintf(pname, "sdb-partition-%02x", id);
1019 
1020 	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1021 
1022 	if (interruptible) {
1023 		int rc;
1024 		rc = mutex_lock_interruptible(&smu_part_access);
1025 		if (rc)
1026 			return ERR_PTR(rc);
1027 	} else
1028 		mutex_lock(&smu_part_access);
1029 
1030 	part = of_get_property(smu->of_node, pname, size);
1031 	if (part == NULL) {
1032 		DPRINTK("trying to extract from SMU ...\n");
1033 		part = smu_create_sdb_partition(id);
1034 		if (part != NULL && size)
1035 			*size = part->len << 2;
1036 	}
1037 	mutex_unlock(&smu_part_access);
1038 	return part;
1039 }
1040 
1041 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1042 {
1043 	return __smu_get_sdb_partition(id, size, 0);
1044 }
1045 EXPORT_SYMBOL(smu_get_sdb_partition);
1046 
1047 
1048 /*
1049  * Userland driver interface
1050  */
1051 
1052 
1053 static LIST_HEAD(smu_clist);
1054 static DEFINE_SPINLOCK(smu_clist_lock);
1055 
1056 enum smu_file_mode {
1057 	smu_file_commands,
1058 	smu_file_events,
1059 	smu_file_closing
1060 };
1061 
1062 struct smu_private
1063 {
1064 	struct list_head	list;
1065 	enum smu_file_mode	mode;
1066 	int			busy;
1067 	struct smu_cmd		cmd;
1068 	spinlock_t		lock;
1069 	wait_queue_head_t	wait;
1070 	u8			buffer[SMU_MAX_DATA];
1071 };
1072 
1073 
1074 static int smu_open(struct inode *inode, struct file *file)
1075 {
1076 	struct smu_private *pp;
1077 	unsigned long flags;
1078 
1079 	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1080 	if (pp == 0)
1081 		return -ENOMEM;
1082 	spin_lock_init(&pp->lock);
1083 	pp->mode = smu_file_commands;
1084 	init_waitqueue_head(&pp->wait);
1085 
1086 	spin_lock_irqsave(&smu_clist_lock, flags);
1087 	list_add(&pp->list, &smu_clist);
1088 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1089 	file->private_data = pp;
1090 
1091 	return 0;
1092 }
1093 
1094 
1095 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1096 {
1097 	struct smu_private *pp = misc;
1098 
1099 	wake_up_all(&pp->wait);
1100 }
1101 
1102 
1103 static ssize_t smu_write(struct file *file, const char __user *buf,
1104 			 size_t count, loff_t *ppos)
1105 {
1106 	struct smu_private *pp = file->private_data;
1107 	unsigned long flags;
1108 	struct smu_user_cmd_hdr hdr;
1109 	int rc = 0;
1110 
1111 	if (pp->busy)
1112 		return -EBUSY;
1113 	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1114 		return -EFAULT;
1115 	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1116 		pp->mode = smu_file_events;
1117 		return 0;
1118 	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1119 		const struct smu_sdbp_header *part;
1120 		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1121 		if (part == NULL)
1122 			return -EINVAL;
1123 		else if (IS_ERR(part))
1124 			return PTR_ERR(part);
1125 		return 0;
1126 	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1127 		return -EINVAL;
1128 	else if (pp->mode != smu_file_commands)
1129 		return -EBADFD;
1130 	else if (hdr.data_len > SMU_MAX_DATA)
1131 		return -EINVAL;
1132 
1133 	spin_lock_irqsave(&pp->lock, flags);
1134 	if (pp->busy) {
1135 		spin_unlock_irqrestore(&pp->lock, flags);
1136 		return -EBUSY;
1137 	}
1138 	pp->busy = 1;
1139 	pp->cmd.status = 1;
1140 	spin_unlock_irqrestore(&pp->lock, flags);
1141 
1142 	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1143 		pp->busy = 0;
1144 		return -EFAULT;
1145 	}
1146 
1147 	pp->cmd.cmd = hdr.cmd;
1148 	pp->cmd.data_len = hdr.data_len;
1149 	pp->cmd.reply_len = SMU_MAX_DATA;
1150 	pp->cmd.data_buf = pp->buffer;
1151 	pp->cmd.reply_buf = pp->buffer;
1152 	pp->cmd.done = smu_user_cmd_done;
1153 	pp->cmd.misc = pp;
1154 	rc = smu_queue_cmd(&pp->cmd);
1155 	if (rc < 0)
1156 		return rc;
1157 	return count;
1158 }
1159 
1160 
1161 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1162 				char __user *buf, size_t count)
1163 {
1164 	DECLARE_WAITQUEUE(wait, current);
1165 	struct smu_user_reply_hdr hdr;
1166 	unsigned long flags;
1167 	int size, rc = 0;
1168 
1169 	if (!pp->busy)
1170 		return 0;
1171 	if (count < sizeof(struct smu_user_reply_hdr))
1172 		return -EOVERFLOW;
1173 	spin_lock_irqsave(&pp->lock, flags);
1174 	if (pp->cmd.status == 1) {
1175 		if (file->f_flags & O_NONBLOCK)
1176 			return -EAGAIN;
1177 		add_wait_queue(&pp->wait, &wait);
1178 		for (;;) {
1179 			set_current_state(TASK_INTERRUPTIBLE);
1180 			rc = 0;
1181 			if (pp->cmd.status != 1)
1182 				break;
1183 			rc = -ERESTARTSYS;
1184 			if (signal_pending(current))
1185 				break;
1186 			spin_unlock_irqrestore(&pp->lock, flags);
1187 			schedule();
1188 			spin_lock_irqsave(&pp->lock, flags);
1189 		}
1190 		set_current_state(TASK_RUNNING);
1191 		remove_wait_queue(&pp->wait, &wait);
1192 	}
1193 	spin_unlock_irqrestore(&pp->lock, flags);
1194 	if (rc)
1195 		return rc;
1196 	if (pp->cmd.status != 0)
1197 		pp->cmd.reply_len = 0;
1198 	size = sizeof(hdr) + pp->cmd.reply_len;
1199 	if (count < size)
1200 		size = count;
1201 	rc = size;
1202 	hdr.status = pp->cmd.status;
1203 	hdr.reply_len = pp->cmd.reply_len;
1204 	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1205 		return -EFAULT;
1206 	size -= sizeof(hdr);
1207 	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1208 		return -EFAULT;
1209 	pp->busy = 0;
1210 
1211 	return rc;
1212 }
1213 
1214 
1215 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1216 			       char __user *buf, size_t count)
1217 {
1218 	/* Not implemented */
1219 	msleep_interruptible(1000);
1220 	return 0;
1221 }
1222 
1223 
1224 static ssize_t smu_read(struct file *file, char __user *buf,
1225 			size_t count, loff_t *ppos)
1226 {
1227 	struct smu_private *pp = file->private_data;
1228 
1229 	if (pp->mode == smu_file_commands)
1230 		return smu_read_command(file, pp, buf, count);
1231 	if (pp->mode == smu_file_events)
1232 		return smu_read_events(file, pp, buf, count);
1233 
1234 	return -EBADFD;
1235 }
1236 
1237 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1238 {
1239 	struct smu_private *pp = file->private_data;
1240 	unsigned int mask = 0;
1241 	unsigned long flags;
1242 
1243 	if (pp == 0)
1244 		return 0;
1245 
1246 	if (pp->mode == smu_file_commands) {
1247 		poll_wait(file, &pp->wait, wait);
1248 
1249 		spin_lock_irqsave(&pp->lock, flags);
1250 		if (pp->busy && pp->cmd.status != 1)
1251 			mask |= POLLIN;
1252 		spin_unlock_irqrestore(&pp->lock, flags);
1253 	} if (pp->mode == smu_file_events) {
1254 		/* Not yet implemented */
1255 	}
1256 	return mask;
1257 }
1258 
1259 static int smu_release(struct inode *inode, struct file *file)
1260 {
1261 	struct smu_private *pp = file->private_data;
1262 	unsigned long flags;
1263 	unsigned int busy;
1264 
1265 	if (pp == 0)
1266 		return 0;
1267 
1268 	file->private_data = NULL;
1269 
1270 	/* Mark file as closing to avoid races with new request */
1271 	spin_lock_irqsave(&pp->lock, flags);
1272 	pp->mode = smu_file_closing;
1273 	busy = pp->busy;
1274 
1275 	/* Wait for any pending request to complete */
1276 	if (busy && pp->cmd.status == 1) {
1277 		DECLARE_WAITQUEUE(wait, current);
1278 
1279 		add_wait_queue(&pp->wait, &wait);
1280 		for (;;) {
1281 			set_current_state(TASK_UNINTERRUPTIBLE);
1282 			if (pp->cmd.status != 1)
1283 				break;
1284 			spin_unlock_irqrestore(&pp->lock, flags);
1285 			schedule();
1286 			spin_lock_irqsave(&pp->lock, flags);
1287 		}
1288 		set_current_state(TASK_RUNNING);
1289 		remove_wait_queue(&pp->wait, &wait);
1290 	}
1291 	spin_unlock_irqrestore(&pp->lock, flags);
1292 
1293 	spin_lock_irqsave(&smu_clist_lock, flags);
1294 	list_del(&pp->list);
1295 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1296 	kfree(pp);
1297 
1298 	return 0;
1299 }
1300 
1301 
1302 static const struct file_operations smu_device_fops = {
1303 	.llseek		= no_llseek,
1304 	.read		= smu_read,
1305 	.write		= smu_write,
1306 	.poll		= smu_fpoll,
1307 	.open		= smu_open,
1308 	.release	= smu_release,
1309 };
1310 
1311 static struct miscdevice pmu_device = {
1312 	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1313 };
1314 
1315 static int smu_device_init(void)
1316 {
1317 	if (!smu)
1318 		return -ENODEV;
1319 	if (misc_register(&pmu_device) < 0)
1320 		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1321 	return 0;
1322 }
1323 device_initcall(smu_device_init);
1324