xref: /openbmc/linux/drivers/macintosh/smu.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9 
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrupts off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21 
22 #include <linux/smp_lock.h>
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>
26 #include <linux/dmapool.h>
27 #include <linux/bootmem.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/jiffies.h>
31 #include <linux/interrupt.h>
32 #include <linux/rtc.h>
33 #include <linux/completion.h>
34 #include <linux/miscdevice.h>
35 #include <linux/delay.h>
36 #include <linux/sysdev.h>
37 #include <linux/poll.h>
38 #include <linux/mutex.h>
39 #include <linux/of_device.h>
40 #include <linux/of_platform.h>
41 
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/pmac_feature.h>
47 #include <asm/smu.h>
48 #include <asm/sections.h>
49 #include <asm/abs_addr.h>
50 #include <asm/uaccess.h>
51 
52 #define VERSION "0.7"
53 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54 
55 #undef DEBUG_SMU
56 
57 #ifdef DEBUG_SMU
58 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #else
60 #define DPRINTK(fmt, args...) do { } while (0)
61 #endif
62 
63 /*
64  * This is the command buffer passed to the SMU hardware
65  */
66 #define SMU_MAX_DATA	254
67 
68 struct smu_cmd_buf {
69 	u8 cmd;
70 	u8 length;
71 	u8 data[SMU_MAX_DATA];
72 };
73 
74 struct smu_device {
75 	spinlock_t		lock;
76 	struct device_node	*of_node;
77 	struct of_device	*of_dev;
78 	int			doorbell;	/* doorbell gpio */
79 	u32 __iomem		*db_buf;	/* doorbell buffer */
80 	struct device_node	*db_node;
81 	unsigned int		db_irq;
82 	int			msg;
83 	struct device_node	*msg_node;
84 	unsigned int		msg_irq;
85 	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
86 	u32			cmd_buf_abs;	/* command buffer absolute */
87 	struct list_head	cmd_list;
88 	struct smu_cmd		*cmd_cur;	/* pending command */
89 	int			broken_nap;
90 	struct list_head	cmd_i2c_list;
91 	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
92 	struct timer_list	i2c_timer;
93 };
94 
95 /*
96  * I don't think there will ever be more than one SMU, so
97  * for now, just hard code that
98  */
99 static struct smu_device	*smu;
100 static DEFINE_MUTEX(smu_part_access);
101 static int smu_irq_inited;
102 
103 static void smu_i2c_retry(unsigned long data);
104 
105 /*
106  * SMU driver low level stuff
107  */
108 
109 static void smu_start_cmd(void)
110 {
111 	unsigned long faddr, fend;
112 	struct smu_cmd *cmd;
113 
114 	if (list_empty(&smu->cmd_list))
115 		return;
116 
117 	/* Fetch first command in queue */
118 	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
119 	smu->cmd_cur = cmd;
120 	list_del(&cmd->link);
121 
122 	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
123 		cmd->data_len);
124 	DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
125 		((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
126 		((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
127 		((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
128 		((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
129 
130 	/* Fill the SMU command buffer */
131 	smu->cmd_buf->cmd = cmd->cmd;
132 	smu->cmd_buf->length = cmd->data_len;
133 	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
134 
135 	/* Flush command and data to RAM */
136 	faddr = (unsigned long)smu->cmd_buf;
137 	fend = faddr + smu->cmd_buf->length + 2;
138 	flush_inval_dcache_range(faddr, fend);
139 
140 
141 	/* We also disable NAP mode for the duration of the command
142 	 * on U3 based machines.
143 	 * This is slightly racy as it can be written back to 1 by a sysctl
144 	 * but that never happens in practice. There seem to be an issue with
145 	 * U3 based machines such as the iMac G5 where napping for the
146 	 * whole duration of the command prevents the SMU from fetching it
147 	 * from memory. This might be related to the strange i2c based
148 	 * mechanism the SMU uses to access memory.
149 	 */
150 	if (smu->broken_nap)
151 		powersave_nap = 0;
152 
153 	/* This isn't exactly a DMA mapping here, I suspect
154 	 * the SMU is actually communicating with us via i2c to the
155 	 * northbridge or the CPU to access RAM.
156 	 */
157 	writel(smu->cmd_buf_abs, smu->db_buf);
158 
159 	/* Ring the SMU doorbell */
160 	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
161 }
162 
163 
164 static irqreturn_t smu_db_intr(int irq, void *arg)
165 {
166 	unsigned long flags;
167 	struct smu_cmd *cmd;
168 	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
169 	void *misc = NULL;
170 	u8 gpio;
171 	int rc = 0;
172 
173 	/* SMU completed the command, well, we hope, let's make sure
174 	 * of it
175 	 */
176 	spin_lock_irqsave(&smu->lock, flags);
177 
178 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
179 	if ((gpio & 7) != 7) {
180 		spin_unlock_irqrestore(&smu->lock, flags);
181 		return IRQ_HANDLED;
182 	}
183 
184 	cmd = smu->cmd_cur;
185 	smu->cmd_cur = NULL;
186 	if (cmd == NULL)
187 		goto bail;
188 
189 	if (rc == 0) {
190 		unsigned long faddr;
191 		int reply_len;
192 		u8 ack;
193 
194 		/* CPU might have brought back the cache line, so we need
195 		 * to flush again before peeking at the SMU response. We
196 		 * flush the entire buffer for now as we haven't read the
197 		 * reply length (it's only 2 cache lines anyway)
198 		 */
199 		faddr = (unsigned long)smu->cmd_buf;
200 		flush_inval_dcache_range(faddr, faddr + 256);
201 
202 		/* Now check ack */
203 		ack = (~cmd->cmd) & 0xff;
204 		if (ack != smu->cmd_buf->cmd) {
205 			DPRINTK("SMU: incorrect ack, want %x got %x\n",
206 				ack, smu->cmd_buf->cmd);
207 			rc = -EIO;
208 		}
209 		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
210 		DPRINTK("SMU: reply len: %d\n", reply_len);
211 		if (reply_len > cmd->reply_len) {
212 			printk(KERN_WARNING "SMU: reply buffer too small,"
213 			       "got %d bytes for a %d bytes buffer\n",
214 			       reply_len, cmd->reply_len);
215 			reply_len = cmd->reply_len;
216 		}
217 		cmd->reply_len = reply_len;
218 		if (cmd->reply_buf && reply_len)
219 			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
220 	}
221 
222 	/* Now complete the command. Write status last in order as we lost
223 	 * ownership of the command structure as soon as it's no longer -1
224 	 */
225 	done = cmd->done;
226 	misc = cmd->misc;
227 	mb();
228 	cmd->status = rc;
229 
230 	/* Re-enable NAP mode */
231 	if (smu->broken_nap)
232 		powersave_nap = 1;
233  bail:
234 	/* Start next command if any */
235 	smu_start_cmd();
236 	spin_unlock_irqrestore(&smu->lock, flags);
237 
238 	/* Call command completion handler if any */
239 	if (done)
240 		done(cmd, misc);
241 
242 	/* It's an edge interrupt, nothing to do */
243 	return IRQ_HANDLED;
244 }
245 
246 
247 static irqreturn_t smu_msg_intr(int irq, void *arg)
248 {
249 	/* I don't quite know what to do with this one, we seem to never
250 	 * receive it, so I suspect we have to arm it someway in the SMU
251 	 * to start getting events that way.
252 	 */
253 
254 	printk(KERN_INFO "SMU: message interrupt !\n");
255 
256 	/* It's an edge interrupt, nothing to do */
257 	return IRQ_HANDLED;
258 }
259 
260 
261 /*
262  * Queued command management.
263  *
264  */
265 
266 int smu_queue_cmd(struct smu_cmd *cmd)
267 {
268 	unsigned long flags;
269 
270 	if (smu == NULL)
271 		return -ENODEV;
272 	if (cmd->data_len > SMU_MAX_DATA ||
273 	    cmd->reply_len > SMU_MAX_DATA)
274 		return -EINVAL;
275 
276 	cmd->status = 1;
277 	spin_lock_irqsave(&smu->lock, flags);
278 	list_add_tail(&cmd->link, &smu->cmd_list);
279 	if (smu->cmd_cur == NULL)
280 		smu_start_cmd();
281 	spin_unlock_irqrestore(&smu->lock, flags);
282 
283 	/* Workaround for early calls when irq isn't available */
284 	if (!smu_irq_inited || smu->db_irq == NO_IRQ)
285 		smu_spinwait_cmd(cmd);
286 
287 	return 0;
288 }
289 EXPORT_SYMBOL(smu_queue_cmd);
290 
291 
292 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
293 		     unsigned int data_len,
294 		     void (*done)(struct smu_cmd *cmd, void *misc),
295 		     void *misc, ...)
296 {
297 	struct smu_cmd *cmd = &scmd->cmd;
298 	va_list list;
299 	int i;
300 
301 	if (data_len > sizeof(scmd->buffer))
302 		return -EINVAL;
303 
304 	memset(scmd, 0, sizeof(*scmd));
305 	cmd->cmd = command;
306 	cmd->data_len = data_len;
307 	cmd->data_buf = scmd->buffer;
308 	cmd->reply_len = sizeof(scmd->buffer);
309 	cmd->reply_buf = scmd->buffer;
310 	cmd->done = done;
311 	cmd->misc = misc;
312 
313 	va_start(list, misc);
314 	for (i = 0; i < data_len; ++i)
315 		scmd->buffer[i] = (u8)va_arg(list, int);
316 	va_end(list);
317 
318 	return smu_queue_cmd(cmd);
319 }
320 EXPORT_SYMBOL(smu_queue_simple);
321 
322 
323 void smu_poll(void)
324 {
325 	u8 gpio;
326 
327 	if (smu == NULL)
328 		return;
329 
330 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
331 	if ((gpio & 7) == 7)
332 		smu_db_intr(smu->db_irq, smu);
333 }
334 EXPORT_SYMBOL(smu_poll);
335 
336 
337 void smu_done_complete(struct smu_cmd *cmd, void *misc)
338 {
339 	struct completion *comp = misc;
340 
341 	complete(comp);
342 }
343 EXPORT_SYMBOL(smu_done_complete);
344 
345 
346 void smu_spinwait_cmd(struct smu_cmd *cmd)
347 {
348 	while(cmd->status == 1)
349 		smu_poll();
350 }
351 EXPORT_SYMBOL(smu_spinwait_cmd);
352 
353 
354 /* RTC low level commands */
355 static inline int bcd2hex (int n)
356 {
357 	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
358 }
359 
360 
361 static inline int hex2bcd (int n)
362 {
363 	return ((n / 10) << 4) + (n % 10);
364 }
365 
366 
367 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
368 					struct rtc_time *time)
369 {
370 	cmd_buf->cmd = 0x8e;
371 	cmd_buf->length = 8;
372 	cmd_buf->data[0] = 0x80;
373 	cmd_buf->data[1] = hex2bcd(time->tm_sec);
374 	cmd_buf->data[2] = hex2bcd(time->tm_min);
375 	cmd_buf->data[3] = hex2bcd(time->tm_hour);
376 	cmd_buf->data[4] = time->tm_wday;
377 	cmd_buf->data[5] = hex2bcd(time->tm_mday);
378 	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
379 	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
380 }
381 
382 
383 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
384 {
385 	struct smu_simple_cmd cmd;
386 	int rc;
387 
388 	if (smu == NULL)
389 		return -ENODEV;
390 
391 	memset(time, 0, sizeof(struct rtc_time));
392 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
393 			      SMU_CMD_RTC_GET_DATETIME);
394 	if (rc)
395 		return rc;
396 	smu_spinwait_simple(&cmd);
397 
398 	time->tm_sec = bcd2hex(cmd.buffer[0]);
399 	time->tm_min = bcd2hex(cmd.buffer[1]);
400 	time->tm_hour = bcd2hex(cmd.buffer[2]);
401 	time->tm_wday = bcd2hex(cmd.buffer[3]);
402 	time->tm_mday = bcd2hex(cmd.buffer[4]);
403 	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
404 	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
405 
406 	return 0;
407 }
408 
409 
410 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
411 {
412 	struct smu_simple_cmd cmd;
413 	int rc;
414 
415 	if (smu == NULL)
416 		return -ENODEV;
417 
418 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
419 			      SMU_CMD_RTC_SET_DATETIME,
420 			      hex2bcd(time->tm_sec),
421 			      hex2bcd(time->tm_min),
422 			      hex2bcd(time->tm_hour),
423 			      time->tm_wday,
424 			      hex2bcd(time->tm_mday),
425 			      hex2bcd(time->tm_mon) + 1,
426 			      hex2bcd(time->tm_year - 100));
427 	if (rc)
428 		return rc;
429 	smu_spinwait_simple(&cmd);
430 
431 	return 0;
432 }
433 
434 
435 void smu_shutdown(void)
436 {
437 	struct smu_simple_cmd cmd;
438 
439 	if (smu == NULL)
440 		return;
441 
442 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
443 			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
444 		return;
445 	smu_spinwait_simple(&cmd);
446 	for (;;)
447 		;
448 }
449 
450 
451 void smu_restart(void)
452 {
453 	struct smu_simple_cmd cmd;
454 
455 	if (smu == NULL)
456 		return;
457 
458 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
459 			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
460 		return;
461 	smu_spinwait_simple(&cmd);
462 	for (;;)
463 		;
464 }
465 
466 
467 int smu_present(void)
468 {
469 	return smu != NULL;
470 }
471 EXPORT_SYMBOL(smu_present);
472 
473 
474 int __init smu_init (void)
475 {
476 	struct device_node *np;
477 	const u32 *data;
478 	int ret = 0;
479 
480         np = of_find_node_by_type(NULL, "smu");
481         if (np == NULL)
482 		return -ENODEV;
483 
484 	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
485 
486 	if (smu_cmdbuf_abs == 0) {
487 		printk(KERN_ERR "SMU: Command buffer not allocated !\n");
488 		ret = -EINVAL;
489 		goto fail_np;
490 	}
491 
492 	smu = alloc_bootmem(sizeof(struct smu_device));
493 
494 	spin_lock_init(&smu->lock);
495 	INIT_LIST_HEAD(&smu->cmd_list);
496 	INIT_LIST_HEAD(&smu->cmd_i2c_list);
497 	smu->of_node = np;
498 	smu->db_irq = NO_IRQ;
499 	smu->msg_irq = NO_IRQ;
500 
501 	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
502 	 * 32 bits value safely
503 	 */
504 	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
505 	smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
506 
507 	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
508 	if (smu->db_node == NULL) {
509 		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
510 		ret = -ENXIO;
511 		goto fail_bootmem;
512 	}
513 	data = of_get_property(smu->db_node, "reg", NULL);
514 	if (data == NULL) {
515 		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
516 		ret = -ENXIO;
517 		goto fail_db_node;
518 	}
519 
520 	/* Current setup has one doorbell GPIO that does both doorbell
521 	 * and ack. GPIOs are at 0x50, best would be to find that out
522 	 * in the device-tree though.
523 	 */
524 	smu->doorbell = *data;
525 	if (smu->doorbell < 0x50)
526 		smu->doorbell += 0x50;
527 
528 	/* Now look for the smu-interrupt GPIO */
529 	do {
530 		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
531 		if (smu->msg_node == NULL)
532 			break;
533 		data = of_get_property(smu->msg_node, "reg", NULL);
534 		if (data == NULL) {
535 			of_node_put(smu->msg_node);
536 			smu->msg_node = NULL;
537 			break;
538 		}
539 		smu->msg = *data;
540 		if (smu->msg < 0x50)
541 			smu->msg += 0x50;
542 	} while(0);
543 
544 	/* Doorbell buffer is currently hard-coded, I didn't find a proper
545 	 * device-tree entry giving the address. Best would probably to use
546 	 * an offset for K2 base though, but let's do it that way for now.
547 	 */
548 	smu->db_buf = ioremap(0x8000860c, 0x1000);
549 	if (smu->db_buf == NULL) {
550 		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
551 		ret = -ENXIO;
552 		goto fail_msg_node;
553 	}
554 
555 	/* U3 has an issue with NAP mode when issuing SMU commands */
556 	smu->broken_nap = pmac_get_uninorth_variant() < 4;
557 	if (smu->broken_nap)
558 		printk(KERN_INFO "SMU: using NAP mode workaround\n");
559 
560 	sys_ctrler = SYS_CTRLER_SMU;
561 	return 0;
562 
563 fail_msg_node:
564 	if (smu->msg_node)
565 		of_node_put(smu->msg_node);
566 fail_db_node:
567 	of_node_put(smu->db_node);
568 fail_bootmem:
569 	free_bootmem((unsigned long)smu, sizeof(struct smu_device));
570 	smu = NULL;
571 fail_np:
572 	of_node_put(np);
573 	return ret;
574 }
575 
576 
577 static int smu_late_init(void)
578 {
579 	if (!smu)
580 		return 0;
581 
582 	init_timer(&smu->i2c_timer);
583 	smu->i2c_timer.function = smu_i2c_retry;
584 	smu->i2c_timer.data = (unsigned long)smu;
585 
586 	if (smu->db_node) {
587 		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
588 		if (smu->db_irq == NO_IRQ)
589 			printk(KERN_ERR "smu: failed to map irq for node %s\n",
590 			       smu->db_node->full_name);
591 	}
592 	if (smu->msg_node) {
593 		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
594 		if (smu->msg_irq == NO_IRQ)
595 			printk(KERN_ERR "smu: failed to map irq for node %s\n",
596 			       smu->msg_node->full_name);
597 	}
598 
599 	/*
600 	 * Try to request the interrupts
601 	 */
602 
603 	if (smu->db_irq != NO_IRQ) {
604 		if (request_irq(smu->db_irq, smu_db_intr,
605 				IRQF_SHARED, "SMU doorbell", smu) < 0) {
606 			printk(KERN_WARNING "SMU: can't "
607 			       "request interrupt %d\n",
608 			       smu->db_irq);
609 			smu->db_irq = NO_IRQ;
610 		}
611 	}
612 
613 	if (smu->msg_irq != NO_IRQ) {
614 		if (request_irq(smu->msg_irq, smu_msg_intr,
615 				IRQF_SHARED, "SMU message", smu) < 0) {
616 			printk(KERN_WARNING "SMU: can't "
617 			       "request interrupt %d\n",
618 			       smu->msg_irq);
619 			smu->msg_irq = NO_IRQ;
620 		}
621 	}
622 
623 	smu_irq_inited = 1;
624 	return 0;
625 }
626 /* This has to be before arch_initcall as the low i2c stuff relies on the
627  * above having been done before we reach arch_initcalls
628  */
629 core_initcall(smu_late_init);
630 
631 /*
632  * sysfs visibility
633  */
634 
635 static void smu_expose_childs(struct work_struct *unused)
636 {
637 	struct device_node *np;
638 
639 	for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
640 		if (of_device_is_compatible(np, "smu-sensors"))
641 			of_platform_device_create(np, "smu-sensors",
642 						  &smu->of_dev->dev);
643 }
644 
645 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
646 
647 static int smu_platform_probe(struct of_device* dev,
648 			      const struct of_device_id *match)
649 {
650 	if (!smu)
651 		return -ENODEV;
652 	smu->of_dev = dev;
653 
654 	/*
655 	 * Ok, we are matched, now expose all i2c busses. We have to defer
656 	 * that unfortunately or it would deadlock inside the device model
657 	 */
658 	schedule_work(&smu_expose_childs_work);
659 
660 	return 0;
661 }
662 
663 static struct of_device_id smu_platform_match[] =
664 {
665 	{
666 		.type		= "smu",
667 	},
668 	{},
669 };
670 
671 static struct of_platform_driver smu_of_platform_driver =
672 {
673 	.name 		= "smu",
674 	.match_table	= smu_platform_match,
675 	.probe		= smu_platform_probe,
676 };
677 
678 static int __init smu_init_sysfs(void)
679 {
680 	/*
681 	 * Due to sysfs bogosity, a sysdev is not a real device, so
682 	 * we should in fact create both if we want sysdev semantics
683 	 * for power management.
684 	 * For now, we don't power manage machines with an SMU chip,
685 	 * I'm a bit too far from figuring out how that works with those
686 	 * new chipsets, but that will come back and bite us
687 	 */
688 	of_register_platform_driver(&smu_of_platform_driver);
689 	return 0;
690 }
691 
692 device_initcall(smu_init_sysfs);
693 
694 struct of_device *smu_get_ofdev(void)
695 {
696 	if (!smu)
697 		return NULL;
698 	return smu->of_dev;
699 }
700 
701 EXPORT_SYMBOL_GPL(smu_get_ofdev);
702 
703 /*
704  * i2c interface
705  */
706 
707 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
708 {
709 	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
710 	void *misc = cmd->misc;
711 	unsigned long flags;
712 
713 	/* Check for read case */
714 	if (!fail && cmd->read) {
715 		if (cmd->pdata[0] < 1)
716 			fail = 1;
717 		else
718 			memcpy(cmd->info.data, &cmd->pdata[1],
719 			       cmd->info.datalen);
720 	}
721 
722 	DPRINTK("SMU: completing, success: %d\n", !fail);
723 
724 	/* Update status and mark no pending i2c command with lock
725 	 * held so nobody comes in while we dequeue an eventual
726 	 * pending next i2c command
727 	 */
728 	spin_lock_irqsave(&smu->lock, flags);
729 	smu->cmd_i2c_cur = NULL;
730 	wmb();
731 	cmd->status = fail ? -EIO : 0;
732 
733 	/* Is there another i2c command waiting ? */
734 	if (!list_empty(&smu->cmd_i2c_list)) {
735 		struct smu_i2c_cmd *newcmd;
736 
737 		/* Fetch it, new current, remove from list */
738 		newcmd = list_entry(smu->cmd_i2c_list.next,
739 				    struct smu_i2c_cmd, link);
740 		smu->cmd_i2c_cur = newcmd;
741 		list_del(&cmd->link);
742 
743 		/* Queue with low level smu */
744 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
745 		if (smu->cmd_cur == NULL)
746 			smu_start_cmd();
747 	}
748 	spin_unlock_irqrestore(&smu->lock, flags);
749 
750 	/* Call command completion handler if any */
751 	if (done)
752 		done(cmd, misc);
753 
754 }
755 
756 
757 static void smu_i2c_retry(unsigned long data)
758 {
759 	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
760 
761 	DPRINTK("SMU: i2c failure, requeuing...\n");
762 
763 	/* requeue command simply by resetting reply_len */
764 	cmd->pdata[0] = 0xff;
765 	cmd->scmd.reply_len = sizeof(cmd->pdata);
766 	smu_queue_cmd(&cmd->scmd);
767 }
768 
769 
770 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
771 {
772 	struct smu_i2c_cmd	*cmd = misc;
773 	int			fail = 0;
774 
775 	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
776 		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
777 
778 	/* Check for possible status */
779 	if (scmd->status < 0)
780 		fail = 1;
781 	else if (cmd->read) {
782 		if (cmd->stage == 0)
783 			fail = cmd->pdata[0] != 0;
784 		else
785 			fail = cmd->pdata[0] >= 0x80;
786 	} else {
787 		fail = cmd->pdata[0] != 0;
788 	}
789 
790 	/* Handle failures by requeuing command, after 5ms interval
791 	 */
792 	if (fail && --cmd->retries > 0) {
793 		DPRINTK("SMU: i2c failure, starting timer...\n");
794 		BUG_ON(cmd != smu->cmd_i2c_cur);
795 		if (!smu_irq_inited) {
796 			mdelay(5);
797 			smu_i2c_retry(0);
798 			return;
799 		}
800 		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
801 		return;
802 	}
803 
804 	/* If failure or stage 1, command is complete */
805 	if (fail || cmd->stage != 0) {
806 		smu_i2c_complete_command(cmd, fail);
807 		return;
808 	}
809 
810 	DPRINTK("SMU: going to stage 1\n");
811 
812 	/* Ok, initial command complete, now poll status */
813 	scmd->reply_buf = cmd->pdata;
814 	scmd->reply_len = sizeof(cmd->pdata);
815 	scmd->data_buf = cmd->pdata;
816 	scmd->data_len = 1;
817 	cmd->pdata[0] = 0;
818 	cmd->stage = 1;
819 	cmd->retries = 20;
820 	smu_queue_cmd(scmd);
821 }
822 
823 
824 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
825 {
826 	unsigned long flags;
827 
828 	if (smu == NULL)
829 		return -ENODEV;
830 
831 	/* Fill most fields of scmd */
832 	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
833 	cmd->scmd.done = smu_i2c_low_completion;
834 	cmd->scmd.misc = cmd;
835 	cmd->scmd.reply_buf = cmd->pdata;
836 	cmd->scmd.reply_len = sizeof(cmd->pdata);
837 	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
838 	cmd->scmd.status = 1;
839 	cmd->stage = 0;
840 	cmd->pdata[0] = 0xff;
841 	cmd->retries = 20;
842 	cmd->status = 1;
843 
844 	/* Check transfer type, sanitize some "info" fields
845 	 * based on transfer type and do more checking
846 	 */
847 	cmd->info.caddr = cmd->info.devaddr;
848 	cmd->read = cmd->info.devaddr & 0x01;
849 	switch(cmd->info.type) {
850 	case SMU_I2C_TRANSFER_SIMPLE:
851 		memset(&cmd->info.sublen, 0, 4);
852 		break;
853 	case SMU_I2C_TRANSFER_COMBINED:
854 		cmd->info.devaddr &= 0xfe;
855 	case SMU_I2C_TRANSFER_STDSUB:
856 		if (cmd->info.sublen > 3)
857 			return -EINVAL;
858 		break;
859 	default:
860 		return -EINVAL;
861 	}
862 
863 	/* Finish setting up command based on transfer direction
864 	 */
865 	if (cmd->read) {
866 		if (cmd->info.datalen > SMU_I2C_READ_MAX)
867 			return -EINVAL;
868 		memset(cmd->info.data, 0xff, cmd->info.datalen);
869 		cmd->scmd.data_len = 9;
870 	} else {
871 		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
872 			return -EINVAL;
873 		cmd->scmd.data_len = 9 + cmd->info.datalen;
874 	}
875 
876 	DPRINTK("SMU: i2c enqueuing command\n");
877 	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
878 		cmd->read ? "read" : "write", cmd->info.datalen,
879 		cmd->info.bus, cmd->info.caddr,
880 		cmd->info.subaddr[0], cmd->info.type);
881 
882 
883 	/* Enqueue command in i2c list, and if empty, enqueue also in
884 	 * main command list
885 	 */
886 	spin_lock_irqsave(&smu->lock, flags);
887 	if (smu->cmd_i2c_cur == NULL) {
888 		smu->cmd_i2c_cur = cmd;
889 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
890 		if (smu->cmd_cur == NULL)
891 			smu_start_cmd();
892 	} else
893 		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
894 	spin_unlock_irqrestore(&smu->lock, flags);
895 
896 	return 0;
897 }
898 
899 /*
900  * Handling of "partitions"
901  */
902 
903 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
904 {
905 	DECLARE_COMPLETION_ONSTACK(comp);
906 	unsigned int chunk;
907 	struct smu_cmd cmd;
908 	int rc;
909 	u8 params[8];
910 
911 	/* We currently use a chunk size of 0xe. We could check the
912 	 * SMU firmware version and use bigger sizes though
913 	 */
914 	chunk = 0xe;
915 
916 	while (len) {
917 		unsigned int clen = min(len, chunk);
918 
919 		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
920 		cmd.data_len = 7;
921 		cmd.data_buf = params;
922 		cmd.reply_len = chunk;
923 		cmd.reply_buf = dest;
924 		cmd.done = smu_done_complete;
925 		cmd.misc = &comp;
926 		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
927 		params[1] = 0x4;
928 		*((u32 *)&params[2]) = addr;
929 		params[6] = clen;
930 
931 		rc = smu_queue_cmd(&cmd);
932 		if (rc)
933 			return rc;
934 		wait_for_completion(&comp);
935 		if (cmd.status != 0)
936 			return rc;
937 		if (cmd.reply_len != clen) {
938 			printk(KERN_DEBUG "SMU: short read in "
939 			       "smu_read_datablock, got: %d, want: %d\n",
940 			       cmd.reply_len, clen);
941 			return -EIO;
942 		}
943 		len -= clen;
944 		addr += clen;
945 		dest += clen;
946 	}
947 	return 0;
948 }
949 
950 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
951 {
952 	DECLARE_COMPLETION_ONSTACK(comp);
953 	struct smu_simple_cmd cmd;
954 	unsigned int addr, len, tlen;
955 	struct smu_sdbp_header *hdr;
956 	struct property *prop;
957 
958 	/* First query the partition info */
959 	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
960 	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
961 			 smu_done_complete, &comp,
962 			 SMU_CMD_PARTITION_LATEST, id);
963 	wait_for_completion(&comp);
964 	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
965 		cmd.cmd.status, cmd.cmd.reply_len);
966 
967 	/* Partition doesn't exist (or other error) */
968 	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
969 		return NULL;
970 
971 	/* Fetch address and length from reply */
972 	addr = *((u16 *)cmd.buffer);
973 	len = cmd.buffer[3] << 2;
974 	/* Calucluate total length to allocate, including the 17 bytes
975 	 * for "sdb-partition-XX" that we append at the end of the buffer
976 	 */
977 	tlen = sizeof(struct property) + len + 18;
978 
979 	prop = kzalloc(tlen, GFP_KERNEL);
980 	if (prop == NULL)
981 		return NULL;
982 	hdr = (struct smu_sdbp_header *)(prop + 1);
983 	prop->name = ((char *)prop) + tlen - 18;
984 	sprintf(prop->name, "sdb-partition-%02x", id);
985 	prop->length = len;
986 	prop->value = hdr;
987 	prop->next = NULL;
988 
989 	/* Read the datablock */
990 	if (smu_read_datablock((u8 *)hdr, addr, len)) {
991 		printk(KERN_DEBUG "SMU: datablock read failed while reading "
992 		       "partition %02x !\n", id);
993 		goto failure;
994 	}
995 
996 	/* Got it, check a few things and create the property */
997 	if (hdr->id != id) {
998 		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
999 		       "%02x !\n", id, hdr->id);
1000 		goto failure;
1001 	}
1002 	if (prom_add_property(smu->of_node, prop)) {
1003 		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1004 		       "property !\n", id);
1005 		goto failure;
1006 	}
1007 
1008 	return hdr;
1009  failure:
1010 	kfree(prop);
1011 	return NULL;
1012 }
1013 
1014 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1015  * when interruptible is 1
1016  */
1017 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1018 		unsigned int *size, int interruptible)
1019 {
1020 	char pname[32];
1021 	const struct smu_sdbp_header *part;
1022 
1023 	if (!smu)
1024 		return NULL;
1025 
1026 	sprintf(pname, "sdb-partition-%02x", id);
1027 
1028 	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1029 
1030 	if (interruptible) {
1031 		int rc;
1032 		rc = mutex_lock_interruptible(&smu_part_access);
1033 		if (rc)
1034 			return ERR_PTR(rc);
1035 	} else
1036 		mutex_lock(&smu_part_access);
1037 
1038 	part = of_get_property(smu->of_node, pname, size);
1039 	if (part == NULL) {
1040 		DPRINTK("trying to extract from SMU ...\n");
1041 		part = smu_create_sdb_partition(id);
1042 		if (part != NULL && size)
1043 			*size = part->len << 2;
1044 	}
1045 	mutex_unlock(&smu_part_access);
1046 	return part;
1047 }
1048 
1049 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1050 {
1051 	return __smu_get_sdb_partition(id, size, 0);
1052 }
1053 EXPORT_SYMBOL(smu_get_sdb_partition);
1054 
1055 
1056 /*
1057  * Userland driver interface
1058  */
1059 
1060 
1061 static LIST_HEAD(smu_clist);
1062 static DEFINE_SPINLOCK(smu_clist_lock);
1063 
1064 enum smu_file_mode {
1065 	smu_file_commands,
1066 	smu_file_events,
1067 	smu_file_closing
1068 };
1069 
1070 struct smu_private
1071 {
1072 	struct list_head	list;
1073 	enum smu_file_mode	mode;
1074 	int			busy;
1075 	struct smu_cmd		cmd;
1076 	spinlock_t		lock;
1077 	wait_queue_head_t	wait;
1078 	u8			buffer[SMU_MAX_DATA];
1079 };
1080 
1081 
1082 static int smu_open(struct inode *inode, struct file *file)
1083 {
1084 	struct smu_private *pp;
1085 	unsigned long flags;
1086 
1087 	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1088 	if (pp == 0)
1089 		return -ENOMEM;
1090 	spin_lock_init(&pp->lock);
1091 	pp->mode = smu_file_commands;
1092 	init_waitqueue_head(&pp->wait);
1093 
1094 	lock_kernel();
1095 	spin_lock_irqsave(&smu_clist_lock, flags);
1096 	list_add(&pp->list, &smu_clist);
1097 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1098 	file->private_data = pp;
1099 	unlock_kernel();
1100 
1101 	return 0;
1102 }
1103 
1104 
1105 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1106 {
1107 	struct smu_private *pp = misc;
1108 
1109 	wake_up_all(&pp->wait);
1110 }
1111 
1112 
1113 static ssize_t smu_write(struct file *file, const char __user *buf,
1114 			 size_t count, loff_t *ppos)
1115 {
1116 	struct smu_private *pp = file->private_data;
1117 	unsigned long flags;
1118 	struct smu_user_cmd_hdr hdr;
1119 	int rc = 0;
1120 
1121 	if (pp->busy)
1122 		return -EBUSY;
1123 	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1124 		return -EFAULT;
1125 	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1126 		pp->mode = smu_file_events;
1127 		return 0;
1128 	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1129 		const struct smu_sdbp_header *part;
1130 		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1131 		if (part == NULL)
1132 			return -EINVAL;
1133 		else if (IS_ERR(part))
1134 			return PTR_ERR(part);
1135 		return 0;
1136 	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1137 		return -EINVAL;
1138 	else if (pp->mode != smu_file_commands)
1139 		return -EBADFD;
1140 	else if (hdr.data_len > SMU_MAX_DATA)
1141 		return -EINVAL;
1142 
1143 	spin_lock_irqsave(&pp->lock, flags);
1144 	if (pp->busy) {
1145 		spin_unlock_irqrestore(&pp->lock, flags);
1146 		return -EBUSY;
1147 	}
1148 	pp->busy = 1;
1149 	pp->cmd.status = 1;
1150 	spin_unlock_irqrestore(&pp->lock, flags);
1151 
1152 	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1153 		pp->busy = 0;
1154 		return -EFAULT;
1155 	}
1156 
1157 	pp->cmd.cmd = hdr.cmd;
1158 	pp->cmd.data_len = hdr.data_len;
1159 	pp->cmd.reply_len = SMU_MAX_DATA;
1160 	pp->cmd.data_buf = pp->buffer;
1161 	pp->cmd.reply_buf = pp->buffer;
1162 	pp->cmd.done = smu_user_cmd_done;
1163 	pp->cmd.misc = pp;
1164 	rc = smu_queue_cmd(&pp->cmd);
1165 	if (rc < 0)
1166 		return rc;
1167 	return count;
1168 }
1169 
1170 
1171 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1172 				char __user *buf, size_t count)
1173 {
1174 	DECLARE_WAITQUEUE(wait, current);
1175 	struct smu_user_reply_hdr hdr;
1176 	unsigned long flags;
1177 	int size, rc = 0;
1178 
1179 	if (!pp->busy)
1180 		return 0;
1181 	if (count < sizeof(struct smu_user_reply_hdr))
1182 		return -EOVERFLOW;
1183 	spin_lock_irqsave(&pp->lock, flags);
1184 	if (pp->cmd.status == 1) {
1185 		if (file->f_flags & O_NONBLOCK)
1186 			return -EAGAIN;
1187 		add_wait_queue(&pp->wait, &wait);
1188 		for (;;) {
1189 			set_current_state(TASK_INTERRUPTIBLE);
1190 			rc = 0;
1191 			if (pp->cmd.status != 1)
1192 				break;
1193 			rc = -ERESTARTSYS;
1194 			if (signal_pending(current))
1195 				break;
1196 			spin_unlock_irqrestore(&pp->lock, flags);
1197 			schedule();
1198 			spin_lock_irqsave(&pp->lock, flags);
1199 		}
1200 		set_current_state(TASK_RUNNING);
1201 		remove_wait_queue(&pp->wait, &wait);
1202 	}
1203 	spin_unlock_irqrestore(&pp->lock, flags);
1204 	if (rc)
1205 		return rc;
1206 	if (pp->cmd.status != 0)
1207 		pp->cmd.reply_len = 0;
1208 	size = sizeof(hdr) + pp->cmd.reply_len;
1209 	if (count < size)
1210 		size = count;
1211 	rc = size;
1212 	hdr.status = pp->cmd.status;
1213 	hdr.reply_len = pp->cmd.reply_len;
1214 	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1215 		return -EFAULT;
1216 	size -= sizeof(hdr);
1217 	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1218 		return -EFAULT;
1219 	pp->busy = 0;
1220 
1221 	return rc;
1222 }
1223 
1224 
1225 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1226 			       char __user *buf, size_t count)
1227 {
1228 	/* Not implemented */
1229 	msleep_interruptible(1000);
1230 	return 0;
1231 }
1232 
1233 
1234 static ssize_t smu_read(struct file *file, char __user *buf,
1235 			size_t count, loff_t *ppos)
1236 {
1237 	struct smu_private *pp = file->private_data;
1238 
1239 	if (pp->mode == smu_file_commands)
1240 		return smu_read_command(file, pp, buf, count);
1241 	if (pp->mode == smu_file_events)
1242 		return smu_read_events(file, pp, buf, count);
1243 
1244 	return -EBADFD;
1245 }
1246 
1247 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1248 {
1249 	struct smu_private *pp = file->private_data;
1250 	unsigned int mask = 0;
1251 	unsigned long flags;
1252 
1253 	if (pp == 0)
1254 		return 0;
1255 
1256 	if (pp->mode == smu_file_commands) {
1257 		poll_wait(file, &pp->wait, wait);
1258 
1259 		spin_lock_irqsave(&pp->lock, flags);
1260 		if (pp->busy && pp->cmd.status != 1)
1261 			mask |= POLLIN;
1262 		spin_unlock_irqrestore(&pp->lock, flags);
1263 	} if (pp->mode == smu_file_events) {
1264 		/* Not yet implemented */
1265 	}
1266 	return mask;
1267 }
1268 
1269 static int smu_release(struct inode *inode, struct file *file)
1270 {
1271 	struct smu_private *pp = file->private_data;
1272 	unsigned long flags;
1273 	unsigned int busy;
1274 
1275 	if (pp == 0)
1276 		return 0;
1277 
1278 	file->private_data = NULL;
1279 
1280 	/* Mark file as closing to avoid races with new request */
1281 	spin_lock_irqsave(&pp->lock, flags);
1282 	pp->mode = smu_file_closing;
1283 	busy = pp->busy;
1284 
1285 	/* Wait for any pending request to complete */
1286 	if (busy && pp->cmd.status == 1) {
1287 		DECLARE_WAITQUEUE(wait, current);
1288 
1289 		add_wait_queue(&pp->wait, &wait);
1290 		for (;;) {
1291 			set_current_state(TASK_UNINTERRUPTIBLE);
1292 			if (pp->cmd.status != 1)
1293 				break;
1294 			spin_unlock_irqrestore(&pp->lock, flags);
1295 			schedule();
1296 			spin_lock_irqsave(&pp->lock, flags);
1297 		}
1298 		set_current_state(TASK_RUNNING);
1299 		remove_wait_queue(&pp->wait, &wait);
1300 	}
1301 	spin_unlock_irqrestore(&pp->lock, flags);
1302 
1303 	spin_lock_irqsave(&smu_clist_lock, flags);
1304 	list_del(&pp->list);
1305 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1306 	kfree(pp);
1307 
1308 	return 0;
1309 }
1310 
1311 
1312 static const struct file_operations smu_device_fops = {
1313 	.llseek		= no_llseek,
1314 	.read		= smu_read,
1315 	.write		= smu_write,
1316 	.poll		= smu_fpoll,
1317 	.open		= smu_open,
1318 	.release	= smu_release,
1319 };
1320 
1321 static struct miscdevice pmu_device = {
1322 	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1323 };
1324 
1325 static int smu_device_init(void)
1326 {
1327 	if (!smu)
1328 		return -ENODEV;
1329 	if (misc_register(&pmu_device) < 0)
1330 		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1331 	return 0;
1332 }
1333 device_initcall(smu_device_init);
1334