xref: /openbmc/linux/drivers/macintosh/smu.c (revision 750afb08)
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9 
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrupts off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21 
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/memblock.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/poll.h>
36 #include <linux/mutex.h>
37 #include <linux/of_device.h>
38 #include <linux/of_irq.h>
39 #include <linux/of_platform.h>
40 #include <linux/slab.h>
41 #include <linux/sched/signal.h>
42 
43 #include <asm/byteorder.h>
44 #include <asm/io.h>
45 #include <asm/prom.h>
46 #include <asm/machdep.h>
47 #include <asm/pmac_feature.h>
48 #include <asm/smu.h>
49 #include <asm/sections.h>
50 #include <linux/uaccess.h>
51 
52 #define VERSION "0.7"
53 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54 
55 #undef DEBUG_SMU
56 
57 #ifdef DEBUG_SMU
58 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #else
60 #define DPRINTK(fmt, args...) do { } while (0)
61 #endif
62 
63 /*
64  * This is the command buffer passed to the SMU hardware
65  */
66 #define SMU_MAX_DATA	254
67 
68 struct smu_cmd_buf {
69 	u8 cmd;
70 	u8 length;
71 	u8 data[SMU_MAX_DATA];
72 };
73 
74 struct smu_device {
75 	spinlock_t		lock;
76 	struct device_node	*of_node;
77 	struct platform_device	*of_dev;
78 	int			doorbell;	/* doorbell gpio */
79 	u32 __iomem		*db_buf;	/* doorbell buffer */
80 	struct device_node	*db_node;
81 	unsigned int		db_irq;
82 	int			msg;
83 	struct device_node	*msg_node;
84 	unsigned int		msg_irq;
85 	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
86 	u32			cmd_buf_abs;	/* command buffer absolute */
87 	struct list_head	cmd_list;
88 	struct smu_cmd		*cmd_cur;	/* pending command */
89 	int			broken_nap;
90 	struct list_head	cmd_i2c_list;
91 	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
92 	struct timer_list	i2c_timer;
93 };
94 
95 /*
96  * I don't think there will ever be more than one SMU, so
97  * for now, just hard code that
98  */
99 static DEFINE_MUTEX(smu_mutex);
100 static struct smu_device	*smu;
101 static DEFINE_MUTEX(smu_part_access);
102 static int smu_irq_inited;
103 static unsigned long smu_cmdbuf_abs;
104 
105 static void smu_i2c_retry(struct timer_list *t);
106 
107 /*
108  * SMU driver low level stuff
109  */
110 
111 static void smu_start_cmd(void)
112 {
113 	unsigned long faddr, fend;
114 	struct smu_cmd *cmd;
115 
116 	if (list_empty(&smu->cmd_list))
117 		return;
118 
119 	/* Fetch first command in queue */
120 	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
121 	smu->cmd_cur = cmd;
122 	list_del(&cmd->link);
123 
124 	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
125 		cmd->data_len);
126 	DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
127 
128 	/* Fill the SMU command buffer */
129 	smu->cmd_buf->cmd = cmd->cmd;
130 	smu->cmd_buf->length = cmd->data_len;
131 	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
132 
133 	/* Flush command and data to RAM */
134 	faddr = (unsigned long)smu->cmd_buf;
135 	fend = faddr + smu->cmd_buf->length + 2;
136 	flush_inval_dcache_range(faddr, fend);
137 
138 
139 	/* We also disable NAP mode for the duration of the command
140 	 * on U3 based machines.
141 	 * This is slightly racy as it can be written back to 1 by a sysctl
142 	 * but that never happens in practice. There seem to be an issue with
143 	 * U3 based machines such as the iMac G5 where napping for the
144 	 * whole duration of the command prevents the SMU from fetching it
145 	 * from memory. This might be related to the strange i2c based
146 	 * mechanism the SMU uses to access memory.
147 	 */
148 	if (smu->broken_nap)
149 		powersave_nap = 0;
150 
151 	/* This isn't exactly a DMA mapping here, I suspect
152 	 * the SMU is actually communicating with us via i2c to the
153 	 * northbridge or the CPU to access RAM.
154 	 */
155 	writel(smu->cmd_buf_abs, smu->db_buf);
156 
157 	/* Ring the SMU doorbell */
158 	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
159 }
160 
161 
162 static irqreturn_t smu_db_intr(int irq, void *arg)
163 {
164 	unsigned long flags;
165 	struct smu_cmd *cmd;
166 	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
167 	void *misc = NULL;
168 	u8 gpio;
169 	int rc = 0;
170 
171 	/* SMU completed the command, well, we hope, let's make sure
172 	 * of it
173 	 */
174 	spin_lock_irqsave(&smu->lock, flags);
175 
176 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
177 	if ((gpio & 7) != 7) {
178 		spin_unlock_irqrestore(&smu->lock, flags);
179 		return IRQ_HANDLED;
180 	}
181 
182 	cmd = smu->cmd_cur;
183 	smu->cmd_cur = NULL;
184 	if (cmd == NULL)
185 		goto bail;
186 
187 	if (rc == 0) {
188 		unsigned long faddr;
189 		int reply_len;
190 		u8 ack;
191 
192 		/* CPU might have brought back the cache line, so we need
193 		 * to flush again before peeking at the SMU response. We
194 		 * flush the entire buffer for now as we haven't read the
195 		 * reply length (it's only 2 cache lines anyway)
196 		 */
197 		faddr = (unsigned long)smu->cmd_buf;
198 		flush_inval_dcache_range(faddr, faddr + 256);
199 
200 		/* Now check ack */
201 		ack = (~cmd->cmd) & 0xff;
202 		if (ack != smu->cmd_buf->cmd) {
203 			DPRINTK("SMU: incorrect ack, want %x got %x\n",
204 				ack, smu->cmd_buf->cmd);
205 			rc = -EIO;
206 		}
207 		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
208 		DPRINTK("SMU: reply len: %d\n", reply_len);
209 		if (reply_len > cmd->reply_len) {
210 			printk(KERN_WARNING "SMU: reply buffer too small,"
211 			       "got %d bytes for a %d bytes buffer\n",
212 			       reply_len, cmd->reply_len);
213 			reply_len = cmd->reply_len;
214 		}
215 		cmd->reply_len = reply_len;
216 		if (cmd->reply_buf && reply_len)
217 			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
218 	}
219 
220 	/* Now complete the command. Write status last in order as we lost
221 	 * ownership of the command structure as soon as it's no longer -1
222 	 */
223 	done = cmd->done;
224 	misc = cmd->misc;
225 	mb();
226 	cmd->status = rc;
227 
228 	/* Re-enable NAP mode */
229 	if (smu->broken_nap)
230 		powersave_nap = 1;
231  bail:
232 	/* Start next command if any */
233 	smu_start_cmd();
234 	spin_unlock_irqrestore(&smu->lock, flags);
235 
236 	/* Call command completion handler if any */
237 	if (done)
238 		done(cmd, misc);
239 
240 	/* It's an edge interrupt, nothing to do */
241 	return IRQ_HANDLED;
242 }
243 
244 
245 static irqreturn_t smu_msg_intr(int irq, void *arg)
246 {
247 	/* I don't quite know what to do with this one, we seem to never
248 	 * receive it, so I suspect we have to arm it someway in the SMU
249 	 * to start getting events that way.
250 	 */
251 
252 	printk(KERN_INFO "SMU: message interrupt !\n");
253 
254 	/* It's an edge interrupt, nothing to do */
255 	return IRQ_HANDLED;
256 }
257 
258 
259 /*
260  * Queued command management.
261  *
262  */
263 
264 int smu_queue_cmd(struct smu_cmd *cmd)
265 {
266 	unsigned long flags;
267 
268 	if (smu == NULL)
269 		return -ENODEV;
270 	if (cmd->data_len > SMU_MAX_DATA ||
271 	    cmd->reply_len > SMU_MAX_DATA)
272 		return -EINVAL;
273 
274 	cmd->status = 1;
275 	spin_lock_irqsave(&smu->lock, flags);
276 	list_add_tail(&cmd->link, &smu->cmd_list);
277 	if (smu->cmd_cur == NULL)
278 		smu_start_cmd();
279 	spin_unlock_irqrestore(&smu->lock, flags);
280 
281 	/* Workaround for early calls when irq isn't available */
282 	if (!smu_irq_inited || !smu->db_irq)
283 		smu_spinwait_cmd(cmd);
284 
285 	return 0;
286 }
287 EXPORT_SYMBOL(smu_queue_cmd);
288 
289 
290 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
291 		     unsigned int data_len,
292 		     void (*done)(struct smu_cmd *cmd, void *misc),
293 		     void *misc, ...)
294 {
295 	struct smu_cmd *cmd = &scmd->cmd;
296 	va_list list;
297 	int i;
298 
299 	if (data_len > sizeof(scmd->buffer))
300 		return -EINVAL;
301 
302 	memset(scmd, 0, sizeof(*scmd));
303 	cmd->cmd = command;
304 	cmd->data_len = data_len;
305 	cmd->data_buf = scmd->buffer;
306 	cmd->reply_len = sizeof(scmd->buffer);
307 	cmd->reply_buf = scmd->buffer;
308 	cmd->done = done;
309 	cmd->misc = misc;
310 
311 	va_start(list, misc);
312 	for (i = 0; i < data_len; ++i)
313 		scmd->buffer[i] = (u8)va_arg(list, int);
314 	va_end(list);
315 
316 	return smu_queue_cmd(cmd);
317 }
318 EXPORT_SYMBOL(smu_queue_simple);
319 
320 
321 void smu_poll(void)
322 {
323 	u8 gpio;
324 
325 	if (smu == NULL)
326 		return;
327 
328 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
329 	if ((gpio & 7) == 7)
330 		smu_db_intr(smu->db_irq, smu);
331 }
332 EXPORT_SYMBOL(smu_poll);
333 
334 
335 void smu_done_complete(struct smu_cmd *cmd, void *misc)
336 {
337 	struct completion *comp = misc;
338 
339 	complete(comp);
340 }
341 EXPORT_SYMBOL(smu_done_complete);
342 
343 
344 void smu_spinwait_cmd(struct smu_cmd *cmd)
345 {
346 	while(cmd->status == 1)
347 		smu_poll();
348 }
349 EXPORT_SYMBOL(smu_spinwait_cmd);
350 
351 
352 /* RTC low level commands */
353 static inline int bcd2hex (int n)
354 {
355 	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
356 }
357 
358 
359 static inline int hex2bcd (int n)
360 {
361 	return ((n / 10) << 4) + (n % 10);
362 }
363 
364 
365 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
366 					struct rtc_time *time)
367 {
368 	cmd_buf->cmd = 0x8e;
369 	cmd_buf->length = 8;
370 	cmd_buf->data[0] = 0x80;
371 	cmd_buf->data[1] = hex2bcd(time->tm_sec);
372 	cmd_buf->data[2] = hex2bcd(time->tm_min);
373 	cmd_buf->data[3] = hex2bcd(time->tm_hour);
374 	cmd_buf->data[4] = time->tm_wday;
375 	cmd_buf->data[5] = hex2bcd(time->tm_mday);
376 	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
377 	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
378 }
379 
380 
381 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
382 {
383 	struct smu_simple_cmd cmd;
384 	int rc;
385 
386 	if (smu == NULL)
387 		return -ENODEV;
388 
389 	memset(time, 0, sizeof(struct rtc_time));
390 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
391 			      SMU_CMD_RTC_GET_DATETIME);
392 	if (rc)
393 		return rc;
394 	smu_spinwait_simple(&cmd);
395 
396 	time->tm_sec = bcd2hex(cmd.buffer[0]);
397 	time->tm_min = bcd2hex(cmd.buffer[1]);
398 	time->tm_hour = bcd2hex(cmd.buffer[2]);
399 	time->tm_wday = bcd2hex(cmd.buffer[3]);
400 	time->tm_mday = bcd2hex(cmd.buffer[4]);
401 	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
402 	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
403 
404 	return 0;
405 }
406 
407 
408 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
409 {
410 	struct smu_simple_cmd cmd;
411 	int rc;
412 
413 	if (smu == NULL)
414 		return -ENODEV;
415 
416 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
417 			      SMU_CMD_RTC_SET_DATETIME,
418 			      hex2bcd(time->tm_sec),
419 			      hex2bcd(time->tm_min),
420 			      hex2bcd(time->tm_hour),
421 			      time->tm_wday,
422 			      hex2bcd(time->tm_mday),
423 			      hex2bcd(time->tm_mon) + 1,
424 			      hex2bcd(time->tm_year - 100));
425 	if (rc)
426 		return rc;
427 	smu_spinwait_simple(&cmd);
428 
429 	return 0;
430 }
431 
432 
433 void smu_shutdown(void)
434 {
435 	struct smu_simple_cmd cmd;
436 
437 	if (smu == NULL)
438 		return;
439 
440 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
441 			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
442 		return;
443 	smu_spinwait_simple(&cmd);
444 	for (;;)
445 		;
446 }
447 
448 
449 void smu_restart(void)
450 {
451 	struct smu_simple_cmd cmd;
452 
453 	if (smu == NULL)
454 		return;
455 
456 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
457 			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
458 		return;
459 	smu_spinwait_simple(&cmd);
460 	for (;;)
461 		;
462 }
463 
464 
465 int smu_present(void)
466 {
467 	return smu != NULL;
468 }
469 EXPORT_SYMBOL(smu_present);
470 
471 
472 int __init smu_init (void)
473 {
474 	struct device_node *np;
475 	const u32 *data;
476 	int ret = 0;
477 
478         np = of_find_node_by_type(NULL, "smu");
479         if (np == NULL)
480 		return -ENODEV;
481 
482 	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
483 
484 	/*
485 	 * SMU based G5s need some memory below 2Gb. Thankfully this is
486 	 * called at a time where memblock is still available.
487 	 */
488 	smu_cmdbuf_abs = memblock_alloc_base(4096, 4096, 0x80000000UL);
489 	if (smu_cmdbuf_abs == 0) {
490 		printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
491 		ret = -EINVAL;
492 		goto fail_np;
493 	}
494 
495 	smu = memblock_alloc(sizeof(struct smu_device), SMP_CACHE_BYTES);
496 
497 	spin_lock_init(&smu->lock);
498 	INIT_LIST_HEAD(&smu->cmd_list);
499 	INIT_LIST_HEAD(&smu->cmd_i2c_list);
500 	smu->of_node = np;
501 	smu->db_irq = 0;
502 	smu->msg_irq = 0;
503 
504 	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
505 	 * 32 bits value safely
506 	 */
507 	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
508 	smu->cmd_buf = __va(smu_cmdbuf_abs);
509 
510 	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
511 	if (smu->db_node == NULL) {
512 		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
513 		ret = -ENXIO;
514 		goto fail_bootmem;
515 	}
516 	data = of_get_property(smu->db_node, "reg", NULL);
517 	if (data == NULL) {
518 		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
519 		ret = -ENXIO;
520 		goto fail_db_node;
521 	}
522 
523 	/* Current setup has one doorbell GPIO that does both doorbell
524 	 * and ack. GPIOs are at 0x50, best would be to find that out
525 	 * in the device-tree though.
526 	 */
527 	smu->doorbell = *data;
528 	if (smu->doorbell < 0x50)
529 		smu->doorbell += 0x50;
530 
531 	/* Now look for the smu-interrupt GPIO */
532 	do {
533 		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
534 		if (smu->msg_node == NULL)
535 			break;
536 		data = of_get_property(smu->msg_node, "reg", NULL);
537 		if (data == NULL) {
538 			of_node_put(smu->msg_node);
539 			smu->msg_node = NULL;
540 			break;
541 		}
542 		smu->msg = *data;
543 		if (smu->msg < 0x50)
544 			smu->msg += 0x50;
545 	} while(0);
546 
547 	/* Doorbell buffer is currently hard-coded, I didn't find a proper
548 	 * device-tree entry giving the address. Best would probably to use
549 	 * an offset for K2 base though, but let's do it that way for now.
550 	 */
551 	smu->db_buf = ioremap(0x8000860c, 0x1000);
552 	if (smu->db_buf == NULL) {
553 		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
554 		ret = -ENXIO;
555 		goto fail_msg_node;
556 	}
557 
558 	/* U3 has an issue with NAP mode when issuing SMU commands */
559 	smu->broken_nap = pmac_get_uninorth_variant() < 4;
560 	if (smu->broken_nap)
561 		printk(KERN_INFO "SMU: using NAP mode workaround\n");
562 
563 	sys_ctrler = SYS_CTRLER_SMU;
564 	return 0;
565 
566 fail_msg_node:
567 	of_node_put(smu->msg_node);
568 fail_db_node:
569 	of_node_put(smu->db_node);
570 fail_bootmem:
571 	memblock_free(__pa(smu), sizeof(struct smu_device));
572 	smu = NULL;
573 fail_np:
574 	of_node_put(np);
575 	return ret;
576 }
577 
578 
579 static int smu_late_init(void)
580 {
581 	if (!smu)
582 		return 0;
583 
584 	timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
585 
586 	if (smu->db_node) {
587 		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
588 		if (!smu->db_irq)
589 			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
590 			       smu->db_node);
591 	}
592 	if (smu->msg_node) {
593 		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
594 		if (!smu->msg_irq)
595 			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
596 			       smu->msg_node);
597 	}
598 
599 	/*
600 	 * Try to request the interrupts
601 	 */
602 
603 	if (smu->db_irq) {
604 		if (request_irq(smu->db_irq, smu_db_intr,
605 				IRQF_SHARED, "SMU doorbell", smu) < 0) {
606 			printk(KERN_WARNING "SMU: can't "
607 			       "request interrupt %d\n",
608 			       smu->db_irq);
609 			smu->db_irq = 0;
610 		}
611 	}
612 
613 	if (smu->msg_irq) {
614 		if (request_irq(smu->msg_irq, smu_msg_intr,
615 				IRQF_SHARED, "SMU message", smu) < 0) {
616 			printk(KERN_WARNING "SMU: can't "
617 			       "request interrupt %d\n",
618 			       smu->msg_irq);
619 			smu->msg_irq = 0;
620 		}
621 	}
622 
623 	smu_irq_inited = 1;
624 	return 0;
625 }
626 /* This has to be before arch_initcall as the low i2c stuff relies on the
627  * above having been done before we reach arch_initcalls
628  */
629 core_initcall(smu_late_init);
630 
631 /*
632  * sysfs visibility
633  */
634 
635 static void smu_expose_childs(struct work_struct *unused)
636 {
637 	struct device_node *np;
638 
639 	for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
640 		if (of_device_is_compatible(np, "smu-sensors"))
641 			of_platform_device_create(np, "smu-sensors",
642 						  &smu->of_dev->dev);
643 }
644 
645 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
646 
647 static int smu_platform_probe(struct platform_device* dev)
648 {
649 	if (!smu)
650 		return -ENODEV;
651 	smu->of_dev = dev;
652 
653 	/*
654 	 * Ok, we are matched, now expose all i2c busses. We have to defer
655 	 * that unfortunately or it would deadlock inside the device model
656 	 */
657 	schedule_work(&smu_expose_childs_work);
658 
659 	return 0;
660 }
661 
662 static const struct of_device_id smu_platform_match[] =
663 {
664 	{
665 		.type		= "smu",
666 	},
667 	{},
668 };
669 
670 static struct platform_driver smu_of_platform_driver =
671 {
672 	.driver = {
673 		.name = "smu",
674 		.of_match_table = smu_platform_match,
675 	},
676 	.probe		= smu_platform_probe,
677 };
678 
679 static int __init smu_init_sysfs(void)
680 {
681 	/*
682 	 * For now, we don't power manage machines with an SMU chip,
683 	 * I'm a bit too far from figuring out how that works with those
684 	 * new chipsets, but that will come back and bite us
685 	 */
686 	platform_driver_register(&smu_of_platform_driver);
687 	return 0;
688 }
689 
690 device_initcall(smu_init_sysfs);
691 
692 struct platform_device *smu_get_ofdev(void)
693 {
694 	if (!smu)
695 		return NULL;
696 	return smu->of_dev;
697 }
698 
699 EXPORT_SYMBOL_GPL(smu_get_ofdev);
700 
701 /*
702  * i2c interface
703  */
704 
705 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
706 {
707 	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
708 	void *misc = cmd->misc;
709 	unsigned long flags;
710 
711 	/* Check for read case */
712 	if (!fail && cmd->read) {
713 		if (cmd->pdata[0] < 1)
714 			fail = 1;
715 		else
716 			memcpy(cmd->info.data, &cmd->pdata[1],
717 			       cmd->info.datalen);
718 	}
719 
720 	DPRINTK("SMU: completing, success: %d\n", !fail);
721 
722 	/* Update status and mark no pending i2c command with lock
723 	 * held so nobody comes in while we dequeue an eventual
724 	 * pending next i2c command
725 	 */
726 	spin_lock_irqsave(&smu->lock, flags);
727 	smu->cmd_i2c_cur = NULL;
728 	wmb();
729 	cmd->status = fail ? -EIO : 0;
730 
731 	/* Is there another i2c command waiting ? */
732 	if (!list_empty(&smu->cmd_i2c_list)) {
733 		struct smu_i2c_cmd *newcmd;
734 
735 		/* Fetch it, new current, remove from list */
736 		newcmd = list_entry(smu->cmd_i2c_list.next,
737 				    struct smu_i2c_cmd, link);
738 		smu->cmd_i2c_cur = newcmd;
739 		list_del(&cmd->link);
740 
741 		/* Queue with low level smu */
742 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
743 		if (smu->cmd_cur == NULL)
744 			smu_start_cmd();
745 	}
746 	spin_unlock_irqrestore(&smu->lock, flags);
747 
748 	/* Call command completion handler if any */
749 	if (done)
750 		done(cmd, misc);
751 
752 }
753 
754 
755 static void smu_i2c_retry(struct timer_list *unused)
756 {
757 	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
758 
759 	DPRINTK("SMU: i2c failure, requeuing...\n");
760 
761 	/* requeue command simply by resetting reply_len */
762 	cmd->pdata[0] = 0xff;
763 	cmd->scmd.reply_len = sizeof(cmd->pdata);
764 	smu_queue_cmd(&cmd->scmd);
765 }
766 
767 
768 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
769 {
770 	struct smu_i2c_cmd	*cmd = misc;
771 	int			fail = 0;
772 
773 	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
774 		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
775 
776 	/* Check for possible status */
777 	if (scmd->status < 0)
778 		fail = 1;
779 	else if (cmd->read) {
780 		if (cmd->stage == 0)
781 			fail = cmd->pdata[0] != 0;
782 		else
783 			fail = cmd->pdata[0] >= 0x80;
784 	} else {
785 		fail = cmd->pdata[0] != 0;
786 	}
787 
788 	/* Handle failures by requeuing command, after 5ms interval
789 	 */
790 	if (fail && --cmd->retries > 0) {
791 		DPRINTK("SMU: i2c failure, starting timer...\n");
792 		BUG_ON(cmd != smu->cmd_i2c_cur);
793 		if (!smu_irq_inited) {
794 			mdelay(5);
795 			smu_i2c_retry(NULL);
796 			return;
797 		}
798 		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
799 		return;
800 	}
801 
802 	/* If failure or stage 1, command is complete */
803 	if (fail || cmd->stage != 0) {
804 		smu_i2c_complete_command(cmd, fail);
805 		return;
806 	}
807 
808 	DPRINTK("SMU: going to stage 1\n");
809 
810 	/* Ok, initial command complete, now poll status */
811 	scmd->reply_buf = cmd->pdata;
812 	scmd->reply_len = sizeof(cmd->pdata);
813 	scmd->data_buf = cmd->pdata;
814 	scmd->data_len = 1;
815 	cmd->pdata[0] = 0;
816 	cmd->stage = 1;
817 	cmd->retries = 20;
818 	smu_queue_cmd(scmd);
819 }
820 
821 
822 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
823 {
824 	unsigned long flags;
825 
826 	if (smu == NULL)
827 		return -ENODEV;
828 
829 	/* Fill most fields of scmd */
830 	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
831 	cmd->scmd.done = smu_i2c_low_completion;
832 	cmd->scmd.misc = cmd;
833 	cmd->scmd.reply_buf = cmd->pdata;
834 	cmd->scmd.reply_len = sizeof(cmd->pdata);
835 	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
836 	cmd->scmd.status = 1;
837 	cmd->stage = 0;
838 	cmd->pdata[0] = 0xff;
839 	cmd->retries = 20;
840 	cmd->status = 1;
841 
842 	/* Check transfer type, sanitize some "info" fields
843 	 * based on transfer type and do more checking
844 	 */
845 	cmd->info.caddr = cmd->info.devaddr;
846 	cmd->read = cmd->info.devaddr & 0x01;
847 	switch(cmd->info.type) {
848 	case SMU_I2C_TRANSFER_SIMPLE:
849 		memset(&cmd->info.sublen, 0, 4);
850 		break;
851 	case SMU_I2C_TRANSFER_COMBINED:
852 		cmd->info.devaddr &= 0xfe;
853 	case SMU_I2C_TRANSFER_STDSUB:
854 		if (cmd->info.sublen > 3)
855 			return -EINVAL;
856 		break;
857 	default:
858 		return -EINVAL;
859 	}
860 
861 	/* Finish setting up command based on transfer direction
862 	 */
863 	if (cmd->read) {
864 		if (cmd->info.datalen > SMU_I2C_READ_MAX)
865 			return -EINVAL;
866 		memset(cmd->info.data, 0xff, cmd->info.datalen);
867 		cmd->scmd.data_len = 9;
868 	} else {
869 		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
870 			return -EINVAL;
871 		cmd->scmd.data_len = 9 + cmd->info.datalen;
872 	}
873 
874 	DPRINTK("SMU: i2c enqueuing command\n");
875 	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
876 		cmd->read ? "read" : "write", cmd->info.datalen,
877 		cmd->info.bus, cmd->info.caddr,
878 		cmd->info.subaddr[0], cmd->info.type);
879 
880 
881 	/* Enqueue command in i2c list, and if empty, enqueue also in
882 	 * main command list
883 	 */
884 	spin_lock_irqsave(&smu->lock, flags);
885 	if (smu->cmd_i2c_cur == NULL) {
886 		smu->cmd_i2c_cur = cmd;
887 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
888 		if (smu->cmd_cur == NULL)
889 			smu_start_cmd();
890 	} else
891 		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
892 	spin_unlock_irqrestore(&smu->lock, flags);
893 
894 	return 0;
895 }
896 
897 /*
898  * Handling of "partitions"
899  */
900 
901 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
902 {
903 	DECLARE_COMPLETION_ONSTACK(comp);
904 	unsigned int chunk;
905 	struct smu_cmd cmd;
906 	int rc;
907 	u8 params[8];
908 
909 	/* We currently use a chunk size of 0xe. We could check the
910 	 * SMU firmware version and use bigger sizes though
911 	 */
912 	chunk = 0xe;
913 
914 	while (len) {
915 		unsigned int clen = min(len, chunk);
916 
917 		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
918 		cmd.data_len = 7;
919 		cmd.data_buf = params;
920 		cmd.reply_len = chunk;
921 		cmd.reply_buf = dest;
922 		cmd.done = smu_done_complete;
923 		cmd.misc = &comp;
924 		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
925 		params[1] = 0x4;
926 		*((u32 *)&params[2]) = addr;
927 		params[6] = clen;
928 
929 		rc = smu_queue_cmd(&cmd);
930 		if (rc)
931 			return rc;
932 		wait_for_completion(&comp);
933 		if (cmd.status != 0)
934 			return rc;
935 		if (cmd.reply_len != clen) {
936 			printk(KERN_DEBUG "SMU: short read in "
937 			       "smu_read_datablock, got: %d, want: %d\n",
938 			       cmd.reply_len, clen);
939 			return -EIO;
940 		}
941 		len -= clen;
942 		addr += clen;
943 		dest += clen;
944 	}
945 	return 0;
946 }
947 
948 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
949 {
950 	DECLARE_COMPLETION_ONSTACK(comp);
951 	struct smu_simple_cmd cmd;
952 	unsigned int addr, len, tlen;
953 	struct smu_sdbp_header *hdr;
954 	struct property *prop;
955 
956 	/* First query the partition info */
957 	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
958 	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
959 			 smu_done_complete, &comp,
960 			 SMU_CMD_PARTITION_LATEST, id);
961 	wait_for_completion(&comp);
962 	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
963 		cmd.cmd.status, cmd.cmd.reply_len);
964 
965 	/* Partition doesn't exist (or other error) */
966 	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
967 		return NULL;
968 
969 	/* Fetch address and length from reply */
970 	addr = *((u16 *)cmd.buffer);
971 	len = cmd.buffer[3] << 2;
972 	/* Calucluate total length to allocate, including the 17 bytes
973 	 * for "sdb-partition-XX" that we append at the end of the buffer
974 	 */
975 	tlen = sizeof(struct property) + len + 18;
976 
977 	prop = kzalloc(tlen, GFP_KERNEL);
978 	if (prop == NULL)
979 		return NULL;
980 	hdr = (struct smu_sdbp_header *)(prop + 1);
981 	prop->name = ((char *)prop) + tlen - 18;
982 	sprintf(prop->name, "sdb-partition-%02x", id);
983 	prop->length = len;
984 	prop->value = hdr;
985 	prop->next = NULL;
986 
987 	/* Read the datablock */
988 	if (smu_read_datablock((u8 *)hdr, addr, len)) {
989 		printk(KERN_DEBUG "SMU: datablock read failed while reading "
990 		       "partition %02x !\n", id);
991 		goto failure;
992 	}
993 
994 	/* Got it, check a few things and create the property */
995 	if (hdr->id != id) {
996 		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
997 		       "%02x !\n", id, hdr->id);
998 		goto failure;
999 	}
1000 	if (of_add_property(smu->of_node, prop)) {
1001 		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1002 		       "property !\n", id);
1003 		goto failure;
1004 	}
1005 
1006 	return hdr;
1007  failure:
1008 	kfree(prop);
1009 	return NULL;
1010 }
1011 
1012 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1013  * when interruptible is 1
1014  */
1015 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1016 		unsigned int *size, int interruptible)
1017 {
1018 	char pname[32];
1019 	const struct smu_sdbp_header *part;
1020 
1021 	if (!smu)
1022 		return NULL;
1023 
1024 	sprintf(pname, "sdb-partition-%02x", id);
1025 
1026 	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1027 
1028 	if (interruptible) {
1029 		int rc;
1030 		rc = mutex_lock_interruptible(&smu_part_access);
1031 		if (rc)
1032 			return ERR_PTR(rc);
1033 	} else
1034 		mutex_lock(&smu_part_access);
1035 
1036 	part = of_get_property(smu->of_node, pname, size);
1037 	if (part == NULL) {
1038 		DPRINTK("trying to extract from SMU ...\n");
1039 		part = smu_create_sdb_partition(id);
1040 		if (part != NULL && size)
1041 			*size = part->len << 2;
1042 	}
1043 	mutex_unlock(&smu_part_access);
1044 	return part;
1045 }
1046 
1047 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1048 {
1049 	return __smu_get_sdb_partition(id, size, 0);
1050 }
1051 EXPORT_SYMBOL(smu_get_sdb_partition);
1052 
1053 
1054 /*
1055  * Userland driver interface
1056  */
1057 
1058 
1059 static LIST_HEAD(smu_clist);
1060 static DEFINE_SPINLOCK(smu_clist_lock);
1061 
1062 enum smu_file_mode {
1063 	smu_file_commands,
1064 	smu_file_events,
1065 	smu_file_closing
1066 };
1067 
1068 struct smu_private
1069 {
1070 	struct list_head	list;
1071 	enum smu_file_mode	mode;
1072 	int			busy;
1073 	struct smu_cmd		cmd;
1074 	spinlock_t		lock;
1075 	wait_queue_head_t	wait;
1076 	u8			buffer[SMU_MAX_DATA];
1077 };
1078 
1079 
1080 static int smu_open(struct inode *inode, struct file *file)
1081 {
1082 	struct smu_private *pp;
1083 	unsigned long flags;
1084 
1085 	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1086 	if (pp == 0)
1087 		return -ENOMEM;
1088 	spin_lock_init(&pp->lock);
1089 	pp->mode = smu_file_commands;
1090 	init_waitqueue_head(&pp->wait);
1091 
1092 	mutex_lock(&smu_mutex);
1093 	spin_lock_irqsave(&smu_clist_lock, flags);
1094 	list_add(&pp->list, &smu_clist);
1095 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1096 	file->private_data = pp;
1097 	mutex_unlock(&smu_mutex);
1098 
1099 	return 0;
1100 }
1101 
1102 
1103 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1104 {
1105 	struct smu_private *pp = misc;
1106 
1107 	wake_up_all(&pp->wait);
1108 }
1109 
1110 
1111 static ssize_t smu_write(struct file *file, const char __user *buf,
1112 			 size_t count, loff_t *ppos)
1113 {
1114 	struct smu_private *pp = file->private_data;
1115 	unsigned long flags;
1116 	struct smu_user_cmd_hdr hdr;
1117 	int rc = 0;
1118 
1119 	if (pp->busy)
1120 		return -EBUSY;
1121 	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1122 		return -EFAULT;
1123 	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1124 		pp->mode = smu_file_events;
1125 		return 0;
1126 	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1127 		const struct smu_sdbp_header *part;
1128 		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1129 		if (part == NULL)
1130 			return -EINVAL;
1131 		else if (IS_ERR(part))
1132 			return PTR_ERR(part);
1133 		return 0;
1134 	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1135 		return -EINVAL;
1136 	else if (pp->mode != smu_file_commands)
1137 		return -EBADFD;
1138 	else if (hdr.data_len > SMU_MAX_DATA)
1139 		return -EINVAL;
1140 
1141 	spin_lock_irqsave(&pp->lock, flags);
1142 	if (pp->busy) {
1143 		spin_unlock_irqrestore(&pp->lock, flags);
1144 		return -EBUSY;
1145 	}
1146 	pp->busy = 1;
1147 	pp->cmd.status = 1;
1148 	spin_unlock_irqrestore(&pp->lock, flags);
1149 
1150 	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1151 		pp->busy = 0;
1152 		return -EFAULT;
1153 	}
1154 
1155 	pp->cmd.cmd = hdr.cmd;
1156 	pp->cmd.data_len = hdr.data_len;
1157 	pp->cmd.reply_len = SMU_MAX_DATA;
1158 	pp->cmd.data_buf = pp->buffer;
1159 	pp->cmd.reply_buf = pp->buffer;
1160 	pp->cmd.done = smu_user_cmd_done;
1161 	pp->cmd.misc = pp;
1162 	rc = smu_queue_cmd(&pp->cmd);
1163 	if (rc < 0)
1164 		return rc;
1165 	return count;
1166 }
1167 
1168 
1169 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1170 				char __user *buf, size_t count)
1171 {
1172 	DECLARE_WAITQUEUE(wait, current);
1173 	struct smu_user_reply_hdr hdr;
1174 	unsigned long flags;
1175 	int size, rc = 0;
1176 
1177 	if (!pp->busy)
1178 		return 0;
1179 	if (count < sizeof(struct smu_user_reply_hdr))
1180 		return -EOVERFLOW;
1181 	spin_lock_irqsave(&pp->lock, flags);
1182 	if (pp->cmd.status == 1) {
1183 		if (file->f_flags & O_NONBLOCK) {
1184 			spin_unlock_irqrestore(&pp->lock, flags);
1185 			return -EAGAIN;
1186 		}
1187 		add_wait_queue(&pp->wait, &wait);
1188 		for (;;) {
1189 			set_current_state(TASK_INTERRUPTIBLE);
1190 			rc = 0;
1191 			if (pp->cmd.status != 1)
1192 				break;
1193 			rc = -ERESTARTSYS;
1194 			if (signal_pending(current))
1195 				break;
1196 			spin_unlock_irqrestore(&pp->lock, flags);
1197 			schedule();
1198 			spin_lock_irqsave(&pp->lock, flags);
1199 		}
1200 		set_current_state(TASK_RUNNING);
1201 		remove_wait_queue(&pp->wait, &wait);
1202 	}
1203 	spin_unlock_irqrestore(&pp->lock, flags);
1204 	if (rc)
1205 		return rc;
1206 	if (pp->cmd.status != 0)
1207 		pp->cmd.reply_len = 0;
1208 	size = sizeof(hdr) + pp->cmd.reply_len;
1209 	if (count < size)
1210 		size = count;
1211 	rc = size;
1212 	hdr.status = pp->cmd.status;
1213 	hdr.reply_len = pp->cmd.reply_len;
1214 	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1215 		return -EFAULT;
1216 	size -= sizeof(hdr);
1217 	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1218 		return -EFAULT;
1219 	pp->busy = 0;
1220 
1221 	return rc;
1222 }
1223 
1224 
1225 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1226 			       char __user *buf, size_t count)
1227 {
1228 	/* Not implemented */
1229 	msleep_interruptible(1000);
1230 	return 0;
1231 }
1232 
1233 
1234 static ssize_t smu_read(struct file *file, char __user *buf,
1235 			size_t count, loff_t *ppos)
1236 {
1237 	struct smu_private *pp = file->private_data;
1238 
1239 	if (pp->mode == smu_file_commands)
1240 		return smu_read_command(file, pp, buf, count);
1241 	if (pp->mode == smu_file_events)
1242 		return smu_read_events(file, pp, buf, count);
1243 
1244 	return -EBADFD;
1245 }
1246 
1247 static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1248 {
1249 	struct smu_private *pp = file->private_data;
1250 	__poll_t mask = 0;
1251 	unsigned long flags;
1252 
1253 	if (pp == 0)
1254 		return 0;
1255 
1256 	if (pp->mode == smu_file_commands) {
1257 		poll_wait(file, &pp->wait, wait);
1258 
1259 		spin_lock_irqsave(&pp->lock, flags);
1260 		if (pp->busy && pp->cmd.status != 1)
1261 			mask |= EPOLLIN;
1262 		spin_unlock_irqrestore(&pp->lock, flags);
1263 	}
1264 	if (pp->mode == smu_file_events) {
1265 		/* Not yet implemented */
1266 	}
1267 	return mask;
1268 }
1269 
1270 static int smu_release(struct inode *inode, struct file *file)
1271 {
1272 	struct smu_private *pp = file->private_data;
1273 	unsigned long flags;
1274 	unsigned int busy;
1275 
1276 	if (pp == 0)
1277 		return 0;
1278 
1279 	file->private_data = NULL;
1280 
1281 	/* Mark file as closing to avoid races with new request */
1282 	spin_lock_irqsave(&pp->lock, flags);
1283 	pp->mode = smu_file_closing;
1284 	busy = pp->busy;
1285 
1286 	/* Wait for any pending request to complete */
1287 	if (busy && pp->cmd.status == 1) {
1288 		DECLARE_WAITQUEUE(wait, current);
1289 
1290 		add_wait_queue(&pp->wait, &wait);
1291 		for (;;) {
1292 			set_current_state(TASK_UNINTERRUPTIBLE);
1293 			if (pp->cmd.status != 1)
1294 				break;
1295 			spin_unlock_irqrestore(&pp->lock, flags);
1296 			schedule();
1297 			spin_lock_irqsave(&pp->lock, flags);
1298 		}
1299 		set_current_state(TASK_RUNNING);
1300 		remove_wait_queue(&pp->wait, &wait);
1301 	}
1302 	spin_unlock_irqrestore(&pp->lock, flags);
1303 
1304 	spin_lock_irqsave(&smu_clist_lock, flags);
1305 	list_del(&pp->list);
1306 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1307 	kfree(pp);
1308 
1309 	return 0;
1310 }
1311 
1312 
1313 static const struct file_operations smu_device_fops = {
1314 	.llseek		= no_llseek,
1315 	.read		= smu_read,
1316 	.write		= smu_write,
1317 	.poll		= smu_fpoll,
1318 	.open		= smu_open,
1319 	.release	= smu_release,
1320 };
1321 
1322 static struct miscdevice pmu_device = {
1323 	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1324 };
1325 
1326 static int smu_device_init(void)
1327 {
1328 	if (!smu)
1329 		return -ENODEV;
1330 	if (misc_register(&pmu_device) < 0)
1331 		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1332 	return 0;
1333 }
1334 device_initcall(smu_device_init);
1335