1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * PowerMac G5 SMU driver 4 * 5 * Copyright 2004 J. Mayer <l_indien@magic.fr> 6 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp. 7 */ 8 9 /* 10 * TODO: 11 * - maybe add timeout to commands ? 12 * - blocking version of time functions 13 * - polling version of i2c commands (including timer that works with 14 * interrupts off) 15 * - maybe avoid some data copies with i2c by directly using the smu cmd 16 * buffer and a lower level internal interface 17 * - understand SMU -> CPU events and implement reception of them via 18 * the userland interface 19 */ 20 21 #include <linux/types.h> 22 #include <linux/kernel.h> 23 #include <linux/device.h> 24 #include <linux/dmapool.h> 25 #include <linux/memblock.h> 26 #include <linux/vmalloc.h> 27 #include <linux/highmem.h> 28 #include <linux/jiffies.h> 29 #include <linux/interrupt.h> 30 #include <linux/rtc.h> 31 #include <linux/completion.h> 32 #include <linux/miscdevice.h> 33 #include <linux/delay.h> 34 #include <linux/poll.h> 35 #include <linux/mutex.h> 36 #include <linux/of.h> 37 #include <linux/of_address.h> 38 #include <linux/of_irq.h> 39 #include <linux/of_platform.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 43 #include <asm/byteorder.h> 44 #include <asm/io.h> 45 #include <asm/machdep.h> 46 #include <asm/pmac_feature.h> 47 #include <asm/smu.h> 48 #include <asm/sections.h> 49 #include <linux/uaccess.h> 50 51 #define VERSION "0.7" 52 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp." 53 54 #undef DEBUG_SMU 55 56 #ifdef DEBUG_SMU 57 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0) 58 #else 59 #define DPRINTK(fmt, args...) do { } while (0) 60 #endif 61 62 /* 63 * This is the command buffer passed to the SMU hardware 64 */ 65 #define SMU_MAX_DATA 254 66 67 struct smu_cmd_buf { 68 u8 cmd; 69 u8 length; 70 u8 data[SMU_MAX_DATA]; 71 }; 72 73 struct smu_device { 74 spinlock_t lock; 75 struct device_node *of_node; 76 struct platform_device *of_dev; 77 int doorbell; /* doorbell gpio */ 78 u32 __iomem *db_buf; /* doorbell buffer */ 79 struct device_node *db_node; 80 unsigned int db_irq; 81 int msg; 82 struct device_node *msg_node; 83 unsigned int msg_irq; 84 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */ 85 u32 cmd_buf_abs; /* command buffer absolute */ 86 struct list_head cmd_list; 87 struct smu_cmd *cmd_cur; /* pending command */ 88 int broken_nap; 89 struct list_head cmd_i2c_list; 90 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */ 91 struct timer_list i2c_timer; 92 }; 93 94 /* 95 * I don't think there will ever be more than one SMU, so 96 * for now, just hard code that 97 */ 98 static DEFINE_MUTEX(smu_mutex); 99 static struct smu_device *smu; 100 static DEFINE_MUTEX(smu_part_access); 101 static int smu_irq_inited; 102 static unsigned long smu_cmdbuf_abs; 103 104 static void smu_i2c_retry(struct timer_list *t); 105 106 /* 107 * SMU driver low level stuff 108 */ 109 110 static void smu_start_cmd(void) 111 { 112 unsigned long faddr, fend; 113 struct smu_cmd *cmd; 114 115 if (list_empty(&smu->cmd_list)) 116 return; 117 118 /* Fetch first command in queue */ 119 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link); 120 smu->cmd_cur = cmd; 121 list_del(&cmd->link); 122 123 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd, 124 cmd->data_len); 125 DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf); 126 127 /* Fill the SMU command buffer */ 128 smu->cmd_buf->cmd = cmd->cmd; 129 smu->cmd_buf->length = cmd->data_len; 130 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len); 131 132 /* Flush command and data to RAM */ 133 faddr = (unsigned long)smu->cmd_buf; 134 fend = faddr + smu->cmd_buf->length + 2; 135 flush_dcache_range(faddr, fend); 136 137 138 /* We also disable NAP mode for the duration of the command 139 * on U3 based machines. 140 * This is slightly racy as it can be written back to 1 by a sysctl 141 * but that never happens in practice. There seem to be an issue with 142 * U3 based machines such as the iMac G5 where napping for the 143 * whole duration of the command prevents the SMU from fetching it 144 * from memory. This might be related to the strange i2c based 145 * mechanism the SMU uses to access memory. 146 */ 147 if (smu->broken_nap) 148 powersave_nap = 0; 149 150 /* This isn't exactly a DMA mapping here, I suspect 151 * the SMU is actually communicating with us via i2c to the 152 * northbridge or the CPU to access RAM. 153 */ 154 writel(smu->cmd_buf_abs, smu->db_buf); 155 156 /* Ring the SMU doorbell */ 157 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4); 158 } 159 160 161 static irqreturn_t smu_db_intr(int irq, void *arg) 162 { 163 unsigned long flags; 164 struct smu_cmd *cmd; 165 void (*done)(struct smu_cmd *cmd, void *misc) = NULL; 166 void *misc = NULL; 167 u8 gpio; 168 int rc = 0; 169 170 /* SMU completed the command, well, we hope, let's make sure 171 * of it 172 */ 173 spin_lock_irqsave(&smu->lock, flags); 174 175 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell); 176 if ((gpio & 7) != 7) { 177 spin_unlock_irqrestore(&smu->lock, flags); 178 return IRQ_HANDLED; 179 } 180 181 cmd = smu->cmd_cur; 182 smu->cmd_cur = NULL; 183 if (cmd == NULL) 184 goto bail; 185 186 if (rc == 0) { 187 unsigned long faddr; 188 int reply_len; 189 u8 ack; 190 191 /* CPU might have brought back the cache line, so we need 192 * to flush again before peeking at the SMU response. We 193 * flush the entire buffer for now as we haven't read the 194 * reply length (it's only 2 cache lines anyway) 195 */ 196 faddr = (unsigned long)smu->cmd_buf; 197 flush_dcache_range(faddr, faddr + 256); 198 199 /* Now check ack */ 200 ack = (~cmd->cmd) & 0xff; 201 if (ack != smu->cmd_buf->cmd) { 202 DPRINTK("SMU: incorrect ack, want %x got %x\n", 203 ack, smu->cmd_buf->cmd); 204 rc = -EIO; 205 } 206 reply_len = rc == 0 ? smu->cmd_buf->length : 0; 207 DPRINTK("SMU: reply len: %d\n", reply_len); 208 if (reply_len > cmd->reply_len) { 209 printk(KERN_WARNING "SMU: reply buffer too small," 210 "got %d bytes for a %d bytes buffer\n", 211 reply_len, cmd->reply_len); 212 reply_len = cmd->reply_len; 213 } 214 cmd->reply_len = reply_len; 215 if (cmd->reply_buf && reply_len) 216 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len); 217 } 218 219 /* Now complete the command. Write status last in order as we lost 220 * ownership of the command structure as soon as it's no longer -1 221 */ 222 done = cmd->done; 223 misc = cmd->misc; 224 mb(); 225 cmd->status = rc; 226 227 /* Re-enable NAP mode */ 228 if (smu->broken_nap) 229 powersave_nap = 1; 230 bail: 231 /* Start next command if any */ 232 smu_start_cmd(); 233 spin_unlock_irqrestore(&smu->lock, flags); 234 235 /* Call command completion handler if any */ 236 if (done) 237 done(cmd, misc); 238 239 /* It's an edge interrupt, nothing to do */ 240 return IRQ_HANDLED; 241 } 242 243 244 static irqreturn_t smu_msg_intr(int irq, void *arg) 245 { 246 /* I don't quite know what to do with this one, we seem to never 247 * receive it, so I suspect we have to arm it someway in the SMU 248 * to start getting events that way. 249 */ 250 251 printk(KERN_INFO "SMU: message interrupt !\n"); 252 253 /* It's an edge interrupt, nothing to do */ 254 return IRQ_HANDLED; 255 } 256 257 258 /* 259 * Queued command management. 260 * 261 */ 262 263 int smu_queue_cmd(struct smu_cmd *cmd) 264 { 265 unsigned long flags; 266 267 if (smu == NULL) 268 return -ENODEV; 269 if (cmd->data_len > SMU_MAX_DATA || 270 cmd->reply_len > SMU_MAX_DATA) 271 return -EINVAL; 272 273 cmd->status = 1; 274 spin_lock_irqsave(&smu->lock, flags); 275 list_add_tail(&cmd->link, &smu->cmd_list); 276 if (smu->cmd_cur == NULL) 277 smu_start_cmd(); 278 spin_unlock_irqrestore(&smu->lock, flags); 279 280 /* Workaround for early calls when irq isn't available */ 281 if (!smu_irq_inited || !smu->db_irq) 282 smu_spinwait_cmd(cmd); 283 284 return 0; 285 } 286 EXPORT_SYMBOL(smu_queue_cmd); 287 288 289 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command, 290 unsigned int data_len, 291 void (*done)(struct smu_cmd *cmd, void *misc), 292 void *misc, ...) 293 { 294 struct smu_cmd *cmd = &scmd->cmd; 295 va_list list; 296 int i; 297 298 if (data_len > sizeof(scmd->buffer)) 299 return -EINVAL; 300 301 memset(scmd, 0, sizeof(*scmd)); 302 cmd->cmd = command; 303 cmd->data_len = data_len; 304 cmd->data_buf = scmd->buffer; 305 cmd->reply_len = sizeof(scmd->buffer); 306 cmd->reply_buf = scmd->buffer; 307 cmd->done = done; 308 cmd->misc = misc; 309 310 va_start(list, misc); 311 for (i = 0; i < data_len; ++i) 312 scmd->buffer[i] = (u8)va_arg(list, int); 313 va_end(list); 314 315 return smu_queue_cmd(cmd); 316 } 317 EXPORT_SYMBOL(smu_queue_simple); 318 319 320 void smu_poll(void) 321 { 322 u8 gpio; 323 324 if (smu == NULL) 325 return; 326 327 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell); 328 if ((gpio & 7) == 7) 329 smu_db_intr(smu->db_irq, smu); 330 } 331 EXPORT_SYMBOL(smu_poll); 332 333 334 void smu_done_complete(struct smu_cmd *cmd, void *misc) 335 { 336 struct completion *comp = misc; 337 338 complete(comp); 339 } 340 EXPORT_SYMBOL(smu_done_complete); 341 342 343 void smu_spinwait_cmd(struct smu_cmd *cmd) 344 { 345 while(cmd->status == 1) 346 smu_poll(); 347 } 348 EXPORT_SYMBOL(smu_spinwait_cmd); 349 350 351 /* RTC low level commands */ 352 static inline int bcd2hex (int n) 353 { 354 return (((n & 0xf0) >> 4) * 10) + (n & 0xf); 355 } 356 357 358 static inline int hex2bcd (int n) 359 { 360 return ((n / 10) << 4) + (n % 10); 361 } 362 363 364 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf, 365 struct rtc_time *time) 366 { 367 cmd_buf->cmd = 0x8e; 368 cmd_buf->length = 8; 369 cmd_buf->data[0] = 0x80; 370 cmd_buf->data[1] = hex2bcd(time->tm_sec); 371 cmd_buf->data[2] = hex2bcd(time->tm_min); 372 cmd_buf->data[3] = hex2bcd(time->tm_hour); 373 cmd_buf->data[4] = time->tm_wday; 374 cmd_buf->data[5] = hex2bcd(time->tm_mday); 375 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1; 376 cmd_buf->data[7] = hex2bcd(time->tm_year - 100); 377 } 378 379 380 int smu_get_rtc_time(struct rtc_time *time, int spinwait) 381 { 382 struct smu_simple_cmd cmd; 383 int rc; 384 385 if (smu == NULL) 386 return -ENODEV; 387 388 memset(time, 0, sizeof(struct rtc_time)); 389 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL, 390 SMU_CMD_RTC_GET_DATETIME); 391 if (rc) 392 return rc; 393 smu_spinwait_simple(&cmd); 394 395 time->tm_sec = bcd2hex(cmd.buffer[0]); 396 time->tm_min = bcd2hex(cmd.buffer[1]); 397 time->tm_hour = bcd2hex(cmd.buffer[2]); 398 time->tm_wday = bcd2hex(cmd.buffer[3]); 399 time->tm_mday = bcd2hex(cmd.buffer[4]); 400 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1; 401 time->tm_year = bcd2hex(cmd.buffer[6]) + 100; 402 403 return 0; 404 } 405 406 407 int smu_set_rtc_time(struct rtc_time *time, int spinwait) 408 { 409 struct smu_simple_cmd cmd; 410 int rc; 411 412 if (smu == NULL) 413 return -ENODEV; 414 415 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL, 416 SMU_CMD_RTC_SET_DATETIME, 417 hex2bcd(time->tm_sec), 418 hex2bcd(time->tm_min), 419 hex2bcd(time->tm_hour), 420 time->tm_wday, 421 hex2bcd(time->tm_mday), 422 hex2bcd(time->tm_mon) + 1, 423 hex2bcd(time->tm_year - 100)); 424 if (rc) 425 return rc; 426 smu_spinwait_simple(&cmd); 427 428 return 0; 429 } 430 431 432 void smu_shutdown(void) 433 { 434 struct smu_simple_cmd cmd; 435 436 if (smu == NULL) 437 return; 438 439 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL, 440 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0)) 441 return; 442 smu_spinwait_simple(&cmd); 443 for (;;) 444 ; 445 } 446 447 448 void smu_restart(void) 449 { 450 struct smu_simple_cmd cmd; 451 452 if (smu == NULL) 453 return; 454 455 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL, 456 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0)) 457 return; 458 smu_spinwait_simple(&cmd); 459 for (;;) 460 ; 461 } 462 463 464 int smu_present(void) 465 { 466 return smu != NULL; 467 } 468 EXPORT_SYMBOL(smu_present); 469 470 471 int __init smu_init (void) 472 { 473 struct device_node *np; 474 u64 data; 475 int ret = 0; 476 477 np = of_find_node_by_type(NULL, "smu"); 478 if (np == NULL) 479 return -ENODEV; 480 481 printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR); 482 483 /* 484 * SMU based G5s need some memory below 2Gb. Thankfully this is 485 * called at a time where memblock is still available. 486 */ 487 smu_cmdbuf_abs = memblock_phys_alloc_range(4096, 4096, 0, 0x80000000UL); 488 if (smu_cmdbuf_abs == 0) { 489 printk(KERN_ERR "SMU: Command buffer allocation failed !\n"); 490 ret = -EINVAL; 491 goto fail_np; 492 } 493 494 smu = memblock_alloc(sizeof(struct smu_device), SMP_CACHE_BYTES); 495 if (!smu) 496 panic("%s: Failed to allocate %zu bytes\n", __func__, 497 sizeof(struct smu_device)); 498 499 spin_lock_init(&smu->lock); 500 INIT_LIST_HEAD(&smu->cmd_list); 501 INIT_LIST_HEAD(&smu->cmd_i2c_list); 502 smu->of_node = np; 503 smu->db_irq = 0; 504 smu->msg_irq = 0; 505 506 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a 507 * 32 bits value safely 508 */ 509 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs; 510 smu->cmd_buf = __va(smu_cmdbuf_abs); 511 512 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell"); 513 if (smu->db_node == NULL) { 514 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n"); 515 ret = -ENXIO; 516 goto fail_bootmem; 517 } 518 if (of_property_read_reg(smu->db_node, 0, &data, NULL)) { 519 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n"); 520 ret = -ENXIO; 521 goto fail_db_node; 522 } 523 524 /* Current setup has one doorbell GPIO that does both doorbell 525 * and ack. GPIOs are at 0x50, best would be to find that out 526 * in the device-tree though. 527 */ 528 smu->doorbell = data; 529 if (smu->doorbell < 0x50) 530 smu->doorbell += 0x50; 531 532 /* Now look for the smu-interrupt GPIO */ 533 do { 534 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt"); 535 if (smu->msg_node == NULL) 536 break; 537 if (of_property_read_reg(smu->msg_node, 0, &data, NULL)) { 538 of_node_put(smu->msg_node); 539 smu->msg_node = NULL; 540 break; 541 } 542 smu->msg = data; 543 if (smu->msg < 0x50) 544 smu->msg += 0x50; 545 } while(0); 546 547 /* Doorbell buffer is currently hard-coded, I didn't find a proper 548 * device-tree entry giving the address. Best would probably to use 549 * an offset for K2 base though, but let's do it that way for now. 550 */ 551 smu->db_buf = ioremap(0x8000860c, 0x1000); 552 if (smu->db_buf == NULL) { 553 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n"); 554 ret = -ENXIO; 555 goto fail_msg_node; 556 } 557 558 /* U3 has an issue with NAP mode when issuing SMU commands */ 559 smu->broken_nap = pmac_get_uninorth_variant() < 4; 560 if (smu->broken_nap) 561 printk(KERN_INFO "SMU: using NAP mode workaround\n"); 562 563 sys_ctrler = SYS_CTRLER_SMU; 564 return 0; 565 566 fail_msg_node: 567 of_node_put(smu->msg_node); 568 fail_db_node: 569 of_node_put(smu->db_node); 570 fail_bootmem: 571 memblock_free(smu, sizeof(struct smu_device)); 572 smu = NULL; 573 fail_np: 574 of_node_put(np); 575 return ret; 576 } 577 578 579 static int smu_late_init(void) 580 { 581 if (!smu) 582 return 0; 583 584 timer_setup(&smu->i2c_timer, smu_i2c_retry, 0); 585 586 if (smu->db_node) { 587 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0); 588 if (!smu->db_irq) 589 printk(KERN_ERR "smu: failed to map irq for node %pOF\n", 590 smu->db_node); 591 } 592 if (smu->msg_node) { 593 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0); 594 if (!smu->msg_irq) 595 printk(KERN_ERR "smu: failed to map irq for node %pOF\n", 596 smu->msg_node); 597 } 598 599 /* 600 * Try to request the interrupts 601 */ 602 603 if (smu->db_irq) { 604 if (request_irq(smu->db_irq, smu_db_intr, 605 IRQF_SHARED, "SMU doorbell", smu) < 0) { 606 printk(KERN_WARNING "SMU: can't " 607 "request interrupt %d\n", 608 smu->db_irq); 609 smu->db_irq = 0; 610 } 611 } 612 613 if (smu->msg_irq) { 614 if (request_irq(smu->msg_irq, smu_msg_intr, 615 IRQF_SHARED, "SMU message", smu) < 0) { 616 printk(KERN_WARNING "SMU: can't " 617 "request interrupt %d\n", 618 smu->msg_irq); 619 smu->msg_irq = 0; 620 } 621 } 622 623 smu_irq_inited = 1; 624 return 0; 625 } 626 /* This has to be before arch_initcall as the low i2c stuff relies on the 627 * above having been done before we reach arch_initcalls 628 */ 629 core_initcall(smu_late_init); 630 631 /* 632 * sysfs visibility 633 */ 634 635 static void smu_expose_childs(struct work_struct *unused) 636 { 637 struct device_node *np; 638 639 for_each_child_of_node(smu->of_node, np) 640 if (of_device_is_compatible(np, "smu-sensors")) 641 of_platform_device_create(np, "smu-sensors", 642 &smu->of_dev->dev); 643 } 644 645 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs); 646 647 static int smu_platform_probe(struct platform_device* dev) 648 { 649 if (!smu) 650 return -ENODEV; 651 smu->of_dev = dev; 652 653 /* 654 * Ok, we are matched, now expose all i2c busses. We have to defer 655 * that unfortunately or it would deadlock inside the device model 656 */ 657 schedule_work(&smu_expose_childs_work); 658 659 return 0; 660 } 661 662 static const struct of_device_id smu_platform_match[] = 663 { 664 { 665 .type = "smu", 666 }, 667 {}, 668 }; 669 670 static struct platform_driver smu_of_platform_driver = 671 { 672 .driver = { 673 .name = "smu", 674 .of_match_table = smu_platform_match, 675 }, 676 .probe = smu_platform_probe, 677 }; 678 679 static int __init smu_init_sysfs(void) 680 { 681 /* 682 * For now, we don't power manage machines with an SMU chip, 683 * I'm a bit too far from figuring out how that works with those 684 * new chipsets, but that will come back and bite us 685 */ 686 platform_driver_register(&smu_of_platform_driver); 687 return 0; 688 } 689 690 device_initcall(smu_init_sysfs); 691 692 struct platform_device *smu_get_ofdev(void) 693 { 694 if (!smu) 695 return NULL; 696 return smu->of_dev; 697 } 698 699 EXPORT_SYMBOL_GPL(smu_get_ofdev); 700 701 /* 702 * i2c interface 703 */ 704 705 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail) 706 { 707 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done; 708 void *misc = cmd->misc; 709 unsigned long flags; 710 711 /* Check for read case */ 712 if (!fail && cmd->read) { 713 if (cmd->pdata[0] < 1) 714 fail = 1; 715 else 716 memcpy(cmd->info.data, &cmd->pdata[1], 717 cmd->info.datalen); 718 } 719 720 DPRINTK("SMU: completing, success: %d\n", !fail); 721 722 /* Update status and mark no pending i2c command with lock 723 * held so nobody comes in while we dequeue an eventual 724 * pending next i2c command 725 */ 726 spin_lock_irqsave(&smu->lock, flags); 727 smu->cmd_i2c_cur = NULL; 728 wmb(); 729 cmd->status = fail ? -EIO : 0; 730 731 /* Is there another i2c command waiting ? */ 732 if (!list_empty(&smu->cmd_i2c_list)) { 733 struct smu_i2c_cmd *newcmd; 734 735 /* Fetch it, new current, remove from list */ 736 newcmd = list_entry(smu->cmd_i2c_list.next, 737 struct smu_i2c_cmd, link); 738 smu->cmd_i2c_cur = newcmd; 739 list_del(&cmd->link); 740 741 /* Queue with low level smu */ 742 list_add_tail(&cmd->scmd.link, &smu->cmd_list); 743 if (smu->cmd_cur == NULL) 744 smu_start_cmd(); 745 } 746 spin_unlock_irqrestore(&smu->lock, flags); 747 748 /* Call command completion handler if any */ 749 if (done) 750 done(cmd, misc); 751 752 } 753 754 755 static void smu_i2c_retry(struct timer_list *unused) 756 { 757 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur; 758 759 DPRINTK("SMU: i2c failure, requeuing...\n"); 760 761 /* requeue command simply by resetting reply_len */ 762 cmd->pdata[0] = 0xff; 763 cmd->scmd.reply_len = sizeof(cmd->pdata); 764 smu_queue_cmd(&cmd->scmd); 765 } 766 767 768 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc) 769 { 770 struct smu_i2c_cmd *cmd = misc; 771 int fail = 0; 772 773 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n", 774 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len); 775 776 /* Check for possible status */ 777 if (scmd->status < 0) 778 fail = 1; 779 else if (cmd->read) { 780 if (cmd->stage == 0) 781 fail = cmd->pdata[0] != 0; 782 else 783 fail = cmd->pdata[0] >= 0x80; 784 } else { 785 fail = cmd->pdata[0] != 0; 786 } 787 788 /* Handle failures by requeuing command, after 5ms interval 789 */ 790 if (fail && --cmd->retries > 0) { 791 DPRINTK("SMU: i2c failure, starting timer...\n"); 792 BUG_ON(cmd != smu->cmd_i2c_cur); 793 if (!smu_irq_inited) { 794 mdelay(5); 795 smu_i2c_retry(NULL); 796 return; 797 } 798 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5)); 799 return; 800 } 801 802 /* If failure or stage 1, command is complete */ 803 if (fail || cmd->stage != 0) { 804 smu_i2c_complete_command(cmd, fail); 805 return; 806 } 807 808 DPRINTK("SMU: going to stage 1\n"); 809 810 /* Ok, initial command complete, now poll status */ 811 scmd->reply_buf = cmd->pdata; 812 scmd->reply_len = sizeof(cmd->pdata); 813 scmd->data_buf = cmd->pdata; 814 scmd->data_len = 1; 815 cmd->pdata[0] = 0; 816 cmd->stage = 1; 817 cmd->retries = 20; 818 smu_queue_cmd(scmd); 819 } 820 821 822 int smu_queue_i2c(struct smu_i2c_cmd *cmd) 823 { 824 unsigned long flags; 825 826 if (smu == NULL) 827 return -ENODEV; 828 829 /* Fill most fields of scmd */ 830 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND; 831 cmd->scmd.done = smu_i2c_low_completion; 832 cmd->scmd.misc = cmd; 833 cmd->scmd.reply_buf = cmd->pdata; 834 cmd->scmd.reply_len = sizeof(cmd->pdata); 835 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info; 836 cmd->scmd.status = 1; 837 cmd->stage = 0; 838 cmd->pdata[0] = 0xff; 839 cmd->retries = 20; 840 cmd->status = 1; 841 842 /* Check transfer type, sanitize some "info" fields 843 * based on transfer type and do more checking 844 */ 845 cmd->info.caddr = cmd->info.devaddr; 846 cmd->read = cmd->info.devaddr & 0x01; 847 switch(cmd->info.type) { 848 case SMU_I2C_TRANSFER_SIMPLE: 849 cmd->info.sublen = 0; 850 memset(cmd->info.subaddr, 0, sizeof(cmd->info.subaddr)); 851 break; 852 case SMU_I2C_TRANSFER_COMBINED: 853 cmd->info.devaddr &= 0xfe; 854 fallthrough; 855 case SMU_I2C_TRANSFER_STDSUB: 856 if (cmd->info.sublen > 3) 857 return -EINVAL; 858 break; 859 default: 860 return -EINVAL; 861 } 862 863 /* Finish setting up command based on transfer direction 864 */ 865 if (cmd->read) { 866 if (cmd->info.datalen > SMU_I2C_READ_MAX) 867 return -EINVAL; 868 memset(cmd->info.data, 0xff, cmd->info.datalen); 869 cmd->scmd.data_len = 9; 870 } else { 871 if (cmd->info.datalen > SMU_I2C_WRITE_MAX) 872 return -EINVAL; 873 cmd->scmd.data_len = 9 + cmd->info.datalen; 874 } 875 876 DPRINTK("SMU: i2c enqueuing command\n"); 877 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n", 878 cmd->read ? "read" : "write", cmd->info.datalen, 879 cmd->info.bus, cmd->info.caddr, 880 cmd->info.subaddr[0], cmd->info.type); 881 882 883 /* Enqueue command in i2c list, and if empty, enqueue also in 884 * main command list 885 */ 886 spin_lock_irqsave(&smu->lock, flags); 887 if (smu->cmd_i2c_cur == NULL) { 888 smu->cmd_i2c_cur = cmd; 889 list_add_tail(&cmd->scmd.link, &smu->cmd_list); 890 if (smu->cmd_cur == NULL) 891 smu_start_cmd(); 892 } else 893 list_add_tail(&cmd->link, &smu->cmd_i2c_list); 894 spin_unlock_irqrestore(&smu->lock, flags); 895 896 return 0; 897 } 898 899 /* 900 * Handling of "partitions" 901 */ 902 903 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len) 904 { 905 DECLARE_COMPLETION_ONSTACK(comp); 906 unsigned int chunk; 907 struct smu_cmd cmd; 908 int rc; 909 u8 params[8]; 910 911 /* We currently use a chunk size of 0xe. We could check the 912 * SMU firmware version and use bigger sizes though 913 */ 914 chunk = 0xe; 915 916 while (len) { 917 unsigned int clen = min(len, chunk); 918 919 cmd.cmd = SMU_CMD_MISC_ee_COMMAND; 920 cmd.data_len = 7; 921 cmd.data_buf = params; 922 cmd.reply_len = chunk; 923 cmd.reply_buf = dest; 924 cmd.done = smu_done_complete; 925 cmd.misc = ∁ 926 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC; 927 params[1] = 0x4; 928 *((u32 *)¶ms[2]) = addr; 929 params[6] = clen; 930 931 rc = smu_queue_cmd(&cmd); 932 if (rc) 933 return rc; 934 wait_for_completion(&comp); 935 if (cmd.status != 0) 936 return rc; 937 if (cmd.reply_len != clen) { 938 printk(KERN_DEBUG "SMU: short read in " 939 "smu_read_datablock, got: %d, want: %d\n", 940 cmd.reply_len, clen); 941 return -EIO; 942 } 943 len -= clen; 944 addr += clen; 945 dest += clen; 946 } 947 return 0; 948 } 949 950 static struct smu_sdbp_header *smu_create_sdb_partition(int id) 951 { 952 DECLARE_COMPLETION_ONSTACK(comp); 953 struct smu_simple_cmd cmd; 954 unsigned int addr, len, tlen; 955 struct smu_sdbp_header *hdr; 956 struct property *prop; 957 958 /* First query the partition info */ 959 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq); 960 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2, 961 smu_done_complete, &comp, 962 SMU_CMD_PARTITION_LATEST, id); 963 wait_for_completion(&comp); 964 DPRINTK("SMU: done, status: %d, reply_len: %d\n", 965 cmd.cmd.status, cmd.cmd.reply_len); 966 967 /* Partition doesn't exist (or other error) */ 968 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6) 969 return NULL; 970 971 /* Fetch address and length from reply */ 972 addr = *((u16 *)cmd.buffer); 973 len = cmd.buffer[3] << 2; 974 /* Calucluate total length to allocate, including the 17 bytes 975 * for "sdb-partition-XX" that we append at the end of the buffer 976 */ 977 tlen = sizeof(struct property) + len + 18; 978 979 prop = kzalloc(tlen, GFP_KERNEL); 980 if (prop == NULL) 981 return NULL; 982 hdr = (struct smu_sdbp_header *)(prop + 1); 983 prop->name = ((char *)prop) + tlen - 18; 984 sprintf(prop->name, "sdb-partition-%02x", id); 985 prop->length = len; 986 prop->value = hdr; 987 prop->next = NULL; 988 989 /* Read the datablock */ 990 if (smu_read_datablock((u8 *)hdr, addr, len)) { 991 printk(KERN_DEBUG "SMU: datablock read failed while reading " 992 "partition %02x !\n", id); 993 goto failure; 994 } 995 996 /* Got it, check a few things and create the property */ 997 if (hdr->id != id) { 998 printk(KERN_DEBUG "SMU: Reading partition %02x and got " 999 "%02x !\n", id, hdr->id); 1000 goto failure; 1001 } 1002 if (of_add_property(smu->of_node, prop)) { 1003 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x " 1004 "property !\n", id); 1005 goto failure; 1006 } 1007 1008 return hdr; 1009 failure: 1010 kfree(prop); 1011 return NULL; 1012 } 1013 1014 /* Note: Only allowed to return error code in pointers (using ERR_PTR) 1015 * when interruptible is 1 1016 */ 1017 static const struct smu_sdbp_header *__smu_get_sdb_partition(int id, 1018 unsigned int *size, int interruptible) 1019 { 1020 char pname[32]; 1021 const struct smu_sdbp_header *part; 1022 1023 if (!smu) 1024 return NULL; 1025 1026 sprintf(pname, "sdb-partition-%02x", id); 1027 1028 DPRINTK("smu_get_sdb_partition(%02x)\n", id); 1029 1030 if (interruptible) { 1031 int rc; 1032 rc = mutex_lock_interruptible(&smu_part_access); 1033 if (rc) 1034 return ERR_PTR(rc); 1035 } else 1036 mutex_lock(&smu_part_access); 1037 1038 part = of_get_property(smu->of_node, pname, size); 1039 if (part == NULL) { 1040 DPRINTK("trying to extract from SMU ...\n"); 1041 part = smu_create_sdb_partition(id); 1042 if (part != NULL && size) 1043 *size = part->len << 2; 1044 } 1045 mutex_unlock(&smu_part_access); 1046 return part; 1047 } 1048 1049 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size) 1050 { 1051 return __smu_get_sdb_partition(id, size, 0); 1052 } 1053 EXPORT_SYMBOL(smu_get_sdb_partition); 1054 1055 1056 /* 1057 * Userland driver interface 1058 */ 1059 1060 1061 static LIST_HEAD(smu_clist); 1062 static DEFINE_SPINLOCK(smu_clist_lock); 1063 1064 enum smu_file_mode { 1065 smu_file_commands, 1066 smu_file_events, 1067 smu_file_closing 1068 }; 1069 1070 struct smu_private 1071 { 1072 struct list_head list; 1073 enum smu_file_mode mode; 1074 int busy; 1075 struct smu_cmd cmd; 1076 spinlock_t lock; 1077 wait_queue_head_t wait; 1078 u8 buffer[SMU_MAX_DATA]; 1079 }; 1080 1081 1082 static int smu_open(struct inode *inode, struct file *file) 1083 { 1084 struct smu_private *pp; 1085 unsigned long flags; 1086 1087 pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL); 1088 if (!pp) 1089 return -ENOMEM; 1090 spin_lock_init(&pp->lock); 1091 pp->mode = smu_file_commands; 1092 init_waitqueue_head(&pp->wait); 1093 1094 mutex_lock(&smu_mutex); 1095 spin_lock_irqsave(&smu_clist_lock, flags); 1096 list_add(&pp->list, &smu_clist); 1097 spin_unlock_irqrestore(&smu_clist_lock, flags); 1098 file->private_data = pp; 1099 mutex_unlock(&smu_mutex); 1100 1101 return 0; 1102 } 1103 1104 1105 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc) 1106 { 1107 struct smu_private *pp = misc; 1108 1109 wake_up_all(&pp->wait); 1110 } 1111 1112 1113 static ssize_t smu_write(struct file *file, const char __user *buf, 1114 size_t count, loff_t *ppos) 1115 { 1116 struct smu_private *pp = file->private_data; 1117 unsigned long flags; 1118 struct smu_user_cmd_hdr hdr; 1119 int rc = 0; 1120 1121 if (pp->busy) 1122 return -EBUSY; 1123 else if (copy_from_user(&hdr, buf, sizeof(hdr))) 1124 return -EFAULT; 1125 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) { 1126 pp->mode = smu_file_events; 1127 return 0; 1128 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) { 1129 const struct smu_sdbp_header *part; 1130 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1); 1131 if (part == NULL) 1132 return -EINVAL; 1133 else if (IS_ERR(part)) 1134 return PTR_ERR(part); 1135 return 0; 1136 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU) 1137 return -EINVAL; 1138 else if (pp->mode != smu_file_commands) 1139 return -EBADFD; 1140 else if (hdr.data_len > SMU_MAX_DATA) 1141 return -EINVAL; 1142 1143 spin_lock_irqsave(&pp->lock, flags); 1144 if (pp->busy) { 1145 spin_unlock_irqrestore(&pp->lock, flags); 1146 return -EBUSY; 1147 } 1148 pp->busy = 1; 1149 pp->cmd.status = 1; 1150 spin_unlock_irqrestore(&pp->lock, flags); 1151 1152 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) { 1153 pp->busy = 0; 1154 return -EFAULT; 1155 } 1156 1157 pp->cmd.cmd = hdr.cmd; 1158 pp->cmd.data_len = hdr.data_len; 1159 pp->cmd.reply_len = SMU_MAX_DATA; 1160 pp->cmd.data_buf = pp->buffer; 1161 pp->cmd.reply_buf = pp->buffer; 1162 pp->cmd.done = smu_user_cmd_done; 1163 pp->cmd.misc = pp; 1164 rc = smu_queue_cmd(&pp->cmd); 1165 if (rc < 0) 1166 return rc; 1167 return count; 1168 } 1169 1170 1171 static ssize_t smu_read_command(struct file *file, struct smu_private *pp, 1172 char __user *buf, size_t count) 1173 { 1174 DECLARE_WAITQUEUE(wait, current); 1175 struct smu_user_reply_hdr hdr; 1176 unsigned long flags; 1177 int size, rc = 0; 1178 1179 if (!pp->busy) 1180 return 0; 1181 if (count < sizeof(struct smu_user_reply_hdr)) 1182 return -EOVERFLOW; 1183 spin_lock_irqsave(&pp->lock, flags); 1184 if (pp->cmd.status == 1) { 1185 if (file->f_flags & O_NONBLOCK) { 1186 spin_unlock_irqrestore(&pp->lock, flags); 1187 return -EAGAIN; 1188 } 1189 add_wait_queue(&pp->wait, &wait); 1190 for (;;) { 1191 set_current_state(TASK_INTERRUPTIBLE); 1192 rc = 0; 1193 if (pp->cmd.status != 1) 1194 break; 1195 rc = -ERESTARTSYS; 1196 if (signal_pending(current)) 1197 break; 1198 spin_unlock_irqrestore(&pp->lock, flags); 1199 schedule(); 1200 spin_lock_irqsave(&pp->lock, flags); 1201 } 1202 set_current_state(TASK_RUNNING); 1203 remove_wait_queue(&pp->wait, &wait); 1204 } 1205 spin_unlock_irqrestore(&pp->lock, flags); 1206 if (rc) 1207 return rc; 1208 if (pp->cmd.status != 0) 1209 pp->cmd.reply_len = 0; 1210 size = sizeof(hdr) + pp->cmd.reply_len; 1211 if (count < size) 1212 size = count; 1213 rc = size; 1214 hdr.status = pp->cmd.status; 1215 hdr.reply_len = pp->cmd.reply_len; 1216 if (copy_to_user(buf, &hdr, sizeof(hdr))) 1217 return -EFAULT; 1218 size -= sizeof(hdr); 1219 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size)) 1220 return -EFAULT; 1221 pp->busy = 0; 1222 1223 return rc; 1224 } 1225 1226 1227 static ssize_t smu_read_events(struct file *file, struct smu_private *pp, 1228 char __user *buf, size_t count) 1229 { 1230 /* Not implemented */ 1231 msleep_interruptible(1000); 1232 return 0; 1233 } 1234 1235 1236 static ssize_t smu_read(struct file *file, char __user *buf, 1237 size_t count, loff_t *ppos) 1238 { 1239 struct smu_private *pp = file->private_data; 1240 1241 if (pp->mode == smu_file_commands) 1242 return smu_read_command(file, pp, buf, count); 1243 if (pp->mode == smu_file_events) 1244 return smu_read_events(file, pp, buf, count); 1245 1246 return -EBADFD; 1247 } 1248 1249 static __poll_t smu_fpoll(struct file *file, poll_table *wait) 1250 { 1251 struct smu_private *pp = file->private_data; 1252 __poll_t mask = 0; 1253 unsigned long flags; 1254 1255 if (!pp) 1256 return 0; 1257 1258 if (pp->mode == smu_file_commands) { 1259 poll_wait(file, &pp->wait, wait); 1260 1261 spin_lock_irqsave(&pp->lock, flags); 1262 if (pp->busy && pp->cmd.status != 1) 1263 mask |= EPOLLIN; 1264 spin_unlock_irqrestore(&pp->lock, flags); 1265 } 1266 if (pp->mode == smu_file_events) { 1267 /* Not yet implemented */ 1268 } 1269 return mask; 1270 } 1271 1272 static int smu_release(struct inode *inode, struct file *file) 1273 { 1274 struct smu_private *pp = file->private_data; 1275 unsigned long flags; 1276 unsigned int busy; 1277 1278 if (!pp) 1279 return 0; 1280 1281 file->private_data = NULL; 1282 1283 /* Mark file as closing to avoid races with new request */ 1284 spin_lock_irqsave(&pp->lock, flags); 1285 pp->mode = smu_file_closing; 1286 busy = pp->busy; 1287 1288 /* Wait for any pending request to complete */ 1289 if (busy && pp->cmd.status == 1) { 1290 DECLARE_WAITQUEUE(wait, current); 1291 1292 add_wait_queue(&pp->wait, &wait); 1293 for (;;) { 1294 set_current_state(TASK_UNINTERRUPTIBLE); 1295 if (pp->cmd.status != 1) 1296 break; 1297 spin_unlock_irqrestore(&pp->lock, flags); 1298 schedule(); 1299 spin_lock_irqsave(&pp->lock, flags); 1300 } 1301 set_current_state(TASK_RUNNING); 1302 remove_wait_queue(&pp->wait, &wait); 1303 } 1304 spin_unlock_irqrestore(&pp->lock, flags); 1305 1306 spin_lock_irqsave(&smu_clist_lock, flags); 1307 list_del(&pp->list); 1308 spin_unlock_irqrestore(&smu_clist_lock, flags); 1309 kfree(pp); 1310 1311 return 0; 1312 } 1313 1314 1315 static const struct file_operations smu_device_fops = { 1316 .llseek = no_llseek, 1317 .read = smu_read, 1318 .write = smu_write, 1319 .poll = smu_fpoll, 1320 .open = smu_open, 1321 .release = smu_release, 1322 }; 1323 1324 static struct miscdevice pmu_device = { 1325 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops 1326 }; 1327 1328 static int smu_device_init(void) 1329 { 1330 if (!smu) 1331 return -ENODEV; 1332 if (misc_register(&pmu_device) < 0) 1333 printk(KERN_ERR "via-pmu: cannot register misc device.\n"); 1334 return 0; 1335 } 1336 device_initcall(smu_device_init); 1337