xref: /openbmc/linux/drivers/macintosh/smu.c (revision 4800cd83)
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9 
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrupts off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21 
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/sysdev.h>
36 #include <linux/poll.h>
37 #include <linux/mutex.h>
38 #include <linux/of_device.h>
39 #include <linux/of_platform.h>
40 #include <linux/slab.h>
41 
42 #include <asm/byteorder.h>
43 #include <asm/io.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/pmac_feature.h>
47 #include <asm/smu.h>
48 #include <asm/sections.h>
49 #include <asm/abs_addr.h>
50 #include <asm/uaccess.h>
51 
52 #define VERSION "0.7"
53 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
54 
55 #undef DEBUG_SMU
56 
57 #ifdef DEBUG_SMU
58 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
59 #else
60 #define DPRINTK(fmt, args...) do { } while (0)
61 #endif
62 
63 /*
64  * This is the command buffer passed to the SMU hardware
65  */
66 #define SMU_MAX_DATA	254
67 
68 struct smu_cmd_buf {
69 	u8 cmd;
70 	u8 length;
71 	u8 data[SMU_MAX_DATA];
72 };
73 
74 struct smu_device {
75 	spinlock_t		lock;
76 	struct device_node	*of_node;
77 	struct platform_device	*of_dev;
78 	int			doorbell;	/* doorbell gpio */
79 	u32 __iomem		*db_buf;	/* doorbell buffer */
80 	struct device_node	*db_node;
81 	unsigned int		db_irq;
82 	int			msg;
83 	struct device_node	*msg_node;
84 	unsigned int		msg_irq;
85 	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
86 	u32			cmd_buf_abs;	/* command buffer absolute */
87 	struct list_head	cmd_list;
88 	struct smu_cmd		*cmd_cur;	/* pending command */
89 	int			broken_nap;
90 	struct list_head	cmd_i2c_list;
91 	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
92 	struct timer_list	i2c_timer;
93 };
94 
95 /*
96  * I don't think there will ever be more than one SMU, so
97  * for now, just hard code that
98  */
99 static DEFINE_MUTEX(smu_mutex);
100 static struct smu_device	*smu;
101 static DEFINE_MUTEX(smu_part_access);
102 static int smu_irq_inited;
103 
104 static void smu_i2c_retry(unsigned long data);
105 
106 /*
107  * SMU driver low level stuff
108  */
109 
110 static void smu_start_cmd(void)
111 {
112 	unsigned long faddr, fend;
113 	struct smu_cmd *cmd;
114 
115 	if (list_empty(&smu->cmd_list))
116 		return;
117 
118 	/* Fetch first command in queue */
119 	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
120 	smu->cmd_cur = cmd;
121 	list_del(&cmd->link);
122 
123 	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
124 		cmd->data_len);
125 	DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
126 		((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
127 		((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
128 		((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
129 		((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
130 
131 	/* Fill the SMU command buffer */
132 	smu->cmd_buf->cmd = cmd->cmd;
133 	smu->cmd_buf->length = cmd->data_len;
134 	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
135 
136 	/* Flush command and data to RAM */
137 	faddr = (unsigned long)smu->cmd_buf;
138 	fend = faddr + smu->cmd_buf->length + 2;
139 	flush_inval_dcache_range(faddr, fend);
140 
141 
142 	/* We also disable NAP mode for the duration of the command
143 	 * on U3 based machines.
144 	 * This is slightly racy as it can be written back to 1 by a sysctl
145 	 * but that never happens in practice. There seem to be an issue with
146 	 * U3 based machines such as the iMac G5 where napping for the
147 	 * whole duration of the command prevents the SMU from fetching it
148 	 * from memory. This might be related to the strange i2c based
149 	 * mechanism the SMU uses to access memory.
150 	 */
151 	if (smu->broken_nap)
152 		powersave_nap = 0;
153 
154 	/* This isn't exactly a DMA mapping here, I suspect
155 	 * the SMU is actually communicating with us via i2c to the
156 	 * northbridge or the CPU to access RAM.
157 	 */
158 	writel(smu->cmd_buf_abs, smu->db_buf);
159 
160 	/* Ring the SMU doorbell */
161 	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
162 }
163 
164 
165 static irqreturn_t smu_db_intr(int irq, void *arg)
166 {
167 	unsigned long flags;
168 	struct smu_cmd *cmd;
169 	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
170 	void *misc = NULL;
171 	u8 gpio;
172 	int rc = 0;
173 
174 	/* SMU completed the command, well, we hope, let's make sure
175 	 * of it
176 	 */
177 	spin_lock_irqsave(&smu->lock, flags);
178 
179 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
180 	if ((gpio & 7) != 7) {
181 		spin_unlock_irqrestore(&smu->lock, flags);
182 		return IRQ_HANDLED;
183 	}
184 
185 	cmd = smu->cmd_cur;
186 	smu->cmd_cur = NULL;
187 	if (cmd == NULL)
188 		goto bail;
189 
190 	if (rc == 0) {
191 		unsigned long faddr;
192 		int reply_len;
193 		u8 ack;
194 
195 		/* CPU might have brought back the cache line, so we need
196 		 * to flush again before peeking at the SMU response. We
197 		 * flush the entire buffer for now as we haven't read the
198 		 * reply length (it's only 2 cache lines anyway)
199 		 */
200 		faddr = (unsigned long)smu->cmd_buf;
201 		flush_inval_dcache_range(faddr, faddr + 256);
202 
203 		/* Now check ack */
204 		ack = (~cmd->cmd) & 0xff;
205 		if (ack != smu->cmd_buf->cmd) {
206 			DPRINTK("SMU: incorrect ack, want %x got %x\n",
207 				ack, smu->cmd_buf->cmd);
208 			rc = -EIO;
209 		}
210 		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
211 		DPRINTK("SMU: reply len: %d\n", reply_len);
212 		if (reply_len > cmd->reply_len) {
213 			printk(KERN_WARNING "SMU: reply buffer too small,"
214 			       "got %d bytes for a %d bytes buffer\n",
215 			       reply_len, cmd->reply_len);
216 			reply_len = cmd->reply_len;
217 		}
218 		cmd->reply_len = reply_len;
219 		if (cmd->reply_buf && reply_len)
220 			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
221 	}
222 
223 	/* Now complete the command. Write status last in order as we lost
224 	 * ownership of the command structure as soon as it's no longer -1
225 	 */
226 	done = cmd->done;
227 	misc = cmd->misc;
228 	mb();
229 	cmd->status = rc;
230 
231 	/* Re-enable NAP mode */
232 	if (smu->broken_nap)
233 		powersave_nap = 1;
234  bail:
235 	/* Start next command if any */
236 	smu_start_cmd();
237 	spin_unlock_irqrestore(&smu->lock, flags);
238 
239 	/* Call command completion handler if any */
240 	if (done)
241 		done(cmd, misc);
242 
243 	/* It's an edge interrupt, nothing to do */
244 	return IRQ_HANDLED;
245 }
246 
247 
248 static irqreturn_t smu_msg_intr(int irq, void *arg)
249 {
250 	/* I don't quite know what to do with this one, we seem to never
251 	 * receive it, so I suspect we have to arm it someway in the SMU
252 	 * to start getting events that way.
253 	 */
254 
255 	printk(KERN_INFO "SMU: message interrupt !\n");
256 
257 	/* It's an edge interrupt, nothing to do */
258 	return IRQ_HANDLED;
259 }
260 
261 
262 /*
263  * Queued command management.
264  *
265  */
266 
267 int smu_queue_cmd(struct smu_cmd *cmd)
268 {
269 	unsigned long flags;
270 
271 	if (smu == NULL)
272 		return -ENODEV;
273 	if (cmd->data_len > SMU_MAX_DATA ||
274 	    cmd->reply_len > SMU_MAX_DATA)
275 		return -EINVAL;
276 
277 	cmd->status = 1;
278 	spin_lock_irqsave(&smu->lock, flags);
279 	list_add_tail(&cmd->link, &smu->cmd_list);
280 	if (smu->cmd_cur == NULL)
281 		smu_start_cmd();
282 	spin_unlock_irqrestore(&smu->lock, flags);
283 
284 	/* Workaround for early calls when irq isn't available */
285 	if (!smu_irq_inited || smu->db_irq == NO_IRQ)
286 		smu_spinwait_cmd(cmd);
287 
288 	return 0;
289 }
290 EXPORT_SYMBOL(smu_queue_cmd);
291 
292 
293 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
294 		     unsigned int data_len,
295 		     void (*done)(struct smu_cmd *cmd, void *misc),
296 		     void *misc, ...)
297 {
298 	struct smu_cmd *cmd = &scmd->cmd;
299 	va_list list;
300 	int i;
301 
302 	if (data_len > sizeof(scmd->buffer))
303 		return -EINVAL;
304 
305 	memset(scmd, 0, sizeof(*scmd));
306 	cmd->cmd = command;
307 	cmd->data_len = data_len;
308 	cmd->data_buf = scmd->buffer;
309 	cmd->reply_len = sizeof(scmd->buffer);
310 	cmd->reply_buf = scmd->buffer;
311 	cmd->done = done;
312 	cmd->misc = misc;
313 
314 	va_start(list, misc);
315 	for (i = 0; i < data_len; ++i)
316 		scmd->buffer[i] = (u8)va_arg(list, int);
317 	va_end(list);
318 
319 	return smu_queue_cmd(cmd);
320 }
321 EXPORT_SYMBOL(smu_queue_simple);
322 
323 
324 void smu_poll(void)
325 {
326 	u8 gpio;
327 
328 	if (smu == NULL)
329 		return;
330 
331 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
332 	if ((gpio & 7) == 7)
333 		smu_db_intr(smu->db_irq, smu);
334 }
335 EXPORT_SYMBOL(smu_poll);
336 
337 
338 void smu_done_complete(struct smu_cmd *cmd, void *misc)
339 {
340 	struct completion *comp = misc;
341 
342 	complete(comp);
343 }
344 EXPORT_SYMBOL(smu_done_complete);
345 
346 
347 void smu_spinwait_cmd(struct smu_cmd *cmd)
348 {
349 	while(cmd->status == 1)
350 		smu_poll();
351 }
352 EXPORT_SYMBOL(smu_spinwait_cmd);
353 
354 
355 /* RTC low level commands */
356 static inline int bcd2hex (int n)
357 {
358 	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
359 }
360 
361 
362 static inline int hex2bcd (int n)
363 {
364 	return ((n / 10) << 4) + (n % 10);
365 }
366 
367 
368 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
369 					struct rtc_time *time)
370 {
371 	cmd_buf->cmd = 0x8e;
372 	cmd_buf->length = 8;
373 	cmd_buf->data[0] = 0x80;
374 	cmd_buf->data[1] = hex2bcd(time->tm_sec);
375 	cmd_buf->data[2] = hex2bcd(time->tm_min);
376 	cmd_buf->data[3] = hex2bcd(time->tm_hour);
377 	cmd_buf->data[4] = time->tm_wday;
378 	cmd_buf->data[5] = hex2bcd(time->tm_mday);
379 	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
380 	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
381 }
382 
383 
384 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
385 {
386 	struct smu_simple_cmd cmd;
387 	int rc;
388 
389 	if (smu == NULL)
390 		return -ENODEV;
391 
392 	memset(time, 0, sizeof(struct rtc_time));
393 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
394 			      SMU_CMD_RTC_GET_DATETIME);
395 	if (rc)
396 		return rc;
397 	smu_spinwait_simple(&cmd);
398 
399 	time->tm_sec = bcd2hex(cmd.buffer[0]);
400 	time->tm_min = bcd2hex(cmd.buffer[1]);
401 	time->tm_hour = bcd2hex(cmd.buffer[2]);
402 	time->tm_wday = bcd2hex(cmd.buffer[3]);
403 	time->tm_mday = bcd2hex(cmd.buffer[4]);
404 	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
405 	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
406 
407 	return 0;
408 }
409 
410 
411 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
412 {
413 	struct smu_simple_cmd cmd;
414 	int rc;
415 
416 	if (smu == NULL)
417 		return -ENODEV;
418 
419 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
420 			      SMU_CMD_RTC_SET_DATETIME,
421 			      hex2bcd(time->tm_sec),
422 			      hex2bcd(time->tm_min),
423 			      hex2bcd(time->tm_hour),
424 			      time->tm_wday,
425 			      hex2bcd(time->tm_mday),
426 			      hex2bcd(time->tm_mon) + 1,
427 			      hex2bcd(time->tm_year - 100));
428 	if (rc)
429 		return rc;
430 	smu_spinwait_simple(&cmd);
431 
432 	return 0;
433 }
434 
435 
436 void smu_shutdown(void)
437 {
438 	struct smu_simple_cmd cmd;
439 
440 	if (smu == NULL)
441 		return;
442 
443 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
444 			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
445 		return;
446 	smu_spinwait_simple(&cmd);
447 	for (;;)
448 		;
449 }
450 
451 
452 void smu_restart(void)
453 {
454 	struct smu_simple_cmd cmd;
455 
456 	if (smu == NULL)
457 		return;
458 
459 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
460 			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
461 		return;
462 	smu_spinwait_simple(&cmd);
463 	for (;;)
464 		;
465 }
466 
467 
468 int smu_present(void)
469 {
470 	return smu != NULL;
471 }
472 EXPORT_SYMBOL(smu_present);
473 
474 
475 int __init smu_init (void)
476 {
477 	struct device_node *np;
478 	const u32 *data;
479 	int ret = 0;
480 
481         np = of_find_node_by_type(NULL, "smu");
482         if (np == NULL)
483 		return -ENODEV;
484 
485 	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
486 
487 	if (smu_cmdbuf_abs == 0) {
488 		printk(KERN_ERR "SMU: Command buffer not allocated !\n");
489 		ret = -EINVAL;
490 		goto fail_np;
491 	}
492 
493 	smu = alloc_bootmem(sizeof(struct smu_device));
494 
495 	spin_lock_init(&smu->lock);
496 	INIT_LIST_HEAD(&smu->cmd_list);
497 	INIT_LIST_HEAD(&smu->cmd_i2c_list);
498 	smu->of_node = np;
499 	smu->db_irq = NO_IRQ;
500 	smu->msg_irq = NO_IRQ;
501 
502 	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
503 	 * 32 bits value safely
504 	 */
505 	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
506 	smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
507 
508 	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
509 	if (smu->db_node == NULL) {
510 		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
511 		ret = -ENXIO;
512 		goto fail_bootmem;
513 	}
514 	data = of_get_property(smu->db_node, "reg", NULL);
515 	if (data == NULL) {
516 		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
517 		ret = -ENXIO;
518 		goto fail_db_node;
519 	}
520 
521 	/* Current setup has one doorbell GPIO that does both doorbell
522 	 * and ack. GPIOs are at 0x50, best would be to find that out
523 	 * in the device-tree though.
524 	 */
525 	smu->doorbell = *data;
526 	if (smu->doorbell < 0x50)
527 		smu->doorbell += 0x50;
528 
529 	/* Now look for the smu-interrupt GPIO */
530 	do {
531 		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
532 		if (smu->msg_node == NULL)
533 			break;
534 		data = of_get_property(smu->msg_node, "reg", NULL);
535 		if (data == NULL) {
536 			of_node_put(smu->msg_node);
537 			smu->msg_node = NULL;
538 			break;
539 		}
540 		smu->msg = *data;
541 		if (smu->msg < 0x50)
542 			smu->msg += 0x50;
543 	} while(0);
544 
545 	/* Doorbell buffer is currently hard-coded, I didn't find a proper
546 	 * device-tree entry giving the address. Best would probably to use
547 	 * an offset for K2 base though, but let's do it that way for now.
548 	 */
549 	smu->db_buf = ioremap(0x8000860c, 0x1000);
550 	if (smu->db_buf == NULL) {
551 		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
552 		ret = -ENXIO;
553 		goto fail_msg_node;
554 	}
555 
556 	/* U3 has an issue with NAP mode when issuing SMU commands */
557 	smu->broken_nap = pmac_get_uninorth_variant() < 4;
558 	if (smu->broken_nap)
559 		printk(KERN_INFO "SMU: using NAP mode workaround\n");
560 
561 	sys_ctrler = SYS_CTRLER_SMU;
562 	return 0;
563 
564 fail_msg_node:
565 	if (smu->msg_node)
566 		of_node_put(smu->msg_node);
567 fail_db_node:
568 	of_node_put(smu->db_node);
569 fail_bootmem:
570 	free_bootmem((unsigned long)smu, sizeof(struct smu_device));
571 	smu = NULL;
572 fail_np:
573 	of_node_put(np);
574 	return ret;
575 }
576 
577 
578 static int smu_late_init(void)
579 {
580 	if (!smu)
581 		return 0;
582 
583 	init_timer(&smu->i2c_timer);
584 	smu->i2c_timer.function = smu_i2c_retry;
585 	smu->i2c_timer.data = (unsigned long)smu;
586 
587 	if (smu->db_node) {
588 		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589 		if (smu->db_irq == NO_IRQ)
590 			printk(KERN_ERR "smu: failed to map irq for node %s\n",
591 			       smu->db_node->full_name);
592 	}
593 	if (smu->msg_node) {
594 		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595 		if (smu->msg_irq == NO_IRQ)
596 			printk(KERN_ERR "smu: failed to map irq for node %s\n",
597 			       smu->msg_node->full_name);
598 	}
599 
600 	/*
601 	 * Try to request the interrupts
602 	 */
603 
604 	if (smu->db_irq != NO_IRQ) {
605 		if (request_irq(smu->db_irq, smu_db_intr,
606 				IRQF_SHARED, "SMU doorbell", smu) < 0) {
607 			printk(KERN_WARNING "SMU: can't "
608 			       "request interrupt %d\n",
609 			       smu->db_irq);
610 			smu->db_irq = NO_IRQ;
611 		}
612 	}
613 
614 	if (smu->msg_irq != NO_IRQ) {
615 		if (request_irq(smu->msg_irq, smu_msg_intr,
616 				IRQF_SHARED, "SMU message", smu) < 0) {
617 			printk(KERN_WARNING "SMU: can't "
618 			       "request interrupt %d\n",
619 			       smu->msg_irq);
620 			smu->msg_irq = NO_IRQ;
621 		}
622 	}
623 
624 	smu_irq_inited = 1;
625 	return 0;
626 }
627 /* This has to be before arch_initcall as the low i2c stuff relies on the
628  * above having been done before we reach arch_initcalls
629  */
630 core_initcall(smu_late_init);
631 
632 /*
633  * sysfs visibility
634  */
635 
636 static void smu_expose_childs(struct work_struct *unused)
637 {
638 	struct device_node *np;
639 
640 	for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
641 		if (of_device_is_compatible(np, "smu-sensors"))
642 			of_platform_device_create(np, "smu-sensors",
643 						  &smu->of_dev->dev);
644 }
645 
646 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647 
648 static int smu_platform_probe(struct platform_device* dev,
649 			      const struct of_device_id *match)
650 {
651 	if (!smu)
652 		return -ENODEV;
653 	smu->of_dev = dev;
654 
655 	/*
656 	 * Ok, we are matched, now expose all i2c busses. We have to defer
657 	 * that unfortunately or it would deadlock inside the device model
658 	 */
659 	schedule_work(&smu_expose_childs_work);
660 
661 	return 0;
662 }
663 
664 static const struct of_device_id smu_platform_match[] =
665 {
666 	{
667 		.type		= "smu",
668 	},
669 	{},
670 };
671 
672 static struct of_platform_driver smu_of_platform_driver =
673 {
674 	.driver = {
675 		.name = "smu",
676 		.owner = THIS_MODULE,
677 		.of_match_table = smu_platform_match,
678 	},
679 	.probe		= smu_platform_probe,
680 };
681 
682 static int __init smu_init_sysfs(void)
683 {
684 	/*
685 	 * Due to sysfs bogosity, a sysdev is not a real device, so
686 	 * we should in fact create both if we want sysdev semantics
687 	 * for power management.
688 	 * For now, we don't power manage machines with an SMU chip,
689 	 * I'm a bit too far from figuring out how that works with those
690 	 * new chipsets, but that will come back and bite us
691 	 */
692 	of_register_platform_driver(&smu_of_platform_driver);
693 	return 0;
694 }
695 
696 device_initcall(smu_init_sysfs);
697 
698 struct platform_device *smu_get_ofdev(void)
699 {
700 	if (!smu)
701 		return NULL;
702 	return smu->of_dev;
703 }
704 
705 EXPORT_SYMBOL_GPL(smu_get_ofdev);
706 
707 /*
708  * i2c interface
709  */
710 
711 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
712 {
713 	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
714 	void *misc = cmd->misc;
715 	unsigned long flags;
716 
717 	/* Check for read case */
718 	if (!fail && cmd->read) {
719 		if (cmd->pdata[0] < 1)
720 			fail = 1;
721 		else
722 			memcpy(cmd->info.data, &cmd->pdata[1],
723 			       cmd->info.datalen);
724 	}
725 
726 	DPRINTK("SMU: completing, success: %d\n", !fail);
727 
728 	/* Update status and mark no pending i2c command with lock
729 	 * held so nobody comes in while we dequeue an eventual
730 	 * pending next i2c command
731 	 */
732 	spin_lock_irqsave(&smu->lock, flags);
733 	smu->cmd_i2c_cur = NULL;
734 	wmb();
735 	cmd->status = fail ? -EIO : 0;
736 
737 	/* Is there another i2c command waiting ? */
738 	if (!list_empty(&smu->cmd_i2c_list)) {
739 		struct smu_i2c_cmd *newcmd;
740 
741 		/* Fetch it, new current, remove from list */
742 		newcmd = list_entry(smu->cmd_i2c_list.next,
743 				    struct smu_i2c_cmd, link);
744 		smu->cmd_i2c_cur = newcmd;
745 		list_del(&cmd->link);
746 
747 		/* Queue with low level smu */
748 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
749 		if (smu->cmd_cur == NULL)
750 			smu_start_cmd();
751 	}
752 	spin_unlock_irqrestore(&smu->lock, flags);
753 
754 	/* Call command completion handler if any */
755 	if (done)
756 		done(cmd, misc);
757 
758 }
759 
760 
761 static void smu_i2c_retry(unsigned long data)
762 {
763 	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
764 
765 	DPRINTK("SMU: i2c failure, requeuing...\n");
766 
767 	/* requeue command simply by resetting reply_len */
768 	cmd->pdata[0] = 0xff;
769 	cmd->scmd.reply_len = sizeof(cmd->pdata);
770 	smu_queue_cmd(&cmd->scmd);
771 }
772 
773 
774 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
775 {
776 	struct smu_i2c_cmd	*cmd = misc;
777 	int			fail = 0;
778 
779 	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
780 		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
781 
782 	/* Check for possible status */
783 	if (scmd->status < 0)
784 		fail = 1;
785 	else if (cmd->read) {
786 		if (cmd->stage == 0)
787 			fail = cmd->pdata[0] != 0;
788 		else
789 			fail = cmd->pdata[0] >= 0x80;
790 	} else {
791 		fail = cmd->pdata[0] != 0;
792 	}
793 
794 	/* Handle failures by requeuing command, after 5ms interval
795 	 */
796 	if (fail && --cmd->retries > 0) {
797 		DPRINTK("SMU: i2c failure, starting timer...\n");
798 		BUG_ON(cmd != smu->cmd_i2c_cur);
799 		if (!smu_irq_inited) {
800 			mdelay(5);
801 			smu_i2c_retry(0);
802 			return;
803 		}
804 		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
805 		return;
806 	}
807 
808 	/* If failure or stage 1, command is complete */
809 	if (fail || cmd->stage != 0) {
810 		smu_i2c_complete_command(cmd, fail);
811 		return;
812 	}
813 
814 	DPRINTK("SMU: going to stage 1\n");
815 
816 	/* Ok, initial command complete, now poll status */
817 	scmd->reply_buf = cmd->pdata;
818 	scmd->reply_len = sizeof(cmd->pdata);
819 	scmd->data_buf = cmd->pdata;
820 	scmd->data_len = 1;
821 	cmd->pdata[0] = 0;
822 	cmd->stage = 1;
823 	cmd->retries = 20;
824 	smu_queue_cmd(scmd);
825 }
826 
827 
828 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
829 {
830 	unsigned long flags;
831 
832 	if (smu == NULL)
833 		return -ENODEV;
834 
835 	/* Fill most fields of scmd */
836 	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
837 	cmd->scmd.done = smu_i2c_low_completion;
838 	cmd->scmd.misc = cmd;
839 	cmd->scmd.reply_buf = cmd->pdata;
840 	cmd->scmd.reply_len = sizeof(cmd->pdata);
841 	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
842 	cmd->scmd.status = 1;
843 	cmd->stage = 0;
844 	cmd->pdata[0] = 0xff;
845 	cmd->retries = 20;
846 	cmd->status = 1;
847 
848 	/* Check transfer type, sanitize some "info" fields
849 	 * based on transfer type and do more checking
850 	 */
851 	cmd->info.caddr = cmd->info.devaddr;
852 	cmd->read = cmd->info.devaddr & 0x01;
853 	switch(cmd->info.type) {
854 	case SMU_I2C_TRANSFER_SIMPLE:
855 		memset(&cmd->info.sublen, 0, 4);
856 		break;
857 	case SMU_I2C_TRANSFER_COMBINED:
858 		cmd->info.devaddr &= 0xfe;
859 	case SMU_I2C_TRANSFER_STDSUB:
860 		if (cmd->info.sublen > 3)
861 			return -EINVAL;
862 		break;
863 	default:
864 		return -EINVAL;
865 	}
866 
867 	/* Finish setting up command based on transfer direction
868 	 */
869 	if (cmd->read) {
870 		if (cmd->info.datalen > SMU_I2C_READ_MAX)
871 			return -EINVAL;
872 		memset(cmd->info.data, 0xff, cmd->info.datalen);
873 		cmd->scmd.data_len = 9;
874 	} else {
875 		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
876 			return -EINVAL;
877 		cmd->scmd.data_len = 9 + cmd->info.datalen;
878 	}
879 
880 	DPRINTK("SMU: i2c enqueuing command\n");
881 	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
882 		cmd->read ? "read" : "write", cmd->info.datalen,
883 		cmd->info.bus, cmd->info.caddr,
884 		cmd->info.subaddr[0], cmd->info.type);
885 
886 
887 	/* Enqueue command in i2c list, and if empty, enqueue also in
888 	 * main command list
889 	 */
890 	spin_lock_irqsave(&smu->lock, flags);
891 	if (smu->cmd_i2c_cur == NULL) {
892 		smu->cmd_i2c_cur = cmd;
893 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
894 		if (smu->cmd_cur == NULL)
895 			smu_start_cmd();
896 	} else
897 		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
898 	spin_unlock_irqrestore(&smu->lock, flags);
899 
900 	return 0;
901 }
902 
903 /*
904  * Handling of "partitions"
905  */
906 
907 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
908 {
909 	DECLARE_COMPLETION_ONSTACK(comp);
910 	unsigned int chunk;
911 	struct smu_cmd cmd;
912 	int rc;
913 	u8 params[8];
914 
915 	/* We currently use a chunk size of 0xe. We could check the
916 	 * SMU firmware version and use bigger sizes though
917 	 */
918 	chunk = 0xe;
919 
920 	while (len) {
921 		unsigned int clen = min(len, chunk);
922 
923 		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
924 		cmd.data_len = 7;
925 		cmd.data_buf = params;
926 		cmd.reply_len = chunk;
927 		cmd.reply_buf = dest;
928 		cmd.done = smu_done_complete;
929 		cmd.misc = &comp;
930 		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
931 		params[1] = 0x4;
932 		*((u32 *)&params[2]) = addr;
933 		params[6] = clen;
934 
935 		rc = smu_queue_cmd(&cmd);
936 		if (rc)
937 			return rc;
938 		wait_for_completion(&comp);
939 		if (cmd.status != 0)
940 			return rc;
941 		if (cmd.reply_len != clen) {
942 			printk(KERN_DEBUG "SMU: short read in "
943 			       "smu_read_datablock, got: %d, want: %d\n",
944 			       cmd.reply_len, clen);
945 			return -EIO;
946 		}
947 		len -= clen;
948 		addr += clen;
949 		dest += clen;
950 	}
951 	return 0;
952 }
953 
954 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
955 {
956 	DECLARE_COMPLETION_ONSTACK(comp);
957 	struct smu_simple_cmd cmd;
958 	unsigned int addr, len, tlen;
959 	struct smu_sdbp_header *hdr;
960 	struct property *prop;
961 
962 	/* First query the partition info */
963 	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
964 	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
965 			 smu_done_complete, &comp,
966 			 SMU_CMD_PARTITION_LATEST, id);
967 	wait_for_completion(&comp);
968 	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
969 		cmd.cmd.status, cmd.cmd.reply_len);
970 
971 	/* Partition doesn't exist (or other error) */
972 	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
973 		return NULL;
974 
975 	/* Fetch address and length from reply */
976 	addr = *((u16 *)cmd.buffer);
977 	len = cmd.buffer[3] << 2;
978 	/* Calucluate total length to allocate, including the 17 bytes
979 	 * for "sdb-partition-XX" that we append at the end of the buffer
980 	 */
981 	tlen = sizeof(struct property) + len + 18;
982 
983 	prop = kzalloc(tlen, GFP_KERNEL);
984 	if (prop == NULL)
985 		return NULL;
986 	hdr = (struct smu_sdbp_header *)(prop + 1);
987 	prop->name = ((char *)prop) + tlen - 18;
988 	sprintf(prop->name, "sdb-partition-%02x", id);
989 	prop->length = len;
990 	prop->value = hdr;
991 	prop->next = NULL;
992 
993 	/* Read the datablock */
994 	if (smu_read_datablock((u8 *)hdr, addr, len)) {
995 		printk(KERN_DEBUG "SMU: datablock read failed while reading "
996 		       "partition %02x !\n", id);
997 		goto failure;
998 	}
999 
1000 	/* Got it, check a few things and create the property */
1001 	if (hdr->id != id) {
1002 		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
1003 		       "%02x !\n", id, hdr->id);
1004 		goto failure;
1005 	}
1006 	if (prom_add_property(smu->of_node, prop)) {
1007 		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1008 		       "property !\n", id);
1009 		goto failure;
1010 	}
1011 
1012 	return hdr;
1013  failure:
1014 	kfree(prop);
1015 	return NULL;
1016 }
1017 
1018 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1019  * when interruptible is 1
1020  */
1021 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1022 		unsigned int *size, int interruptible)
1023 {
1024 	char pname[32];
1025 	const struct smu_sdbp_header *part;
1026 
1027 	if (!smu)
1028 		return NULL;
1029 
1030 	sprintf(pname, "sdb-partition-%02x", id);
1031 
1032 	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1033 
1034 	if (interruptible) {
1035 		int rc;
1036 		rc = mutex_lock_interruptible(&smu_part_access);
1037 		if (rc)
1038 			return ERR_PTR(rc);
1039 	} else
1040 		mutex_lock(&smu_part_access);
1041 
1042 	part = of_get_property(smu->of_node, pname, size);
1043 	if (part == NULL) {
1044 		DPRINTK("trying to extract from SMU ...\n");
1045 		part = smu_create_sdb_partition(id);
1046 		if (part != NULL && size)
1047 			*size = part->len << 2;
1048 	}
1049 	mutex_unlock(&smu_part_access);
1050 	return part;
1051 }
1052 
1053 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1054 {
1055 	return __smu_get_sdb_partition(id, size, 0);
1056 }
1057 EXPORT_SYMBOL(smu_get_sdb_partition);
1058 
1059 
1060 /*
1061  * Userland driver interface
1062  */
1063 
1064 
1065 static LIST_HEAD(smu_clist);
1066 static DEFINE_SPINLOCK(smu_clist_lock);
1067 
1068 enum smu_file_mode {
1069 	smu_file_commands,
1070 	smu_file_events,
1071 	smu_file_closing
1072 };
1073 
1074 struct smu_private
1075 {
1076 	struct list_head	list;
1077 	enum smu_file_mode	mode;
1078 	int			busy;
1079 	struct smu_cmd		cmd;
1080 	spinlock_t		lock;
1081 	wait_queue_head_t	wait;
1082 	u8			buffer[SMU_MAX_DATA];
1083 };
1084 
1085 
1086 static int smu_open(struct inode *inode, struct file *file)
1087 {
1088 	struct smu_private *pp;
1089 	unsigned long flags;
1090 
1091 	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1092 	if (pp == 0)
1093 		return -ENOMEM;
1094 	spin_lock_init(&pp->lock);
1095 	pp->mode = smu_file_commands;
1096 	init_waitqueue_head(&pp->wait);
1097 
1098 	mutex_lock(&smu_mutex);
1099 	spin_lock_irqsave(&smu_clist_lock, flags);
1100 	list_add(&pp->list, &smu_clist);
1101 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1102 	file->private_data = pp;
1103 	mutex_unlock(&smu_mutex);
1104 
1105 	return 0;
1106 }
1107 
1108 
1109 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1110 {
1111 	struct smu_private *pp = misc;
1112 
1113 	wake_up_all(&pp->wait);
1114 }
1115 
1116 
1117 static ssize_t smu_write(struct file *file, const char __user *buf,
1118 			 size_t count, loff_t *ppos)
1119 {
1120 	struct smu_private *pp = file->private_data;
1121 	unsigned long flags;
1122 	struct smu_user_cmd_hdr hdr;
1123 	int rc = 0;
1124 
1125 	if (pp->busy)
1126 		return -EBUSY;
1127 	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1128 		return -EFAULT;
1129 	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1130 		pp->mode = smu_file_events;
1131 		return 0;
1132 	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1133 		const struct smu_sdbp_header *part;
1134 		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1135 		if (part == NULL)
1136 			return -EINVAL;
1137 		else if (IS_ERR(part))
1138 			return PTR_ERR(part);
1139 		return 0;
1140 	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1141 		return -EINVAL;
1142 	else if (pp->mode != smu_file_commands)
1143 		return -EBADFD;
1144 	else if (hdr.data_len > SMU_MAX_DATA)
1145 		return -EINVAL;
1146 
1147 	spin_lock_irqsave(&pp->lock, flags);
1148 	if (pp->busy) {
1149 		spin_unlock_irqrestore(&pp->lock, flags);
1150 		return -EBUSY;
1151 	}
1152 	pp->busy = 1;
1153 	pp->cmd.status = 1;
1154 	spin_unlock_irqrestore(&pp->lock, flags);
1155 
1156 	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1157 		pp->busy = 0;
1158 		return -EFAULT;
1159 	}
1160 
1161 	pp->cmd.cmd = hdr.cmd;
1162 	pp->cmd.data_len = hdr.data_len;
1163 	pp->cmd.reply_len = SMU_MAX_DATA;
1164 	pp->cmd.data_buf = pp->buffer;
1165 	pp->cmd.reply_buf = pp->buffer;
1166 	pp->cmd.done = smu_user_cmd_done;
1167 	pp->cmd.misc = pp;
1168 	rc = smu_queue_cmd(&pp->cmd);
1169 	if (rc < 0)
1170 		return rc;
1171 	return count;
1172 }
1173 
1174 
1175 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1176 				char __user *buf, size_t count)
1177 {
1178 	DECLARE_WAITQUEUE(wait, current);
1179 	struct smu_user_reply_hdr hdr;
1180 	unsigned long flags;
1181 	int size, rc = 0;
1182 
1183 	if (!pp->busy)
1184 		return 0;
1185 	if (count < sizeof(struct smu_user_reply_hdr))
1186 		return -EOVERFLOW;
1187 	spin_lock_irqsave(&pp->lock, flags);
1188 	if (pp->cmd.status == 1) {
1189 		if (file->f_flags & O_NONBLOCK) {
1190 			spin_unlock_irqrestore(&pp->lock, flags);
1191 			return -EAGAIN;
1192 		}
1193 		add_wait_queue(&pp->wait, &wait);
1194 		for (;;) {
1195 			set_current_state(TASK_INTERRUPTIBLE);
1196 			rc = 0;
1197 			if (pp->cmd.status != 1)
1198 				break;
1199 			rc = -ERESTARTSYS;
1200 			if (signal_pending(current))
1201 				break;
1202 			spin_unlock_irqrestore(&pp->lock, flags);
1203 			schedule();
1204 			spin_lock_irqsave(&pp->lock, flags);
1205 		}
1206 		set_current_state(TASK_RUNNING);
1207 		remove_wait_queue(&pp->wait, &wait);
1208 	}
1209 	spin_unlock_irqrestore(&pp->lock, flags);
1210 	if (rc)
1211 		return rc;
1212 	if (pp->cmd.status != 0)
1213 		pp->cmd.reply_len = 0;
1214 	size = sizeof(hdr) + pp->cmd.reply_len;
1215 	if (count < size)
1216 		size = count;
1217 	rc = size;
1218 	hdr.status = pp->cmd.status;
1219 	hdr.reply_len = pp->cmd.reply_len;
1220 	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1221 		return -EFAULT;
1222 	size -= sizeof(hdr);
1223 	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1224 		return -EFAULT;
1225 	pp->busy = 0;
1226 
1227 	return rc;
1228 }
1229 
1230 
1231 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1232 			       char __user *buf, size_t count)
1233 {
1234 	/* Not implemented */
1235 	msleep_interruptible(1000);
1236 	return 0;
1237 }
1238 
1239 
1240 static ssize_t smu_read(struct file *file, char __user *buf,
1241 			size_t count, loff_t *ppos)
1242 {
1243 	struct smu_private *pp = file->private_data;
1244 
1245 	if (pp->mode == smu_file_commands)
1246 		return smu_read_command(file, pp, buf, count);
1247 	if (pp->mode == smu_file_events)
1248 		return smu_read_events(file, pp, buf, count);
1249 
1250 	return -EBADFD;
1251 }
1252 
1253 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1254 {
1255 	struct smu_private *pp = file->private_data;
1256 	unsigned int mask = 0;
1257 	unsigned long flags;
1258 
1259 	if (pp == 0)
1260 		return 0;
1261 
1262 	if (pp->mode == smu_file_commands) {
1263 		poll_wait(file, &pp->wait, wait);
1264 
1265 		spin_lock_irqsave(&pp->lock, flags);
1266 		if (pp->busy && pp->cmd.status != 1)
1267 			mask |= POLLIN;
1268 		spin_unlock_irqrestore(&pp->lock, flags);
1269 	} if (pp->mode == smu_file_events) {
1270 		/* Not yet implemented */
1271 	}
1272 	return mask;
1273 }
1274 
1275 static int smu_release(struct inode *inode, struct file *file)
1276 {
1277 	struct smu_private *pp = file->private_data;
1278 	unsigned long flags;
1279 	unsigned int busy;
1280 
1281 	if (pp == 0)
1282 		return 0;
1283 
1284 	file->private_data = NULL;
1285 
1286 	/* Mark file as closing to avoid races with new request */
1287 	spin_lock_irqsave(&pp->lock, flags);
1288 	pp->mode = smu_file_closing;
1289 	busy = pp->busy;
1290 
1291 	/* Wait for any pending request to complete */
1292 	if (busy && pp->cmd.status == 1) {
1293 		DECLARE_WAITQUEUE(wait, current);
1294 
1295 		add_wait_queue(&pp->wait, &wait);
1296 		for (;;) {
1297 			set_current_state(TASK_UNINTERRUPTIBLE);
1298 			if (pp->cmd.status != 1)
1299 				break;
1300 			spin_unlock_irqrestore(&pp->lock, flags);
1301 			schedule();
1302 			spin_lock_irqsave(&pp->lock, flags);
1303 		}
1304 		set_current_state(TASK_RUNNING);
1305 		remove_wait_queue(&pp->wait, &wait);
1306 	}
1307 	spin_unlock_irqrestore(&pp->lock, flags);
1308 
1309 	spin_lock_irqsave(&smu_clist_lock, flags);
1310 	list_del(&pp->list);
1311 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1312 	kfree(pp);
1313 
1314 	return 0;
1315 }
1316 
1317 
1318 static const struct file_operations smu_device_fops = {
1319 	.llseek		= no_llseek,
1320 	.read		= smu_read,
1321 	.write		= smu_write,
1322 	.poll		= smu_fpoll,
1323 	.open		= smu_open,
1324 	.release	= smu_release,
1325 };
1326 
1327 static struct miscdevice pmu_device = {
1328 	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1329 };
1330 
1331 static int smu_device_init(void)
1332 {
1333 	if (!smu)
1334 		return -ENODEV;
1335 	if (misc_register(&pmu_device) < 0)
1336 		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1337 	return 0;
1338 }
1339 device_initcall(smu_device_init);
1340