xref: /openbmc/linux/drivers/macintosh/smu.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 /*
2  * PowerMac G5 SMU driver
3  *
4  * Copyright 2004 J. Mayer <l_indien@magic.fr>
5  * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
6  *
7  * Released under the term of the GNU GPL v2.
8  */
9 
10 /*
11  * TODO:
12  *  - maybe add timeout to commands ?
13  *  - blocking version of time functions
14  *  - polling version of i2c commands (including timer that works with
15  *    interrupts off)
16  *  - maybe avoid some data copies with i2c by directly using the smu cmd
17  *    buffer and a lower level internal interface
18  *  - understand SMU -> CPU events and implement reception of them via
19  *    the userland interface
20  */
21 
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/poll.h>
36 #include <linux/mutex.h>
37 #include <linux/of_device.h>
38 #include <linux/of_irq.h>
39 #include <linux/of_platform.h>
40 #include <linux/slab.h>
41 #include <linux/memblock.h>
42 #include <linux/sched/signal.h>
43 
44 #include <asm/byteorder.h>
45 #include <asm/io.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/pmac_feature.h>
49 #include <asm/smu.h>
50 #include <asm/sections.h>
51 #include <linux/uaccess.h>
52 
53 #define VERSION "0.7"
54 #define AUTHOR  "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
55 
56 #undef DEBUG_SMU
57 
58 #ifdef DEBUG_SMU
59 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
60 #else
61 #define DPRINTK(fmt, args...) do { } while (0)
62 #endif
63 
64 /*
65  * This is the command buffer passed to the SMU hardware
66  */
67 #define SMU_MAX_DATA	254
68 
69 struct smu_cmd_buf {
70 	u8 cmd;
71 	u8 length;
72 	u8 data[SMU_MAX_DATA];
73 };
74 
75 struct smu_device {
76 	spinlock_t		lock;
77 	struct device_node	*of_node;
78 	struct platform_device	*of_dev;
79 	int			doorbell;	/* doorbell gpio */
80 	u32 __iomem		*db_buf;	/* doorbell buffer */
81 	struct device_node	*db_node;
82 	unsigned int		db_irq;
83 	int			msg;
84 	struct device_node	*msg_node;
85 	unsigned int		msg_irq;
86 	struct smu_cmd_buf	*cmd_buf;	/* command buffer virtual */
87 	u32			cmd_buf_abs;	/* command buffer absolute */
88 	struct list_head	cmd_list;
89 	struct smu_cmd		*cmd_cur;	/* pending command */
90 	int			broken_nap;
91 	struct list_head	cmd_i2c_list;
92 	struct smu_i2c_cmd	*cmd_i2c_cur;	/* pending i2c command */
93 	struct timer_list	i2c_timer;
94 };
95 
96 /*
97  * I don't think there will ever be more than one SMU, so
98  * for now, just hard code that
99  */
100 static DEFINE_MUTEX(smu_mutex);
101 static struct smu_device	*smu;
102 static DEFINE_MUTEX(smu_part_access);
103 static int smu_irq_inited;
104 static unsigned long smu_cmdbuf_abs;
105 
106 static void smu_i2c_retry(struct timer_list *t);
107 
108 /*
109  * SMU driver low level stuff
110  */
111 
112 static void smu_start_cmd(void)
113 {
114 	unsigned long faddr, fend;
115 	struct smu_cmd *cmd;
116 
117 	if (list_empty(&smu->cmd_list))
118 		return;
119 
120 	/* Fetch first command in queue */
121 	cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
122 	smu->cmd_cur = cmd;
123 	list_del(&cmd->link);
124 
125 	DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
126 		cmd->data_len);
127 	DPRINTK("SMU: data buffer: %8ph\n", cmd->data_buf);
128 
129 	/* Fill the SMU command buffer */
130 	smu->cmd_buf->cmd = cmd->cmd;
131 	smu->cmd_buf->length = cmd->data_len;
132 	memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
133 
134 	/* Flush command and data to RAM */
135 	faddr = (unsigned long)smu->cmd_buf;
136 	fend = faddr + smu->cmd_buf->length + 2;
137 	flush_inval_dcache_range(faddr, fend);
138 
139 
140 	/* We also disable NAP mode for the duration of the command
141 	 * on U3 based machines.
142 	 * This is slightly racy as it can be written back to 1 by a sysctl
143 	 * but that never happens in practice. There seem to be an issue with
144 	 * U3 based machines such as the iMac G5 where napping for the
145 	 * whole duration of the command prevents the SMU from fetching it
146 	 * from memory. This might be related to the strange i2c based
147 	 * mechanism the SMU uses to access memory.
148 	 */
149 	if (smu->broken_nap)
150 		powersave_nap = 0;
151 
152 	/* This isn't exactly a DMA mapping here, I suspect
153 	 * the SMU is actually communicating with us via i2c to the
154 	 * northbridge or the CPU to access RAM.
155 	 */
156 	writel(smu->cmd_buf_abs, smu->db_buf);
157 
158 	/* Ring the SMU doorbell */
159 	pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
160 }
161 
162 
163 static irqreturn_t smu_db_intr(int irq, void *arg)
164 {
165 	unsigned long flags;
166 	struct smu_cmd *cmd;
167 	void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
168 	void *misc = NULL;
169 	u8 gpio;
170 	int rc = 0;
171 
172 	/* SMU completed the command, well, we hope, let's make sure
173 	 * of it
174 	 */
175 	spin_lock_irqsave(&smu->lock, flags);
176 
177 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
178 	if ((gpio & 7) != 7) {
179 		spin_unlock_irqrestore(&smu->lock, flags);
180 		return IRQ_HANDLED;
181 	}
182 
183 	cmd = smu->cmd_cur;
184 	smu->cmd_cur = NULL;
185 	if (cmd == NULL)
186 		goto bail;
187 
188 	if (rc == 0) {
189 		unsigned long faddr;
190 		int reply_len;
191 		u8 ack;
192 
193 		/* CPU might have brought back the cache line, so we need
194 		 * to flush again before peeking at the SMU response. We
195 		 * flush the entire buffer for now as we haven't read the
196 		 * reply length (it's only 2 cache lines anyway)
197 		 */
198 		faddr = (unsigned long)smu->cmd_buf;
199 		flush_inval_dcache_range(faddr, faddr + 256);
200 
201 		/* Now check ack */
202 		ack = (~cmd->cmd) & 0xff;
203 		if (ack != smu->cmd_buf->cmd) {
204 			DPRINTK("SMU: incorrect ack, want %x got %x\n",
205 				ack, smu->cmd_buf->cmd);
206 			rc = -EIO;
207 		}
208 		reply_len = rc == 0 ? smu->cmd_buf->length : 0;
209 		DPRINTK("SMU: reply len: %d\n", reply_len);
210 		if (reply_len > cmd->reply_len) {
211 			printk(KERN_WARNING "SMU: reply buffer too small,"
212 			       "got %d bytes for a %d bytes buffer\n",
213 			       reply_len, cmd->reply_len);
214 			reply_len = cmd->reply_len;
215 		}
216 		cmd->reply_len = reply_len;
217 		if (cmd->reply_buf && reply_len)
218 			memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
219 	}
220 
221 	/* Now complete the command. Write status last in order as we lost
222 	 * ownership of the command structure as soon as it's no longer -1
223 	 */
224 	done = cmd->done;
225 	misc = cmd->misc;
226 	mb();
227 	cmd->status = rc;
228 
229 	/* Re-enable NAP mode */
230 	if (smu->broken_nap)
231 		powersave_nap = 1;
232  bail:
233 	/* Start next command if any */
234 	smu_start_cmd();
235 	spin_unlock_irqrestore(&smu->lock, flags);
236 
237 	/* Call command completion handler if any */
238 	if (done)
239 		done(cmd, misc);
240 
241 	/* It's an edge interrupt, nothing to do */
242 	return IRQ_HANDLED;
243 }
244 
245 
246 static irqreturn_t smu_msg_intr(int irq, void *arg)
247 {
248 	/* I don't quite know what to do with this one, we seem to never
249 	 * receive it, so I suspect we have to arm it someway in the SMU
250 	 * to start getting events that way.
251 	 */
252 
253 	printk(KERN_INFO "SMU: message interrupt !\n");
254 
255 	/* It's an edge interrupt, nothing to do */
256 	return IRQ_HANDLED;
257 }
258 
259 
260 /*
261  * Queued command management.
262  *
263  */
264 
265 int smu_queue_cmd(struct smu_cmd *cmd)
266 {
267 	unsigned long flags;
268 
269 	if (smu == NULL)
270 		return -ENODEV;
271 	if (cmd->data_len > SMU_MAX_DATA ||
272 	    cmd->reply_len > SMU_MAX_DATA)
273 		return -EINVAL;
274 
275 	cmd->status = 1;
276 	spin_lock_irqsave(&smu->lock, flags);
277 	list_add_tail(&cmd->link, &smu->cmd_list);
278 	if (smu->cmd_cur == NULL)
279 		smu_start_cmd();
280 	spin_unlock_irqrestore(&smu->lock, flags);
281 
282 	/* Workaround for early calls when irq isn't available */
283 	if (!smu_irq_inited || !smu->db_irq)
284 		smu_spinwait_cmd(cmd);
285 
286 	return 0;
287 }
288 EXPORT_SYMBOL(smu_queue_cmd);
289 
290 
291 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
292 		     unsigned int data_len,
293 		     void (*done)(struct smu_cmd *cmd, void *misc),
294 		     void *misc, ...)
295 {
296 	struct smu_cmd *cmd = &scmd->cmd;
297 	va_list list;
298 	int i;
299 
300 	if (data_len > sizeof(scmd->buffer))
301 		return -EINVAL;
302 
303 	memset(scmd, 0, sizeof(*scmd));
304 	cmd->cmd = command;
305 	cmd->data_len = data_len;
306 	cmd->data_buf = scmd->buffer;
307 	cmd->reply_len = sizeof(scmd->buffer);
308 	cmd->reply_buf = scmd->buffer;
309 	cmd->done = done;
310 	cmd->misc = misc;
311 
312 	va_start(list, misc);
313 	for (i = 0; i < data_len; ++i)
314 		scmd->buffer[i] = (u8)va_arg(list, int);
315 	va_end(list);
316 
317 	return smu_queue_cmd(cmd);
318 }
319 EXPORT_SYMBOL(smu_queue_simple);
320 
321 
322 void smu_poll(void)
323 {
324 	u8 gpio;
325 
326 	if (smu == NULL)
327 		return;
328 
329 	gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
330 	if ((gpio & 7) == 7)
331 		smu_db_intr(smu->db_irq, smu);
332 }
333 EXPORT_SYMBOL(smu_poll);
334 
335 
336 void smu_done_complete(struct smu_cmd *cmd, void *misc)
337 {
338 	struct completion *comp = misc;
339 
340 	complete(comp);
341 }
342 EXPORT_SYMBOL(smu_done_complete);
343 
344 
345 void smu_spinwait_cmd(struct smu_cmd *cmd)
346 {
347 	while(cmd->status == 1)
348 		smu_poll();
349 }
350 EXPORT_SYMBOL(smu_spinwait_cmd);
351 
352 
353 /* RTC low level commands */
354 static inline int bcd2hex (int n)
355 {
356 	return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
357 }
358 
359 
360 static inline int hex2bcd (int n)
361 {
362 	return ((n / 10) << 4) + (n % 10);
363 }
364 
365 
366 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
367 					struct rtc_time *time)
368 {
369 	cmd_buf->cmd = 0x8e;
370 	cmd_buf->length = 8;
371 	cmd_buf->data[0] = 0x80;
372 	cmd_buf->data[1] = hex2bcd(time->tm_sec);
373 	cmd_buf->data[2] = hex2bcd(time->tm_min);
374 	cmd_buf->data[3] = hex2bcd(time->tm_hour);
375 	cmd_buf->data[4] = time->tm_wday;
376 	cmd_buf->data[5] = hex2bcd(time->tm_mday);
377 	cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
378 	cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
379 }
380 
381 
382 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
383 {
384 	struct smu_simple_cmd cmd;
385 	int rc;
386 
387 	if (smu == NULL)
388 		return -ENODEV;
389 
390 	memset(time, 0, sizeof(struct rtc_time));
391 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
392 			      SMU_CMD_RTC_GET_DATETIME);
393 	if (rc)
394 		return rc;
395 	smu_spinwait_simple(&cmd);
396 
397 	time->tm_sec = bcd2hex(cmd.buffer[0]);
398 	time->tm_min = bcd2hex(cmd.buffer[1]);
399 	time->tm_hour = bcd2hex(cmd.buffer[2]);
400 	time->tm_wday = bcd2hex(cmd.buffer[3]);
401 	time->tm_mday = bcd2hex(cmd.buffer[4]);
402 	time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
403 	time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
404 
405 	return 0;
406 }
407 
408 
409 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
410 {
411 	struct smu_simple_cmd cmd;
412 	int rc;
413 
414 	if (smu == NULL)
415 		return -ENODEV;
416 
417 	rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
418 			      SMU_CMD_RTC_SET_DATETIME,
419 			      hex2bcd(time->tm_sec),
420 			      hex2bcd(time->tm_min),
421 			      hex2bcd(time->tm_hour),
422 			      time->tm_wday,
423 			      hex2bcd(time->tm_mday),
424 			      hex2bcd(time->tm_mon) + 1,
425 			      hex2bcd(time->tm_year - 100));
426 	if (rc)
427 		return rc;
428 	smu_spinwait_simple(&cmd);
429 
430 	return 0;
431 }
432 
433 
434 void smu_shutdown(void)
435 {
436 	struct smu_simple_cmd cmd;
437 
438 	if (smu == NULL)
439 		return;
440 
441 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
442 			     'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
443 		return;
444 	smu_spinwait_simple(&cmd);
445 	for (;;)
446 		;
447 }
448 
449 
450 void smu_restart(void)
451 {
452 	struct smu_simple_cmd cmd;
453 
454 	if (smu == NULL)
455 		return;
456 
457 	if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
458 			     'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
459 		return;
460 	smu_spinwait_simple(&cmd);
461 	for (;;)
462 		;
463 }
464 
465 
466 int smu_present(void)
467 {
468 	return smu != NULL;
469 }
470 EXPORT_SYMBOL(smu_present);
471 
472 
473 int __init smu_init (void)
474 {
475 	struct device_node *np;
476 	const u32 *data;
477 	int ret = 0;
478 
479         np = of_find_node_by_type(NULL, "smu");
480         if (np == NULL)
481 		return -ENODEV;
482 
483 	printk(KERN_INFO "SMU: Driver %s %s\n", VERSION, AUTHOR);
484 
485 	/*
486 	 * SMU based G5s need some memory below 2Gb. Thankfully this is
487 	 * called at a time where memblock is still available.
488 	 */
489 	smu_cmdbuf_abs = memblock_alloc_base(4096, 4096, 0x80000000UL);
490 	if (smu_cmdbuf_abs == 0) {
491 		printk(KERN_ERR "SMU: Command buffer allocation failed !\n");
492 		ret = -EINVAL;
493 		goto fail_np;
494 	}
495 
496 	smu = alloc_bootmem(sizeof(struct smu_device));
497 
498 	spin_lock_init(&smu->lock);
499 	INIT_LIST_HEAD(&smu->cmd_list);
500 	INIT_LIST_HEAD(&smu->cmd_i2c_list);
501 	smu->of_node = np;
502 	smu->db_irq = 0;
503 	smu->msg_irq = 0;
504 
505 	/* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
506 	 * 32 bits value safely
507 	 */
508 	smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
509 	smu->cmd_buf = __va(smu_cmdbuf_abs);
510 
511 	smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
512 	if (smu->db_node == NULL) {
513 		printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
514 		ret = -ENXIO;
515 		goto fail_bootmem;
516 	}
517 	data = of_get_property(smu->db_node, "reg", NULL);
518 	if (data == NULL) {
519 		printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
520 		ret = -ENXIO;
521 		goto fail_db_node;
522 	}
523 
524 	/* Current setup has one doorbell GPIO that does both doorbell
525 	 * and ack. GPIOs are at 0x50, best would be to find that out
526 	 * in the device-tree though.
527 	 */
528 	smu->doorbell = *data;
529 	if (smu->doorbell < 0x50)
530 		smu->doorbell += 0x50;
531 
532 	/* Now look for the smu-interrupt GPIO */
533 	do {
534 		smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
535 		if (smu->msg_node == NULL)
536 			break;
537 		data = of_get_property(smu->msg_node, "reg", NULL);
538 		if (data == NULL) {
539 			of_node_put(smu->msg_node);
540 			smu->msg_node = NULL;
541 			break;
542 		}
543 		smu->msg = *data;
544 		if (smu->msg < 0x50)
545 			smu->msg += 0x50;
546 	} while(0);
547 
548 	/* Doorbell buffer is currently hard-coded, I didn't find a proper
549 	 * device-tree entry giving the address. Best would probably to use
550 	 * an offset for K2 base though, but let's do it that way for now.
551 	 */
552 	smu->db_buf = ioremap(0x8000860c, 0x1000);
553 	if (smu->db_buf == NULL) {
554 		printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
555 		ret = -ENXIO;
556 		goto fail_msg_node;
557 	}
558 
559 	/* U3 has an issue with NAP mode when issuing SMU commands */
560 	smu->broken_nap = pmac_get_uninorth_variant() < 4;
561 	if (smu->broken_nap)
562 		printk(KERN_INFO "SMU: using NAP mode workaround\n");
563 
564 	sys_ctrler = SYS_CTRLER_SMU;
565 	return 0;
566 
567 fail_msg_node:
568 	of_node_put(smu->msg_node);
569 fail_db_node:
570 	of_node_put(smu->db_node);
571 fail_bootmem:
572 	free_bootmem(__pa(smu), sizeof(struct smu_device));
573 	smu = NULL;
574 fail_np:
575 	of_node_put(np);
576 	return ret;
577 }
578 
579 
580 static int smu_late_init(void)
581 {
582 	if (!smu)
583 		return 0;
584 
585 	timer_setup(&smu->i2c_timer, smu_i2c_retry, 0);
586 
587 	if (smu->db_node) {
588 		smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
589 		if (!smu->db_irq)
590 			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
591 			       smu->db_node);
592 	}
593 	if (smu->msg_node) {
594 		smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
595 		if (!smu->msg_irq)
596 			printk(KERN_ERR "smu: failed to map irq for node %pOF\n",
597 			       smu->msg_node);
598 	}
599 
600 	/*
601 	 * Try to request the interrupts
602 	 */
603 
604 	if (smu->db_irq) {
605 		if (request_irq(smu->db_irq, smu_db_intr,
606 				IRQF_SHARED, "SMU doorbell", smu) < 0) {
607 			printk(KERN_WARNING "SMU: can't "
608 			       "request interrupt %d\n",
609 			       smu->db_irq);
610 			smu->db_irq = 0;
611 		}
612 	}
613 
614 	if (smu->msg_irq) {
615 		if (request_irq(smu->msg_irq, smu_msg_intr,
616 				IRQF_SHARED, "SMU message", smu) < 0) {
617 			printk(KERN_WARNING "SMU: can't "
618 			       "request interrupt %d\n",
619 			       smu->msg_irq);
620 			smu->msg_irq = 0;
621 		}
622 	}
623 
624 	smu_irq_inited = 1;
625 	return 0;
626 }
627 /* This has to be before arch_initcall as the low i2c stuff relies on the
628  * above having been done before we reach arch_initcalls
629  */
630 core_initcall(smu_late_init);
631 
632 /*
633  * sysfs visibility
634  */
635 
636 static void smu_expose_childs(struct work_struct *unused)
637 {
638 	struct device_node *np;
639 
640 	for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
641 		if (of_device_is_compatible(np, "smu-sensors"))
642 			of_platform_device_create(np, "smu-sensors",
643 						  &smu->of_dev->dev);
644 }
645 
646 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs);
647 
648 static int smu_platform_probe(struct platform_device* dev)
649 {
650 	if (!smu)
651 		return -ENODEV;
652 	smu->of_dev = dev;
653 
654 	/*
655 	 * Ok, we are matched, now expose all i2c busses. We have to defer
656 	 * that unfortunately or it would deadlock inside the device model
657 	 */
658 	schedule_work(&smu_expose_childs_work);
659 
660 	return 0;
661 }
662 
663 static const struct of_device_id smu_platform_match[] =
664 {
665 	{
666 		.type		= "smu",
667 	},
668 	{},
669 };
670 
671 static struct platform_driver smu_of_platform_driver =
672 {
673 	.driver = {
674 		.name = "smu",
675 		.of_match_table = smu_platform_match,
676 	},
677 	.probe		= smu_platform_probe,
678 };
679 
680 static int __init smu_init_sysfs(void)
681 {
682 	/*
683 	 * For now, we don't power manage machines with an SMU chip,
684 	 * I'm a bit too far from figuring out how that works with those
685 	 * new chipsets, but that will come back and bite us
686 	 */
687 	platform_driver_register(&smu_of_platform_driver);
688 	return 0;
689 }
690 
691 device_initcall(smu_init_sysfs);
692 
693 struct platform_device *smu_get_ofdev(void)
694 {
695 	if (!smu)
696 		return NULL;
697 	return smu->of_dev;
698 }
699 
700 EXPORT_SYMBOL_GPL(smu_get_ofdev);
701 
702 /*
703  * i2c interface
704  */
705 
706 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
707 {
708 	void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
709 	void *misc = cmd->misc;
710 	unsigned long flags;
711 
712 	/* Check for read case */
713 	if (!fail && cmd->read) {
714 		if (cmd->pdata[0] < 1)
715 			fail = 1;
716 		else
717 			memcpy(cmd->info.data, &cmd->pdata[1],
718 			       cmd->info.datalen);
719 	}
720 
721 	DPRINTK("SMU: completing, success: %d\n", !fail);
722 
723 	/* Update status and mark no pending i2c command with lock
724 	 * held so nobody comes in while we dequeue an eventual
725 	 * pending next i2c command
726 	 */
727 	spin_lock_irqsave(&smu->lock, flags);
728 	smu->cmd_i2c_cur = NULL;
729 	wmb();
730 	cmd->status = fail ? -EIO : 0;
731 
732 	/* Is there another i2c command waiting ? */
733 	if (!list_empty(&smu->cmd_i2c_list)) {
734 		struct smu_i2c_cmd *newcmd;
735 
736 		/* Fetch it, new current, remove from list */
737 		newcmd = list_entry(smu->cmd_i2c_list.next,
738 				    struct smu_i2c_cmd, link);
739 		smu->cmd_i2c_cur = newcmd;
740 		list_del(&cmd->link);
741 
742 		/* Queue with low level smu */
743 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
744 		if (smu->cmd_cur == NULL)
745 			smu_start_cmd();
746 	}
747 	spin_unlock_irqrestore(&smu->lock, flags);
748 
749 	/* Call command completion handler if any */
750 	if (done)
751 		done(cmd, misc);
752 
753 }
754 
755 
756 static void smu_i2c_retry(struct timer_list *unused)
757 {
758 	struct smu_i2c_cmd	*cmd = smu->cmd_i2c_cur;
759 
760 	DPRINTK("SMU: i2c failure, requeuing...\n");
761 
762 	/* requeue command simply by resetting reply_len */
763 	cmd->pdata[0] = 0xff;
764 	cmd->scmd.reply_len = sizeof(cmd->pdata);
765 	smu_queue_cmd(&cmd->scmd);
766 }
767 
768 
769 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
770 {
771 	struct smu_i2c_cmd	*cmd = misc;
772 	int			fail = 0;
773 
774 	DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
775 		cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
776 
777 	/* Check for possible status */
778 	if (scmd->status < 0)
779 		fail = 1;
780 	else if (cmd->read) {
781 		if (cmd->stage == 0)
782 			fail = cmd->pdata[0] != 0;
783 		else
784 			fail = cmd->pdata[0] >= 0x80;
785 	} else {
786 		fail = cmd->pdata[0] != 0;
787 	}
788 
789 	/* Handle failures by requeuing command, after 5ms interval
790 	 */
791 	if (fail && --cmd->retries > 0) {
792 		DPRINTK("SMU: i2c failure, starting timer...\n");
793 		BUG_ON(cmd != smu->cmd_i2c_cur);
794 		if (!smu_irq_inited) {
795 			mdelay(5);
796 			smu_i2c_retry(NULL);
797 			return;
798 		}
799 		mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
800 		return;
801 	}
802 
803 	/* If failure or stage 1, command is complete */
804 	if (fail || cmd->stage != 0) {
805 		smu_i2c_complete_command(cmd, fail);
806 		return;
807 	}
808 
809 	DPRINTK("SMU: going to stage 1\n");
810 
811 	/* Ok, initial command complete, now poll status */
812 	scmd->reply_buf = cmd->pdata;
813 	scmd->reply_len = sizeof(cmd->pdata);
814 	scmd->data_buf = cmd->pdata;
815 	scmd->data_len = 1;
816 	cmd->pdata[0] = 0;
817 	cmd->stage = 1;
818 	cmd->retries = 20;
819 	smu_queue_cmd(scmd);
820 }
821 
822 
823 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
824 {
825 	unsigned long flags;
826 
827 	if (smu == NULL)
828 		return -ENODEV;
829 
830 	/* Fill most fields of scmd */
831 	cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
832 	cmd->scmd.done = smu_i2c_low_completion;
833 	cmd->scmd.misc = cmd;
834 	cmd->scmd.reply_buf = cmd->pdata;
835 	cmd->scmd.reply_len = sizeof(cmd->pdata);
836 	cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
837 	cmd->scmd.status = 1;
838 	cmd->stage = 0;
839 	cmd->pdata[0] = 0xff;
840 	cmd->retries = 20;
841 	cmd->status = 1;
842 
843 	/* Check transfer type, sanitize some "info" fields
844 	 * based on transfer type and do more checking
845 	 */
846 	cmd->info.caddr = cmd->info.devaddr;
847 	cmd->read = cmd->info.devaddr & 0x01;
848 	switch(cmd->info.type) {
849 	case SMU_I2C_TRANSFER_SIMPLE:
850 		memset(&cmd->info.sublen, 0, 4);
851 		break;
852 	case SMU_I2C_TRANSFER_COMBINED:
853 		cmd->info.devaddr &= 0xfe;
854 	case SMU_I2C_TRANSFER_STDSUB:
855 		if (cmd->info.sublen > 3)
856 			return -EINVAL;
857 		break;
858 	default:
859 		return -EINVAL;
860 	}
861 
862 	/* Finish setting up command based on transfer direction
863 	 */
864 	if (cmd->read) {
865 		if (cmd->info.datalen > SMU_I2C_READ_MAX)
866 			return -EINVAL;
867 		memset(cmd->info.data, 0xff, cmd->info.datalen);
868 		cmd->scmd.data_len = 9;
869 	} else {
870 		if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
871 			return -EINVAL;
872 		cmd->scmd.data_len = 9 + cmd->info.datalen;
873 	}
874 
875 	DPRINTK("SMU: i2c enqueuing command\n");
876 	DPRINTK("SMU:   %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
877 		cmd->read ? "read" : "write", cmd->info.datalen,
878 		cmd->info.bus, cmd->info.caddr,
879 		cmd->info.subaddr[0], cmd->info.type);
880 
881 
882 	/* Enqueue command in i2c list, and if empty, enqueue also in
883 	 * main command list
884 	 */
885 	spin_lock_irqsave(&smu->lock, flags);
886 	if (smu->cmd_i2c_cur == NULL) {
887 		smu->cmd_i2c_cur = cmd;
888 		list_add_tail(&cmd->scmd.link, &smu->cmd_list);
889 		if (smu->cmd_cur == NULL)
890 			smu_start_cmd();
891 	} else
892 		list_add_tail(&cmd->link, &smu->cmd_i2c_list);
893 	spin_unlock_irqrestore(&smu->lock, flags);
894 
895 	return 0;
896 }
897 
898 /*
899  * Handling of "partitions"
900  */
901 
902 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
903 {
904 	DECLARE_COMPLETION_ONSTACK(comp);
905 	unsigned int chunk;
906 	struct smu_cmd cmd;
907 	int rc;
908 	u8 params[8];
909 
910 	/* We currently use a chunk size of 0xe. We could check the
911 	 * SMU firmware version and use bigger sizes though
912 	 */
913 	chunk = 0xe;
914 
915 	while (len) {
916 		unsigned int clen = min(len, chunk);
917 
918 		cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
919 		cmd.data_len = 7;
920 		cmd.data_buf = params;
921 		cmd.reply_len = chunk;
922 		cmd.reply_buf = dest;
923 		cmd.done = smu_done_complete;
924 		cmd.misc = &comp;
925 		params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
926 		params[1] = 0x4;
927 		*((u32 *)&params[2]) = addr;
928 		params[6] = clen;
929 
930 		rc = smu_queue_cmd(&cmd);
931 		if (rc)
932 			return rc;
933 		wait_for_completion(&comp);
934 		if (cmd.status != 0)
935 			return rc;
936 		if (cmd.reply_len != clen) {
937 			printk(KERN_DEBUG "SMU: short read in "
938 			       "smu_read_datablock, got: %d, want: %d\n",
939 			       cmd.reply_len, clen);
940 			return -EIO;
941 		}
942 		len -= clen;
943 		addr += clen;
944 		dest += clen;
945 	}
946 	return 0;
947 }
948 
949 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
950 {
951 	DECLARE_COMPLETION_ONSTACK(comp);
952 	struct smu_simple_cmd cmd;
953 	unsigned int addr, len, tlen;
954 	struct smu_sdbp_header *hdr;
955 	struct property *prop;
956 
957 	/* First query the partition info */
958 	DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
959 	smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
960 			 smu_done_complete, &comp,
961 			 SMU_CMD_PARTITION_LATEST, id);
962 	wait_for_completion(&comp);
963 	DPRINTK("SMU: done, status: %d, reply_len: %d\n",
964 		cmd.cmd.status, cmd.cmd.reply_len);
965 
966 	/* Partition doesn't exist (or other error) */
967 	if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
968 		return NULL;
969 
970 	/* Fetch address and length from reply */
971 	addr = *((u16 *)cmd.buffer);
972 	len = cmd.buffer[3] << 2;
973 	/* Calucluate total length to allocate, including the 17 bytes
974 	 * for "sdb-partition-XX" that we append at the end of the buffer
975 	 */
976 	tlen = sizeof(struct property) + len + 18;
977 
978 	prop = kzalloc(tlen, GFP_KERNEL);
979 	if (prop == NULL)
980 		return NULL;
981 	hdr = (struct smu_sdbp_header *)(prop + 1);
982 	prop->name = ((char *)prop) + tlen - 18;
983 	sprintf(prop->name, "sdb-partition-%02x", id);
984 	prop->length = len;
985 	prop->value = hdr;
986 	prop->next = NULL;
987 
988 	/* Read the datablock */
989 	if (smu_read_datablock((u8 *)hdr, addr, len)) {
990 		printk(KERN_DEBUG "SMU: datablock read failed while reading "
991 		       "partition %02x !\n", id);
992 		goto failure;
993 	}
994 
995 	/* Got it, check a few things and create the property */
996 	if (hdr->id != id) {
997 		printk(KERN_DEBUG "SMU: Reading partition %02x and got "
998 		       "%02x !\n", id, hdr->id);
999 		goto failure;
1000 	}
1001 	if (of_add_property(smu->of_node, prop)) {
1002 		printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
1003 		       "property !\n", id);
1004 		goto failure;
1005 	}
1006 
1007 	return hdr;
1008  failure:
1009 	kfree(prop);
1010 	return NULL;
1011 }
1012 
1013 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
1014  * when interruptible is 1
1015  */
1016 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
1017 		unsigned int *size, int interruptible)
1018 {
1019 	char pname[32];
1020 	const struct smu_sdbp_header *part;
1021 
1022 	if (!smu)
1023 		return NULL;
1024 
1025 	sprintf(pname, "sdb-partition-%02x", id);
1026 
1027 	DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1028 
1029 	if (interruptible) {
1030 		int rc;
1031 		rc = mutex_lock_interruptible(&smu_part_access);
1032 		if (rc)
1033 			return ERR_PTR(rc);
1034 	} else
1035 		mutex_lock(&smu_part_access);
1036 
1037 	part = of_get_property(smu->of_node, pname, size);
1038 	if (part == NULL) {
1039 		DPRINTK("trying to extract from SMU ...\n");
1040 		part = smu_create_sdb_partition(id);
1041 		if (part != NULL && size)
1042 			*size = part->len << 2;
1043 	}
1044 	mutex_unlock(&smu_part_access);
1045 	return part;
1046 }
1047 
1048 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1049 {
1050 	return __smu_get_sdb_partition(id, size, 0);
1051 }
1052 EXPORT_SYMBOL(smu_get_sdb_partition);
1053 
1054 
1055 /*
1056  * Userland driver interface
1057  */
1058 
1059 
1060 static LIST_HEAD(smu_clist);
1061 static DEFINE_SPINLOCK(smu_clist_lock);
1062 
1063 enum smu_file_mode {
1064 	smu_file_commands,
1065 	smu_file_events,
1066 	smu_file_closing
1067 };
1068 
1069 struct smu_private
1070 {
1071 	struct list_head	list;
1072 	enum smu_file_mode	mode;
1073 	int			busy;
1074 	struct smu_cmd		cmd;
1075 	spinlock_t		lock;
1076 	wait_queue_head_t	wait;
1077 	u8			buffer[SMU_MAX_DATA];
1078 };
1079 
1080 
1081 static int smu_open(struct inode *inode, struct file *file)
1082 {
1083 	struct smu_private *pp;
1084 	unsigned long flags;
1085 
1086 	pp = kzalloc(sizeof(struct smu_private), GFP_KERNEL);
1087 	if (pp == 0)
1088 		return -ENOMEM;
1089 	spin_lock_init(&pp->lock);
1090 	pp->mode = smu_file_commands;
1091 	init_waitqueue_head(&pp->wait);
1092 
1093 	mutex_lock(&smu_mutex);
1094 	spin_lock_irqsave(&smu_clist_lock, flags);
1095 	list_add(&pp->list, &smu_clist);
1096 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1097 	file->private_data = pp;
1098 	mutex_unlock(&smu_mutex);
1099 
1100 	return 0;
1101 }
1102 
1103 
1104 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1105 {
1106 	struct smu_private *pp = misc;
1107 
1108 	wake_up_all(&pp->wait);
1109 }
1110 
1111 
1112 static ssize_t smu_write(struct file *file, const char __user *buf,
1113 			 size_t count, loff_t *ppos)
1114 {
1115 	struct smu_private *pp = file->private_data;
1116 	unsigned long flags;
1117 	struct smu_user_cmd_hdr hdr;
1118 	int rc = 0;
1119 
1120 	if (pp->busy)
1121 		return -EBUSY;
1122 	else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1123 		return -EFAULT;
1124 	else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1125 		pp->mode = smu_file_events;
1126 		return 0;
1127 	} else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1128 		const struct smu_sdbp_header *part;
1129 		part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1130 		if (part == NULL)
1131 			return -EINVAL;
1132 		else if (IS_ERR(part))
1133 			return PTR_ERR(part);
1134 		return 0;
1135 	} else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1136 		return -EINVAL;
1137 	else if (pp->mode != smu_file_commands)
1138 		return -EBADFD;
1139 	else if (hdr.data_len > SMU_MAX_DATA)
1140 		return -EINVAL;
1141 
1142 	spin_lock_irqsave(&pp->lock, flags);
1143 	if (pp->busy) {
1144 		spin_unlock_irqrestore(&pp->lock, flags);
1145 		return -EBUSY;
1146 	}
1147 	pp->busy = 1;
1148 	pp->cmd.status = 1;
1149 	spin_unlock_irqrestore(&pp->lock, flags);
1150 
1151 	if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1152 		pp->busy = 0;
1153 		return -EFAULT;
1154 	}
1155 
1156 	pp->cmd.cmd = hdr.cmd;
1157 	pp->cmd.data_len = hdr.data_len;
1158 	pp->cmd.reply_len = SMU_MAX_DATA;
1159 	pp->cmd.data_buf = pp->buffer;
1160 	pp->cmd.reply_buf = pp->buffer;
1161 	pp->cmd.done = smu_user_cmd_done;
1162 	pp->cmd.misc = pp;
1163 	rc = smu_queue_cmd(&pp->cmd);
1164 	if (rc < 0)
1165 		return rc;
1166 	return count;
1167 }
1168 
1169 
1170 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1171 				char __user *buf, size_t count)
1172 {
1173 	DECLARE_WAITQUEUE(wait, current);
1174 	struct smu_user_reply_hdr hdr;
1175 	unsigned long flags;
1176 	int size, rc = 0;
1177 
1178 	if (!pp->busy)
1179 		return 0;
1180 	if (count < sizeof(struct smu_user_reply_hdr))
1181 		return -EOVERFLOW;
1182 	spin_lock_irqsave(&pp->lock, flags);
1183 	if (pp->cmd.status == 1) {
1184 		if (file->f_flags & O_NONBLOCK) {
1185 			spin_unlock_irqrestore(&pp->lock, flags);
1186 			return -EAGAIN;
1187 		}
1188 		add_wait_queue(&pp->wait, &wait);
1189 		for (;;) {
1190 			set_current_state(TASK_INTERRUPTIBLE);
1191 			rc = 0;
1192 			if (pp->cmd.status != 1)
1193 				break;
1194 			rc = -ERESTARTSYS;
1195 			if (signal_pending(current))
1196 				break;
1197 			spin_unlock_irqrestore(&pp->lock, flags);
1198 			schedule();
1199 			spin_lock_irqsave(&pp->lock, flags);
1200 		}
1201 		set_current_state(TASK_RUNNING);
1202 		remove_wait_queue(&pp->wait, &wait);
1203 	}
1204 	spin_unlock_irqrestore(&pp->lock, flags);
1205 	if (rc)
1206 		return rc;
1207 	if (pp->cmd.status != 0)
1208 		pp->cmd.reply_len = 0;
1209 	size = sizeof(hdr) + pp->cmd.reply_len;
1210 	if (count < size)
1211 		size = count;
1212 	rc = size;
1213 	hdr.status = pp->cmd.status;
1214 	hdr.reply_len = pp->cmd.reply_len;
1215 	if (copy_to_user(buf, &hdr, sizeof(hdr)))
1216 		return -EFAULT;
1217 	size -= sizeof(hdr);
1218 	if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1219 		return -EFAULT;
1220 	pp->busy = 0;
1221 
1222 	return rc;
1223 }
1224 
1225 
1226 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1227 			       char __user *buf, size_t count)
1228 {
1229 	/* Not implemented */
1230 	msleep_interruptible(1000);
1231 	return 0;
1232 }
1233 
1234 
1235 static ssize_t smu_read(struct file *file, char __user *buf,
1236 			size_t count, loff_t *ppos)
1237 {
1238 	struct smu_private *pp = file->private_data;
1239 
1240 	if (pp->mode == smu_file_commands)
1241 		return smu_read_command(file, pp, buf, count);
1242 	if (pp->mode == smu_file_events)
1243 		return smu_read_events(file, pp, buf, count);
1244 
1245 	return -EBADFD;
1246 }
1247 
1248 static __poll_t smu_fpoll(struct file *file, poll_table *wait)
1249 {
1250 	struct smu_private *pp = file->private_data;
1251 	__poll_t mask = 0;
1252 	unsigned long flags;
1253 
1254 	if (pp == 0)
1255 		return 0;
1256 
1257 	if (pp->mode == smu_file_commands) {
1258 		poll_wait(file, &pp->wait, wait);
1259 
1260 		spin_lock_irqsave(&pp->lock, flags);
1261 		if (pp->busy && pp->cmd.status != 1)
1262 			mask |= EPOLLIN;
1263 		spin_unlock_irqrestore(&pp->lock, flags);
1264 	}
1265 	if (pp->mode == smu_file_events) {
1266 		/* Not yet implemented */
1267 	}
1268 	return mask;
1269 }
1270 
1271 static int smu_release(struct inode *inode, struct file *file)
1272 {
1273 	struct smu_private *pp = file->private_data;
1274 	unsigned long flags;
1275 	unsigned int busy;
1276 
1277 	if (pp == 0)
1278 		return 0;
1279 
1280 	file->private_data = NULL;
1281 
1282 	/* Mark file as closing to avoid races with new request */
1283 	spin_lock_irqsave(&pp->lock, flags);
1284 	pp->mode = smu_file_closing;
1285 	busy = pp->busy;
1286 
1287 	/* Wait for any pending request to complete */
1288 	if (busy && pp->cmd.status == 1) {
1289 		DECLARE_WAITQUEUE(wait, current);
1290 
1291 		add_wait_queue(&pp->wait, &wait);
1292 		for (;;) {
1293 			set_current_state(TASK_UNINTERRUPTIBLE);
1294 			if (pp->cmd.status != 1)
1295 				break;
1296 			spin_unlock_irqrestore(&pp->lock, flags);
1297 			schedule();
1298 			spin_lock_irqsave(&pp->lock, flags);
1299 		}
1300 		set_current_state(TASK_RUNNING);
1301 		remove_wait_queue(&pp->wait, &wait);
1302 	}
1303 	spin_unlock_irqrestore(&pp->lock, flags);
1304 
1305 	spin_lock_irqsave(&smu_clist_lock, flags);
1306 	list_del(&pp->list);
1307 	spin_unlock_irqrestore(&smu_clist_lock, flags);
1308 	kfree(pp);
1309 
1310 	return 0;
1311 }
1312 
1313 
1314 static const struct file_operations smu_device_fops = {
1315 	.llseek		= no_llseek,
1316 	.read		= smu_read,
1317 	.write		= smu_write,
1318 	.poll		= smu_fpoll,
1319 	.open		= smu_open,
1320 	.release	= smu_release,
1321 };
1322 
1323 static struct miscdevice pmu_device = {
1324 	MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1325 };
1326 
1327 static int smu_device_init(void)
1328 {
1329 	if (!smu)
1330 		return -ENODEV;
1331 	if (misc_register(&pmu_device) < 0)
1332 		printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1333 	return 0;
1334 }
1335 device_initcall(smu_device_init);
1336