xref: /openbmc/linux/drivers/leds/rgb/leds-qcom-lpg.c (revision 6bfb56e93bcef41859c2d5ab234ffd80b691be35)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2022 Linaro Ltd
4  * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
5  */
6 #include <linux/bits.h>
7 #include <linux/bitfield.h>
8 #include <linux/led-class-multicolor.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/platform_device.h>
13 #include <linux/pwm.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16 
17 #define LPG_SUBTYPE_REG		0x05
18 #define  LPG_SUBTYPE_LPG	0x2
19 #define  LPG_SUBTYPE_PWM	0xb
20 #define  LPG_SUBTYPE_LPG_LITE	0x11
21 #define LPG_PATTERN_CONFIG_REG	0x40
22 #define LPG_SIZE_CLK_REG	0x41
23 #define  PWM_CLK_SELECT_MASK	GENMASK(1, 0)
24 #define LPG_PREDIV_CLK_REG	0x42
25 #define  PWM_FREQ_PRE_DIV_MASK	GENMASK(6, 5)
26 #define  PWM_FREQ_EXP_MASK	GENMASK(2, 0)
27 #define PWM_TYPE_CONFIG_REG	0x43
28 #define PWM_VALUE_REG		0x44
29 #define PWM_ENABLE_CONTROL_REG	0x46
30 #define PWM_SYNC_REG		0x47
31 #define LPG_RAMP_DURATION_REG	0x50
32 #define LPG_HI_PAUSE_REG	0x52
33 #define LPG_LO_PAUSE_REG	0x54
34 #define LPG_HI_IDX_REG		0x56
35 #define LPG_LO_IDX_REG		0x57
36 #define PWM_SEC_ACCESS_REG	0xd0
37 #define PWM_DTEST_REG(x)	(0xe2 + (x) - 1)
38 
39 #define TRI_LED_SRC_SEL		0x45
40 #define TRI_LED_EN_CTL		0x46
41 #define TRI_LED_ATC_CTL		0x47
42 
43 #define LPG_LUT_REG(x)		(0x40 + (x) * 2)
44 #define RAMP_CONTROL_REG	0xc8
45 
46 #define LPG_RESOLUTION		512
47 #define LPG_MAX_M		7
48 
49 struct lpg_channel;
50 struct lpg_data;
51 
52 /**
53  * struct lpg - LPG device context
54  * @dev:	pointer to LPG device
55  * @map:	regmap for register access
56  * @lock:	used to synchronize LED and pwm callback requests
57  * @pwm:	PWM-chip object, if operating in PWM mode
58  * @data:	reference to version specific data
59  * @lut_base:	base address of the LUT block (optional)
60  * @lut_size:	number of entries in the LUT block
61  * @lut_bitmap:	allocation bitmap for LUT entries
62  * @triled_base: base address of the TRILED block (optional)
63  * @triled_src:	power-source for the TRILED
64  * @triled_has_atc_ctl:	true if there is TRI_LED_ATC_CTL register
65  * @triled_has_src_sel:	true if there is TRI_LED_SRC_SEL register
66  * @channels:	list of PWM channels
67  * @num_channels: number of @channels
68  */
69 struct lpg {
70 	struct device *dev;
71 	struct regmap *map;
72 
73 	struct mutex lock;
74 
75 	struct pwm_chip pwm;
76 
77 	const struct lpg_data *data;
78 
79 	u32 lut_base;
80 	u32 lut_size;
81 	unsigned long *lut_bitmap;
82 
83 	u32 triled_base;
84 	u32 triled_src;
85 	bool triled_has_atc_ctl;
86 	bool triled_has_src_sel;
87 
88 	struct lpg_channel *channels;
89 	unsigned int num_channels;
90 };
91 
92 /**
93  * struct lpg_channel - per channel data
94  * @lpg:	reference to parent lpg
95  * @base:	base address of the PWM channel
96  * @triled_mask: mask in TRILED to enable this channel
97  * @lut_mask:	mask in LUT to start pattern generator for this channel
98  * @subtype:	PMIC hardware block subtype
99  * @in_use:	channel is exposed to LED framework
100  * @color:	color of the LED attached to this channel
101  * @dtest_line:	DTEST line for output, or 0 if disabled
102  * @dtest_value: DTEST line configuration
103  * @pwm_value:	duty (in microseconds) of the generated pulses, overridden by LUT
104  * @enabled:	output enabled?
105  * @period:	period (in nanoseconds) of the generated pulses
106  * @clk_sel:	reference clock frequency selector
107  * @pre_div_sel: divider selector of the reference clock
108  * @pre_div_exp: exponential divider of the reference clock
109  * @ramp_enabled: duty cycle is driven by iterating over lookup table
110  * @ramp_ping_pong: reverse through pattern, rather than wrapping to start
111  * @ramp_oneshot: perform only a single pass over the pattern
112  * @ramp_reverse: iterate over pattern backwards
113  * @ramp_tick_ms: length (in milliseconds) of one step in the pattern
114  * @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern
115  * @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern
116  * @pattern_lo_idx: start index of associated pattern
117  * @pattern_hi_idx: last index of associated pattern
118  */
119 struct lpg_channel {
120 	struct lpg *lpg;
121 
122 	u32 base;
123 	unsigned int triled_mask;
124 	unsigned int lut_mask;
125 	unsigned int subtype;
126 
127 	bool in_use;
128 
129 	int color;
130 
131 	u32 dtest_line;
132 	u32 dtest_value;
133 
134 	u16 pwm_value;
135 	bool enabled;
136 
137 	u64 period;
138 	unsigned int clk_sel;
139 	unsigned int pre_div_sel;
140 	unsigned int pre_div_exp;
141 
142 	bool ramp_enabled;
143 	bool ramp_ping_pong;
144 	bool ramp_oneshot;
145 	bool ramp_reverse;
146 	unsigned short ramp_tick_ms;
147 	unsigned long ramp_lo_pause_ms;
148 	unsigned long ramp_hi_pause_ms;
149 
150 	unsigned int pattern_lo_idx;
151 	unsigned int pattern_hi_idx;
152 };
153 
154 /**
155  * struct lpg_led - logical LED object
156  * @lpg:		lpg context reference
157  * @cdev:		LED class device
158  * @mcdev:		Multicolor LED class device
159  * @num_channels:	number of @channels
160  * @channels:		list of channels associated with the LED
161  */
162 struct lpg_led {
163 	struct lpg *lpg;
164 
165 	struct led_classdev cdev;
166 	struct led_classdev_mc mcdev;
167 
168 	unsigned int num_channels;
169 	struct lpg_channel *channels[];
170 };
171 
172 /**
173  * struct lpg_channel_data - per channel initialization data
174  * @base:		base address for PWM channel registers
175  * @triled_mask:	bitmask for controlling this channel in TRILED
176  */
177 struct lpg_channel_data {
178 	unsigned int base;
179 	u8 triled_mask;
180 };
181 
182 /**
183  * struct lpg_data - initialization data
184  * @lut_base:		base address of LUT block
185  * @lut_size:		number of entries in LUT
186  * @triled_base:	base address of TRILED
187  * @triled_has_atc_ctl:	true if there is TRI_LED_ATC_CTL register
188  * @triled_has_src_sel:	true if there is TRI_LED_SRC_SEL register
189  * @num_channels:	number of channels in LPG
190  * @channels:		list of channel initialization data
191  */
192 struct lpg_data {
193 	unsigned int lut_base;
194 	unsigned int lut_size;
195 	unsigned int triled_base;
196 	bool triled_has_atc_ctl;
197 	bool triled_has_src_sel;
198 	int num_channels;
199 	const struct lpg_channel_data *channels;
200 };
201 
202 static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable)
203 {
204 	/* Skip if we don't have a triled block */
205 	if (!lpg->triled_base)
206 		return 0;
207 
208 	return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL,
209 				  mask, enable);
210 }
211 
212 static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern,
213 			 size_t len, unsigned int *lo_idx, unsigned int *hi_idx)
214 {
215 	unsigned int idx;
216 	u16 val;
217 	int i;
218 
219 	idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size,
220 					 0, len, 0);
221 	if (idx >= lpg->lut_size)
222 		return -ENOMEM;
223 
224 	for (i = 0; i < len; i++) {
225 		val = pattern[i].brightness;
226 
227 		regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i),
228 				  &val, sizeof(val));
229 	}
230 
231 	bitmap_set(lpg->lut_bitmap, idx, len);
232 
233 	*lo_idx = idx;
234 	*hi_idx = idx + len - 1;
235 
236 	return 0;
237 }
238 
239 static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx)
240 {
241 	int len;
242 
243 	len = hi_idx - lo_idx + 1;
244 	if (len == 1)
245 		return;
246 
247 	bitmap_clear(lpg->lut_bitmap, lo_idx, len);
248 }
249 
250 static int lpg_lut_sync(struct lpg *lpg, unsigned int mask)
251 {
252 	return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask);
253 }
254 
255 static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000};
256 static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6};
257 
258 static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period)
259 {
260 	unsigned int clk_sel, best_clk = 0;
261 	unsigned int div, best_div = 0;
262 	unsigned int m, best_m = 0;
263 	unsigned int error;
264 	unsigned int best_err = UINT_MAX;
265 	u64 best_period = 0;
266 	u64 max_period;
267 
268 	/*
269 	 * The PWM period is determined by:
270 	 *
271 	 *          resolution * pre_div * 2^M
272 	 * period = --------------------------
273 	 *                   refclk
274 	 *
275 	 * With resolution fixed at 2^9 bits, pre_div = {1, 3, 5, 6} and
276 	 * M = [0..7].
277 	 *
278 	 * This allows for periods between 27uS and 384s, as the PWM framework
279 	 * wants a period of equal or lower length than requested, reject
280 	 * anything below 27uS.
281 	 */
282 	if (period <= (u64)NSEC_PER_SEC * LPG_RESOLUTION / 19200000)
283 		return -EINVAL;
284 
285 	/* Limit period to largest possible value, to avoid overflows */
286 	max_period = (u64)NSEC_PER_SEC * LPG_RESOLUTION * 6 * (1 << LPG_MAX_M) / 1024;
287 	if (period > max_period)
288 		period = max_period;
289 
290 	/*
291 	 * Search for the pre_div, refclk and M by solving the rewritten formula
292 	 * for each refclk and pre_div value:
293 	 *
294 	 *                     period * refclk
295 	 * M = log2 -------------------------------------
296 	 *           NSEC_PER_SEC * pre_div * resolution
297 	 */
298 	for (clk_sel = 1; clk_sel < ARRAY_SIZE(lpg_clk_rates); clk_sel++) {
299 		u64 numerator = period * lpg_clk_rates[clk_sel];
300 
301 		for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) {
302 			u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] * LPG_RESOLUTION;
303 			u64 actual;
304 			u64 ratio;
305 
306 			if (numerator < denominator)
307 				continue;
308 
309 			ratio = div64_u64(numerator, denominator);
310 			m = ilog2(ratio);
311 			if (m > LPG_MAX_M)
312 				m = LPG_MAX_M;
313 
314 			actual = DIV_ROUND_UP_ULL(denominator * (1 << m), lpg_clk_rates[clk_sel]);
315 
316 			error = period - actual;
317 			if (error < best_err) {
318 				best_err = error;
319 
320 				best_div = div;
321 				best_m = m;
322 				best_clk = clk_sel;
323 				best_period = actual;
324 			}
325 		}
326 	}
327 
328 	chan->clk_sel = best_clk;
329 	chan->pre_div_sel = best_div;
330 	chan->pre_div_exp = best_m;
331 	chan->period = best_period;
332 
333 	return 0;
334 }
335 
336 static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty)
337 {
338 	unsigned int max = LPG_RESOLUTION - 1;
339 	unsigned int val;
340 
341 	val = div64_u64(duty * lpg_clk_rates[chan->clk_sel],
342 			(u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp));
343 
344 	chan->pwm_value = min(val, max);
345 }
346 
347 static void lpg_apply_freq(struct lpg_channel *chan)
348 {
349 	unsigned long val;
350 	struct lpg *lpg = chan->lpg;
351 
352 	if (!chan->enabled)
353 		return;
354 
355 	val = chan->clk_sel;
356 
357 	/* Specify 9bit resolution, based on the subtype of the channel */
358 	switch (chan->subtype) {
359 	case LPG_SUBTYPE_LPG:
360 		val |= GENMASK(5, 4);
361 		break;
362 	case LPG_SUBTYPE_PWM:
363 		val |= BIT(2);
364 		break;
365 	case LPG_SUBTYPE_LPG_LITE:
366 	default:
367 		val |= BIT(4);
368 		break;
369 	}
370 
371 	regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val);
372 
373 	val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) |
374 	      FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp);
375 	regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val);
376 }
377 
378 #define LPG_ENABLE_GLITCH_REMOVAL	BIT(5)
379 
380 static void lpg_enable_glitch(struct lpg_channel *chan)
381 {
382 	struct lpg *lpg = chan->lpg;
383 
384 	regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
385 			   LPG_ENABLE_GLITCH_REMOVAL, 0);
386 }
387 
388 static void lpg_disable_glitch(struct lpg_channel *chan)
389 {
390 	struct lpg *lpg = chan->lpg;
391 
392 	regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG,
393 			   LPG_ENABLE_GLITCH_REMOVAL,
394 			   LPG_ENABLE_GLITCH_REMOVAL);
395 }
396 
397 static void lpg_apply_pwm_value(struct lpg_channel *chan)
398 {
399 	struct lpg *lpg = chan->lpg;
400 	u16 val = chan->pwm_value;
401 
402 	if (!chan->enabled)
403 		return;
404 
405 	regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val));
406 }
407 
408 #define LPG_PATTERN_CONFIG_LO_TO_HI	BIT(4)
409 #define LPG_PATTERN_CONFIG_REPEAT	BIT(3)
410 #define LPG_PATTERN_CONFIG_TOGGLE	BIT(2)
411 #define LPG_PATTERN_CONFIG_PAUSE_HI	BIT(1)
412 #define LPG_PATTERN_CONFIG_PAUSE_LO	BIT(0)
413 
414 static void lpg_apply_lut_control(struct lpg_channel *chan)
415 {
416 	struct lpg *lpg = chan->lpg;
417 	unsigned int hi_pause;
418 	unsigned int lo_pause;
419 	unsigned int conf = 0;
420 	unsigned int lo_idx = chan->pattern_lo_idx;
421 	unsigned int hi_idx = chan->pattern_hi_idx;
422 	u16 step = chan->ramp_tick_ms;
423 
424 	if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx)
425 		return;
426 
427 	hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step);
428 	lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step);
429 
430 	if (!chan->ramp_reverse)
431 		conf |= LPG_PATTERN_CONFIG_LO_TO_HI;
432 	if (!chan->ramp_oneshot)
433 		conf |= LPG_PATTERN_CONFIG_REPEAT;
434 	if (chan->ramp_ping_pong)
435 		conf |= LPG_PATTERN_CONFIG_TOGGLE;
436 	if (chan->ramp_hi_pause_ms)
437 		conf |= LPG_PATTERN_CONFIG_PAUSE_HI;
438 	if (chan->ramp_lo_pause_ms)
439 		conf |= LPG_PATTERN_CONFIG_PAUSE_LO;
440 
441 	regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf);
442 	regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx);
443 	regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx);
444 
445 	regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step));
446 	regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause);
447 	regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause);
448 }
449 
450 #define LPG_ENABLE_CONTROL_OUTPUT		BIT(7)
451 #define LPG_ENABLE_CONTROL_BUFFER_TRISTATE	BIT(5)
452 #define LPG_ENABLE_CONTROL_SRC_PWM		BIT(2)
453 #define LPG_ENABLE_CONTROL_RAMP_GEN		BIT(1)
454 
455 static void lpg_apply_control(struct lpg_channel *chan)
456 {
457 	unsigned int ctrl;
458 	struct lpg *lpg = chan->lpg;
459 
460 	ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE;
461 
462 	if (chan->enabled)
463 		ctrl |= LPG_ENABLE_CONTROL_OUTPUT;
464 
465 	if (chan->pattern_lo_idx != chan->pattern_hi_idx)
466 		ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN;
467 	else
468 		ctrl |= LPG_ENABLE_CONTROL_SRC_PWM;
469 
470 	regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl);
471 
472 	/*
473 	 * Due to LPG hardware bug, in the PWM mode, having enabled PWM,
474 	 * We have to write PWM values one more time.
475 	 */
476 	if (chan->enabled)
477 		lpg_apply_pwm_value(chan);
478 }
479 
480 #define LPG_SYNC_PWM	BIT(0)
481 
482 static void lpg_apply_sync(struct lpg_channel *chan)
483 {
484 	struct lpg *lpg = chan->lpg;
485 
486 	regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM);
487 }
488 
489 static int lpg_parse_dtest(struct lpg *lpg)
490 {
491 	struct lpg_channel *chan;
492 	struct device_node *np = lpg->dev->of_node;
493 	int count;
494 	int ret;
495 	int i;
496 
497 	count = of_property_count_u32_elems(np, "qcom,dtest");
498 	if (count == -EINVAL) {
499 		return 0;
500 	} else if (count < 0) {
501 		ret = count;
502 		goto err_malformed;
503 	} else if (count != lpg->data->num_channels * 2) {
504 		dev_err(lpg->dev, "qcom,dtest needs to be %d items\n",
505 			lpg->data->num_channels * 2);
506 		return -EINVAL;
507 	}
508 
509 	for (i = 0; i < lpg->data->num_channels; i++) {
510 		chan = &lpg->channels[i];
511 
512 		ret = of_property_read_u32_index(np, "qcom,dtest", i * 2,
513 						 &chan->dtest_line);
514 		if (ret)
515 			goto err_malformed;
516 
517 		ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1,
518 						 &chan->dtest_value);
519 		if (ret)
520 			goto err_malformed;
521 	}
522 
523 	return 0;
524 
525 err_malformed:
526 	dev_err(lpg->dev, "malformed qcom,dtest\n");
527 	return ret;
528 }
529 
530 static void lpg_apply_dtest(struct lpg_channel *chan)
531 {
532 	struct lpg *lpg = chan->lpg;
533 
534 	if (!chan->dtest_line)
535 		return;
536 
537 	regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5);
538 	regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line),
539 		     chan->dtest_value);
540 }
541 
542 static void lpg_apply(struct lpg_channel *chan)
543 {
544 	lpg_disable_glitch(chan);
545 	lpg_apply_freq(chan);
546 	lpg_apply_pwm_value(chan);
547 	lpg_apply_control(chan);
548 	lpg_apply_sync(chan);
549 	lpg_apply_lut_control(chan);
550 	lpg_enable_glitch(chan);
551 }
552 
553 static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev,
554 			       struct mc_subled *subleds)
555 {
556 	enum led_brightness brightness;
557 	struct lpg_channel *chan;
558 	unsigned int triled_enabled = 0;
559 	unsigned int triled_mask = 0;
560 	unsigned int lut_mask = 0;
561 	unsigned int duty;
562 	struct lpg *lpg = led->lpg;
563 	int i;
564 
565 	for (i = 0; i < led->num_channels; i++) {
566 		chan = led->channels[i];
567 		brightness = subleds[i].brightness;
568 
569 		if (brightness == LED_OFF) {
570 			chan->enabled = false;
571 			chan->ramp_enabled = false;
572 		} else if (chan->pattern_lo_idx != chan->pattern_hi_idx) {
573 			lpg_calc_freq(chan, NSEC_PER_MSEC);
574 
575 			chan->enabled = true;
576 			chan->ramp_enabled = true;
577 
578 			lut_mask |= chan->lut_mask;
579 			triled_enabled |= chan->triled_mask;
580 		} else {
581 			lpg_calc_freq(chan, NSEC_PER_MSEC);
582 
583 			duty = div_u64(brightness * chan->period, cdev->max_brightness);
584 			lpg_calc_duty(chan, duty);
585 			chan->enabled = true;
586 			chan->ramp_enabled = false;
587 
588 			triled_enabled |= chan->triled_mask;
589 		}
590 
591 		triled_mask |= chan->triled_mask;
592 
593 		lpg_apply(chan);
594 	}
595 
596 	/* Toggle triled lines */
597 	if (triled_mask)
598 		triled_set(lpg, triled_mask, triled_enabled);
599 
600 	/* Trigger start of ramp generator(s) */
601 	if (lut_mask)
602 		lpg_lut_sync(lpg, lut_mask);
603 }
604 
605 static void lpg_brightness_single_set(struct led_classdev *cdev,
606 				      enum led_brightness value)
607 {
608 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
609 	struct mc_subled info;
610 
611 	mutex_lock(&led->lpg->lock);
612 
613 	info.brightness = value;
614 	lpg_brightness_set(led, cdev, &info);
615 
616 	mutex_unlock(&led->lpg->lock);
617 }
618 
619 static void lpg_brightness_mc_set(struct led_classdev *cdev,
620 				  enum led_brightness value)
621 {
622 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
623 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
624 
625 	mutex_lock(&led->lpg->lock);
626 
627 	led_mc_calc_color_components(mc, value);
628 	lpg_brightness_set(led, cdev, mc->subled_info);
629 
630 	mutex_unlock(&led->lpg->lock);
631 }
632 
633 static int lpg_blink_set(struct lpg_led *led,
634 			 unsigned long *delay_on, unsigned long *delay_off)
635 {
636 	struct lpg_channel *chan;
637 	unsigned int period;
638 	unsigned int triled_mask = 0;
639 	struct lpg *lpg = led->lpg;
640 	u64 duty;
641 	int i;
642 
643 	if (!*delay_on && !*delay_off) {
644 		*delay_on = 500;
645 		*delay_off = 500;
646 	}
647 
648 	duty = *delay_on * NSEC_PER_MSEC;
649 	period = (*delay_on + *delay_off) * NSEC_PER_MSEC;
650 
651 	for (i = 0; i < led->num_channels; i++) {
652 		chan = led->channels[i];
653 
654 		lpg_calc_freq(chan, period);
655 		lpg_calc_duty(chan, duty);
656 
657 		chan->enabled = true;
658 		chan->ramp_enabled = false;
659 
660 		triled_mask |= chan->triled_mask;
661 
662 		lpg_apply(chan);
663 	}
664 
665 	/* Enable triled lines */
666 	triled_set(lpg, triled_mask, triled_mask);
667 
668 	chan = led->channels[0];
669 	duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION);
670 	*delay_on = div_u64(duty, NSEC_PER_MSEC);
671 	*delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC);
672 
673 	return 0;
674 }
675 
676 static int lpg_blink_single_set(struct led_classdev *cdev,
677 				unsigned long *delay_on, unsigned long *delay_off)
678 {
679 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
680 	int ret;
681 
682 	mutex_lock(&led->lpg->lock);
683 
684 	ret = lpg_blink_set(led, delay_on, delay_off);
685 
686 	mutex_unlock(&led->lpg->lock);
687 
688 	return ret;
689 }
690 
691 static int lpg_blink_mc_set(struct led_classdev *cdev,
692 			    unsigned long *delay_on, unsigned long *delay_off)
693 {
694 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
695 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
696 	int ret;
697 
698 	mutex_lock(&led->lpg->lock);
699 
700 	ret = lpg_blink_set(led, delay_on, delay_off);
701 
702 	mutex_unlock(&led->lpg->lock);
703 
704 	return ret;
705 }
706 
707 static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern,
708 			   u32 len, int repeat)
709 {
710 	struct lpg_channel *chan;
711 	struct lpg *lpg = led->lpg;
712 	struct led_pattern *pattern;
713 	unsigned int brightness_a;
714 	unsigned int brightness_b;
715 	unsigned int actual_len;
716 	unsigned int hi_pause;
717 	unsigned int lo_pause;
718 	unsigned int delta_t;
719 	unsigned int lo_idx;
720 	unsigned int hi_idx;
721 	unsigned int i;
722 	bool ping_pong = true;
723 	int ret = -EINVAL;
724 
725 	/* Hardware only support oneshot or indefinite loops */
726 	if (repeat != -1 && repeat != 1)
727 		return -EINVAL;
728 
729 	/*
730 	 * The standardized leds-trigger-pattern format defines that the
731 	 * brightness of the LED follows a linear transition from one entry
732 	 * in the pattern to the next, over the given delta_t time. It
733 	 * describes that the way to perform instant transitions a zero-length
734 	 * entry should be added following a pattern entry.
735 	 *
736 	 * The LPG hardware is only able to perform the latter (no linear
737 	 * transitions), so require each entry in the pattern to be followed by
738 	 * a zero-length transition.
739 	 */
740 	if (len % 2)
741 		return -EINVAL;
742 
743 	pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL);
744 	if (!pattern)
745 		return -ENOMEM;
746 
747 	for (i = 0; i < len; i += 2) {
748 		if (led_pattern[i].brightness != led_pattern[i + 1].brightness)
749 			goto out_free_pattern;
750 		if (led_pattern[i + 1].delta_t != 0)
751 			goto out_free_pattern;
752 
753 		pattern[i / 2].brightness = led_pattern[i].brightness;
754 		pattern[i / 2].delta_t = led_pattern[i].delta_t;
755 	}
756 
757 	len /= 2;
758 
759 	/*
760 	 * Specifying a pattern of length 1 causes the hardware to iterate
761 	 * through the entire LUT, so prohibit this.
762 	 */
763 	if (len < 2)
764 		goto out_free_pattern;
765 
766 	/*
767 	 * The LPG plays patterns with at a fixed pace, a "low pause" can be
768 	 * used to stretch the first delay of the pattern and a "high pause"
769 	 * the last one.
770 	 *
771 	 * In order to save space the pattern can be played in "ping pong"
772 	 * mode, in which the pattern is first played forward, then "high
773 	 * pause" is applied, then the pattern is played backwards and finally
774 	 * the "low pause" is applied.
775 	 *
776 	 * The middle elements of the pattern are used to determine delta_t and
777 	 * the "low pause" and "high pause" multipliers are derrived from this.
778 	 *
779 	 * The first element in the pattern is used to determine "low pause".
780 	 *
781 	 * If the specified pattern is a palindrome the ping pong mode is
782 	 * enabled. In this scenario the delta_t of the middle entry (i.e. the
783 	 * last in the programmed pattern) determines the "high pause".
784 	 */
785 
786 	/* Detect palindromes and use "ping pong" to reduce LUT usage */
787 	for (i = 0; i < len / 2; i++) {
788 		brightness_a = pattern[i].brightness;
789 		brightness_b = pattern[len - i - 1].brightness;
790 
791 		if (brightness_a != brightness_b) {
792 			ping_pong = false;
793 			break;
794 		}
795 	}
796 
797 	/* The pattern length to be written to the LUT */
798 	if (ping_pong)
799 		actual_len = (len + 1) / 2;
800 	else
801 		actual_len = len;
802 
803 	/*
804 	 * Validate that all delta_t in the pattern are the same, with the
805 	 * exception of the middle element in case of ping_pong.
806 	 */
807 	delta_t = pattern[1].delta_t;
808 	for (i = 2; i < len; i++) {
809 		if (pattern[i].delta_t != delta_t) {
810 			/*
811 			 * Allow last entry in the full or shortened pattern to
812 			 * specify hi pause. Reject other variations.
813 			 */
814 			if (i != actual_len - 1)
815 				goto out_free_pattern;
816 		}
817 	}
818 
819 	/* LPG_RAMP_DURATION_REG is a 9bit */
820 	if (delta_t >= BIT(9))
821 		goto out_free_pattern;
822 
823 	/* Find "low pause" and "high pause" in the pattern */
824 	lo_pause = pattern[0].delta_t;
825 	hi_pause = pattern[actual_len - 1].delta_t;
826 
827 	mutex_lock(&lpg->lock);
828 	ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx);
829 	if (ret < 0)
830 		goto out_unlock;
831 
832 	for (i = 0; i < led->num_channels; i++) {
833 		chan = led->channels[i];
834 
835 		chan->ramp_tick_ms = delta_t;
836 		chan->ramp_ping_pong = ping_pong;
837 		chan->ramp_oneshot = repeat != -1;
838 
839 		chan->ramp_lo_pause_ms = lo_pause;
840 		chan->ramp_hi_pause_ms = hi_pause;
841 
842 		chan->pattern_lo_idx = lo_idx;
843 		chan->pattern_hi_idx = hi_idx;
844 	}
845 
846 out_unlock:
847 	mutex_unlock(&lpg->lock);
848 out_free_pattern:
849 	kfree(pattern);
850 
851 	return ret;
852 }
853 
854 static int lpg_pattern_single_set(struct led_classdev *cdev,
855 				  struct led_pattern *pattern, u32 len,
856 				  int repeat)
857 {
858 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
859 	int ret;
860 
861 	ret = lpg_pattern_set(led, pattern, len, repeat);
862 	if (ret < 0)
863 		return ret;
864 
865 	lpg_brightness_single_set(cdev, LED_FULL);
866 
867 	return 0;
868 }
869 
870 static int lpg_pattern_mc_set(struct led_classdev *cdev,
871 			      struct led_pattern *pattern, u32 len,
872 			      int repeat)
873 {
874 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
875 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
876 	int ret;
877 
878 	ret = lpg_pattern_set(led, pattern, len, repeat);
879 	if (ret < 0)
880 		return ret;
881 
882 	led_mc_calc_color_components(mc, LED_FULL);
883 	lpg_brightness_set(led, cdev, mc->subled_info);
884 
885 	return 0;
886 }
887 
888 static int lpg_pattern_clear(struct lpg_led *led)
889 {
890 	struct lpg_channel *chan;
891 	struct lpg *lpg = led->lpg;
892 	int i;
893 
894 	mutex_lock(&lpg->lock);
895 
896 	chan = led->channels[0];
897 	lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx);
898 
899 	for (i = 0; i < led->num_channels; i++) {
900 		chan = led->channels[i];
901 		chan->pattern_lo_idx = 0;
902 		chan->pattern_hi_idx = 0;
903 	}
904 
905 	mutex_unlock(&lpg->lock);
906 
907 	return 0;
908 }
909 
910 static int lpg_pattern_single_clear(struct led_classdev *cdev)
911 {
912 	struct lpg_led *led = container_of(cdev, struct lpg_led, cdev);
913 
914 	return lpg_pattern_clear(led);
915 }
916 
917 static int lpg_pattern_mc_clear(struct led_classdev *cdev)
918 {
919 	struct led_classdev_mc *mc = lcdev_to_mccdev(cdev);
920 	struct lpg_led *led = container_of(mc, struct lpg_led, mcdev);
921 
922 	return lpg_pattern_clear(led);
923 }
924 
925 static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
926 {
927 	struct lpg *lpg = container_of(chip, struct lpg, pwm);
928 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
929 
930 	return chan->in_use ? -EBUSY : 0;
931 }
932 
933 /*
934  * Limitations:
935  * - Updating both duty and period is not done atomically, so the output signal
936  *   will momentarily be a mix of the settings.
937  * - Changed parameters takes effect immediately.
938  * - A disabled channel outputs a logical 0.
939  */
940 static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
941 			 const struct pwm_state *state)
942 {
943 	struct lpg *lpg = container_of(chip, struct lpg, pwm);
944 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
945 	int ret = 0;
946 
947 	if (state->polarity != PWM_POLARITY_NORMAL)
948 		return -EINVAL;
949 
950 	mutex_lock(&lpg->lock);
951 
952 	if (state->enabled) {
953 		ret = lpg_calc_freq(chan, state->period);
954 		if (ret < 0)
955 			goto out_unlock;
956 
957 		lpg_calc_duty(chan, state->duty_cycle);
958 	}
959 	chan->enabled = state->enabled;
960 
961 	lpg_apply(chan);
962 
963 	triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0);
964 
965 out_unlock:
966 	mutex_unlock(&lpg->lock);
967 
968 	return ret;
969 }
970 
971 static void lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
972 			      struct pwm_state *state)
973 {
974 	struct lpg *lpg = container_of(chip, struct lpg, pwm);
975 	struct lpg_channel *chan = &lpg->channels[pwm->hwpwm];
976 	unsigned int pre_div;
977 	unsigned int refclk;
978 	unsigned int val;
979 	unsigned int m;
980 	u16 pwm_value;
981 	int ret;
982 
983 	ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val);
984 	if (ret)
985 		return;
986 
987 	refclk = lpg_clk_rates[val & PWM_CLK_SELECT_MASK];
988 	if (refclk) {
989 		ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val);
990 		if (ret)
991 			return;
992 
993 		pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)];
994 		m = FIELD_GET(PWM_FREQ_EXP_MASK, val);
995 
996 		ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value));
997 		if (ret)
998 			return;
999 
1000 		state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * LPG_RESOLUTION * pre_div * (1 << m), refclk);
1001 		state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk);
1002 	} else {
1003 		state->period = 0;
1004 		state->duty_cycle = 0;
1005 	}
1006 
1007 	ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val);
1008 	if (ret)
1009 		return;
1010 
1011 	state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val);
1012 	state->polarity = PWM_POLARITY_NORMAL;
1013 
1014 	if (state->duty_cycle > state->period)
1015 		state->duty_cycle = state->period;
1016 }
1017 
1018 static const struct pwm_ops lpg_pwm_ops = {
1019 	.request = lpg_pwm_request,
1020 	.apply = lpg_pwm_apply,
1021 	.get_state = lpg_pwm_get_state,
1022 	.owner = THIS_MODULE,
1023 };
1024 
1025 static int lpg_add_pwm(struct lpg *lpg)
1026 {
1027 	int ret;
1028 
1029 	lpg->pwm.base = -1;
1030 	lpg->pwm.dev = lpg->dev;
1031 	lpg->pwm.npwm = lpg->num_channels;
1032 	lpg->pwm.ops = &lpg_pwm_ops;
1033 
1034 	ret = pwmchip_add(&lpg->pwm);
1035 	if (ret)
1036 		dev_err(lpg->dev, "failed to add PWM chip: ret %d\n", ret);
1037 
1038 	return ret;
1039 }
1040 
1041 static int lpg_parse_channel(struct lpg *lpg, struct device_node *np,
1042 			     struct lpg_channel **channel)
1043 {
1044 	struct lpg_channel *chan;
1045 	u32 color = LED_COLOR_ID_GREEN;
1046 	u32 reg;
1047 	int ret;
1048 
1049 	ret = of_property_read_u32(np, "reg", &reg);
1050 	if (ret || !reg || reg > lpg->num_channels) {
1051 		dev_err(lpg->dev, "invalid \"reg\" of %pOFn\n", np);
1052 		return -EINVAL;
1053 	}
1054 
1055 	chan = &lpg->channels[reg - 1];
1056 	chan->in_use = true;
1057 
1058 	ret = of_property_read_u32(np, "color", &color);
1059 	if (ret < 0 && ret != -EINVAL) {
1060 		dev_err(lpg->dev, "failed to parse \"color\" of %pOF\n", np);
1061 		return ret;
1062 	}
1063 
1064 	chan->color = color;
1065 
1066 	*channel = chan;
1067 
1068 	return 0;
1069 }
1070 
1071 static int lpg_add_led(struct lpg *lpg, struct device_node *np)
1072 {
1073 	struct led_init_data init_data = {};
1074 	struct led_classdev *cdev;
1075 	struct device_node *child;
1076 	struct mc_subled *info;
1077 	struct lpg_led *led;
1078 	const char *state;
1079 	int num_channels;
1080 	u32 color = 0;
1081 	int ret;
1082 	int i;
1083 
1084 	ret = of_property_read_u32(np, "color", &color);
1085 	if (ret < 0 && ret != -EINVAL) {
1086 		dev_err(lpg->dev, "failed to parse \"color\" of %pOF\n", np);
1087 		return ret;
1088 	}
1089 
1090 	if (color == LED_COLOR_ID_RGB)
1091 		num_channels = of_get_available_child_count(np);
1092 	else
1093 		num_channels = 1;
1094 
1095 	led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL);
1096 	if (!led)
1097 		return -ENOMEM;
1098 
1099 	led->lpg = lpg;
1100 	led->num_channels = num_channels;
1101 
1102 	if (color == LED_COLOR_ID_RGB) {
1103 		info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL);
1104 		if (!info)
1105 			return -ENOMEM;
1106 		i = 0;
1107 		for_each_available_child_of_node(np, child) {
1108 			ret = lpg_parse_channel(lpg, child, &led->channels[i]);
1109 			if (ret < 0)
1110 				return ret;
1111 
1112 			info[i].color_index = led->channels[i]->color;
1113 			info[i].intensity = 0;
1114 			i++;
1115 		}
1116 
1117 		led->mcdev.subled_info = info;
1118 		led->mcdev.num_colors = num_channels;
1119 
1120 		cdev = &led->mcdev.led_cdev;
1121 		cdev->brightness_set = lpg_brightness_mc_set;
1122 		cdev->blink_set = lpg_blink_mc_set;
1123 
1124 		/* Register pattern accessors only if we have a LUT block */
1125 		if (lpg->lut_base) {
1126 			cdev->pattern_set = lpg_pattern_mc_set;
1127 			cdev->pattern_clear = lpg_pattern_mc_clear;
1128 		}
1129 	} else {
1130 		ret = lpg_parse_channel(lpg, np, &led->channels[0]);
1131 		if (ret < 0)
1132 			return ret;
1133 
1134 		cdev = &led->cdev;
1135 		cdev->brightness_set = lpg_brightness_single_set;
1136 		cdev->blink_set = lpg_blink_single_set;
1137 
1138 		/* Register pattern accessors only if we have a LUT block */
1139 		if (lpg->lut_base) {
1140 			cdev->pattern_set = lpg_pattern_single_set;
1141 			cdev->pattern_clear = lpg_pattern_single_clear;
1142 		}
1143 	}
1144 
1145 	cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL);
1146 	cdev->max_brightness = LPG_RESOLUTION - 1;
1147 
1148 	if (!of_property_read_string(np, "default-state", &state) &&
1149 	    !strcmp(state, "on"))
1150 		cdev->brightness = cdev->max_brightness;
1151 	else
1152 		cdev->brightness = LED_OFF;
1153 
1154 	cdev->brightness_set(cdev, cdev->brightness);
1155 
1156 	init_data.fwnode = of_fwnode_handle(np);
1157 
1158 	if (color == LED_COLOR_ID_RGB)
1159 		ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data);
1160 	else
1161 		ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data);
1162 	if (ret)
1163 		dev_err(lpg->dev, "unable to register %s\n", cdev->name);
1164 
1165 	return ret;
1166 }
1167 
1168 static int lpg_init_channels(struct lpg *lpg)
1169 {
1170 	const struct lpg_data *data = lpg->data;
1171 	struct lpg_channel *chan;
1172 	int i;
1173 
1174 	lpg->num_channels = data->num_channels;
1175 	lpg->channels = devm_kcalloc(lpg->dev, data->num_channels,
1176 				     sizeof(struct lpg_channel), GFP_KERNEL);
1177 	if (!lpg->channels)
1178 		return -ENOMEM;
1179 
1180 	for (i = 0; i < data->num_channels; i++) {
1181 		chan = &lpg->channels[i];
1182 
1183 		chan->lpg = lpg;
1184 		chan->base = data->channels[i].base;
1185 		chan->triled_mask = data->channels[i].triled_mask;
1186 		chan->lut_mask = BIT(i);
1187 
1188 		regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype);
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 static int lpg_init_triled(struct lpg *lpg)
1195 {
1196 	struct device_node *np = lpg->dev->of_node;
1197 	int ret;
1198 
1199 	/* Skip initialization if we don't have a triled block */
1200 	if (!lpg->data->triled_base)
1201 		return 0;
1202 
1203 	lpg->triled_base = lpg->data->triled_base;
1204 	lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl;
1205 	lpg->triled_has_src_sel = lpg->data->triled_has_src_sel;
1206 
1207 	if (lpg->triled_has_src_sel) {
1208 		ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src);
1209 		if (ret || lpg->triled_src == 2 || lpg->triled_src > 3) {
1210 			dev_err(lpg->dev, "invalid power source\n");
1211 			return -EINVAL;
1212 		}
1213 	}
1214 
1215 	/* Disable automatic trickle charge LED */
1216 	if (lpg->triled_has_atc_ctl)
1217 		regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0);
1218 
1219 	/* Configure power source */
1220 	if (lpg->triled_has_src_sel)
1221 		regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src);
1222 
1223 	/* Default all outputs to off */
1224 	regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0);
1225 
1226 	return 0;
1227 }
1228 
1229 static int lpg_init_lut(struct lpg *lpg)
1230 {
1231 	const struct lpg_data *data = lpg->data;
1232 
1233 	if (!data->lut_base)
1234 		return 0;
1235 
1236 	lpg->lut_base = data->lut_base;
1237 	lpg->lut_size = data->lut_size;
1238 
1239 	lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL);
1240 	if (!lpg->lut_bitmap)
1241 		return -ENOMEM;
1242 
1243 	return 0;
1244 }
1245 
1246 static int lpg_probe(struct platform_device *pdev)
1247 {
1248 	struct device_node *np;
1249 	struct lpg *lpg;
1250 	int ret;
1251 	int i;
1252 
1253 	lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL);
1254 	if (!lpg)
1255 		return -ENOMEM;
1256 
1257 	lpg->data = of_device_get_match_data(&pdev->dev);
1258 	if (!lpg->data)
1259 		return -EINVAL;
1260 
1261 	platform_set_drvdata(pdev, lpg);
1262 
1263 	lpg->dev = &pdev->dev;
1264 	mutex_init(&lpg->lock);
1265 
1266 	lpg->map = dev_get_regmap(pdev->dev.parent, NULL);
1267 	if (!lpg->map)
1268 		return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n");
1269 
1270 	ret = lpg_init_channels(lpg);
1271 	if (ret < 0)
1272 		return ret;
1273 
1274 	ret = lpg_parse_dtest(lpg);
1275 	if (ret < 0)
1276 		return ret;
1277 
1278 	ret = lpg_init_triled(lpg);
1279 	if (ret < 0)
1280 		return ret;
1281 
1282 	ret = lpg_init_lut(lpg);
1283 	if (ret < 0)
1284 		return ret;
1285 
1286 	for_each_available_child_of_node(pdev->dev.of_node, np) {
1287 		ret = lpg_add_led(lpg, np);
1288 		if (ret)
1289 			return ret;
1290 	}
1291 
1292 	for (i = 0; i < lpg->num_channels; i++)
1293 		lpg_apply_dtest(&lpg->channels[i]);
1294 
1295 	return lpg_add_pwm(lpg);
1296 }
1297 
1298 static int lpg_remove(struct platform_device *pdev)
1299 {
1300 	struct lpg *lpg = platform_get_drvdata(pdev);
1301 
1302 	pwmchip_remove(&lpg->pwm);
1303 
1304 	return 0;
1305 }
1306 
1307 static const struct lpg_data pm8916_pwm_data = {
1308 	.num_channels = 1,
1309 	.channels = (const struct lpg_channel_data[]) {
1310 		{ .base = 0xbc00 },
1311 	},
1312 };
1313 
1314 static const struct lpg_data pm8941_lpg_data = {
1315 	.lut_base = 0xb000,
1316 	.lut_size = 64,
1317 
1318 	.triled_base = 0xd000,
1319 	.triled_has_atc_ctl = true,
1320 	.triled_has_src_sel = true,
1321 
1322 	.num_channels = 8,
1323 	.channels = (const struct lpg_channel_data[]) {
1324 		{ .base = 0xb100 },
1325 		{ .base = 0xb200 },
1326 		{ .base = 0xb300 },
1327 		{ .base = 0xb400 },
1328 		{ .base = 0xb500, .triled_mask = BIT(5) },
1329 		{ .base = 0xb600, .triled_mask = BIT(6) },
1330 		{ .base = 0xb700, .triled_mask = BIT(7) },
1331 		{ .base = 0xb800 },
1332 	},
1333 };
1334 
1335 static const struct lpg_data pm8994_lpg_data = {
1336 	.lut_base = 0xb000,
1337 	.lut_size = 64,
1338 
1339 	.num_channels = 6,
1340 	.channels = (const struct lpg_channel_data[]) {
1341 		{ .base = 0xb100 },
1342 		{ .base = 0xb200 },
1343 		{ .base = 0xb300 },
1344 		{ .base = 0xb400 },
1345 		{ .base = 0xb500 },
1346 		{ .base = 0xb600 },
1347 	},
1348 };
1349 
1350 static const struct lpg_data pmi8994_lpg_data = {
1351 	.lut_base = 0xb000,
1352 	.lut_size = 24,
1353 
1354 	.triled_base = 0xd000,
1355 	.triled_has_atc_ctl = true,
1356 	.triled_has_src_sel = true,
1357 
1358 	.num_channels = 4,
1359 	.channels = (const struct lpg_channel_data[]) {
1360 		{ .base = 0xb100, .triled_mask = BIT(5) },
1361 		{ .base = 0xb200, .triled_mask = BIT(6) },
1362 		{ .base = 0xb300, .triled_mask = BIT(7) },
1363 		{ .base = 0xb400 },
1364 	},
1365 };
1366 
1367 static const struct lpg_data pmi8998_lpg_data = {
1368 	.lut_base = 0xb000,
1369 	.lut_size = 49,
1370 
1371 	.triled_base = 0xd000,
1372 
1373 	.num_channels = 6,
1374 	.channels = (const struct lpg_channel_data[]) {
1375 		{ .base = 0xb100 },
1376 		{ .base = 0xb200 },
1377 		{ .base = 0xb300, .triled_mask = BIT(5) },
1378 		{ .base = 0xb400, .triled_mask = BIT(6) },
1379 		{ .base = 0xb500, .triled_mask = BIT(7) },
1380 		{ .base = 0xb600 },
1381 	},
1382 };
1383 
1384 static const struct lpg_data pm8150b_lpg_data = {
1385 	.lut_base = 0xb000,
1386 	.lut_size = 24,
1387 
1388 	.triled_base = 0xd000,
1389 
1390 	.num_channels = 2,
1391 	.channels = (const struct lpg_channel_data[]) {
1392 		{ .base = 0xb100, .triled_mask = BIT(7) },
1393 		{ .base = 0xb200, .triled_mask = BIT(6) },
1394 	},
1395 };
1396 
1397 static const struct lpg_data pm8150l_lpg_data = {
1398 	.lut_base = 0xb000,
1399 	.lut_size = 48,
1400 
1401 	.triled_base = 0xd000,
1402 
1403 	.num_channels = 5,
1404 	.channels = (const struct lpg_channel_data[]) {
1405 		{ .base = 0xb100, .triled_mask = BIT(7) },
1406 		{ .base = 0xb200, .triled_mask = BIT(6) },
1407 		{ .base = 0xb300, .triled_mask = BIT(5) },
1408 		{ .base = 0xbc00 },
1409 		{ .base = 0xbd00 },
1410 
1411 	},
1412 };
1413 
1414 static const struct lpg_data pm8350c_pwm_data = {
1415 	.triled_base = 0xef00,
1416 
1417 	.num_channels = 4,
1418 	.channels = (const struct lpg_channel_data[]) {
1419 		{ .base = 0xe800, .triled_mask = BIT(7) },
1420 		{ .base = 0xe900, .triled_mask = BIT(6) },
1421 		{ .base = 0xea00, .triled_mask = BIT(5) },
1422 		{ .base = 0xeb00 },
1423 	},
1424 };
1425 
1426 static const struct of_device_id lpg_of_table[] = {
1427 	{ .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data },
1428 	{ .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data },
1429 	{ .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data },
1430 	{ .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data },
1431 	{ .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data },
1432 	{ .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data },
1433 	{ .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data },
1434 	{ .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data },
1435 	{ .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data },
1436 	{}
1437 };
1438 MODULE_DEVICE_TABLE(of, lpg_of_table);
1439 
1440 static struct platform_driver lpg_driver = {
1441 	.probe = lpg_probe,
1442 	.remove = lpg_remove,
1443 	.driver = {
1444 		.name = "qcom-spmi-lpg",
1445 		.of_match_table = lpg_of_table,
1446 	},
1447 };
1448 module_platform_driver(lpg_driver);
1449 
1450 MODULE_DESCRIPTION("Qualcomm LPG LED driver");
1451 MODULE_LICENSE("GPL v2");
1452