1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3  * mISDN driver for Colognechip HFC-S USB chip
4  *
5  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7  *
8  * module params
9  *   debug=<n>, default=0, with n=0xHHHHGGGG
10  *      H - l1 driver flags described in hfcsusb.h
11  *      G - common mISDN debug flags described at mISDNhw.h
12  *
13  *   poll=<n>, default 128
14  *     n : burst size of PH_DATA_IND at transparent rx data
15  *
16  * Revision: 0.3.3 (socket), 2008-11-05
17  */
18 
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25 
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28 
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31 
32 
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37 
38 static int hfcsusb_cnt;
39 
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static void hfcsusb_ph_info(struct hfcsusb *hw);
50 
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55 	if (debug & DBG_HFC_CALL_TRACE)
56 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57 
58 	if (hw->ctrl_cnt) {
59 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61 		hw->ctrl_urb->transfer_buffer = NULL;
62 		hw->ctrl_urb->transfer_buffer_length = 0;
63 		hw->ctrl_write.wIndex =
64 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65 		hw->ctrl_write.wValue =
66 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67 
68 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69 	}
70 }
71 
72 /*
73  * queue a control transfer request to write HFC-S USB
74  * chip register using CTRL resuest queue
75  */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78 	struct ctrl_buf *buf;
79 
80 	if (debug & DBG_HFC_CALL_TRACE)
81 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82 		       hw->name, __func__, reg, val);
83 
84 	spin_lock(&hw->ctrl_lock);
85 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86 		spin_unlock(&hw->ctrl_lock);
87 		return 1;
88 	}
89 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90 	buf->hfcs_reg = reg;
91 	buf->reg_val = val;
92 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93 		hw->ctrl_in_idx = 0;
94 	if (++hw->ctrl_cnt == 1)
95 		ctrl_start_transfer(hw);
96 	spin_unlock(&hw->ctrl_lock);
97 
98 	return 0;
99 }
100 
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106 
107 	if (debug & DBG_HFC_CALL_TRACE)
108 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109 
110 	urb->dev = hw->dev;
111 	if (hw->ctrl_cnt) {
112 		hw->ctrl_cnt--;	/* decrement actual count */
113 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114 			hw->ctrl_out_idx = 0;	/* pointer wrap */
115 
116 		ctrl_start_transfer(hw); /* start next transfer */
117 	}
118 }
119 
120 /* handle LED bits   */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124 	if (set_on) {
125 		if (led_bits < 0)
126 			hw->led_state &= ~abs(led_bits);
127 		else
128 			hw->led_state |= led_bits;
129 	} else {
130 		if (led_bits < 0)
131 			hw->led_state |= abs(led_bits);
132 		else
133 			hw->led_state &= ~led_bits;
134 	}
135 }
136 
137 /* handle LED requests  */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142 		hfcsusb_idtab[hw->vend_idx].driver_info;
143 	__u8 tmpled;
144 
145 	if (driver_info->led_scheme == LED_OFF)
146 		return;
147 	tmpled = hw->led_state;
148 
149 	switch (event) {
150 	case LED_POWER_ON:
151 		set_led_bit(hw, driver_info->led_bits[0], 1);
152 		set_led_bit(hw, driver_info->led_bits[1], 0);
153 		set_led_bit(hw, driver_info->led_bits[2], 0);
154 		set_led_bit(hw, driver_info->led_bits[3], 0);
155 		break;
156 	case LED_POWER_OFF:
157 		set_led_bit(hw, driver_info->led_bits[0], 0);
158 		set_led_bit(hw, driver_info->led_bits[1], 0);
159 		set_led_bit(hw, driver_info->led_bits[2], 0);
160 		set_led_bit(hw, driver_info->led_bits[3], 0);
161 		break;
162 	case LED_S0_ON:
163 		set_led_bit(hw, driver_info->led_bits[1], 1);
164 		break;
165 	case LED_S0_OFF:
166 		set_led_bit(hw, driver_info->led_bits[1], 0);
167 		break;
168 	case LED_B1_ON:
169 		set_led_bit(hw, driver_info->led_bits[2], 1);
170 		break;
171 	case LED_B1_OFF:
172 		set_led_bit(hw, driver_info->led_bits[2], 0);
173 		break;
174 	case LED_B2_ON:
175 		set_led_bit(hw, driver_info->led_bits[3], 1);
176 		break;
177 	case LED_B2_OFF:
178 		set_led_bit(hw, driver_info->led_bits[3], 0);
179 		break;
180 	}
181 
182 	if (hw->led_state != tmpled) {
183 		if (debug & DBG_HFC_CALL_TRACE)
184 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185 			       hw->name, __func__,
186 			       HFCUSB_P_DATA, hw->led_state);
187 
188 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189 	}
190 }
191 
192 /*
193  * Layer2 -> Layer 1 Bchannel data
194  */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
199 	struct hfcsusb		*hw = bch->hw;
200 	int			ret = -EINVAL;
201 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
202 	u_long			flags;
203 
204 	if (debug & DBG_HFC_CALL_TRACE)
205 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206 
207 	switch (hh->prim) {
208 	case PH_DATA_REQ:
209 		spin_lock_irqsave(&hw->lock, flags);
210 		ret = bchannel_senddata(bch, skb);
211 		spin_unlock_irqrestore(&hw->lock, flags);
212 		if (debug & DBG_HFC_CALL_TRACE)
213 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214 			       hw->name, __func__, ret);
215 		if (ret > 0)
216 			ret = 0;
217 		return ret;
218 	case PH_ACTIVATE_REQ:
219 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220 			hfcsusb_start_endpoint(hw, bch->nr - 1);
221 			ret = hfcsusb_setup_bch(bch, ch->protocol);
222 		} else
223 			ret = 0;
224 		if (!ret)
225 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226 				    0, NULL, GFP_KERNEL);
227 		break;
228 	case PH_DEACTIVATE_REQ:
229 		deactivate_bchannel(bch);
230 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231 			    0, NULL, GFP_KERNEL);
232 		ret = 0;
233 		break;
234 	}
235 	if (!ret)
236 		dev_kfree_skb(skb);
237 	return ret;
238 }
239 
240 /*
241  * send full D/B channel status information
242  * as MPH_INFORMATION_IND
243  */
244 static void
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247 	struct ph_info *phi;
248 	struct dchannel *dch = &hw->dch;
249 	int i;
250 
251 	phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252 	if (!phi)
253 		return;
254 
255 	phi->dch.ch.protocol = hw->protocol;
256 	phi->dch.ch.Flags = dch->Flags;
257 	phi->dch.state = dch->state;
258 	phi->dch.num_bch = dch->dev.nrbchan;
259 	for (i = 0; i < dch->dev.nrbchan; i++) {
260 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
261 		phi->bch[i].Flags = hw->bch[i].Flags;
262 	}
263 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264 		    sizeof(struct ph_info_dch) + dch->dev.nrbchan *
265 		    sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
266 	kfree(phi);
267 }
268 
269 /*
270  * Layer2 -> Layer 1 Dchannel data
271  */
272 static int
273 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
274 {
275 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
276 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
277 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
278 	struct hfcsusb		*hw = dch->hw;
279 	int			ret = -EINVAL;
280 	u_long			flags;
281 
282 	switch (hh->prim) {
283 	case PH_DATA_REQ:
284 		if (debug & DBG_HFC_CALL_TRACE)
285 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
286 			       hw->name, __func__);
287 
288 		spin_lock_irqsave(&hw->lock, flags);
289 		ret = dchannel_senddata(dch, skb);
290 		spin_unlock_irqrestore(&hw->lock, flags);
291 		if (ret > 0) {
292 			ret = 0;
293 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
294 		}
295 		break;
296 
297 	case PH_ACTIVATE_REQ:
298 		if (debug & DBG_HFC_CALL_TRACE)
299 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
300 			       hw->name, __func__,
301 			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
302 
303 		if (hw->protocol == ISDN_P_NT_S0) {
304 			ret = 0;
305 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
306 				_queue_data(&dch->dev.D,
307 					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
308 					    NULL, GFP_ATOMIC);
309 			} else {
310 				hfcsusb_ph_command(hw,
311 						   HFC_L1_ACTIVATE_NT);
312 				test_and_set_bit(FLG_L2_ACTIVATED,
313 						 &dch->Flags);
314 			}
315 		} else {
316 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
317 			ret = l1_event(dch->l1, hh->prim);
318 		}
319 		break;
320 
321 	case PH_DEACTIVATE_REQ:
322 		if (debug & DBG_HFC_CALL_TRACE)
323 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
324 			       hw->name, __func__);
325 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
326 
327 		if (hw->protocol == ISDN_P_NT_S0) {
328 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
329 			spin_lock_irqsave(&hw->lock, flags);
330 			skb_queue_purge(&dch->squeue);
331 			if (dch->tx_skb) {
332 				dev_kfree_skb(dch->tx_skb);
333 				dch->tx_skb = NULL;
334 			}
335 			dch->tx_idx = 0;
336 			if (dch->rx_skb) {
337 				dev_kfree_skb(dch->rx_skb);
338 				dch->rx_skb = NULL;
339 			}
340 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
341 			spin_unlock_irqrestore(&hw->lock, flags);
342 #ifdef FIXME
343 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
344 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
345 #endif
346 			ret = 0;
347 		} else
348 			ret = l1_event(dch->l1, hh->prim);
349 		break;
350 	case MPH_INFORMATION_REQ:
351 		hfcsusb_ph_info(hw);
352 		ret = 0;
353 		break;
354 	}
355 
356 	return ret;
357 }
358 
359 /*
360  * Layer 1 callback function
361  */
362 static int
363 hfc_l1callback(struct dchannel *dch, u_int cmd)
364 {
365 	struct hfcsusb *hw = dch->hw;
366 
367 	if (debug & DBG_HFC_CALL_TRACE)
368 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
369 		       hw->name, __func__, cmd);
370 
371 	switch (cmd) {
372 	case INFO3_P8:
373 	case INFO3_P10:
374 	case HW_RESET_REQ:
375 	case HW_POWERUP_REQ:
376 		break;
377 
378 	case HW_DEACT_REQ:
379 		skb_queue_purge(&dch->squeue);
380 		if (dch->tx_skb) {
381 			dev_kfree_skb(dch->tx_skb);
382 			dch->tx_skb = NULL;
383 		}
384 		dch->tx_idx = 0;
385 		if (dch->rx_skb) {
386 			dev_kfree_skb(dch->rx_skb);
387 			dch->rx_skb = NULL;
388 		}
389 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
390 		break;
391 	case PH_ACTIVATE_IND:
392 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
393 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
394 			    GFP_ATOMIC);
395 		break;
396 	case PH_DEACTIVATE_IND:
397 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
398 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
399 			    GFP_ATOMIC);
400 		break;
401 	default:
402 		if (dch->debug & DEBUG_HW)
403 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
404 			       hw->name, __func__, cmd);
405 		return -1;
406 	}
407 	hfcsusb_ph_info(hw);
408 	return 0;
409 }
410 
411 static int
412 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
413 	      struct channel_req *rq)
414 {
415 	int err = 0;
416 
417 	if (debug & DEBUG_HW_OPEN)
418 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
419 		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
420 		       __builtin_return_address(0));
421 	if (rq->protocol == ISDN_P_NONE)
422 		return -EINVAL;
423 
424 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
425 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
426 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
427 
428 	/* E-Channel logging */
429 	if (rq->adr.channel == 1) {
430 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
431 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
432 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
433 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
434 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
435 		} else
436 			return -EINVAL;
437 	}
438 
439 	if (!hw->initdone) {
440 		hw->protocol = rq->protocol;
441 		if (rq->protocol == ISDN_P_TE_S0) {
442 			err = create_l1(&hw->dch, hfc_l1callback);
443 			if (err)
444 				return err;
445 		}
446 		setPortMode(hw);
447 		ch->protocol = rq->protocol;
448 		hw->initdone = 1;
449 	} else {
450 		if (rq->protocol != ch->protocol)
451 			return -EPROTONOSUPPORT;
452 	}
453 
454 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
455 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
456 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
457 			    0, NULL, GFP_KERNEL);
458 	rq->ch = ch;
459 	if (!try_module_get(THIS_MODULE))
460 		printk(KERN_WARNING "%s: %s: cannot get module\n",
461 		       hw->name, __func__);
462 	return 0;
463 }
464 
465 static int
466 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
467 {
468 	struct bchannel		*bch;
469 
470 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
471 		return -EINVAL;
472 	if (rq->protocol == ISDN_P_NONE)
473 		return -EINVAL;
474 
475 	if (debug & DBG_HFC_CALL_TRACE)
476 		printk(KERN_DEBUG "%s: %s B%i\n",
477 		       hw->name, __func__, rq->adr.channel);
478 
479 	bch = &hw->bch[rq->adr.channel - 1];
480 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
481 		return -EBUSY; /* b-channel can be only open once */
482 	bch->ch.protocol = rq->protocol;
483 	rq->ch = &bch->ch;
484 
485 	if (!try_module_get(THIS_MODULE))
486 		printk(KERN_WARNING "%s: %s:cannot get module\n",
487 		       hw->name, __func__);
488 	return 0;
489 }
490 
491 static int
492 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
493 {
494 	int ret = 0;
495 
496 	if (debug & DBG_HFC_CALL_TRACE)
497 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
498 		       hw->name, __func__, (cq->op), (cq->channel));
499 
500 	switch (cq->op) {
501 	case MISDN_CTRL_GETOP:
502 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
503 			MISDN_CTRL_DISCONNECT;
504 		break;
505 	default:
506 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
507 		       hw->name, __func__, cq->op);
508 		ret = -EINVAL;
509 		break;
510 	}
511 	return ret;
512 }
513 
514 /*
515  * device control function
516  */
517 static int
518 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
519 {
520 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
521 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
522 	struct hfcsusb		*hw = dch->hw;
523 	struct channel_req	*rq;
524 	int			err = 0;
525 
526 	if (dch->debug & DEBUG_HW)
527 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
528 		       hw->name, __func__, cmd, arg);
529 	switch (cmd) {
530 	case OPEN_CHANNEL:
531 		rq = arg;
532 		if ((rq->protocol == ISDN_P_TE_S0) ||
533 		    (rq->protocol == ISDN_P_NT_S0))
534 			err = open_dchannel(hw, ch, rq);
535 		else
536 			err = open_bchannel(hw, rq);
537 		if (!err)
538 			hw->open++;
539 		break;
540 	case CLOSE_CHANNEL:
541 		hw->open--;
542 		if (debug & DEBUG_HW_OPEN)
543 			printk(KERN_DEBUG
544 			       "%s: %s: dev(%d) close from %p (open %d)\n",
545 			       hw->name, __func__, hw->dch.dev.id,
546 			       __builtin_return_address(0), hw->open);
547 		if (!hw->open) {
548 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
549 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
550 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
551 			handle_led(hw, LED_POWER_ON);
552 		}
553 		module_put(THIS_MODULE);
554 		break;
555 	case CONTROL_CHANNEL:
556 		err = channel_ctrl(hw, arg);
557 		break;
558 	default:
559 		if (dch->debug & DEBUG_HW)
560 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
561 			       hw->name, __func__, cmd);
562 		return -EINVAL;
563 	}
564 	return err;
565 }
566 
567 /*
568  * S0 TE state change event handler
569  */
570 static void
571 ph_state_te(struct dchannel *dch)
572 {
573 	struct hfcsusb *hw = dch->hw;
574 
575 	if (debug & DEBUG_HW) {
576 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
577 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
578 			       HFC_TE_LAYER1_STATES[dch->state]);
579 		else
580 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
581 			       hw->name, __func__, dch->state);
582 	}
583 
584 	switch (dch->state) {
585 	case 0:
586 		l1_event(dch->l1, HW_RESET_IND);
587 		break;
588 	case 3:
589 		l1_event(dch->l1, HW_DEACT_IND);
590 		break;
591 	case 5:
592 	case 8:
593 		l1_event(dch->l1, ANYSIGNAL);
594 		break;
595 	case 6:
596 		l1_event(dch->l1, INFO2);
597 		break;
598 	case 7:
599 		l1_event(dch->l1, INFO4_P8);
600 		break;
601 	}
602 	if (dch->state == 7)
603 		handle_led(hw, LED_S0_ON);
604 	else
605 		handle_led(hw, LED_S0_OFF);
606 }
607 
608 /*
609  * S0 NT state change event handler
610  */
611 static void
612 ph_state_nt(struct dchannel *dch)
613 {
614 	struct hfcsusb *hw = dch->hw;
615 
616 	if (debug & DEBUG_HW) {
617 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
618 			printk(KERN_DEBUG "%s: %s: %s\n",
619 			       hw->name, __func__,
620 			       HFC_NT_LAYER1_STATES[dch->state]);
621 
622 		else
623 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
624 			       hw->name, __func__, dch->state);
625 	}
626 
627 	switch (dch->state) {
628 	case (1):
629 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
630 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
631 		hw->nt_timer = 0;
632 		hw->timers &= ~NT_ACTIVATION_TIMER;
633 		handle_led(hw, LED_S0_OFF);
634 		break;
635 
636 	case (2):
637 		if (hw->nt_timer < 0) {
638 			hw->nt_timer = 0;
639 			hw->timers &= ~NT_ACTIVATION_TIMER;
640 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
641 		} else {
642 			hw->timers |= NT_ACTIVATION_TIMER;
643 			hw->nt_timer = NT_T1_COUNT;
644 			/* allow G2 -> G3 transition */
645 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
646 		}
647 		break;
648 	case (3):
649 		hw->nt_timer = 0;
650 		hw->timers &= ~NT_ACTIVATION_TIMER;
651 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
652 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
653 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
654 		handle_led(hw, LED_S0_ON);
655 		break;
656 	case (4):
657 		hw->nt_timer = 0;
658 		hw->timers &= ~NT_ACTIVATION_TIMER;
659 		break;
660 	default:
661 		break;
662 	}
663 	hfcsusb_ph_info(hw);
664 }
665 
666 static void
667 ph_state(struct dchannel *dch)
668 {
669 	struct hfcsusb *hw = dch->hw;
670 
671 	if (hw->protocol == ISDN_P_NT_S0)
672 		ph_state_nt(dch);
673 	else if (hw->protocol == ISDN_P_TE_S0)
674 		ph_state_te(dch);
675 }
676 
677 /*
678  * disable/enable BChannel for desired protocoll
679  */
680 static int
681 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
682 {
683 	struct hfcsusb *hw = bch->hw;
684 	__u8 conhdlc, sctrl, sctrl_r;
685 
686 	if (debug & DEBUG_HW)
687 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
688 		       hw->name, __func__, bch->state, protocol,
689 		       bch->nr);
690 
691 	/* setup val for CON_HDLC */
692 	conhdlc = 0;
693 	if (protocol > ISDN_P_NONE)
694 		conhdlc = 8;	/* enable FIFO */
695 
696 	switch (protocol) {
697 	case (-1):	/* used for init */
698 		bch->state = -1;
699 		/* fall through */
700 	case (ISDN_P_NONE):
701 		if (bch->state == ISDN_P_NONE)
702 			return 0; /* already in idle state */
703 		bch->state = ISDN_P_NONE;
704 		clear_bit(FLG_HDLC, &bch->Flags);
705 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
706 		break;
707 	case (ISDN_P_B_RAW):
708 		conhdlc |= 2;
709 		bch->state = protocol;
710 		set_bit(FLG_TRANSPARENT, &bch->Flags);
711 		break;
712 	case (ISDN_P_B_HDLC):
713 		bch->state = protocol;
714 		set_bit(FLG_HDLC, &bch->Flags);
715 		break;
716 	default:
717 		if (debug & DEBUG_HW)
718 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
719 			       hw->name, __func__, protocol);
720 		return -ENOPROTOOPT;
721 	}
722 
723 	if (protocol >= ISDN_P_NONE) {
724 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
725 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
726 		write_reg(hw, HFCUSB_INC_RES_F, 2);
727 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
728 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729 		write_reg(hw, HFCUSB_INC_RES_F, 2);
730 
731 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
732 		sctrl_r = 0x0;
733 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
734 			sctrl |= 1;
735 			sctrl_r |= 1;
736 		}
737 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
738 			sctrl |= 2;
739 			sctrl_r |= 2;
740 		}
741 		write_reg(hw, HFCUSB_SCTRL, sctrl);
742 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
743 
744 		if (protocol > ISDN_P_NONE)
745 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
746 		else
747 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
748 				   LED_B2_OFF);
749 	}
750 	hfcsusb_ph_info(hw);
751 	return 0;
752 }
753 
754 static void
755 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
756 {
757 	if (debug & DEBUG_HW)
758 		printk(KERN_DEBUG "%s: %s: %x\n",
759 		       hw->name, __func__, command);
760 
761 	switch (command) {
762 	case HFC_L1_ACTIVATE_TE:
763 		/* force sending sending INFO1 */
764 		write_reg(hw, HFCUSB_STATES, 0x14);
765 		/* start l1 activation */
766 		write_reg(hw, HFCUSB_STATES, 0x04);
767 		break;
768 
769 	case HFC_L1_FORCE_DEACTIVATE_TE:
770 		write_reg(hw, HFCUSB_STATES, 0x10);
771 		write_reg(hw, HFCUSB_STATES, 0x03);
772 		break;
773 
774 	case HFC_L1_ACTIVATE_NT:
775 		if (hw->dch.state == 3)
776 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
777 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
778 		else
779 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
780 				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
781 		break;
782 
783 	case HFC_L1_DEACTIVATE_NT:
784 		write_reg(hw, HFCUSB_STATES,
785 			  HFCUSB_DO_ACTION);
786 		break;
787 	}
788 }
789 
790 /*
791  * Layer 1 B-channel hardware access
792  */
793 static int
794 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
795 {
796 	return mISDN_ctrl_bchannel(bch, cq);
797 }
798 
799 /* collect data from incoming interrupt or isochron USB data */
800 static void
801 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
802 		 int finish)
803 {
804 	struct hfcsusb	*hw = fifo->hw;
805 	struct sk_buff	*rx_skb = NULL;
806 	int		maxlen = 0;
807 	int		fifon = fifo->fifonum;
808 	int		i;
809 	int		hdlc = 0;
810 	unsigned long	flags;
811 
812 	if (debug & DBG_HFC_CALL_TRACE)
813 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
814 		       "dch(%p) bch(%p) ech(%p)\n",
815 		       hw->name, __func__, fifon, len,
816 		       fifo->dch, fifo->bch, fifo->ech);
817 
818 	if (!len)
819 		return;
820 
821 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
822 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
823 		       hw->name, __func__);
824 		return;
825 	}
826 
827 	spin_lock_irqsave(&hw->lock, flags);
828 	if (fifo->dch) {
829 		rx_skb = fifo->dch->rx_skb;
830 		maxlen = fifo->dch->maxlen;
831 		hdlc = 1;
832 	}
833 	if (fifo->bch) {
834 		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
835 			fifo->bch->dropcnt += len;
836 			spin_unlock_irqrestore(&hw->lock, flags);
837 			return;
838 		}
839 		maxlen = bchannel_get_rxbuf(fifo->bch, len);
840 		rx_skb = fifo->bch->rx_skb;
841 		if (maxlen < 0) {
842 			if (rx_skb)
843 				skb_trim(rx_skb, 0);
844 			pr_warn("%s.B%d: No bufferspace for %d bytes\n",
845 				hw->name, fifo->bch->nr, len);
846 			spin_unlock_irqrestore(&hw->lock, flags);
847 			return;
848 		}
849 		maxlen = fifo->bch->maxlen;
850 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
851 	}
852 	if (fifo->ech) {
853 		rx_skb = fifo->ech->rx_skb;
854 		maxlen = fifo->ech->maxlen;
855 		hdlc = 1;
856 	}
857 
858 	if (fifo->dch || fifo->ech) {
859 		if (!rx_skb) {
860 			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
861 			if (rx_skb) {
862 				if (fifo->dch)
863 					fifo->dch->rx_skb = rx_skb;
864 				if (fifo->ech)
865 					fifo->ech->rx_skb = rx_skb;
866 				skb_trim(rx_skb, 0);
867 			} else {
868 				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
869 				       hw->name, __func__);
870 				spin_unlock_irqrestore(&hw->lock, flags);
871 				return;
872 			}
873 		}
874 		/* D/E-Channel SKB range check */
875 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
876 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
877 			       "for fifo(%d) HFCUSB_D_RX\n",
878 			       hw->name, __func__, fifon);
879 			skb_trim(rx_skb, 0);
880 			spin_unlock_irqrestore(&hw->lock, flags);
881 			return;
882 		}
883 	}
884 
885 	skb_put_data(rx_skb, data, len);
886 
887 	if (hdlc) {
888 		/* we have a complete hdlc packet */
889 		if (finish) {
890 			if ((rx_skb->len > 3) &&
891 			    (!(rx_skb->data[rx_skb->len - 1]))) {
892 				if (debug & DBG_HFC_FIFO_VERBOSE) {
893 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
894 					       " new RX len(%i): ",
895 					       hw->name, __func__, fifon,
896 					       rx_skb->len);
897 					i = 0;
898 					while (i < rx_skb->len)
899 						printk("%02x ",
900 						       rx_skb->data[i++]);
901 					printk("\n");
902 				}
903 
904 				/* remove CRC & status */
905 				skb_trim(rx_skb, rx_skb->len - 3);
906 
907 				if (fifo->dch)
908 					recv_Dchannel(fifo->dch);
909 				if (fifo->bch)
910 					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
911 						      0);
912 				if (fifo->ech)
913 					recv_Echannel(fifo->ech,
914 						      &hw->dch);
915 			} else {
916 				if (debug & DBG_HFC_FIFO_VERBOSE) {
917 					printk(KERN_DEBUG
918 					       "%s: CRC or minlen ERROR fifon(%i) "
919 					       "RX len(%i): ",
920 					       hw->name, fifon, rx_skb->len);
921 					i = 0;
922 					while (i < rx_skb->len)
923 						printk("%02x ",
924 						       rx_skb->data[i++]);
925 					printk("\n");
926 				}
927 				skb_trim(rx_skb, 0);
928 			}
929 		}
930 	} else {
931 		/* deliver transparent data to layer2 */
932 		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
933 	}
934 	spin_unlock_irqrestore(&hw->lock, flags);
935 }
936 
937 static void
938 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
939 	      void *buf, int num_packets, int packet_size, int interval,
940 	      usb_complete_t complete, void *context)
941 {
942 	int k;
943 
944 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
945 			  complete, context);
946 
947 	urb->number_of_packets = num_packets;
948 	urb->transfer_flags = URB_ISO_ASAP;
949 	urb->actual_length = 0;
950 	urb->interval = interval;
951 
952 	for (k = 0; k < num_packets; k++) {
953 		urb->iso_frame_desc[k].offset = packet_size * k;
954 		urb->iso_frame_desc[k].length = packet_size;
955 		urb->iso_frame_desc[k].actual_length = 0;
956 	}
957 }
958 
959 /* receive completion routine for all ISO tx fifos   */
960 static void
961 rx_iso_complete(struct urb *urb)
962 {
963 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
964 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
965 	struct hfcsusb *hw = fifo->hw;
966 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
967 		status, iso_status, i;
968 	__u8 *buf;
969 	static __u8 eof[8];
970 	__u8 s0_state;
971 	unsigned long flags;
972 
973 	fifon = fifo->fifonum;
974 	status = urb->status;
975 
976 	spin_lock_irqsave(&hw->lock, flags);
977 	if (fifo->stop_gracefull) {
978 		fifo->stop_gracefull = 0;
979 		fifo->active = 0;
980 		spin_unlock_irqrestore(&hw->lock, flags);
981 		return;
982 	}
983 	spin_unlock_irqrestore(&hw->lock, flags);
984 
985 	/*
986 	 * ISO transfer only partially completed,
987 	 * look at individual frame status for details
988 	 */
989 	if (status == -EXDEV) {
990 		if (debug & DEBUG_HW)
991 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
992 			       "urb->status %d, fifonum %d\n",
993 			       hw->name, __func__,  status, fifon);
994 
995 		/* clear status, so go on with ISO transfers */
996 		status = 0;
997 	}
998 
999 	s0_state = 0;
1000 	if (fifo->active && !status) {
1001 		num_isoc_packets = iso_packets[fifon];
1002 		maxlen = fifo->usb_packet_maxlen;
1003 
1004 		for (k = 0; k < num_isoc_packets; ++k) {
1005 			len = urb->iso_frame_desc[k].actual_length;
1006 			offset = urb->iso_frame_desc[k].offset;
1007 			buf = context_iso_urb->buffer + offset;
1008 			iso_status = urb->iso_frame_desc[k].status;
1009 
1010 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1011 				printk(KERN_DEBUG "%s: %s: "
1012 				       "ISO packet %i, status: %i\n",
1013 				       hw->name, __func__, k, iso_status);
1014 			}
1015 
1016 			/* USB data log for every D ISO in */
1017 			if ((fifon == HFCUSB_D_RX) &&
1018 			    (debug & DBG_HFC_USB_VERBOSE)) {
1019 				printk(KERN_DEBUG
1020 				       "%s: %s: %d (%d/%d) len(%d) ",
1021 				       hw->name, __func__, urb->start_frame,
1022 				       k, num_isoc_packets - 1,
1023 				       len);
1024 				for (i = 0; i < len; i++)
1025 					printk("%x ", buf[i]);
1026 				printk("\n");
1027 			}
1028 
1029 			if (!iso_status) {
1030 				if (fifo->last_urblen != maxlen) {
1031 					/*
1032 					 * save fifo fill-level threshold bits
1033 					 * to use them later in TX ISO URB
1034 					 * completions
1035 					 */
1036 					hw->threshold_mask = buf[1];
1037 
1038 					if (fifon == HFCUSB_D_RX)
1039 						s0_state = (buf[0] >> 4);
1040 
1041 					eof[fifon] = buf[0] & 1;
1042 					if (len > 2)
1043 						hfcsusb_rx_frame(fifo, buf + 2,
1044 								 len - 2, (len < maxlen)
1045 								 ? eof[fifon] : 0);
1046 				} else
1047 					hfcsusb_rx_frame(fifo, buf, len,
1048 							 (len < maxlen) ?
1049 							 eof[fifon] : 0);
1050 				fifo->last_urblen = len;
1051 			}
1052 		}
1053 
1054 		/* signal S0 layer1 state change */
1055 		if ((s0_state) && (hw->initdone) &&
1056 		    (s0_state != hw->dch.state)) {
1057 			hw->dch.state = s0_state;
1058 			schedule_event(&hw->dch, FLG_PHCHANGE);
1059 		}
1060 
1061 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1062 			      context_iso_urb->buffer, num_isoc_packets,
1063 			      fifo->usb_packet_maxlen, fifo->intervall,
1064 			      (usb_complete_t)rx_iso_complete, urb->context);
1065 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1066 		if (errcode < 0) {
1067 			if (debug & DEBUG_HW)
1068 				printk(KERN_DEBUG "%s: %s: error submitting "
1069 				       "ISO URB: %d\n",
1070 				       hw->name, __func__, errcode);
1071 		}
1072 	} else {
1073 		if (status && (debug & DBG_HFC_URB_INFO))
1074 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1075 			       "urb->status %d, fifonum %d\n",
1076 			       hw->name, __func__, status, fifon);
1077 	}
1078 }
1079 
1080 /* receive completion routine for all interrupt rx fifos */
1081 static void
1082 rx_int_complete(struct urb *urb)
1083 {
1084 	int len, status, i;
1085 	__u8 *buf, maxlen, fifon;
1086 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1087 	struct hfcsusb *hw = fifo->hw;
1088 	static __u8 eof[8];
1089 	unsigned long flags;
1090 
1091 	spin_lock_irqsave(&hw->lock, flags);
1092 	if (fifo->stop_gracefull) {
1093 		fifo->stop_gracefull = 0;
1094 		fifo->active = 0;
1095 		spin_unlock_irqrestore(&hw->lock, flags);
1096 		return;
1097 	}
1098 	spin_unlock_irqrestore(&hw->lock, flags);
1099 
1100 	fifon = fifo->fifonum;
1101 	if ((!fifo->active) || (urb->status)) {
1102 		if (debug & DBG_HFC_URB_ERROR)
1103 			printk(KERN_DEBUG
1104 			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1105 			       hw->name, __func__, fifon, urb->status);
1106 
1107 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1108 		return;
1109 	}
1110 	len = urb->actual_length;
1111 	buf = fifo->buffer;
1112 	maxlen = fifo->usb_packet_maxlen;
1113 
1114 	/* USB data log for every D INT in */
1115 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1116 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1117 		       hw->name, __func__, len);
1118 		for (i = 0; i < len; i++)
1119 			printk("%02x ", buf[i]);
1120 		printk("\n");
1121 	}
1122 
1123 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1124 		/* the threshold mask is in the 2nd status byte */
1125 		hw->threshold_mask = buf[1];
1126 
1127 		/* signal S0 layer1 state change */
1128 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1129 			hw->dch.state = (buf[0] >> 4);
1130 			schedule_event(&hw->dch, FLG_PHCHANGE);
1131 		}
1132 
1133 		eof[fifon] = buf[0] & 1;
1134 		/* if we have more than the 2 status bytes -> collect data */
1135 		if (len > 2)
1136 			hfcsusb_rx_frame(fifo, buf + 2,
1137 					 urb->actual_length - 2,
1138 					 (len < maxlen) ? eof[fifon] : 0);
1139 	} else {
1140 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1141 				 (len < maxlen) ? eof[fifon] : 0);
1142 	}
1143 	fifo->last_urblen = urb->actual_length;
1144 
1145 	status = usb_submit_urb(urb, GFP_ATOMIC);
1146 	if (status) {
1147 		if (debug & DEBUG_HW)
1148 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1149 			       hw->name, __func__);
1150 	}
1151 }
1152 
1153 /* transmit completion routine for all ISO tx fifos */
1154 static void
1155 tx_iso_complete(struct urb *urb)
1156 {
1157 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1158 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1159 	struct hfcsusb *hw = fifo->hw;
1160 	struct sk_buff *tx_skb;
1161 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1162 		errcode, hdlc, i;
1163 	int *tx_idx;
1164 	int frame_complete, fifon, status, fillempty = 0;
1165 	__u8 threshbit, *p;
1166 	unsigned long flags;
1167 
1168 	spin_lock_irqsave(&hw->lock, flags);
1169 	if (fifo->stop_gracefull) {
1170 		fifo->stop_gracefull = 0;
1171 		fifo->active = 0;
1172 		spin_unlock_irqrestore(&hw->lock, flags);
1173 		return;
1174 	}
1175 
1176 	if (fifo->dch) {
1177 		tx_skb = fifo->dch->tx_skb;
1178 		tx_idx = &fifo->dch->tx_idx;
1179 		hdlc = 1;
1180 	} else if (fifo->bch) {
1181 		tx_skb = fifo->bch->tx_skb;
1182 		tx_idx = &fifo->bch->tx_idx;
1183 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1184 		if (!tx_skb && !hdlc &&
1185 		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1186 			fillempty = 1;
1187 	} else {
1188 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1189 		       hw->name, __func__);
1190 		spin_unlock_irqrestore(&hw->lock, flags);
1191 		return;
1192 	}
1193 
1194 	fifon = fifo->fifonum;
1195 	status = urb->status;
1196 
1197 	tx_offset = 0;
1198 
1199 	/*
1200 	 * ISO transfer only partially completed,
1201 	 * look at individual frame status for details
1202 	 */
1203 	if (status == -EXDEV) {
1204 		if (debug & DBG_HFC_URB_ERROR)
1205 			printk(KERN_DEBUG "%s: %s: "
1206 			       "-EXDEV (%i) fifon (%d)\n",
1207 			       hw->name, __func__, status, fifon);
1208 
1209 		/* clear status, so go on with ISO transfers */
1210 		status = 0;
1211 	}
1212 
1213 	if (fifo->active && !status) {
1214 		/* is FifoFull-threshold set for our channel? */
1215 		threshbit = (hw->threshold_mask & (1 << fifon));
1216 		num_isoc_packets = iso_packets[fifon];
1217 
1218 		/* predict dataflow to avoid fifo overflow */
1219 		if (fifon >= HFCUSB_D_TX)
1220 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1221 		else
1222 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1223 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1224 			      context_iso_urb->buffer, num_isoc_packets,
1225 			      fifo->usb_packet_maxlen, fifo->intervall,
1226 			      (usb_complete_t)tx_iso_complete, urb->context);
1227 		memset(context_iso_urb->buffer, 0,
1228 		       sizeof(context_iso_urb->buffer));
1229 		frame_complete = 0;
1230 
1231 		for (k = 0; k < num_isoc_packets; ++k) {
1232 			/* analyze tx success of previous ISO packets */
1233 			if (debug & DBG_HFC_URB_ERROR) {
1234 				errcode = urb->iso_frame_desc[k].status;
1235 				if (errcode) {
1236 					printk(KERN_DEBUG "%s: %s: "
1237 					       "ISO packet %i, status: %i\n",
1238 					       hw->name, __func__, k, errcode);
1239 				}
1240 			}
1241 
1242 			/* Generate next ISO Packets */
1243 			if (tx_skb)
1244 				remain = tx_skb->len - *tx_idx;
1245 			else if (fillempty)
1246 				remain = 15; /* > not complete */
1247 			else
1248 				remain = 0;
1249 
1250 			if (remain > 0) {
1251 				fifo->bit_line -= sink;
1252 				current_len = (0 - fifo->bit_line) / 8;
1253 				if (current_len > 14)
1254 					current_len = 14;
1255 				if (current_len < 0)
1256 					current_len = 0;
1257 				if (remain < current_len)
1258 					current_len = remain;
1259 
1260 				/* how much bit do we put on the line? */
1261 				fifo->bit_line += current_len * 8;
1262 
1263 				context_iso_urb->buffer[tx_offset] = 0;
1264 				if (current_len == remain) {
1265 					if (hdlc) {
1266 						/* signal frame completion */
1267 						context_iso_urb->
1268 							buffer[tx_offset] = 1;
1269 						/* add 2 byte flags and 16bit
1270 						 * CRC at end of ISDN frame */
1271 						fifo->bit_line += 32;
1272 					}
1273 					frame_complete = 1;
1274 				}
1275 
1276 				/* copy tx data to iso-urb buffer */
1277 				p = context_iso_urb->buffer + tx_offset + 1;
1278 				if (fillempty) {
1279 					memset(p, fifo->bch->fill[0],
1280 					       current_len);
1281 				} else {
1282 					memcpy(p, (tx_skb->data + *tx_idx),
1283 					       current_len);
1284 					*tx_idx += current_len;
1285 				}
1286 				urb->iso_frame_desc[k].offset = tx_offset;
1287 				urb->iso_frame_desc[k].length = current_len + 1;
1288 
1289 				/* USB data log for every D ISO out */
1290 				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1291 				    (debug & DBG_HFC_USB_VERBOSE)) {
1292 					printk(KERN_DEBUG
1293 					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1294 					       hw->name, __func__,
1295 					       k, num_isoc_packets - 1,
1296 					       urb->iso_frame_desc[k].offset,
1297 					       urb->iso_frame_desc[k].length);
1298 
1299 					for (i = urb->iso_frame_desc[k].offset;
1300 					     i < (urb->iso_frame_desc[k].offset
1301 						  + urb->iso_frame_desc[k].length);
1302 					     i++)
1303 						printk("%x ",
1304 						       context_iso_urb->buffer[i]);
1305 
1306 					printk(" skb->len(%i) tx-idx(%d)\n",
1307 					       tx_skb->len, *tx_idx);
1308 				}
1309 
1310 				tx_offset += (current_len + 1);
1311 			} else {
1312 				urb->iso_frame_desc[k].offset = tx_offset++;
1313 				urb->iso_frame_desc[k].length = 1;
1314 				/* we lower data margin every msec */
1315 				fifo->bit_line -= sink;
1316 				if (fifo->bit_line < BITLINE_INF)
1317 					fifo->bit_line = BITLINE_INF;
1318 			}
1319 
1320 			if (frame_complete) {
1321 				frame_complete = 0;
1322 
1323 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1324 					printk(KERN_DEBUG  "%s: %s: "
1325 					       "fifon(%i) new TX len(%i): ",
1326 					       hw->name, __func__,
1327 					       fifon, tx_skb->len);
1328 					i = 0;
1329 					while (i < tx_skb->len)
1330 						printk("%02x ",
1331 						       tx_skb->data[i++]);
1332 					printk("\n");
1333 				}
1334 
1335 				dev_kfree_skb(tx_skb);
1336 				tx_skb = NULL;
1337 				if (fifo->dch && get_next_dframe(fifo->dch))
1338 					tx_skb = fifo->dch->tx_skb;
1339 				else if (fifo->bch &&
1340 					 get_next_bframe(fifo->bch))
1341 					tx_skb = fifo->bch->tx_skb;
1342 			}
1343 		}
1344 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1345 		if (errcode < 0) {
1346 			if (debug & DEBUG_HW)
1347 				printk(KERN_DEBUG
1348 				       "%s: %s: error submitting ISO URB: %d \n",
1349 				       hw->name, __func__, errcode);
1350 		}
1351 
1352 		/*
1353 		 * abuse DChannel tx iso completion to trigger NT mode state
1354 		 * changes tx_iso_complete is assumed to be called every
1355 		 * fifo->intervall (ms)
1356 		 */
1357 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1358 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1359 			if ((--hw->nt_timer) < 0)
1360 				schedule_event(&hw->dch, FLG_PHCHANGE);
1361 		}
1362 
1363 	} else {
1364 		if (status && (debug & DBG_HFC_URB_ERROR))
1365 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1366 			       "fifonum=%d\n",
1367 			       hw->name, __func__,
1368 			       symbolic(urb_errlist, status), status, fifon);
1369 	}
1370 	spin_unlock_irqrestore(&hw->lock, flags);
1371 }
1372 
1373 /*
1374  * allocs urbs and start isoc transfer with two pending urbs to avoid
1375  * gaps in the transfer chain
1376  */
1377 static int
1378 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1379 		 usb_complete_t complete, int packet_size)
1380 {
1381 	struct hfcsusb *hw = fifo->hw;
1382 	int i, k, errcode;
1383 
1384 	if (debug)
1385 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1386 		       hw->name, __func__, fifo->fifonum);
1387 
1388 	/* allocate Memory for Iso out Urbs */
1389 	for (i = 0; i < 2; i++) {
1390 		if (!(fifo->iso[i].urb)) {
1391 			fifo->iso[i].urb =
1392 				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1393 			if (!(fifo->iso[i].urb)) {
1394 				printk(KERN_DEBUG
1395 				       "%s: %s: alloc urb for fifo %i failed",
1396 				       hw->name, __func__, fifo->fifonum);
1397 				continue;
1398 			}
1399 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1400 			fifo->iso[i].indx = i;
1401 
1402 			/* Init the first iso */
1403 			if (ISO_BUFFER_SIZE >=
1404 			    (fifo->usb_packet_maxlen *
1405 			     num_packets_per_urb)) {
1406 				fill_isoc_urb(fifo->iso[i].urb,
1407 					      fifo->hw->dev, fifo->pipe,
1408 					      fifo->iso[i].buffer,
1409 					      num_packets_per_urb,
1410 					      fifo->usb_packet_maxlen,
1411 					      fifo->intervall, complete,
1412 					      &fifo->iso[i]);
1413 				memset(fifo->iso[i].buffer, 0,
1414 				       sizeof(fifo->iso[i].buffer));
1415 
1416 				for (k = 0; k < num_packets_per_urb; k++) {
1417 					fifo->iso[i].urb->
1418 						iso_frame_desc[k].offset =
1419 						k * packet_size;
1420 					fifo->iso[i].urb->
1421 						iso_frame_desc[k].length =
1422 						packet_size;
1423 				}
1424 			} else {
1425 				printk(KERN_DEBUG
1426 				       "%s: %s: ISO Buffer size to small!\n",
1427 				       hw->name, __func__);
1428 			}
1429 		}
1430 		fifo->bit_line = BITLINE_INF;
1431 
1432 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1433 		fifo->active = (errcode >= 0) ? 1 : 0;
1434 		fifo->stop_gracefull = 0;
1435 		if (errcode < 0) {
1436 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1437 			       hw->name, __func__,
1438 			       symbolic(urb_errlist, errcode), i);
1439 		}
1440 	}
1441 	return fifo->active;
1442 }
1443 
1444 static void
1445 stop_iso_gracefull(struct usb_fifo *fifo)
1446 {
1447 	struct hfcsusb *hw = fifo->hw;
1448 	int i, timeout;
1449 	u_long flags;
1450 
1451 	for (i = 0; i < 2; i++) {
1452 		spin_lock_irqsave(&hw->lock, flags);
1453 		if (debug)
1454 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1455 			       hw->name, __func__, fifo->fifonum, i);
1456 		fifo->stop_gracefull = 1;
1457 		spin_unlock_irqrestore(&hw->lock, flags);
1458 	}
1459 
1460 	for (i = 0; i < 2; i++) {
1461 		timeout = 3;
1462 		while (fifo->stop_gracefull && timeout--)
1463 			schedule_timeout_interruptible((HZ / 1000) * 16);
1464 		if (debug && fifo->stop_gracefull)
1465 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1466 			       hw->name, __func__, fifo->fifonum, i);
1467 	}
1468 }
1469 
1470 static void
1471 stop_int_gracefull(struct usb_fifo *fifo)
1472 {
1473 	struct hfcsusb *hw = fifo->hw;
1474 	int timeout;
1475 	u_long flags;
1476 
1477 	spin_lock_irqsave(&hw->lock, flags);
1478 	if (debug)
1479 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1480 		       hw->name, __func__, fifo->fifonum);
1481 	fifo->stop_gracefull = 1;
1482 	spin_unlock_irqrestore(&hw->lock, flags);
1483 
1484 	timeout = 3;
1485 	while (fifo->stop_gracefull && timeout--)
1486 		schedule_timeout_interruptible((HZ / 1000) * 3);
1487 	if (debug && fifo->stop_gracefull)
1488 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1489 		       hw->name, __func__, fifo->fifonum);
1490 }
1491 
1492 /* start the interrupt transfer for the given fifo */
1493 static void
1494 start_int_fifo(struct usb_fifo *fifo)
1495 {
1496 	struct hfcsusb *hw = fifo->hw;
1497 	int errcode;
1498 
1499 	if (debug)
1500 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1501 		       hw->name, __func__, fifo->fifonum);
1502 
1503 	if (!fifo->urb) {
1504 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1505 		if (!fifo->urb)
1506 			return;
1507 	}
1508 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1509 			 fifo->buffer, fifo->usb_packet_maxlen,
1510 			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1511 	fifo->active = 1;
1512 	fifo->stop_gracefull = 0;
1513 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1514 	if (errcode) {
1515 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1516 		       hw->name, __func__, errcode);
1517 		fifo->active = 0;
1518 	}
1519 }
1520 
1521 static void
1522 setPortMode(struct hfcsusb *hw)
1523 {
1524 	if (debug & DEBUG_HW)
1525 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1526 		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1527 
1528 	if (hw->protocol == ISDN_P_TE_S0) {
1529 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1530 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1531 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1532 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1533 		write_reg(hw, HFCUSB_STATES, 3);
1534 	} else {
1535 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1536 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1537 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1538 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1539 		write_reg(hw, HFCUSB_STATES, 1);
1540 	}
1541 }
1542 
1543 static void
1544 reset_hfcsusb(struct hfcsusb *hw)
1545 {
1546 	struct usb_fifo *fifo;
1547 	int i;
1548 
1549 	if (debug & DEBUG_HW)
1550 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1551 
1552 	/* do Chip reset */
1553 	write_reg(hw, HFCUSB_CIRM, 8);
1554 
1555 	/* aux = output, reset off */
1556 	write_reg(hw, HFCUSB_CIRM, 0x10);
1557 
1558 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1559 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1560 		  ((hw->packet_size / 8) << 4));
1561 
1562 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1563 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1564 
1565 	/* enable PCM/GCI master mode */
1566 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1567 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1568 
1569 	/* init the fifos */
1570 	write_reg(hw, HFCUSB_F_THRES,
1571 		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1572 
1573 	fifo = hw->fifos;
1574 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1575 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1576 		fifo[i].max_size =
1577 			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1578 		fifo[i].last_urblen = 0;
1579 
1580 		/* set 2 bit for D- & E-channel */
1581 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1582 
1583 		/* enable all fifos */
1584 		if (i == HFCUSB_D_TX)
1585 			write_reg(hw, HFCUSB_CON_HDLC,
1586 				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1587 		else
1588 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1589 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1590 	}
1591 
1592 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1593 	handle_led(hw, LED_POWER_ON);
1594 }
1595 
1596 /* start USB data pipes dependand on device's endpoint configuration */
1597 static void
1598 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1599 {
1600 	/* quick check if endpoint already running */
1601 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1602 		return;
1603 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1604 		return;
1605 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1606 		return;
1607 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1608 		return;
1609 
1610 	/* start rx endpoints using USB INT IN method */
1611 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1612 		start_int_fifo(hw->fifos + channel * 2 + 1);
1613 
1614 	/* start rx endpoints using USB ISO IN method */
1615 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1616 		switch (channel) {
1617 		case HFC_CHAN_D:
1618 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1619 					 ISOC_PACKETS_D,
1620 					 (usb_complete_t)rx_iso_complete,
1621 					 16);
1622 			break;
1623 		case HFC_CHAN_E:
1624 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1625 					 ISOC_PACKETS_D,
1626 					 (usb_complete_t)rx_iso_complete,
1627 					 16);
1628 			break;
1629 		case HFC_CHAN_B1:
1630 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1631 					 ISOC_PACKETS_B,
1632 					 (usb_complete_t)rx_iso_complete,
1633 					 16);
1634 			break;
1635 		case HFC_CHAN_B2:
1636 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1637 					 ISOC_PACKETS_B,
1638 					 (usb_complete_t)rx_iso_complete,
1639 					 16);
1640 			break;
1641 		}
1642 	}
1643 
1644 	/* start tx endpoints using USB ISO OUT method */
1645 	switch (channel) {
1646 	case HFC_CHAN_D:
1647 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1648 				 ISOC_PACKETS_B,
1649 				 (usb_complete_t)tx_iso_complete, 1);
1650 		break;
1651 	case HFC_CHAN_B1:
1652 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1653 				 ISOC_PACKETS_D,
1654 				 (usb_complete_t)tx_iso_complete, 1);
1655 		break;
1656 	case HFC_CHAN_B2:
1657 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1658 				 ISOC_PACKETS_B,
1659 				 (usb_complete_t)tx_iso_complete, 1);
1660 		break;
1661 	}
1662 }
1663 
1664 /* stop USB data pipes dependand on device's endpoint configuration */
1665 static void
1666 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1667 {
1668 	/* quick check if endpoint currently running */
1669 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1670 		return;
1671 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1672 		return;
1673 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1674 		return;
1675 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1676 		return;
1677 
1678 	/* rx endpoints using USB INT IN method */
1679 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1680 		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1681 
1682 	/* rx endpoints using USB ISO IN method */
1683 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1684 		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1685 
1686 	/* tx endpoints using USB ISO OUT method */
1687 	if (channel != HFC_CHAN_E)
1688 		stop_iso_gracefull(hw->fifos + channel * 2);
1689 }
1690 
1691 
1692 /* Hardware Initialization */
1693 static int
1694 setup_hfcsusb(struct hfcsusb *hw)
1695 {
1696 	void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1697 	u_char b;
1698 	int ret;
1699 
1700 	if (debug & DBG_HFC_CALL_TRACE)
1701 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1702 
1703 	if (!dmabuf)
1704 		return -ENOMEM;
1705 
1706 	ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1707 
1708 	memcpy(&b, dmabuf, sizeof(u_char));
1709 	kfree(dmabuf);
1710 
1711 	/* check the chip id */
1712 	if (ret != 1) {
1713 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1714 		       hw->name, __func__);
1715 		return 1;
1716 	}
1717 	if (b != HFCUSB_CHIPID) {
1718 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1719 		       hw->name, __func__, b);
1720 		return 1;
1721 	}
1722 
1723 	/* first set the needed config, interface and alternate */
1724 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1725 
1726 	hw->led_state = 0;
1727 
1728 	/* init the background machinery for control requests */
1729 	hw->ctrl_read.bRequestType = 0xc0;
1730 	hw->ctrl_read.bRequest = 1;
1731 	hw->ctrl_read.wLength = cpu_to_le16(1);
1732 	hw->ctrl_write.bRequestType = 0x40;
1733 	hw->ctrl_write.bRequest = 0;
1734 	hw->ctrl_write.wLength = 0;
1735 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1736 			     (u_char *)&hw->ctrl_write, NULL, 0,
1737 			     (usb_complete_t)ctrl_complete, hw);
1738 
1739 	reset_hfcsusb(hw);
1740 	return 0;
1741 }
1742 
1743 static void
1744 release_hw(struct hfcsusb *hw)
1745 {
1746 	if (debug & DBG_HFC_CALL_TRACE)
1747 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1748 
1749 	/*
1750 	 * stop all endpoints gracefully
1751 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1752 	 *       signals after calling mISDN_unregister_device()
1753 	 */
1754 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1755 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1756 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1757 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1758 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1759 	if (hw->protocol == ISDN_P_TE_S0)
1760 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1761 
1762 	mISDN_unregister_device(&hw->dch.dev);
1763 	mISDN_freebchannel(&hw->bch[1]);
1764 	mISDN_freebchannel(&hw->bch[0]);
1765 	mISDN_freedchannel(&hw->dch);
1766 
1767 	if (hw->ctrl_urb) {
1768 		usb_kill_urb(hw->ctrl_urb);
1769 		usb_free_urb(hw->ctrl_urb);
1770 		hw->ctrl_urb = NULL;
1771 	}
1772 
1773 	if (hw->intf)
1774 		usb_set_intfdata(hw->intf, NULL);
1775 	list_del(&hw->list);
1776 	kfree(hw);
1777 	hw = NULL;
1778 }
1779 
1780 static void
1781 deactivate_bchannel(struct bchannel *bch)
1782 {
1783 	struct hfcsusb *hw = bch->hw;
1784 	u_long flags;
1785 
1786 	if (bch->debug & DEBUG_HW)
1787 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1788 		       hw->name, __func__, bch->nr);
1789 
1790 	spin_lock_irqsave(&hw->lock, flags);
1791 	mISDN_clear_bchannel(bch);
1792 	spin_unlock_irqrestore(&hw->lock, flags);
1793 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1794 	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1795 }
1796 
1797 /*
1798  * Layer 1 B-channel hardware access
1799  */
1800 static int
1801 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1802 {
1803 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1804 	int		ret = -EINVAL;
1805 
1806 	if (bch->debug & DEBUG_HW)
1807 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1808 
1809 	switch (cmd) {
1810 	case HW_TESTRX_RAW:
1811 	case HW_TESTRX_HDLC:
1812 	case HW_TESTRX_OFF:
1813 		ret = -EINVAL;
1814 		break;
1815 
1816 	case CLOSE_CHANNEL:
1817 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1818 		deactivate_bchannel(bch);
1819 		ch->protocol = ISDN_P_NONE;
1820 		ch->peer = NULL;
1821 		module_put(THIS_MODULE);
1822 		ret = 0;
1823 		break;
1824 	case CONTROL_CHANNEL:
1825 		ret = channel_bctrl(bch, arg);
1826 		break;
1827 	default:
1828 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1829 		       __func__, cmd);
1830 	}
1831 	return ret;
1832 }
1833 
1834 static int
1835 setup_instance(struct hfcsusb *hw, struct device *parent)
1836 {
1837 	u_long	flags;
1838 	int	err, i;
1839 
1840 	if (debug & DBG_HFC_CALL_TRACE)
1841 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1842 
1843 	spin_lock_init(&hw->ctrl_lock);
1844 	spin_lock_init(&hw->lock);
1845 
1846 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1847 	hw->dch.debug = debug & 0xFFFF;
1848 	hw->dch.hw = hw;
1849 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1850 	hw->dch.dev.D.send = hfcusb_l2l1D;
1851 	hw->dch.dev.D.ctrl = hfc_dctrl;
1852 
1853 	/* enable E-Channel logging */
1854 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1855 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1856 
1857 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1858 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1859 	hw->dch.dev.nrbchan = 2;
1860 	for (i = 0; i < 2; i++) {
1861 		hw->bch[i].nr = i + 1;
1862 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1863 		hw->bch[i].debug = debug;
1864 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1865 		hw->bch[i].hw = hw;
1866 		hw->bch[i].ch.send = hfcusb_l2l1B;
1867 		hw->bch[i].ch.ctrl = hfc_bctrl;
1868 		hw->bch[i].ch.nr = i + 1;
1869 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1870 	}
1871 
1872 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1873 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1874 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1875 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1876 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1877 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1878 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1879 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1880 
1881 	err = setup_hfcsusb(hw);
1882 	if (err)
1883 		goto out;
1884 
1885 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1886 		 hfcsusb_cnt + 1);
1887 	printk(KERN_INFO "%s: registered as '%s'\n",
1888 	       DRIVER_NAME, hw->name);
1889 
1890 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1891 	if (err)
1892 		goto out;
1893 
1894 	hfcsusb_cnt++;
1895 	write_lock_irqsave(&HFClock, flags);
1896 	list_add_tail(&hw->list, &HFClist);
1897 	write_unlock_irqrestore(&HFClock, flags);
1898 	return 0;
1899 
1900 out:
1901 	mISDN_freebchannel(&hw->bch[1]);
1902 	mISDN_freebchannel(&hw->bch[0]);
1903 	mISDN_freedchannel(&hw->dch);
1904 	kfree(hw);
1905 	return err;
1906 }
1907 
1908 static int
1909 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1910 {
1911 	struct hfcsusb			*hw;
1912 	struct usb_device		*dev = interface_to_usbdev(intf);
1913 	struct usb_host_interface	*iface = intf->cur_altsetting;
1914 	struct usb_host_interface	*iface_used = NULL;
1915 	struct usb_host_endpoint	*ep;
1916 	struct hfcsusb_vdata		*driver_info;
1917 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1918 		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1919 		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1920 		alt_used = 0;
1921 
1922 	vend_idx = 0xffff;
1923 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1924 		if ((le16_to_cpu(dev->descriptor.idVendor)
1925 		     == hfcsusb_idtab[i].idVendor) &&
1926 		    (le16_to_cpu(dev->descriptor.idProduct)
1927 		     == hfcsusb_idtab[i].idProduct)) {
1928 			vend_idx = i;
1929 			continue;
1930 		}
1931 	}
1932 
1933 	printk(KERN_DEBUG
1934 	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1935 	       __func__, ifnum, iface->desc.bAlternateSetting,
1936 	       intf->minor, vend_idx);
1937 
1938 	if (vend_idx == 0xffff) {
1939 		printk(KERN_WARNING
1940 		       "%s: no valid vendor found in USB descriptor\n",
1941 		       __func__);
1942 		return -EIO;
1943 	}
1944 	/* if vendor and product ID is OK, start probing alternate settings */
1945 	alt_idx = 0;
1946 	small_match = -1;
1947 
1948 	/* default settings */
1949 	iso_packet_size = 16;
1950 	packet_size = 64;
1951 
1952 	while (alt_idx < intf->num_altsetting) {
1953 		iface = intf->altsetting + alt_idx;
1954 		probe_alt_setting = iface->desc.bAlternateSetting;
1955 		cfg_used = 0;
1956 
1957 		while (validconf[cfg_used][0]) {
1958 			cfg_found = 1;
1959 			vcf = validconf[cfg_used];
1960 			ep = iface->endpoint;
1961 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1962 
1963 			/* check for all endpoints in this alternate setting */
1964 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1965 				ep_addr = ep->desc.bEndpointAddress;
1966 
1967 				/* get endpoint base */
1968 				idx = ((ep_addr & 0x7f) - 1) * 2;
1969 				if (idx > 15)
1970 					return -EIO;
1971 
1972 				if (ep_addr & 0x80)
1973 					idx++;
1974 				attr = ep->desc.bmAttributes;
1975 
1976 				if (cmptbl[idx] != EP_NOP) {
1977 					if (cmptbl[idx] == EP_NUL)
1978 						cfg_found = 0;
1979 					if (attr == USB_ENDPOINT_XFER_INT
1980 					    && cmptbl[idx] == EP_INT)
1981 						cmptbl[idx] = EP_NUL;
1982 					if (attr == USB_ENDPOINT_XFER_BULK
1983 					    && cmptbl[idx] == EP_BLK)
1984 						cmptbl[idx] = EP_NUL;
1985 					if (attr == USB_ENDPOINT_XFER_ISOC
1986 					    && cmptbl[idx] == EP_ISO)
1987 						cmptbl[idx] = EP_NUL;
1988 
1989 					if (attr == USB_ENDPOINT_XFER_INT &&
1990 					    ep->desc.bInterval < vcf[17]) {
1991 						cfg_found = 0;
1992 					}
1993 				}
1994 				ep++;
1995 			}
1996 
1997 			for (i = 0; i < 16; i++)
1998 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1999 					cfg_found = 0;
2000 
2001 			if (cfg_found) {
2002 				if (small_match < cfg_used) {
2003 					small_match = cfg_used;
2004 					alt_used = probe_alt_setting;
2005 					iface_used = iface;
2006 				}
2007 			}
2008 			cfg_used++;
2009 		}
2010 		alt_idx++;
2011 	}	/* (alt_idx < intf->num_altsetting) */
2012 
2013 	/* not found a valid USB Ta Endpoint config */
2014 	if (small_match == -1)
2015 		return -EIO;
2016 
2017 	iface = iface_used;
2018 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2019 	if (!hw)
2020 		return -ENOMEM;	/* got no mem */
2021 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2022 
2023 	ep = iface->endpoint;
2024 	vcf = validconf[small_match];
2025 
2026 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2027 		struct usb_fifo *f;
2028 
2029 		ep_addr = ep->desc.bEndpointAddress;
2030 		/* get endpoint base */
2031 		idx = ((ep_addr & 0x7f) - 1) * 2;
2032 		if (ep_addr & 0x80)
2033 			idx++;
2034 		f = &hw->fifos[idx & 7];
2035 
2036 		/* init Endpoints */
2037 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2038 			ep++;
2039 			continue;
2040 		}
2041 		switch (ep->desc.bmAttributes) {
2042 		case USB_ENDPOINT_XFER_INT:
2043 			f->pipe = usb_rcvintpipe(dev,
2044 						 ep->desc.bEndpointAddress);
2045 			f->usb_transfer_mode = USB_INT;
2046 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2047 			break;
2048 		case USB_ENDPOINT_XFER_BULK:
2049 			if (ep_addr & 0x80)
2050 				f->pipe = usb_rcvbulkpipe(dev,
2051 							  ep->desc.bEndpointAddress);
2052 			else
2053 				f->pipe = usb_sndbulkpipe(dev,
2054 							  ep->desc.bEndpointAddress);
2055 			f->usb_transfer_mode = USB_BULK;
2056 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2057 			break;
2058 		case USB_ENDPOINT_XFER_ISOC:
2059 			if (ep_addr & 0x80)
2060 				f->pipe = usb_rcvisocpipe(dev,
2061 							  ep->desc.bEndpointAddress);
2062 			else
2063 				f->pipe = usb_sndisocpipe(dev,
2064 							  ep->desc.bEndpointAddress);
2065 			f->usb_transfer_mode = USB_ISOC;
2066 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2067 			break;
2068 		default:
2069 			f->pipe = 0;
2070 		}
2071 
2072 		if (f->pipe) {
2073 			f->fifonum = idx & 7;
2074 			f->hw = hw;
2075 			f->usb_packet_maxlen =
2076 				le16_to_cpu(ep->desc.wMaxPacketSize);
2077 			f->intervall = ep->desc.bInterval;
2078 		}
2079 		ep++;
2080 	}
2081 	hw->dev = dev; /* save device */
2082 	hw->if_used = ifnum; /* save used interface */
2083 	hw->alt_used = alt_used; /* and alternate config */
2084 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2085 	hw->cfg_used = vcf[16];	/* store used config */
2086 	hw->vend_idx = vend_idx; /* store found vendor */
2087 	hw->packet_size = packet_size;
2088 	hw->iso_packet_size = iso_packet_size;
2089 
2090 	/* create the control pipes needed for register access */
2091 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2092 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2093 
2094 	driver_info = (struct hfcsusb_vdata *)
2095 		      hfcsusb_idtab[vend_idx].driver_info;
2096 
2097 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2098 	if (!hw->ctrl_urb) {
2099 		pr_warn("%s: No memory for control urb\n",
2100 			driver_info->vend_name);
2101 		kfree(hw);
2102 		return -ENOMEM;
2103 	}
2104 
2105 	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2106 		hw->name, __func__, driver_info->vend_name,
2107 		conf_str[small_match], ifnum, alt_used);
2108 
2109 	if (setup_instance(hw, dev->dev.parent))
2110 		return -EIO;
2111 
2112 	hw->intf = intf;
2113 	usb_set_intfdata(hw->intf, hw);
2114 	return 0;
2115 }
2116 
2117 /* function called when an active device is removed */
2118 static void
2119 hfcsusb_disconnect(struct usb_interface *intf)
2120 {
2121 	struct hfcsusb *hw = usb_get_intfdata(intf);
2122 	struct hfcsusb *next;
2123 	int cnt = 0;
2124 
2125 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2126 
2127 	handle_led(hw, LED_POWER_OFF);
2128 	release_hw(hw);
2129 
2130 	list_for_each_entry_safe(hw, next, &HFClist, list)
2131 		cnt++;
2132 	if (!cnt)
2133 		hfcsusb_cnt = 0;
2134 
2135 	usb_set_intfdata(intf, NULL);
2136 }
2137 
2138 static struct usb_driver hfcsusb_drv = {
2139 	.name = DRIVER_NAME,
2140 	.id_table = hfcsusb_idtab,
2141 	.probe = hfcsusb_probe,
2142 	.disconnect = hfcsusb_disconnect,
2143 	.disable_hub_initiated_lpm = 1,
2144 };
2145 
2146 module_usb_driver(hfcsusb_drv);
2147