1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  */
31 
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/usb.h>
35 #include <linux/mISDNhw.h>
36 #include "hfcsusb.h"
37 
38 static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
39 
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42 
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45 
46 
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51 
52 static int hfcsusb_cnt;
53 
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64 
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69 	if (debug & DBG_HFC_CALL_TRACE)
70 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71 
72 	if (hw->ctrl_cnt) {
73 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 		hw->ctrl_urb->transfer_buffer = NULL;
76 		hw->ctrl_urb->transfer_buffer_length = 0;
77 		hw->ctrl_write.wIndex =
78 		    cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 		hw->ctrl_write.wValue =
80 		    cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81 
82 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83 	}
84 }
85 
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92 	struct ctrl_buf *buf;
93 
94 	if (debug & DBG_HFC_CALL_TRACE)
95 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 			hw->name, __func__, reg, val);
97 
98 	spin_lock(&hw->ctrl_lock);
99 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE)
100 		return 1;
101 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
102 	buf->hfcs_reg = reg;
103 	buf->reg_val = val;
104 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
105 		hw->ctrl_in_idx = 0;
106 	if (++hw->ctrl_cnt == 1)
107 		ctrl_start_transfer(hw);
108 	spin_unlock(&hw->ctrl_lock);
109 
110 	return 0;
111 }
112 
113 /* control completion routine handling background control cmds */
114 static void
115 ctrl_complete(struct urb *urb)
116 {
117 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
118 	struct ctrl_buf *buf;
119 
120 	if (debug & DBG_HFC_CALL_TRACE)
121 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
122 
123 	urb->dev = hw->dev;
124 	if (hw->ctrl_cnt) {
125 		buf = &hw->ctrl_buff[hw->ctrl_out_idx];
126 		hw->ctrl_cnt--;	/* decrement actual count */
127 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 			hw->ctrl_out_idx = 0;	/* pointer wrap */
129 
130 		ctrl_start_transfer(hw); /* start next transfer */
131 	}
132 }
133 
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138 	if (set_on) {
139 		if (led_bits < 0)
140 			hw->led_state &= ~abs(led_bits);
141 		else
142 			hw->led_state |= led_bits;
143 	} else {
144 		if (led_bits < 0)
145 			hw->led_state |= abs(led_bits);
146 		else
147 			hw->led_state &= ~led_bits;
148 	}
149 }
150 
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 		hfcsusb_idtab[hw->vend_idx].driver_info;
157 	__u8 tmpled;
158 
159 	if (driver_info->led_scheme == LED_OFF)
160 		return;
161 	tmpled = hw->led_state;
162 
163 	switch (event) {
164 	case LED_POWER_ON:
165 		set_led_bit(hw, driver_info->led_bits[0], 1);
166 		set_led_bit(hw, driver_info->led_bits[1], 0);
167 		set_led_bit(hw, driver_info->led_bits[2], 0);
168 		set_led_bit(hw, driver_info->led_bits[3], 0);
169 		break;
170 	case LED_POWER_OFF:
171 		set_led_bit(hw, driver_info->led_bits[0], 0);
172 		set_led_bit(hw, driver_info->led_bits[1], 0);
173 		set_led_bit(hw, driver_info->led_bits[2], 0);
174 		set_led_bit(hw, driver_info->led_bits[3], 0);
175 		break;
176 	case LED_S0_ON:
177 		set_led_bit(hw, driver_info->led_bits[1], 1);
178 		break;
179 	case LED_S0_OFF:
180 		set_led_bit(hw, driver_info->led_bits[1], 0);
181 		break;
182 	case LED_B1_ON:
183 		set_led_bit(hw, driver_info->led_bits[2], 1);
184 		break;
185 	case LED_B1_OFF:
186 		set_led_bit(hw, driver_info->led_bits[2], 0);
187 		break;
188 	case LED_B2_ON:
189 		set_led_bit(hw, driver_info->led_bits[3], 1);
190 		break;
191 	case LED_B2_OFF:
192 		set_led_bit(hw, driver_info->led_bits[3], 0);
193 		break;
194 	}
195 
196 	if (hw->led_state != tmpled) {
197 		if (debug & DBG_HFC_CALL_TRACE)
198 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 			    hw->name, __func__,
200 			    HFCUSB_P_DATA, hw->led_state);
201 
202 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203 	}
204 }
205 
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
213 	struct hfcsusb		*hw = bch->hw;
214 	int			ret = -EINVAL;
215 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
216 	u_long			flags;
217 
218 	if (debug & DBG_HFC_CALL_TRACE)
219 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220 
221 	switch (hh->prim) {
222 	case PH_DATA_REQ:
223 		spin_lock_irqsave(&hw->lock, flags);
224 		ret = bchannel_senddata(bch, skb);
225 		spin_unlock_irqrestore(&hw->lock, flags);
226 		if (debug & DBG_HFC_CALL_TRACE)
227 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 				hw->name, __func__, ret);
229 		if (ret > 0) {
230 			/*
231 			 * other l1 drivers don't send early confirms on
232 			 * transp data, but hfcsusb does because tx_next
233 			 * skb is needed in tx_iso_complete()
234 			 */
235 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
236 			ret = 0;
237 		}
238 		return ret;
239 	case PH_ACTIVATE_REQ:
240 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
241 			hfcsusb_start_endpoint(hw, bch->nr);
242 			ret = hfcsusb_setup_bch(bch, ch->protocol);
243 		} else
244 			ret = 0;
245 		if (!ret)
246 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
247 				0, NULL, GFP_KERNEL);
248 		break;
249 	case PH_DEACTIVATE_REQ:
250 		deactivate_bchannel(bch);
251 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
252 			0, NULL, GFP_KERNEL);
253 		ret = 0;
254 		break;
255 	}
256 	if (!ret)
257 		dev_kfree_skb(skb);
258 	return ret;
259 }
260 
261 /*
262  * send full D/B channel status information
263  * as MPH_INFORMATION_IND
264  */
265 static void
266 hfcsusb_ph_info(struct hfcsusb *hw)
267 {
268 	struct ph_info *phi;
269 	struct dchannel *dch = &hw->dch;
270 	int i;
271 
272 	phi = kzalloc(sizeof(struct ph_info) +
273 		dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
274 	phi->dch.ch.protocol = hw->protocol;
275 	phi->dch.ch.Flags = dch->Flags;
276 	phi->dch.state = dch->state;
277 	phi->dch.num_bch = dch->dev.nrbchan;
278 	for (i = 0; i < dch->dev.nrbchan; i++) {
279 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
280 		phi->bch[i].Flags = hw->bch[i].Flags;
281 	}
282 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
283 		sizeof(struct ph_info_dch) + dch->dev.nrbchan *
284 		sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
285 }
286 
287 /*
288  * Layer2 -> Layer 1 Dchannel data
289  */
290 static int
291 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
292 {
293 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
294 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
295 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
296 	struct hfcsusb		*hw = dch->hw;
297 	int			ret = -EINVAL;
298 	u_long			flags;
299 
300 	switch (hh->prim) {
301 	case PH_DATA_REQ:
302 		if (debug & DBG_HFC_CALL_TRACE)
303 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
304 				hw->name, __func__);
305 
306 		spin_lock_irqsave(&hw->lock, flags);
307 		ret = dchannel_senddata(dch, skb);
308 		spin_unlock_irqrestore(&hw->lock, flags);
309 		if (ret > 0) {
310 			ret = 0;
311 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
312 		}
313 		break;
314 
315 	case PH_ACTIVATE_REQ:
316 		if (debug & DBG_HFC_CALL_TRACE)
317 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
318 				hw->name, __func__,
319 				(hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
320 
321 		if (hw->protocol == ISDN_P_NT_S0) {
322 			ret = 0;
323 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
324 				_queue_data(&dch->dev.D,
325 					PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
326 					NULL, GFP_ATOMIC);
327 			} else {
328 				hfcsusb_ph_command(hw,
329 					HFC_L1_ACTIVATE_NT);
330 				test_and_set_bit(FLG_L2_ACTIVATED,
331 					&dch->Flags);
332 			}
333 		} else {
334 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
335 			ret = l1_event(dch->l1, hh->prim);
336 		}
337 		break;
338 
339 	case PH_DEACTIVATE_REQ:
340 		if (debug & DBG_HFC_CALL_TRACE)
341 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
342 				hw->name, __func__);
343 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
344 
345 		if (hw->protocol == ISDN_P_NT_S0) {
346 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
347 			spin_lock_irqsave(&hw->lock, flags);
348 			skb_queue_purge(&dch->squeue);
349 			if (dch->tx_skb) {
350 				dev_kfree_skb(dch->tx_skb);
351 				dch->tx_skb = NULL;
352 			}
353 			dch->tx_idx = 0;
354 			if (dch->rx_skb) {
355 				dev_kfree_skb(dch->rx_skb);
356 				dch->rx_skb = NULL;
357 			}
358 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
359 			spin_unlock_irqrestore(&hw->lock, flags);
360 #ifdef FIXME
361 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
362 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
363 #endif
364 			ret = 0;
365 		} else
366 			ret = l1_event(dch->l1, hh->prim);
367 		break;
368 	case MPH_INFORMATION_REQ:
369 		hfcsusb_ph_info(hw);
370 		ret = 0;
371 		break;
372 	}
373 
374 	return ret;
375 }
376 
377 /*
378  * Layer 1 callback function
379  */
380 static int
381 hfc_l1callback(struct dchannel *dch, u_int cmd)
382 {
383 	struct hfcsusb *hw = dch->hw;
384 
385 	if (debug & DBG_HFC_CALL_TRACE)
386 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
387 			hw->name, __func__, cmd);
388 
389 	switch (cmd) {
390 	case INFO3_P8:
391 	case INFO3_P10:
392 	case HW_RESET_REQ:
393 	case HW_POWERUP_REQ:
394 		break;
395 
396 	case HW_DEACT_REQ:
397 		skb_queue_purge(&dch->squeue);
398 		if (dch->tx_skb) {
399 			dev_kfree_skb(dch->tx_skb);
400 			dch->tx_skb = NULL;
401 		}
402 		dch->tx_idx = 0;
403 		if (dch->rx_skb) {
404 			dev_kfree_skb(dch->rx_skb);
405 			dch->rx_skb = NULL;
406 		}
407 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
408 		break;
409 	case PH_ACTIVATE_IND:
410 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
411 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
412 			GFP_ATOMIC);
413 		break;
414 	case PH_DEACTIVATE_IND:
415 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
416 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
417 			GFP_ATOMIC);
418 		break;
419 	default:
420 		if (dch->debug & DEBUG_HW)
421 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
422 			hw->name, __func__, cmd);
423 		return -1;
424 	}
425 	hfcsusb_ph_info(hw);
426 	return 0;
427 }
428 
429 static int
430 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
431     struct channel_req *rq)
432 {
433 	int err = 0;
434 
435 	if (debug & DEBUG_HW_OPEN)
436 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
437 		    hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
438 		    __builtin_return_address(0));
439 	if (rq->protocol == ISDN_P_NONE)
440 		return -EINVAL;
441 
442 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
443 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
444 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
445 
446 	/* E-Channel logging */
447 	if (rq->adr.channel == 1) {
448 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
449 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
450 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
451 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
452 				     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
453 		} else
454 			return -EINVAL;
455 	}
456 
457 	if (!hw->initdone) {
458 		hw->protocol = rq->protocol;
459 		if (rq->protocol == ISDN_P_TE_S0) {
460 			err = create_l1(&hw->dch, hfc_l1callback);
461 			if (err)
462 				return err;
463 		}
464 		setPortMode(hw);
465 		ch->protocol = rq->protocol;
466 		hw->initdone = 1;
467 	} else {
468 		if (rq->protocol != ch->protocol)
469 			return -EPROTONOSUPPORT;
470 	}
471 
472 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
473 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
474 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
475 		    0, NULL, GFP_KERNEL);
476 	rq->ch = ch;
477 	if (!try_module_get(THIS_MODULE))
478 		printk(KERN_WARNING "%s: %s: cannot get module\n",
479 		    hw->name, __func__);
480 	return 0;
481 }
482 
483 static int
484 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
485 {
486 	struct bchannel		*bch;
487 
488 	if (rq->adr.channel > 2)
489 		return -EINVAL;
490 	if (rq->protocol == ISDN_P_NONE)
491 		return -EINVAL;
492 
493 	if (debug & DBG_HFC_CALL_TRACE)
494 		printk(KERN_DEBUG "%s: %s B%i\n",
495 			hw->name, __func__, rq->adr.channel);
496 
497 	bch = &hw->bch[rq->adr.channel - 1];
498 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
499 		return -EBUSY; /* b-channel can be only open once */
500 	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
501 	bch->ch.protocol = rq->protocol;
502 	rq->ch = &bch->ch;
503 
504 	/* start USB endpoint for bchannel */
505 	if (rq->adr.channel  == 1)
506 		hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
507 	else
508 		hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
509 
510 	if (!try_module_get(THIS_MODULE))
511 		printk(KERN_WARNING "%s: %s:cannot get module\n",
512 		    hw->name, __func__);
513 	return 0;
514 }
515 
516 static int
517 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
518 {
519 	int ret = 0;
520 
521 	if (debug & DBG_HFC_CALL_TRACE)
522 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
523 		    hw->name, __func__, (cq->op), (cq->channel));
524 
525 	switch (cq->op) {
526 	case MISDN_CTRL_GETOP:
527 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
528 			 MISDN_CTRL_DISCONNECT;
529 		break;
530 	default:
531 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
532 			hw->name, __func__, cq->op);
533 		ret = -EINVAL;
534 		break;
535 	}
536 	return ret;
537 }
538 
539 /*
540  * device control function
541  */
542 static int
543 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
544 {
545 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
546 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
547 	struct hfcsusb		*hw = dch->hw;
548 	struct channel_req	*rq;
549 	int			err = 0;
550 
551 	if (dch->debug & DEBUG_HW)
552 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
553 		    hw->name, __func__, cmd, arg);
554 	switch (cmd) {
555 	case OPEN_CHANNEL:
556 		rq = arg;
557 		if ((rq->protocol == ISDN_P_TE_S0) ||
558 		    (rq->protocol == ISDN_P_NT_S0))
559 			err = open_dchannel(hw, ch, rq);
560 		else
561 			err = open_bchannel(hw, rq);
562 		if (!err)
563 			hw->open++;
564 		break;
565 	case CLOSE_CHANNEL:
566 		hw->open--;
567 		if (debug & DEBUG_HW_OPEN)
568 			printk(KERN_DEBUG
569 				"%s: %s: dev(%d) close from %p (open %d)\n",
570 				hw->name, __func__, hw->dch.dev.id,
571 				__builtin_return_address(0), hw->open);
572 		if (!hw->open) {
573 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
574 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
575 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
576 			handle_led(hw, LED_POWER_ON);
577 		}
578 		module_put(THIS_MODULE);
579 		break;
580 	case CONTROL_CHANNEL:
581 		err = channel_ctrl(hw, arg);
582 		break;
583 	default:
584 		if (dch->debug & DEBUG_HW)
585 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
586 				hw->name, __func__, cmd);
587 		return -EINVAL;
588 	}
589 	return err;
590 }
591 
592 /*
593  * S0 TE state change event handler
594  */
595 static void
596 ph_state_te(struct dchannel *dch)
597 {
598 	struct hfcsusb *hw = dch->hw;
599 
600 	if (debug & DEBUG_HW) {
601 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
602 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
603 			    HFC_TE_LAYER1_STATES[dch->state]);
604 		else
605 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
606 			    hw->name, __func__, dch->state);
607 	}
608 
609 	switch (dch->state) {
610 	case 0:
611 		l1_event(dch->l1, HW_RESET_IND);
612 		break;
613 	case 3:
614 		l1_event(dch->l1, HW_DEACT_IND);
615 		break;
616 	case 5:
617 	case 8:
618 		l1_event(dch->l1, ANYSIGNAL);
619 		break;
620 	case 6:
621 		l1_event(dch->l1, INFO2);
622 		break;
623 	case 7:
624 		l1_event(dch->l1, INFO4_P8);
625 		break;
626 	}
627 	if (dch->state == 7)
628 		handle_led(hw, LED_S0_ON);
629 	else
630 		handle_led(hw, LED_S0_OFF);
631 }
632 
633 /*
634  * S0 NT state change event handler
635  */
636 static void
637 ph_state_nt(struct dchannel *dch)
638 {
639 	struct hfcsusb *hw = dch->hw;
640 
641 	if (debug & DEBUG_HW) {
642 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
643 			printk(KERN_DEBUG "%s: %s: %s\n",
644 			    hw->name, __func__,
645 			    HFC_NT_LAYER1_STATES[dch->state]);
646 
647 		else
648 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
649 			    hw->name, __func__, dch->state);
650 	}
651 
652 	switch (dch->state) {
653 	case (1):
654 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
655 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
656 		hw->nt_timer = 0;
657 		hw->timers &= ~NT_ACTIVATION_TIMER;
658 		handle_led(hw, LED_S0_OFF);
659 		break;
660 
661 	case (2):
662 		if (hw->nt_timer < 0) {
663 			hw->nt_timer = 0;
664 			hw->timers &= ~NT_ACTIVATION_TIMER;
665 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
666 		} else {
667 			hw->timers |= NT_ACTIVATION_TIMER;
668 			hw->nt_timer = NT_T1_COUNT;
669 			/* allow G2 -> G3 transition */
670 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
671 		}
672 		break;
673 	case (3):
674 		hw->nt_timer = 0;
675 		hw->timers &= ~NT_ACTIVATION_TIMER;
676 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
677 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
678 			MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
679 		handle_led(hw, LED_S0_ON);
680 		break;
681 	case (4):
682 		hw->nt_timer = 0;
683 		hw->timers &= ~NT_ACTIVATION_TIMER;
684 		break;
685 	default:
686 		break;
687 	}
688 	hfcsusb_ph_info(hw);
689 }
690 
691 static void
692 ph_state(struct dchannel *dch)
693 {
694 	struct hfcsusb *hw = dch->hw;
695 
696 	if (hw->protocol == ISDN_P_NT_S0)
697 		ph_state_nt(dch);
698 	else if (hw->protocol == ISDN_P_TE_S0)
699 		ph_state_te(dch);
700 }
701 
702 /*
703  * disable/enable BChannel for desired protocoll
704  */
705 static int
706 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
707 {
708 	struct hfcsusb *hw = bch->hw;
709 	__u8 conhdlc, sctrl, sctrl_r;
710 
711 	if (debug & DEBUG_HW)
712 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
713 		    hw->name, __func__, bch->state, protocol,
714 		    bch->nr);
715 
716 	/* setup val for CON_HDLC */
717 	conhdlc = 0;
718 	if (protocol > ISDN_P_NONE)
719 		conhdlc = 8;	/* enable FIFO */
720 
721 	switch (protocol) {
722 	case (-1):	/* used for init */
723 		bch->state = -1;
724 		/* fall through */
725 	case (ISDN_P_NONE):
726 		if (bch->state == ISDN_P_NONE)
727 			return 0; /* already in idle state */
728 		bch->state = ISDN_P_NONE;
729 		clear_bit(FLG_HDLC, &bch->Flags);
730 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
731 		break;
732 	case (ISDN_P_B_RAW):
733 		conhdlc |= 2;
734 		bch->state = protocol;
735 		set_bit(FLG_TRANSPARENT, &bch->Flags);
736 		break;
737 	case (ISDN_P_B_HDLC):
738 		bch->state = protocol;
739 		set_bit(FLG_HDLC, &bch->Flags);
740 		break;
741 	default:
742 		if (debug & DEBUG_HW)
743 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
744 				hw->name, __func__, protocol);
745 		return -ENOPROTOOPT;
746 	}
747 
748 	if (protocol >= ISDN_P_NONE) {
749 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
750 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
751 		write_reg(hw, HFCUSB_INC_RES_F, 2);
752 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
753 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
754 		write_reg(hw, HFCUSB_INC_RES_F, 2);
755 
756 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
757 		sctrl_r = 0x0;
758 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
759 			sctrl |= 1;
760 			sctrl_r |= 1;
761 		}
762 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
763 			sctrl |= 2;
764 			sctrl_r |= 2;
765 		}
766 		write_reg(hw, HFCUSB_SCTRL, sctrl);
767 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
768 
769 		if (protocol > ISDN_P_NONE)
770 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
771 		else
772 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
773 				LED_B2_OFF);
774 	}
775 	hfcsusb_ph_info(hw);
776 	return 0;
777 }
778 
779 static void
780 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
781 {
782 	if (debug & DEBUG_HW)
783 		printk(KERN_DEBUG "%s: %s: %x\n",
784 		   hw->name, __func__, command);
785 
786 	switch (command) {
787 	case HFC_L1_ACTIVATE_TE:
788 		/* force sending sending INFO1 */
789 		write_reg(hw, HFCUSB_STATES, 0x14);
790 		/* start l1 activation */
791 		write_reg(hw, HFCUSB_STATES, 0x04);
792 		break;
793 
794 	case HFC_L1_FORCE_DEACTIVATE_TE:
795 		write_reg(hw, HFCUSB_STATES, 0x10);
796 		write_reg(hw, HFCUSB_STATES, 0x03);
797 		break;
798 
799 	case HFC_L1_ACTIVATE_NT:
800 		if (hw->dch.state == 3)
801 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
802 				MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
803 		else
804 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
805 				HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
806 		break;
807 
808 	case HFC_L1_DEACTIVATE_NT:
809 		write_reg(hw, HFCUSB_STATES,
810 			HFCUSB_DO_ACTION);
811 		break;
812 	}
813 }
814 
815 /*
816  * Layer 1 B-channel hardware access
817  */
818 static int
819 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
820 {
821 	int	ret = 0;
822 
823 	switch (cq->op) {
824 	case MISDN_CTRL_GETOP:
825 		cq->op = MISDN_CTRL_FILL_EMPTY;
826 		break;
827 	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
828 		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
829 		if (debug & DEBUG_HW_OPEN)
830 			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
831 				"off=%d)\n", __func__, bch->nr, !!cq->p1);
832 		break;
833 	default:
834 		printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
835 		ret = -EINVAL;
836 		break;
837 	}
838 	return ret;
839 }
840 
841 /* collect data from incoming interrupt or isochron USB data */
842 static void
843 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
844 	int finish)
845 {
846 	struct hfcsusb	*hw = fifo->hw;
847 	struct sk_buff	*rx_skb = NULL;
848 	int		maxlen = 0;
849 	int		fifon = fifo->fifonum;
850 	int		i;
851 	int		hdlc = 0;
852 
853 	if (debug & DBG_HFC_CALL_TRACE)
854 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
855 		    "dch(%p) bch(%p) ech(%p)\n",
856 		    hw->name, __func__, fifon, len,
857 		    fifo->dch, fifo->bch, fifo->ech);
858 
859 	if (!len)
860 		return;
861 
862 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
863 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
864 		       hw->name, __func__);
865 		return;
866 	}
867 
868 	spin_lock(&hw->lock);
869 	if (fifo->dch) {
870 		rx_skb = fifo->dch->rx_skb;
871 		maxlen = fifo->dch->maxlen;
872 		hdlc = 1;
873 	}
874 	if (fifo->bch) {
875 		rx_skb = fifo->bch->rx_skb;
876 		maxlen = fifo->bch->maxlen;
877 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
878 	}
879 	if (fifo->ech) {
880 		rx_skb = fifo->ech->rx_skb;
881 		maxlen = fifo->ech->maxlen;
882 		hdlc = 1;
883 	}
884 
885 	if (!rx_skb) {
886 		rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
887 		if (rx_skb) {
888 			if (fifo->dch)
889 				fifo->dch->rx_skb = rx_skb;
890 			if (fifo->bch)
891 				fifo->bch->rx_skb = rx_skb;
892 			if (fifo->ech)
893 				fifo->ech->rx_skb = rx_skb;
894 			skb_trim(rx_skb, 0);
895 		} else {
896 			printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
897 			    hw->name, __func__);
898 			spin_unlock(&hw->lock);
899 			return;
900 		}
901 	}
902 
903 	if (fifo->dch || fifo->ech) {
904 		/* D/E-Channel SKB range check */
905 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
906 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
907 			    "for fifo(%d) HFCUSB_D_RX\n",
908 			    hw->name, __func__, fifon);
909 			skb_trim(rx_skb, 0);
910 			spin_unlock(&hw->lock);
911 			return;
912 		}
913 	} else if (fifo->bch) {
914 		/* B-Channel SKB range check */
915 		if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
916 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
917 			    "for fifo(%d) HFCUSB_B_RX\n",
918 			    hw->name, __func__, fifon);
919 			skb_trim(rx_skb, 0);
920 			spin_unlock(&hw->lock);
921 			return;
922 		}
923 	}
924 
925 	memcpy(skb_put(rx_skb, len), data, len);
926 
927 	if (hdlc) {
928 		/* we have a complete hdlc packet */
929 		if (finish) {
930 			if ((rx_skb->len > 3) &&
931 			   (!(rx_skb->data[rx_skb->len - 1]))) {
932 				if (debug & DBG_HFC_FIFO_VERBOSE) {
933 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
934 					    " new RX len(%i): ",
935 					    hw->name, __func__, fifon,
936 					    rx_skb->len);
937 					i = 0;
938 					while (i < rx_skb->len)
939 						printk("%02x ",
940 						    rx_skb->data[i++]);
941 					printk("\n");
942 				}
943 
944 				/* remove CRC & status */
945 				skb_trim(rx_skb, rx_skb->len - 3);
946 
947 				if (fifo->dch)
948 					recv_Dchannel(fifo->dch);
949 				if (fifo->bch)
950 					recv_Bchannel(fifo->bch, MISDN_ID_ANY);
951 				if (fifo->ech)
952 					recv_Echannel(fifo->ech,
953 						     &hw->dch);
954 			} else {
955 				if (debug & DBG_HFC_FIFO_VERBOSE) {
956 					printk(KERN_DEBUG
957 					    "%s: CRC or minlen ERROR fifon(%i) "
958 					    "RX len(%i): ",
959 					    hw->name, fifon, rx_skb->len);
960 					i = 0;
961 					while (i < rx_skb->len)
962 						printk("%02x ",
963 						    rx_skb->data[i++]);
964 					printk("\n");
965 				}
966 				skb_trim(rx_skb, 0);
967 			}
968 		}
969 	} else {
970 		/* deliver transparent data to layer2 */
971 		if (rx_skb->len >= poll)
972 			recv_Bchannel(fifo->bch, MISDN_ID_ANY);
973 	}
974 	spin_unlock(&hw->lock);
975 }
976 
977 static void
978 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
979 	      void *buf, int num_packets, int packet_size, int interval,
980 	      usb_complete_t complete, void *context)
981 {
982 	int k;
983 
984 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
985 	    complete, context);
986 
987 	urb->number_of_packets = num_packets;
988 	urb->transfer_flags = URB_ISO_ASAP;
989 	urb->actual_length = 0;
990 	urb->interval = interval;
991 
992 	for (k = 0; k < num_packets; k++) {
993 		urb->iso_frame_desc[k].offset = packet_size * k;
994 		urb->iso_frame_desc[k].length = packet_size;
995 		urb->iso_frame_desc[k].actual_length = 0;
996 	}
997 }
998 
999 /* receive completion routine for all ISO tx fifos   */
1000 static void
1001 rx_iso_complete(struct urb *urb)
1002 {
1003 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1004 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1005 	struct hfcsusb *hw = fifo->hw;
1006 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
1007 	    status, iso_status, i;
1008 	__u8 *buf;
1009 	static __u8 eof[8];
1010 	__u8 s0_state;
1011 
1012 	fifon = fifo->fifonum;
1013 	status = urb->status;
1014 
1015 	spin_lock(&hw->lock);
1016 	if (fifo->stop_gracefull) {
1017 		fifo->stop_gracefull = 0;
1018 		fifo->active = 0;
1019 		spin_unlock(&hw->lock);
1020 		return;
1021 	}
1022 	spin_unlock(&hw->lock);
1023 
1024 	/*
1025 	 * ISO transfer only partially completed,
1026 	 * look at individual frame status for details
1027 	 */
1028 	if (status == -EXDEV) {
1029 		if (debug & DEBUG_HW)
1030 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
1031 			    "urb->status %d, fifonum %d\n",
1032 			    hw->name, __func__,  status, fifon);
1033 
1034 		/* clear status, so go on with ISO transfers */
1035 		status = 0;
1036 	}
1037 
1038 	s0_state = 0;
1039 	if (fifo->active && !status) {
1040 		num_isoc_packets = iso_packets[fifon];
1041 		maxlen = fifo->usb_packet_maxlen;
1042 
1043 		for (k = 0; k < num_isoc_packets; ++k) {
1044 			len = urb->iso_frame_desc[k].actual_length;
1045 			offset = urb->iso_frame_desc[k].offset;
1046 			buf = context_iso_urb->buffer + offset;
1047 			iso_status = urb->iso_frame_desc[k].status;
1048 
1049 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1050 				printk(KERN_DEBUG "%s: %s: "
1051 				    "ISO packet %i, status: %i\n",
1052 				    hw->name, __func__, k, iso_status);
1053 			}
1054 
1055 			/* USB data log for every D ISO in */
1056 			if ((fifon == HFCUSB_D_RX) &&
1057 			    (debug & DBG_HFC_USB_VERBOSE)) {
1058 				printk(KERN_DEBUG
1059 				    "%s: %s: %d (%d/%d) len(%d) ",
1060 				    hw->name, __func__, urb->start_frame,
1061 				    k, num_isoc_packets-1,
1062 				    len);
1063 				for (i = 0; i < len; i++)
1064 					printk("%x ", buf[i]);
1065 				printk("\n");
1066 			}
1067 
1068 			if (!iso_status) {
1069 				if (fifo->last_urblen != maxlen) {
1070 					/*
1071 					 * save fifo fill-level threshold bits
1072 					 * to use them later in TX ISO URB
1073 					 * completions
1074 					 */
1075 					hw->threshold_mask = buf[1];
1076 
1077 					if (fifon == HFCUSB_D_RX)
1078 						s0_state = (buf[0] >> 4);
1079 
1080 					eof[fifon] = buf[0] & 1;
1081 					if (len > 2)
1082 						hfcsusb_rx_frame(fifo, buf + 2,
1083 							len - 2, (len < maxlen)
1084 							? eof[fifon] : 0);
1085 				} else
1086 					hfcsusb_rx_frame(fifo, buf, len,
1087 						(len < maxlen) ?
1088 						eof[fifon] : 0);
1089 				fifo->last_urblen = len;
1090 			}
1091 		}
1092 
1093 		/* signal S0 layer1 state change */
1094 		if ((s0_state) && (hw->initdone) &&
1095 		    (s0_state != hw->dch.state)) {
1096 			hw->dch.state = s0_state;
1097 			schedule_event(&hw->dch, FLG_PHCHANGE);
1098 		}
1099 
1100 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1101 			      context_iso_urb->buffer, num_isoc_packets,
1102 			      fifo->usb_packet_maxlen, fifo->intervall,
1103 			      (usb_complete_t)rx_iso_complete, urb->context);
1104 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1105 		if (errcode < 0) {
1106 			if (debug & DEBUG_HW)
1107 				printk(KERN_DEBUG "%s: %s: error submitting "
1108 				    "ISO URB: %d\n",
1109 				    hw->name, __func__, errcode);
1110 		}
1111 	} else {
1112 		if (status && (debug & DBG_HFC_URB_INFO))
1113 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1114 			    "urb->status %d, fifonum %d\n",
1115 			    hw->name, __func__, status, fifon);
1116 	}
1117 }
1118 
1119 /* receive completion routine for all interrupt rx fifos */
1120 static void
1121 rx_int_complete(struct urb *urb)
1122 {
1123 	int len, status, i;
1124 	__u8 *buf, maxlen, fifon;
1125 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1126 	struct hfcsusb *hw = fifo->hw;
1127 	static __u8 eof[8];
1128 
1129 	spin_lock(&hw->lock);
1130 	if (fifo->stop_gracefull) {
1131 		fifo->stop_gracefull = 0;
1132 		fifo->active = 0;
1133 		spin_unlock(&hw->lock);
1134 		return;
1135 	}
1136 	spin_unlock(&hw->lock);
1137 
1138 	fifon = fifo->fifonum;
1139 	if ((!fifo->active) || (urb->status)) {
1140 		if (debug & DBG_HFC_URB_ERROR)
1141 			printk(KERN_DEBUG
1142 			    "%s: %s: RX-Fifo %i is going down (%i)\n",
1143 			    hw->name, __func__, fifon, urb->status);
1144 
1145 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1146 		return;
1147 	}
1148 	len = urb->actual_length;
1149 	buf = fifo->buffer;
1150 	maxlen = fifo->usb_packet_maxlen;
1151 
1152 	/* USB data log for every D INT in */
1153 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1154 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1155 		    hw->name, __func__, len);
1156 		for (i = 0; i < len; i++)
1157 			printk("%02x ", buf[i]);
1158 		printk("\n");
1159 	}
1160 
1161 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1162 		/* the threshold mask is in the 2nd status byte */
1163 		hw->threshold_mask = buf[1];
1164 
1165 		/* signal S0 layer1 state change */
1166 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1167 			hw->dch.state = (buf[0] >> 4);
1168 			schedule_event(&hw->dch, FLG_PHCHANGE);
1169 		}
1170 
1171 		eof[fifon] = buf[0] & 1;
1172 		/* if we have more than the 2 status bytes -> collect data */
1173 		if (len > 2)
1174 			hfcsusb_rx_frame(fifo, buf + 2,
1175 			   urb->actual_length - 2,
1176 			   (len < maxlen) ? eof[fifon] : 0);
1177 	} else {
1178 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1179 				 (len < maxlen) ? eof[fifon] : 0);
1180 	}
1181 	fifo->last_urblen = urb->actual_length;
1182 
1183 	status = usb_submit_urb(urb, GFP_ATOMIC);
1184 	if (status) {
1185 		if (debug & DEBUG_HW)
1186 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1187 			    hw->name, __func__);
1188 	}
1189 }
1190 
1191 /* transmit completion routine for all ISO tx fifos */
1192 static void
1193 tx_iso_complete(struct urb *urb)
1194 {
1195 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1196 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1197 	struct hfcsusb *hw = fifo->hw;
1198 	struct sk_buff *tx_skb;
1199 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1200 	    errcode, hdlc, i;
1201 	int *tx_idx;
1202 	int frame_complete, fifon, status;
1203 	__u8 threshbit;
1204 
1205 	spin_lock(&hw->lock);
1206 	if (fifo->stop_gracefull) {
1207 		fifo->stop_gracefull = 0;
1208 		fifo->active = 0;
1209 		spin_unlock(&hw->lock);
1210 		return;
1211 	}
1212 
1213 	if (fifo->dch) {
1214 		tx_skb = fifo->dch->tx_skb;
1215 		tx_idx = &fifo->dch->tx_idx;
1216 		hdlc = 1;
1217 	} else if (fifo->bch) {
1218 		tx_skb = fifo->bch->tx_skb;
1219 		tx_idx = &fifo->bch->tx_idx;
1220 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1221 	} else {
1222 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1223 		    hw->name, __func__);
1224 		spin_unlock(&hw->lock);
1225 		return;
1226 	}
1227 
1228 	fifon = fifo->fifonum;
1229 	status = urb->status;
1230 
1231 	tx_offset = 0;
1232 
1233 	/*
1234 	 * ISO transfer only partially completed,
1235 	 * look at individual frame status for details
1236 	 */
1237 	if (status == -EXDEV) {
1238 		if (debug & DBG_HFC_URB_ERROR)
1239 			printk(KERN_DEBUG "%s: %s: "
1240 			    "-EXDEV (%i) fifon (%d)\n",
1241 			    hw->name, __func__, status, fifon);
1242 
1243 		/* clear status, so go on with ISO transfers */
1244 		status = 0;
1245 	}
1246 
1247 	if (fifo->active && !status) {
1248 		/* is FifoFull-threshold set for our channel? */
1249 		threshbit = (hw->threshold_mask & (1 << fifon));
1250 		num_isoc_packets = iso_packets[fifon];
1251 
1252 		/* predict dataflow to avoid fifo overflow */
1253 		if (fifon >= HFCUSB_D_TX)
1254 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1255 		else
1256 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1257 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1258 			      context_iso_urb->buffer, num_isoc_packets,
1259 			      fifo->usb_packet_maxlen, fifo->intervall,
1260 			      (usb_complete_t)tx_iso_complete, urb->context);
1261 		memset(context_iso_urb->buffer, 0,
1262 		       sizeof(context_iso_urb->buffer));
1263 		frame_complete = 0;
1264 
1265 		for (k = 0; k < num_isoc_packets; ++k) {
1266 			/* analyze tx success of previous ISO packets */
1267 			if (debug & DBG_HFC_URB_ERROR) {
1268 				errcode = urb->iso_frame_desc[k].status;
1269 				if (errcode) {
1270 					printk(KERN_DEBUG "%s: %s: "
1271 					    "ISO packet %i, status: %i\n",
1272 					     hw->name, __func__, k, errcode);
1273 				}
1274 			}
1275 
1276 			/* Generate next ISO Packets */
1277 			if (tx_skb)
1278 				remain = tx_skb->len - *tx_idx;
1279 			else
1280 				remain = 0;
1281 
1282 			if (remain > 0) {
1283 				fifo->bit_line -= sink;
1284 				current_len = (0 - fifo->bit_line) / 8;
1285 				if (current_len > 14)
1286 					current_len = 14;
1287 				if (current_len < 0)
1288 					current_len = 0;
1289 				if (remain < current_len)
1290 					current_len = remain;
1291 
1292 				/* how much bit do we put on the line? */
1293 				fifo->bit_line += current_len * 8;
1294 
1295 				context_iso_urb->buffer[tx_offset] = 0;
1296 				if (current_len == remain) {
1297 					if (hdlc) {
1298 						/* signal frame completion */
1299 						context_iso_urb->
1300 						    buffer[tx_offset] = 1;
1301 						/* add 2 byte flags and 16bit
1302 						 * CRC at end of ISDN frame */
1303 						fifo->bit_line += 32;
1304 					}
1305 					frame_complete = 1;
1306 				}
1307 
1308 				/* copy tx data to iso-urb buffer */
1309 				memcpy(context_iso_urb->buffer + tx_offset + 1,
1310 				       (tx_skb->data + *tx_idx), current_len);
1311 				*tx_idx += current_len;
1312 
1313 				urb->iso_frame_desc[k].offset = tx_offset;
1314 				urb->iso_frame_desc[k].length = current_len + 1;
1315 
1316 				/* USB data log for every D ISO out */
1317 				if ((fifon == HFCUSB_D_RX) &&
1318 				    (debug & DBG_HFC_USB_VERBOSE)) {
1319 					printk(KERN_DEBUG
1320 					    "%s: %s (%d/%d) offs(%d) len(%d) ",
1321 					    hw->name, __func__,
1322 					    k, num_isoc_packets-1,
1323 					    urb->iso_frame_desc[k].offset,
1324 					    urb->iso_frame_desc[k].length);
1325 
1326 					for (i = urb->iso_frame_desc[k].offset;
1327 					     i < (urb->iso_frame_desc[k].offset
1328 					     + urb->iso_frame_desc[k].length);
1329 					     i++)
1330 						printk("%x ",
1331 						    context_iso_urb->buffer[i]);
1332 
1333 					printk(" skb->len(%i) tx-idx(%d)\n",
1334 					    tx_skb->len, *tx_idx);
1335 				}
1336 
1337 				tx_offset += (current_len + 1);
1338 			} else {
1339 				urb->iso_frame_desc[k].offset = tx_offset++;
1340 				urb->iso_frame_desc[k].length = 1;
1341 				/* we lower data margin every msec */
1342 				fifo->bit_line -= sink;
1343 				if (fifo->bit_line < BITLINE_INF)
1344 					fifo->bit_line = BITLINE_INF;
1345 			}
1346 
1347 			if (frame_complete) {
1348 				frame_complete = 0;
1349 
1350 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1351 					printk(KERN_DEBUG  "%s: %s: "
1352 					    "fifon(%i) new TX len(%i): ",
1353 					    hw->name, __func__,
1354 					    fifon, tx_skb->len);
1355 					i = 0;
1356 					while (i < tx_skb->len)
1357 						printk("%02x ",
1358 						    tx_skb->data[i++]);
1359 					printk("\n");
1360 				}
1361 
1362 				dev_kfree_skb(tx_skb);
1363 				tx_skb = NULL;
1364 				if (fifo->dch && get_next_dframe(fifo->dch))
1365 					tx_skb = fifo->dch->tx_skb;
1366 				else if (fifo->bch &&
1367 				    get_next_bframe(fifo->bch)) {
1368 					if (test_bit(FLG_TRANSPARENT,
1369 					    &fifo->bch->Flags))
1370 						confirm_Bsend(fifo->bch);
1371 					tx_skb = fifo->bch->tx_skb;
1372 				}
1373 			}
1374 		}
1375 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1376 		if (errcode < 0) {
1377 			if (debug & DEBUG_HW)
1378 				printk(KERN_DEBUG
1379 				    "%s: %s: error submitting ISO URB: %d \n",
1380 				    hw->name, __func__, errcode);
1381 		}
1382 
1383 		/*
1384 		 * abuse DChannel tx iso completion to trigger NT mode state
1385 		 * changes tx_iso_complete is assumed to be called every
1386 		 * fifo->intervall (ms)
1387 		 */
1388 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1389 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1390 			if ((--hw->nt_timer) < 0)
1391 				schedule_event(&hw->dch, FLG_PHCHANGE);
1392 		}
1393 
1394 	} else {
1395 		if (status && (debug & DBG_HFC_URB_ERROR))
1396 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1397 			    "fifonum=%d\n",
1398 			    hw->name, __func__,
1399 			    symbolic(urb_errlist, status), status, fifon);
1400 	}
1401 	spin_unlock(&hw->lock);
1402 }
1403 
1404 /*
1405  * allocs urbs and start isoc transfer with two pending urbs to avoid
1406  * gaps in the transfer chain
1407  */
1408 static int
1409 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1410 		 usb_complete_t complete, int packet_size)
1411 {
1412 	struct hfcsusb *hw = fifo->hw;
1413 	int i, k, errcode;
1414 
1415 	if (debug)
1416 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1417 		    hw->name, __func__, fifo->fifonum);
1418 
1419 	/* allocate Memory for Iso out Urbs */
1420 	for (i = 0; i < 2; i++) {
1421 		if (!(fifo->iso[i].urb)) {
1422 			fifo->iso[i].urb =
1423 			    usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1424 			if (!(fifo->iso[i].urb)) {
1425 				printk(KERN_DEBUG
1426 				    "%s: %s: alloc urb for fifo %i failed",
1427 				    hw->name, __func__, fifo->fifonum);
1428 			}
1429 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1430 			fifo->iso[i].indx = i;
1431 
1432 			/* Init the first iso */
1433 			if (ISO_BUFFER_SIZE >=
1434 			    (fifo->usb_packet_maxlen *
1435 			     num_packets_per_urb)) {
1436 				fill_isoc_urb(fifo->iso[i].urb,
1437 				    fifo->hw->dev, fifo->pipe,
1438 				    fifo->iso[i].buffer,
1439 				    num_packets_per_urb,
1440 				    fifo->usb_packet_maxlen,
1441 				    fifo->intervall, complete,
1442 				    &fifo->iso[i]);
1443 				memset(fifo->iso[i].buffer, 0,
1444 				       sizeof(fifo->iso[i].buffer));
1445 
1446 				for (k = 0; k < num_packets_per_urb; k++) {
1447 					fifo->iso[i].urb->
1448 					    iso_frame_desc[k].offset =
1449 					    k * packet_size;
1450 					fifo->iso[i].urb->
1451 					    iso_frame_desc[k].length =
1452 					    packet_size;
1453 				}
1454 			} else {
1455 				printk(KERN_DEBUG
1456 				    "%s: %s: ISO Buffer size to small!\n",
1457 				    hw->name, __func__);
1458 			}
1459 		}
1460 		fifo->bit_line = BITLINE_INF;
1461 
1462 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1463 		fifo->active = (errcode >= 0) ? 1 : 0;
1464 		fifo->stop_gracefull = 0;
1465 		if (errcode < 0) {
1466 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1467 			    hw->name, __func__,
1468 			    symbolic(urb_errlist, errcode), i);
1469 		}
1470 	}
1471 	return fifo->active;
1472 }
1473 
1474 static void
1475 stop_iso_gracefull(struct usb_fifo *fifo)
1476 {
1477 	struct hfcsusb *hw = fifo->hw;
1478 	int i, timeout;
1479 	u_long flags;
1480 
1481 	for (i = 0; i < 2; i++) {
1482 		spin_lock_irqsave(&hw->lock, flags);
1483 		if (debug)
1484 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1485 			       hw->name, __func__, fifo->fifonum, i);
1486 		fifo->stop_gracefull = 1;
1487 		spin_unlock_irqrestore(&hw->lock, flags);
1488 	}
1489 
1490 	for (i = 0; i < 2; i++) {
1491 		timeout = 3;
1492 		while (fifo->stop_gracefull && timeout--)
1493 			schedule_timeout_interruptible((HZ/1000)*16);
1494 		if (debug && fifo->stop_gracefull)
1495 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1496 				hw->name, __func__, fifo->fifonum, i);
1497 	}
1498 }
1499 
1500 static void
1501 stop_int_gracefull(struct usb_fifo *fifo)
1502 {
1503 	struct hfcsusb *hw = fifo->hw;
1504 	int timeout;
1505 	u_long flags;
1506 
1507 	spin_lock_irqsave(&hw->lock, flags);
1508 	if (debug)
1509 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1510 		       hw->name, __func__, fifo->fifonum);
1511 	fifo->stop_gracefull = 1;
1512 	spin_unlock_irqrestore(&hw->lock, flags);
1513 
1514 	timeout = 3;
1515 	while (fifo->stop_gracefull && timeout--)
1516 		schedule_timeout_interruptible((HZ/1000)*3);
1517 	if (debug && fifo->stop_gracefull)
1518 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1519 		       hw->name, __func__, fifo->fifonum);
1520 }
1521 
1522 /* start the interrupt transfer for the given fifo */
1523 static void
1524 start_int_fifo(struct usb_fifo *fifo)
1525 {
1526 	struct hfcsusb *hw = fifo->hw;
1527 	int errcode;
1528 
1529 	if (debug)
1530 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1531 		    hw->name, __func__, fifo->fifonum);
1532 
1533 	if (!fifo->urb) {
1534 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1535 		if (!fifo->urb)
1536 			return;
1537 	}
1538 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1539 	    fifo->buffer, fifo->usb_packet_maxlen,
1540 	    (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1541 	fifo->active = 1;
1542 	fifo->stop_gracefull = 0;
1543 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1544 	if (errcode) {
1545 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1546 		    hw->name, __func__, errcode);
1547 		fifo->active = 0;
1548 	}
1549 }
1550 
1551 static void
1552 setPortMode(struct hfcsusb *hw)
1553 {
1554 	if (debug & DEBUG_HW)
1555 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1556 		   (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1557 
1558 	if (hw->protocol == ISDN_P_TE_S0) {
1559 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1560 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1561 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1562 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1563 		write_reg(hw, HFCUSB_STATES, 3);
1564 	} else {
1565 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1566 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1567 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1568 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1569 		write_reg(hw, HFCUSB_STATES, 1);
1570 	}
1571 }
1572 
1573 static void
1574 reset_hfcsusb(struct hfcsusb *hw)
1575 {
1576 	struct usb_fifo *fifo;
1577 	int i;
1578 
1579 	if (debug & DEBUG_HW)
1580 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1581 
1582 	/* do Chip reset */
1583 	write_reg(hw, HFCUSB_CIRM, 8);
1584 
1585 	/* aux = output, reset off */
1586 	write_reg(hw, HFCUSB_CIRM, 0x10);
1587 
1588 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1589 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1590 	    ((hw->packet_size / 8) << 4));
1591 
1592 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1593 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1594 
1595 	/* enable PCM/GCI master mode */
1596 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1597 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1598 
1599 	/* init the fifos */
1600 	write_reg(hw, HFCUSB_F_THRES,
1601 	    (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1602 
1603 	fifo = hw->fifos;
1604 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1605 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1606 		fifo[i].max_size =
1607 		    (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1608 		fifo[i].last_urblen = 0;
1609 
1610 		/* set 2 bit for D- & E-channel */
1611 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1612 
1613 		/* enable all fifos */
1614 		if (i == HFCUSB_D_TX)
1615 			write_reg(hw, HFCUSB_CON_HDLC,
1616 			    (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1617 		else
1618 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1619 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1620 	}
1621 
1622 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1623 	handle_led(hw, LED_POWER_ON);
1624 }
1625 
1626 /* start USB data pipes dependand on device's endpoint configuration */
1627 static void
1628 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1629 {
1630 	/* quick check if endpoint already running */
1631 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1632 		return;
1633 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1634 		return;
1635 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1636 		return;
1637 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1638 		return;
1639 
1640 	/* start rx endpoints using USB INT IN method */
1641 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1642 		start_int_fifo(hw->fifos + channel*2 + 1);
1643 
1644 	/* start rx endpoints using USB ISO IN method */
1645 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1646 		switch (channel) {
1647 		case HFC_CHAN_D:
1648 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1649 				ISOC_PACKETS_D,
1650 				(usb_complete_t)rx_iso_complete,
1651 				16);
1652 			break;
1653 		case HFC_CHAN_E:
1654 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1655 				ISOC_PACKETS_D,
1656 				(usb_complete_t)rx_iso_complete,
1657 				16);
1658 			break;
1659 		case HFC_CHAN_B1:
1660 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1661 				ISOC_PACKETS_B,
1662 				(usb_complete_t)rx_iso_complete,
1663 				16);
1664 			break;
1665 		case HFC_CHAN_B2:
1666 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1667 				ISOC_PACKETS_B,
1668 				(usb_complete_t)rx_iso_complete,
1669 				16);
1670 			break;
1671 		}
1672 	}
1673 
1674 	/* start tx endpoints using USB ISO OUT method */
1675 	switch (channel) {
1676 	case HFC_CHAN_D:
1677 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1678 			ISOC_PACKETS_B,
1679 			(usb_complete_t)tx_iso_complete, 1);
1680 		break;
1681 	case HFC_CHAN_B1:
1682 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1683 			ISOC_PACKETS_D,
1684 			(usb_complete_t)tx_iso_complete, 1);
1685 		break;
1686 	case HFC_CHAN_B2:
1687 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1688 			ISOC_PACKETS_B,
1689 			(usb_complete_t)tx_iso_complete, 1);
1690 		break;
1691 	}
1692 }
1693 
1694 /* stop USB data pipes dependand on device's endpoint configuration */
1695 static void
1696 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1697 {
1698 	/* quick check if endpoint currently running */
1699 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1700 		return;
1701 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1702 		return;
1703 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1704 		return;
1705 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1706 		return;
1707 
1708 	/* rx endpoints using USB INT IN method */
1709 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1710 		stop_int_gracefull(hw->fifos + channel*2 + 1);
1711 
1712 	/* rx endpoints using USB ISO IN method */
1713 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1714 		stop_iso_gracefull(hw->fifos + channel*2 + 1);
1715 
1716 	/* tx endpoints using USB ISO OUT method */
1717 	if (channel != HFC_CHAN_E)
1718 		stop_iso_gracefull(hw->fifos + channel*2);
1719 }
1720 
1721 
1722 /* Hardware Initialization */
1723 static int
1724 setup_hfcsusb(struct hfcsusb *hw)
1725 {
1726 	int err;
1727 	u_char b;
1728 
1729 	if (debug & DBG_HFC_CALL_TRACE)
1730 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1731 
1732 	/* check the chip id */
1733 	if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1734 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1735 		    hw->name, __func__);
1736 		return 1;
1737 	}
1738 	if (b != HFCUSB_CHIPID) {
1739 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1740 		    hw->name, __func__, b);
1741 		return 1;
1742 	}
1743 
1744 	/* first set the needed config, interface and alternate */
1745 	err = usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1746 
1747 	hw->led_state = 0;
1748 
1749 	/* init the background machinery for control requests */
1750 	hw->ctrl_read.bRequestType = 0xc0;
1751 	hw->ctrl_read.bRequest = 1;
1752 	hw->ctrl_read.wLength = cpu_to_le16(1);
1753 	hw->ctrl_write.bRequestType = 0x40;
1754 	hw->ctrl_write.bRequest = 0;
1755 	hw->ctrl_write.wLength = 0;
1756 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1757 	    (u_char *)&hw->ctrl_write, NULL, 0,
1758 	    (usb_complete_t)ctrl_complete, hw);
1759 
1760 	reset_hfcsusb(hw);
1761 	return 0;
1762 }
1763 
1764 static void
1765 release_hw(struct hfcsusb *hw)
1766 {
1767 	if (debug & DBG_HFC_CALL_TRACE)
1768 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1769 
1770 	/*
1771 	 * stop all endpoints gracefully
1772 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1773 	 *       signals after calling mISDN_unregister_device()
1774 	 */
1775 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1776 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1777 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1778 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1779 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1780 	if (hw->protocol == ISDN_P_TE_S0)
1781 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1782 
1783 	mISDN_unregister_device(&hw->dch.dev);
1784 	mISDN_freebchannel(&hw->bch[1]);
1785 	mISDN_freebchannel(&hw->bch[0]);
1786 	mISDN_freedchannel(&hw->dch);
1787 
1788 	if (hw->ctrl_urb) {
1789 		usb_kill_urb(hw->ctrl_urb);
1790 		usb_free_urb(hw->ctrl_urb);
1791 		hw->ctrl_urb = NULL;
1792 	}
1793 
1794 	if (hw->intf)
1795 		usb_set_intfdata(hw->intf, NULL);
1796 	list_del(&hw->list);
1797 	kfree(hw);
1798 	hw = NULL;
1799 }
1800 
1801 static void
1802 deactivate_bchannel(struct bchannel *bch)
1803 {
1804 	struct hfcsusb *hw = bch->hw;
1805 	u_long flags;
1806 
1807 	if (bch->debug & DEBUG_HW)
1808 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1809 		    hw->name, __func__, bch->nr);
1810 
1811 	spin_lock_irqsave(&hw->lock, flags);
1812 	mISDN_clear_bchannel(bch);
1813 	spin_unlock_irqrestore(&hw->lock, flags);
1814 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1815 	hfcsusb_stop_endpoint(hw, bch->nr);
1816 }
1817 
1818 /*
1819  * Layer 1 B-channel hardware access
1820  */
1821 static int
1822 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1823 {
1824 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1825 	int		ret = -EINVAL;
1826 
1827 	if (bch->debug & DEBUG_HW)
1828 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1829 
1830 	switch (cmd) {
1831 	case HW_TESTRX_RAW:
1832 	case HW_TESTRX_HDLC:
1833 	case HW_TESTRX_OFF:
1834 		ret = -EINVAL;
1835 		break;
1836 
1837 	case CLOSE_CHANNEL:
1838 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1839 		if (test_bit(FLG_ACTIVE, &bch->Flags))
1840 			deactivate_bchannel(bch);
1841 		ch->protocol = ISDN_P_NONE;
1842 		ch->peer = NULL;
1843 		module_put(THIS_MODULE);
1844 		ret = 0;
1845 		break;
1846 	case CONTROL_CHANNEL:
1847 		ret = channel_bctrl(bch, arg);
1848 		break;
1849 	default:
1850 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1851 			__func__, cmd);
1852 	}
1853 	return ret;
1854 }
1855 
1856 static int
1857 setup_instance(struct hfcsusb *hw, struct device *parent)
1858 {
1859 	u_long	flags;
1860 	int	err, i;
1861 
1862 	if (debug & DBG_HFC_CALL_TRACE)
1863 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1864 
1865 	spin_lock_init(&hw->ctrl_lock);
1866 	spin_lock_init(&hw->lock);
1867 
1868 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1869 	hw->dch.debug = debug & 0xFFFF;
1870 	hw->dch.hw = hw;
1871 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1872 	hw->dch.dev.D.send = hfcusb_l2l1D;
1873 	hw->dch.dev.D.ctrl = hfc_dctrl;
1874 
1875 	/* enable E-Channel logging */
1876 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1877 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1878 
1879 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1880 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1881 	hw->dch.dev.nrbchan = 2;
1882 	for (i = 0; i < 2; i++) {
1883 		hw->bch[i].nr = i + 1;
1884 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1885 		hw->bch[i].debug = debug;
1886 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
1887 		hw->bch[i].hw = hw;
1888 		hw->bch[i].ch.send = hfcusb_l2l1B;
1889 		hw->bch[i].ch.ctrl = hfc_bctrl;
1890 		hw->bch[i].ch.nr = i + 1;
1891 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1892 	}
1893 
1894 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1895 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1896 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1897 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1898 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1899 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1900 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1901 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1902 
1903 	err = setup_hfcsusb(hw);
1904 	if (err)
1905 		goto out;
1906 
1907 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1908 	    hfcsusb_cnt + 1);
1909 	printk(KERN_INFO "%s: registered as '%s'\n",
1910 	    DRIVER_NAME, hw->name);
1911 
1912 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1913 	if (err)
1914 		goto out;
1915 
1916 	hfcsusb_cnt++;
1917 	write_lock_irqsave(&HFClock, flags);
1918 	list_add_tail(&hw->list, &HFClist);
1919 	write_unlock_irqrestore(&HFClock, flags);
1920 	return 0;
1921 
1922 out:
1923 	mISDN_freebchannel(&hw->bch[1]);
1924 	mISDN_freebchannel(&hw->bch[0]);
1925 	mISDN_freedchannel(&hw->dch);
1926 	kfree(hw);
1927 	return err;
1928 }
1929 
1930 static int
1931 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1932 {
1933 	struct hfcsusb			*hw;
1934 	struct usb_device		*dev = interface_to_usbdev(intf);
1935 	struct usb_host_interface	*iface = intf->cur_altsetting;
1936 	struct usb_host_interface	*iface_used = NULL;
1937 	struct usb_host_endpoint	*ep;
1938 	struct hfcsusb_vdata		*driver_info;
1939 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1940 	    probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1941 	    ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1942 	    alt_used = 0;
1943 
1944 	vend_idx = 0xffff;
1945 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1946 		if ((le16_to_cpu(dev->descriptor.idVendor)
1947 		       == hfcsusb_idtab[i].idVendor) &&
1948 		    (le16_to_cpu(dev->descriptor.idProduct)
1949 		       == hfcsusb_idtab[i].idProduct)) {
1950 			vend_idx = i;
1951 			continue;
1952 		}
1953 	}
1954 
1955 	printk(KERN_DEBUG
1956 	    "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1957 	    __func__, ifnum, iface->desc.bAlternateSetting,
1958 	    intf->minor, vend_idx);
1959 
1960 	if (vend_idx == 0xffff) {
1961 		printk(KERN_WARNING
1962 		    "%s: no valid vendor found in USB descriptor\n",
1963 		    __func__);
1964 		return -EIO;
1965 	}
1966 	/* if vendor and product ID is OK, start probing alternate settings */
1967 	alt_idx = 0;
1968 	small_match = -1;
1969 
1970 	/* default settings */
1971 	iso_packet_size = 16;
1972 	packet_size = 64;
1973 
1974 	while (alt_idx < intf->num_altsetting) {
1975 		iface = intf->altsetting + alt_idx;
1976 		probe_alt_setting = iface->desc.bAlternateSetting;
1977 		cfg_used = 0;
1978 
1979 		while (validconf[cfg_used][0]) {
1980 			cfg_found = 1;
1981 			vcf = validconf[cfg_used];
1982 			ep = iface->endpoint;
1983 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1984 
1985 			/* check for all endpoints in this alternate setting */
1986 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1987 				ep_addr = ep->desc.bEndpointAddress;
1988 
1989 				/* get endpoint base */
1990 				idx = ((ep_addr & 0x7f) - 1) * 2;
1991 				if (ep_addr & 0x80)
1992 					idx++;
1993 				attr = ep->desc.bmAttributes;
1994 
1995 				if (cmptbl[idx] != EP_NOP) {
1996 					if (cmptbl[idx] == EP_NUL)
1997 						cfg_found = 0;
1998 					if (attr == USB_ENDPOINT_XFER_INT
1999 						&& cmptbl[idx] == EP_INT)
2000 						cmptbl[idx] = EP_NUL;
2001 					if (attr == USB_ENDPOINT_XFER_BULK
2002 						&& cmptbl[idx] == EP_BLK)
2003 						cmptbl[idx] = EP_NUL;
2004 					if (attr == USB_ENDPOINT_XFER_ISOC
2005 						&& cmptbl[idx] == EP_ISO)
2006 						cmptbl[idx] = EP_NUL;
2007 
2008 					if (attr == USB_ENDPOINT_XFER_INT &&
2009 						ep->desc.bInterval < vcf[17]) {
2010 						cfg_found = 0;
2011 					}
2012 				}
2013 				ep++;
2014 			}
2015 
2016 			for (i = 0; i < 16; i++)
2017 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2018 					cfg_found = 0;
2019 
2020 			if (cfg_found) {
2021 				if (small_match < cfg_used) {
2022 					small_match = cfg_used;
2023 					alt_used = probe_alt_setting;
2024 					iface_used = iface;
2025 				}
2026 			}
2027 			cfg_used++;
2028 		}
2029 		alt_idx++;
2030 	}	/* (alt_idx < intf->num_altsetting) */
2031 
2032 	/* not found a valid USB Ta Endpoint config */
2033 	if (small_match == -1)
2034 		return -EIO;
2035 
2036 	iface = iface_used;
2037 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2038 	if (!hw)
2039 		return -ENOMEM;	/* got no mem */
2040 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2041 
2042 	ep = iface->endpoint;
2043 	vcf = validconf[small_match];
2044 
2045 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2046 		struct usb_fifo *f;
2047 
2048 		ep_addr = ep->desc.bEndpointAddress;
2049 		/* get endpoint base */
2050 		idx = ((ep_addr & 0x7f) - 1) * 2;
2051 		if (ep_addr & 0x80)
2052 			idx++;
2053 		f = &hw->fifos[idx & 7];
2054 
2055 		/* init Endpoints */
2056 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2057 			ep++;
2058 			continue;
2059 		}
2060 		switch (ep->desc.bmAttributes) {
2061 		case USB_ENDPOINT_XFER_INT:
2062 			f->pipe = usb_rcvintpipe(dev,
2063 				ep->desc.bEndpointAddress);
2064 			f->usb_transfer_mode = USB_INT;
2065 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2066 			break;
2067 		case USB_ENDPOINT_XFER_BULK:
2068 			if (ep_addr & 0x80)
2069 				f->pipe = usb_rcvbulkpipe(dev,
2070 					ep->desc.bEndpointAddress);
2071 			else
2072 				f->pipe = usb_sndbulkpipe(dev,
2073 					ep->desc.bEndpointAddress);
2074 			f->usb_transfer_mode = USB_BULK;
2075 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2076 			break;
2077 		case USB_ENDPOINT_XFER_ISOC:
2078 			if (ep_addr & 0x80)
2079 				f->pipe = usb_rcvisocpipe(dev,
2080 					ep->desc.bEndpointAddress);
2081 			else
2082 				f->pipe = usb_sndisocpipe(dev,
2083 					ep->desc.bEndpointAddress);
2084 			f->usb_transfer_mode = USB_ISOC;
2085 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2086 			break;
2087 		default:
2088 			f->pipe = 0;
2089 		}
2090 
2091 		if (f->pipe) {
2092 			f->fifonum = idx & 7;
2093 			f->hw = hw;
2094 			f->usb_packet_maxlen =
2095 			    le16_to_cpu(ep->desc.wMaxPacketSize);
2096 			f->intervall = ep->desc.bInterval;
2097 		}
2098 		ep++;
2099 	}
2100 	hw->dev = dev; /* save device */
2101 	hw->if_used = ifnum; /* save used interface */
2102 	hw->alt_used = alt_used; /* and alternate config */
2103 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2104 	hw->cfg_used = vcf[16];	/* store used config */
2105 	hw->vend_idx = vend_idx; /* store found vendor */
2106 	hw->packet_size = packet_size;
2107 	hw->iso_packet_size = iso_packet_size;
2108 
2109 	/* create the control pipes needed for register access */
2110 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2111 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2112 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2113 
2114 	driver_info =
2115 		(struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
2116 	printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2117 	    hw->name, __func__, driver_info->vend_name,
2118 	    conf_str[small_match], ifnum, alt_used);
2119 
2120 	if (setup_instance(hw, dev->dev.parent))
2121 		return -EIO;
2122 
2123 	hw->intf = intf;
2124 	usb_set_intfdata(hw->intf, hw);
2125 	return 0;
2126 }
2127 
2128 /* function called when an active device is removed */
2129 static void
2130 hfcsusb_disconnect(struct usb_interface *intf)
2131 {
2132 	struct hfcsusb *hw = usb_get_intfdata(intf);
2133 	struct hfcsusb *next;
2134 	int cnt = 0;
2135 
2136 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2137 
2138 	handle_led(hw, LED_POWER_OFF);
2139 	release_hw(hw);
2140 
2141 	list_for_each_entry_safe(hw, next, &HFClist, list)
2142 		cnt++;
2143 	if (!cnt)
2144 		hfcsusb_cnt = 0;
2145 
2146 	usb_set_intfdata(intf, NULL);
2147 }
2148 
2149 static struct usb_driver hfcsusb_drv = {
2150 	.name = DRIVER_NAME,
2151 	.id_table = hfcsusb_idtab,
2152 	.probe = hfcsusb_probe,
2153 	.disconnect = hfcsusb_disconnect,
2154 };
2155 
2156 static int __init
2157 hfcsusb_init(void)
2158 {
2159 	printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
2160 	    hfcsusb_rev, debug, poll);
2161 
2162 	if (usb_register(&hfcsusb_drv)) {
2163 		printk(KERN_INFO DRIVER_NAME
2164 		    ": Unable to register hfcsusb module at usb stack\n");
2165 		return -ENODEV;
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static void __exit
2172 hfcsusb_cleanup(void)
2173 {
2174 	if (debug & DBG_HFC_CALL_TRACE)
2175 		printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
2176 
2177 	/* unregister Hardware */
2178 	usb_deregister(&hfcsusb_drv);	/* release our driver */
2179 }
2180 
2181 module_init(hfcsusb_init);
2182 module_exit(hfcsusb_cleanup);
2183