1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32 
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39 
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42 
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45 
46 
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51 
52 static int hfcsusb_cnt;
53 
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64 
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69 	if (debug & DBG_HFC_CALL_TRACE)
70 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71 
72 	if (hw->ctrl_cnt) {
73 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 		hw->ctrl_urb->transfer_buffer = NULL;
76 		hw->ctrl_urb->transfer_buffer_length = 0;
77 		hw->ctrl_write.wIndex =
78 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 		hw->ctrl_write.wValue =
80 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81 
82 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83 	}
84 }
85 
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92 	struct ctrl_buf *buf;
93 
94 	if (debug & DBG_HFC_CALL_TRACE)
95 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 		       hw->name, __func__, reg, val);
97 
98 	spin_lock(&hw->ctrl_lock);
99 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100 		spin_unlock(&hw->ctrl_lock);
101 		return 1;
102 	}
103 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104 	buf->hfcs_reg = reg;
105 	buf->reg_val = val;
106 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107 		hw->ctrl_in_idx = 0;
108 	if (++hw->ctrl_cnt == 1)
109 		ctrl_start_transfer(hw);
110 	spin_unlock(&hw->ctrl_lock);
111 
112 	return 0;
113 }
114 
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120 
121 	if (debug & DBG_HFC_CALL_TRACE)
122 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123 
124 	urb->dev = hw->dev;
125 	if (hw->ctrl_cnt) {
126 		hw->ctrl_cnt--;	/* decrement actual count */
127 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 			hw->ctrl_out_idx = 0;	/* pointer wrap */
129 
130 		ctrl_start_transfer(hw); /* start next transfer */
131 	}
132 }
133 
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138 	if (set_on) {
139 		if (led_bits < 0)
140 			hw->led_state &= ~abs(led_bits);
141 		else
142 			hw->led_state |= led_bits;
143 	} else {
144 		if (led_bits < 0)
145 			hw->led_state |= abs(led_bits);
146 		else
147 			hw->led_state &= ~led_bits;
148 	}
149 }
150 
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 		hfcsusb_idtab[hw->vend_idx].driver_info;
157 	__u8 tmpled;
158 
159 	if (driver_info->led_scheme == LED_OFF)
160 		return;
161 	tmpled = hw->led_state;
162 
163 	switch (event) {
164 	case LED_POWER_ON:
165 		set_led_bit(hw, driver_info->led_bits[0], 1);
166 		set_led_bit(hw, driver_info->led_bits[1], 0);
167 		set_led_bit(hw, driver_info->led_bits[2], 0);
168 		set_led_bit(hw, driver_info->led_bits[3], 0);
169 		break;
170 	case LED_POWER_OFF:
171 		set_led_bit(hw, driver_info->led_bits[0], 0);
172 		set_led_bit(hw, driver_info->led_bits[1], 0);
173 		set_led_bit(hw, driver_info->led_bits[2], 0);
174 		set_led_bit(hw, driver_info->led_bits[3], 0);
175 		break;
176 	case LED_S0_ON:
177 		set_led_bit(hw, driver_info->led_bits[1], 1);
178 		break;
179 	case LED_S0_OFF:
180 		set_led_bit(hw, driver_info->led_bits[1], 0);
181 		break;
182 	case LED_B1_ON:
183 		set_led_bit(hw, driver_info->led_bits[2], 1);
184 		break;
185 	case LED_B1_OFF:
186 		set_led_bit(hw, driver_info->led_bits[2], 0);
187 		break;
188 	case LED_B2_ON:
189 		set_led_bit(hw, driver_info->led_bits[3], 1);
190 		break;
191 	case LED_B2_OFF:
192 		set_led_bit(hw, driver_info->led_bits[3], 0);
193 		break;
194 	}
195 
196 	if (hw->led_state != tmpled) {
197 		if (debug & DBG_HFC_CALL_TRACE)
198 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 			       hw->name, __func__,
200 			       HFCUSB_P_DATA, hw->led_state);
201 
202 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203 	}
204 }
205 
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
213 	struct hfcsusb		*hw = bch->hw;
214 	int			ret = -EINVAL;
215 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
216 	u_long			flags;
217 
218 	if (debug & DBG_HFC_CALL_TRACE)
219 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220 
221 	switch (hh->prim) {
222 	case PH_DATA_REQ:
223 		spin_lock_irqsave(&hw->lock, flags);
224 		ret = bchannel_senddata(bch, skb);
225 		spin_unlock_irqrestore(&hw->lock, flags);
226 		if (debug & DBG_HFC_CALL_TRACE)
227 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 			       hw->name, __func__, ret);
229 		if (ret > 0)
230 			ret = 0;
231 		return ret;
232 	case PH_ACTIVATE_REQ:
233 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234 			hfcsusb_start_endpoint(hw, bch->nr - 1);
235 			ret = hfcsusb_setup_bch(bch, ch->protocol);
236 		} else
237 			ret = 0;
238 		if (!ret)
239 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240 				    0, NULL, GFP_KERNEL);
241 		break;
242 	case PH_DEACTIVATE_REQ:
243 		deactivate_bchannel(bch);
244 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245 			    0, NULL, GFP_KERNEL);
246 		ret = 0;
247 		break;
248 	}
249 	if (!ret)
250 		dev_kfree_skb(skb);
251 	return ret;
252 }
253 
254 /*
255  * send full D/B channel status information
256  * as MPH_INFORMATION_IND
257  */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261 	struct ph_info *phi;
262 	struct dchannel *dch = &hw->dch;
263 	int i;
264 
265 	phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
266 	phi->dch.ch.protocol = hw->protocol;
267 	phi->dch.ch.Flags = dch->Flags;
268 	phi->dch.state = dch->state;
269 	phi->dch.num_bch = dch->dev.nrbchan;
270 	for (i = 0; i < dch->dev.nrbchan; i++) {
271 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
272 		phi->bch[i].Flags = hw->bch[i].Flags;
273 	}
274 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
275 		    sizeof(struct ph_info_dch) + dch->dev.nrbchan *
276 		    sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
277 	kfree(phi);
278 }
279 
280 /*
281  * Layer2 -> Layer 1 Dchannel data
282  */
283 static int
284 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
285 {
286 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
287 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
288 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
289 	struct hfcsusb		*hw = dch->hw;
290 	int			ret = -EINVAL;
291 	u_long			flags;
292 
293 	switch (hh->prim) {
294 	case PH_DATA_REQ:
295 		if (debug & DBG_HFC_CALL_TRACE)
296 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
297 			       hw->name, __func__);
298 
299 		spin_lock_irqsave(&hw->lock, flags);
300 		ret = dchannel_senddata(dch, skb);
301 		spin_unlock_irqrestore(&hw->lock, flags);
302 		if (ret > 0) {
303 			ret = 0;
304 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
305 		}
306 		break;
307 
308 	case PH_ACTIVATE_REQ:
309 		if (debug & DBG_HFC_CALL_TRACE)
310 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
311 			       hw->name, __func__,
312 			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
313 
314 		if (hw->protocol == ISDN_P_NT_S0) {
315 			ret = 0;
316 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
317 				_queue_data(&dch->dev.D,
318 					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
319 					    NULL, GFP_ATOMIC);
320 			} else {
321 				hfcsusb_ph_command(hw,
322 						   HFC_L1_ACTIVATE_NT);
323 				test_and_set_bit(FLG_L2_ACTIVATED,
324 						 &dch->Flags);
325 			}
326 		} else {
327 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
328 			ret = l1_event(dch->l1, hh->prim);
329 		}
330 		break;
331 
332 	case PH_DEACTIVATE_REQ:
333 		if (debug & DBG_HFC_CALL_TRACE)
334 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
335 			       hw->name, __func__);
336 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
337 
338 		if (hw->protocol == ISDN_P_NT_S0) {
339 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
340 			spin_lock_irqsave(&hw->lock, flags);
341 			skb_queue_purge(&dch->squeue);
342 			if (dch->tx_skb) {
343 				dev_kfree_skb(dch->tx_skb);
344 				dch->tx_skb = NULL;
345 			}
346 			dch->tx_idx = 0;
347 			if (dch->rx_skb) {
348 				dev_kfree_skb(dch->rx_skb);
349 				dch->rx_skb = NULL;
350 			}
351 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
352 			spin_unlock_irqrestore(&hw->lock, flags);
353 #ifdef FIXME
354 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
355 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
356 #endif
357 			ret = 0;
358 		} else
359 			ret = l1_event(dch->l1, hh->prim);
360 		break;
361 	case MPH_INFORMATION_REQ:
362 		hfcsusb_ph_info(hw);
363 		ret = 0;
364 		break;
365 	}
366 
367 	return ret;
368 }
369 
370 /*
371  * Layer 1 callback function
372  */
373 static int
374 hfc_l1callback(struct dchannel *dch, u_int cmd)
375 {
376 	struct hfcsusb *hw = dch->hw;
377 
378 	if (debug & DBG_HFC_CALL_TRACE)
379 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
380 		       hw->name, __func__, cmd);
381 
382 	switch (cmd) {
383 	case INFO3_P8:
384 	case INFO3_P10:
385 	case HW_RESET_REQ:
386 	case HW_POWERUP_REQ:
387 		break;
388 
389 	case HW_DEACT_REQ:
390 		skb_queue_purge(&dch->squeue);
391 		if (dch->tx_skb) {
392 			dev_kfree_skb(dch->tx_skb);
393 			dch->tx_skb = NULL;
394 		}
395 		dch->tx_idx = 0;
396 		if (dch->rx_skb) {
397 			dev_kfree_skb(dch->rx_skb);
398 			dch->rx_skb = NULL;
399 		}
400 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
401 		break;
402 	case PH_ACTIVATE_IND:
403 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
404 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
405 			    GFP_ATOMIC);
406 		break;
407 	case PH_DEACTIVATE_IND:
408 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
409 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
410 			    GFP_ATOMIC);
411 		break;
412 	default:
413 		if (dch->debug & DEBUG_HW)
414 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
415 			       hw->name, __func__, cmd);
416 		return -1;
417 	}
418 	hfcsusb_ph_info(hw);
419 	return 0;
420 }
421 
422 static int
423 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
424 	      struct channel_req *rq)
425 {
426 	int err = 0;
427 
428 	if (debug & DEBUG_HW_OPEN)
429 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
430 		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
431 		       __builtin_return_address(0));
432 	if (rq->protocol == ISDN_P_NONE)
433 		return -EINVAL;
434 
435 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
436 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
437 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
438 
439 	/* E-Channel logging */
440 	if (rq->adr.channel == 1) {
441 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
442 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
443 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
444 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
445 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
446 		} else
447 			return -EINVAL;
448 	}
449 
450 	if (!hw->initdone) {
451 		hw->protocol = rq->protocol;
452 		if (rq->protocol == ISDN_P_TE_S0) {
453 			err = create_l1(&hw->dch, hfc_l1callback);
454 			if (err)
455 				return err;
456 		}
457 		setPortMode(hw);
458 		ch->protocol = rq->protocol;
459 		hw->initdone = 1;
460 	} else {
461 		if (rq->protocol != ch->protocol)
462 			return -EPROTONOSUPPORT;
463 	}
464 
465 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
466 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
467 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
468 			    0, NULL, GFP_KERNEL);
469 	rq->ch = ch;
470 	if (!try_module_get(THIS_MODULE))
471 		printk(KERN_WARNING "%s: %s: cannot get module\n",
472 		       hw->name, __func__);
473 	return 0;
474 }
475 
476 static int
477 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
478 {
479 	struct bchannel		*bch;
480 
481 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
482 		return -EINVAL;
483 	if (rq->protocol == ISDN_P_NONE)
484 		return -EINVAL;
485 
486 	if (debug & DBG_HFC_CALL_TRACE)
487 		printk(KERN_DEBUG "%s: %s B%i\n",
488 		       hw->name, __func__, rq->adr.channel);
489 
490 	bch = &hw->bch[rq->adr.channel - 1];
491 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
492 		return -EBUSY; /* b-channel can be only open once */
493 	bch->ch.protocol = rq->protocol;
494 	rq->ch = &bch->ch;
495 
496 	if (!try_module_get(THIS_MODULE))
497 		printk(KERN_WARNING "%s: %s:cannot get module\n",
498 		       hw->name, __func__);
499 	return 0;
500 }
501 
502 static int
503 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
504 {
505 	int ret = 0;
506 
507 	if (debug & DBG_HFC_CALL_TRACE)
508 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
509 		       hw->name, __func__, (cq->op), (cq->channel));
510 
511 	switch (cq->op) {
512 	case MISDN_CTRL_GETOP:
513 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
514 			MISDN_CTRL_DISCONNECT;
515 		break;
516 	default:
517 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
518 		       hw->name, __func__, cq->op);
519 		ret = -EINVAL;
520 		break;
521 	}
522 	return ret;
523 }
524 
525 /*
526  * device control function
527  */
528 static int
529 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
530 {
531 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
532 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
533 	struct hfcsusb		*hw = dch->hw;
534 	struct channel_req	*rq;
535 	int			err = 0;
536 
537 	if (dch->debug & DEBUG_HW)
538 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
539 		       hw->name, __func__, cmd, arg);
540 	switch (cmd) {
541 	case OPEN_CHANNEL:
542 		rq = arg;
543 		if ((rq->protocol == ISDN_P_TE_S0) ||
544 		    (rq->protocol == ISDN_P_NT_S0))
545 			err = open_dchannel(hw, ch, rq);
546 		else
547 			err = open_bchannel(hw, rq);
548 		if (!err)
549 			hw->open++;
550 		break;
551 	case CLOSE_CHANNEL:
552 		hw->open--;
553 		if (debug & DEBUG_HW_OPEN)
554 			printk(KERN_DEBUG
555 			       "%s: %s: dev(%d) close from %p (open %d)\n",
556 			       hw->name, __func__, hw->dch.dev.id,
557 			       __builtin_return_address(0), hw->open);
558 		if (!hw->open) {
559 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
560 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
561 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
562 			handle_led(hw, LED_POWER_ON);
563 		}
564 		module_put(THIS_MODULE);
565 		break;
566 	case CONTROL_CHANNEL:
567 		err = channel_ctrl(hw, arg);
568 		break;
569 	default:
570 		if (dch->debug & DEBUG_HW)
571 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
572 			       hw->name, __func__, cmd);
573 		return -EINVAL;
574 	}
575 	return err;
576 }
577 
578 /*
579  * S0 TE state change event handler
580  */
581 static void
582 ph_state_te(struct dchannel *dch)
583 {
584 	struct hfcsusb *hw = dch->hw;
585 
586 	if (debug & DEBUG_HW) {
587 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
588 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
589 			       HFC_TE_LAYER1_STATES[dch->state]);
590 		else
591 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
592 			       hw->name, __func__, dch->state);
593 	}
594 
595 	switch (dch->state) {
596 	case 0:
597 		l1_event(dch->l1, HW_RESET_IND);
598 		break;
599 	case 3:
600 		l1_event(dch->l1, HW_DEACT_IND);
601 		break;
602 	case 5:
603 	case 8:
604 		l1_event(dch->l1, ANYSIGNAL);
605 		break;
606 	case 6:
607 		l1_event(dch->l1, INFO2);
608 		break;
609 	case 7:
610 		l1_event(dch->l1, INFO4_P8);
611 		break;
612 	}
613 	if (dch->state == 7)
614 		handle_led(hw, LED_S0_ON);
615 	else
616 		handle_led(hw, LED_S0_OFF);
617 }
618 
619 /*
620  * S0 NT state change event handler
621  */
622 static void
623 ph_state_nt(struct dchannel *dch)
624 {
625 	struct hfcsusb *hw = dch->hw;
626 
627 	if (debug & DEBUG_HW) {
628 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
629 			printk(KERN_DEBUG "%s: %s: %s\n",
630 			       hw->name, __func__,
631 			       HFC_NT_LAYER1_STATES[dch->state]);
632 
633 		else
634 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
635 			       hw->name, __func__, dch->state);
636 	}
637 
638 	switch (dch->state) {
639 	case (1):
640 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
641 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
642 		hw->nt_timer = 0;
643 		hw->timers &= ~NT_ACTIVATION_TIMER;
644 		handle_led(hw, LED_S0_OFF);
645 		break;
646 
647 	case (2):
648 		if (hw->nt_timer < 0) {
649 			hw->nt_timer = 0;
650 			hw->timers &= ~NT_ACTIVATION_TIMER;
651 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
652 		} else {
653 			hw->timers |= NT_ACTIVATION_TIMER;
654 			hw->nt_timer = NT_T1_COUNT;
655 			/* allow G2 -> G3 transition */
656 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
657 		}
658 		break;
659 	case (3):
660 		hw->nt_timer = 0;
661 		hw->timers &= ~NT_ACTIVATION_TIMER;
662 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
663 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
664 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
665 		handle_led(hw, LED_S0_ON);
666 		break;
667 	case (4):
668 		hw->nt_timer = 0;
669 		hw->timers &= ~NT_ACTIVATION_TIMER;
670 		break;
671 	default:
672 		break;
673 	}
674 	hfcsusb_ph_info(hw);
675 }
676 
677 static void
678 ph_state(struct dchannel *dch)
679 {
680 	struct hfcsusb *hw = dch->hw;
681 
682 	if (hw->protocol == ISDN_P_NT_S0)
683 		ph_state_nt(dch);
684 	else if (hw->protocol == ISDN_P_TE_S0)
685 		ph_state_te(dch);
686 }
687 
688 /*
689  * disable/enable BChannel for desired protocoll
690  */
691 static int
692 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
693 {
694 	struct hfcsusb *hw = bch->hw;
695 	__u8 conhdlc, sctrl, sctrl_r;
696 
697 	if (debug & DEBUG_HW)
698 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
699 		       hw->name, __func__, bch->state, protocol,
700 		       bch->nr);
701 
702 	/* setup val for CON_HDLC */
703 	conhdlc = 0;
704 	if (protocol > ISDN_P_NONE)
705 		conhdlc = 8;	/* enable FIFO */
706 
707 	switch (protocol) {
708 	case (-1):	/* used for init */
709 		bch->state = -1;
710 		/* fall through */
711 	case (ISDN_P_NONE):
712 		if (bch->state == ISDN_P_NONE)
713 			return 0; /* already in idle state */
714 		bch->state = ISDN_P_NONE;
715 		clear_bit(FLG_HDLC, &bch->Flags);
716 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
717 		break;
718 	case (ISDN_P_B_RAW):
719 		conhdlc |= 2;
720 		bch->state = protocol;
721 		set_bit(FLG_TRANSPARENT, &bch->Flags);
722 		break;
723 	case (ISDN_P_B_HDLC):
724 		bch->state = protocol;
725 		set_bit(FLG_HDLC, &bch->Flags);
726 		break;
727 	default:
728 		if (debug & DEBUG_HW)
729 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
730 			       hw->name, __func__, protocol);
731 		return -ENOPROTOOPT;
732 	}
733 
734 	if (protocol >= ISDN_P_NONE) {
735 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
736 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
737 		write_reg(hw, HFCUSB_INC_RES_F, 2);
738 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
739 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
740 		write_reg(hw, HFCUSB_INC_RES_F, 2);
741 
742 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
743 		sctrl_r = 0x0;
744 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
745 			sctrl |= 1;
746 			sctrl_r |= 1;
747 		}
748 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
749 			sctrl |= 2;
750 			sctrl_r |= 2;
751 		}
752 		write_reg(hw, HFCUSB_SCTRL, sctrl);
753 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
754 
755 		if (protocol > ISDN_P_NONE)
756 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
757 		else
758 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
759 				   LED_B2_OFF);
760 	}
761 	hfcsusb_ph_info(hw);
762 	return 0;
763 }
764 
765 static void
766 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
767 {
768 	if (debug & DEBUG_HW)
769 		printk(KERN_DEBUG "%s: %s: %x\n",
770 		       hw->name, __func__, command);
771 
772 	switch (command) {
773 	case HFC_L1_ACTIVATE_TE:
774 		/* force sending sending INFO1 */
775 		write_reg(hw, HFCUSB_STATES, 0x14);
776 		/* start l1 activation */
777 		write_reg(hw, HFCUSB_STATES, 0x04);
778 		break;
779 
780 	case HFC_L1_FORCE_DEACTIVATE_TE:
781 		write_reg(hw, HFCUSB_STATES, 0x10);
782 		write_reg(hw, HFCUSB_STATES, 0x03);
783 		break;
784 
785 	case HFC_L1_ACTIVATE_NT:
786 		if (hw->dch.state == 3)
787 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
788 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
789 		else
790 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
791 				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
792 		break;
793 
794 	case HFC_L1_DEACTIVATE_NT:
795 		write_reg(hw, HFCUSB_STATES,
796 			  HFCUSB_DO_ACTION);
797 		break;
798 	}
799 }
800 
801 /*
802  * Layer 1 B-channel hardware access
803  */
804 static int
805 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
806 {
807 	return mISDN_ctrl_bchannel(bch, cq);
808 }
809 
810 /* collect data from incoming interrupt or isochron USB data */
811 static void
812 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
813 		 int finish)
814 {
815 	struct hfcsusb	*hw = fifo->hw;
816 	struct sk_buff	*rx_skb = NULL;
817 	int		maxlen = 0;
818 	int		fifon = fifo->fifonum;
819 	int		i;
820 	int		hdlc = 0;
821 	unsigned long	flags;
822 
823 	if (debug & DBG_HFC_CALL_TRACE)
824 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
825 		       "dch(%p) bch(%p) ech(%p)\n",
826 		       hw->name, __func__, fifon, len,
827 		       fifo->dch, fifo->bch, fifo->ech);
828 
829 	if (!len)
830 		return;
831 
832 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
833 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
834 		       hw->name, __func__);
835 		return;
836 	}
837 
838 	spin_lock_irqsave(&hw->lock, flags);
839 	if (fifo->dch) {
840 		rx_skb = fifo->dch->rx_skb;
841 		maxlen = fifo->dch->maxlen;
842 		hdlc = 1;
843 	}
844 	if (fifo->bch) {
845 		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
846 			fifo->bch->dropcnt += len;
847 			spin_unlock_irqrestore(&hw->lock, flags);
848 			return;
849 		}
850 		maxlen = bchannel_get_rxbuf(fifo->bch, len);
851 		rx_skb = fifo->bch->rx_skb;
852 		if (maxlen < 0) {
853 			if (rx_skb)
854 				skb_trim(rx_skb, 0);
855 			pr_warning("%s.B%d: No bufferspace for %d bytes\n",
856 				   hw->name, fifo->bch->nr, len);
857 			spin_unlock_irqrestore(&hw->lock, flags);
858 			return;
859 		}
860 		maxlen = fifo->bch->maxlen;
861 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
862 	}
863 	if (fifo->ech) {
864 		rx_skb = fifo->ech->rx_skb;
865 		maxlen = fifo->ech->maxlen;
866 		hdlc = 1;
867 	}
868 
869 	if (fifo->dch || fifo->ech) {
870 		if (!rx_skb) {
871 			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
872 			if (rx_skb) {
873 				if (fifo->dch)
874 					fifo->dch->rx_skb = rx_skb;
875 				if (fifo->ech)
876 					fifo->ech->rx_skb = rx_skb;
877 				skb_trim(rx_skb, 0);
878 			} else {
879 				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
880 				       hw->name, __func__);
881 				spin_unlock_irqrestore(&hw->lock, flags);
882 				return;
883 			}
884 		}
885 		/* D/E-Channel SKB range check */
886 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
887 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
888 			       "for fifo(%d) HFCUSB_D_RX\n",
889 			       hw->name, __func__, fifon);
890 			skb_trim(rx_skb, 0);
891 			spin_unlock_irqrestore(&hw->lock, flags);
892 			return;
893 		}
894 	}
895 
896 	skb_put_data(rx_skb, data, len);
897 
898 	if (hdlc) {
899 		/* we have a complete hdlc packet */
900 		if (finish) {
901 			if ((rx_skb->len > 3) &&
902 			    (!(rx_skb->data[rx_skb->len - 1]))) {
903 				if (debug & DBG_HFC_FIFO_VERBOSE) {
904 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
905 					       " new RX len(%i): ",
906 					       hw->name, __func__, fifon,
907 					       rx_skb->len);
908 					i = 0;
909 					while (i < rx_skb->len)
910 						printk("%02x ",
911 						       rx_skb->data[i++]);
912 					printk("\n");
913 				}
914 
915 				/* remove CRC & status */
916 				skb_trim(rx_skb, rx_skb->len - 3);
917 
918 				if (fifo->dch)
919 					recv_Dchannel(fifo->dch);
920 				if (fifo->bch)
921 					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
922 						      0);
923 				if (fifo->ech)
924 					recv_Echannel(fifo->ech,
925 						      &hw->dch);
926 			} else {
927 				if (debug & DBG_HFC_FIFO_VERBOSE) {
928 					printk(KERN_DEBUG
929 					       "%s: CRC or minlen ERROR fifon(%i) "
930 					       "RX len(%i): ",
931 					       hw->name, fifon, rx_skb->len);
932 					i = 0;
933 					while (i < rx_skb->len)
934 						printk("%02x ",
935 						       rx_skb->data[i++]);
936 					printk("\n");
937 				}
938 				skb_trim(rx_skb, 0);
939 			}
940 		}
941 	} else {
942 		/* deliver transparent data to layer2 */
943 		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
944 	}
945 	spin_unlock_irqrestore(&hw->lock, flags);
946 }
947 
948 static void
949 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
950 	      void *buf, int num_packets, int packet_size, int interval,
951 	      usb_complete_t complete, void *context)
952 {
953 	int k;
954 
955 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
956 			  complete, context);
957 
958 	urb->number_of_packets = num_packets;
959 	urb->transfer_flags = URB_ISO_ASAP;
960 	urb->actual_length = 0;
961 	urb->interval = interval;
962 
963 	for (k = 0; k < num_packets; k++) {
964 		urb->iso_frame_desc[k].offset = packet_size * k;
965 		urb->iso_frame_desc[k].length = packet_size;
966 		urb->iso_frame_desc[k].actual_length = 0;
967 	}
968 }
969 
970 /* receive completion routine for all ISO tx fifos   */
971 static void
972 rx_iso_complete(struct urb *urb)
973 {
974 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
975 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
976 	struct hfcsusb *hw = fifo->hw;
977 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
978 		status, iso_status, i;
979 	__u8 *buf;
980 	static __u8 eof[8];
981 	__u8 s0_state;
982 	unsigned long flags;
983 
984 	fifon = fifo->fifonum;
985 	status = urb->status;
986 
987 	spin_lock_irqsave(&hw->lock, flags);
988 	if (fifo->stop_gracefull) {
989 		fifo->stop_gracefull = 0;
990 		fifo->active = 0;
991 		spin_unlock_irqrestore(&hw->lock, flags);
992 		return;
993 	}
994 	spin_unlock_irqrestore(&hw->lock, flags);
995 
996 	/*
997 	 * ISO transfer only partially completed,
998 	 * look at individual frame status for details
999 	 */
1000 	if (status == -EXDEV) {
1001 		if (debug & DEBUG_HW)
1002 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
1003 			       "urb->status %d, fifonum %d\n",
1004 			       hw->name, __func__,  status, fifon);
1005 
1006 		/* clear status, so go on with ISO transfers */
1007 		status = 0;
1008 	}
1009 
1010 	s0_state = 0;
1011 	if (fifo->active && !status) {
1012 		num_isoc_packets = iso_packets[fifon];
1013 		maxlen = fifo->usb_packet_maxlen;
1014 
1015 		for (k = 0; k < num_isoc_packets; ++k) {
1016 			len = urb->iso_frame_desc[k].actual_length;
1017 			offset = urb->iso_frame_desc[k].offset;
1018 			buf = context_iso_urb->buffer + offset;
1019 			iso_status = urb->iso_frame_desc[k].status;
1020 
1021 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1022 				printk(KERN_DEBUG "%s: %s: "
1023 				       "ISO packet %i, status: %i\n",
1024 				       hw->name, __func__, k, iso_status);
1025 			}
1026 
1027 			/* USB data log for every D ISO in */
1028 			if ((fifon == HFCUSB_D_RX) &&
1029 			    (debug & DBG_HFC_USB_VERBOSE)) {
1030 				printk(KERN_DEBUG
1031 				       "%s: %s: %d (%d/%d) len(%d) ",
1032 				       hw->name, __func__, urb->start_frame,
1033 				       k, num_isoc_packets - 1,
1034 				       len);
1035 				for (i = 0; i < len; i++)
1036 					printk("%x ", buf[i]);
1037 				printk("\n");
1038 			}
1039 
1040 			if (!iso_status) {
1041 				if (fifo->last_urblen != maxlen) {
1042 					/*
1043 					 * save fifo fill-level threshold bits
1044 					 * to use them later in TX ISO URB
1045 					 * completions
1046 					 */
1047 					hw->threshold_mask = buf[1];
1048 
1049 					if (fifon == HFCUSB_D_RX)
1050 						s0_state = (buf[0] >> 4);
1051 
1052 					eof[fifon] = buf[0] & 1;
1053 					if (len > 2)
1054 						hfcsusb_rx_frame(fifo, buf + 2,
1055 								 len - 2, (len < maxlen)
1056 								 ? eof[fifon] : 0);
1057 				} else
1058 					hfcsusb_rx_frame(fifo, buf, len,
1059 							 (len < maxlen) ?
1060 							 eof[fifon] : 0);
1061 				fifo->last_urblen = len;
1062 			}
1063 		}
1064 
1065 		/* signal S0 layer1 state change */
1066 		if ((s0_state) && (hw->initdone) &&
1067 		    (s0_state != hw->dch.state)) {
1068 			hw->dch.state = s0_state;
1069 			schedule_event(&hw->dch, FLG_PHCHANGE);
1070 		}
1071 
1072 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1073 			      context_iso_urb->buffer, num_isoc_packets,
1074 			      fifo->usb_packet_maxlen, fifo->intervall,
1075 			      (usb_complete_t)rx_iso_complete, urb->context);
1076 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1077 		if (errcode < 0) {
1078 			if (debug & DEBUG_HW)
1079 				printk(KERN_DEBUG "%s: %s: error submitting "
1080 				       "ISO URB: %d\n",
1081 				       hw->name, __func__, errcode);
1082 		}
1083 	} else {
1084 		if (status && (debug & DBG_HFC_URB_INFO))
1085 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1086 			       "urb->status %d, fifonum %d\n",
1087 			       hw->name, __func__, status, fifon);
1088 	}
1089 }
1090 
1091 /* receive completion routine for all interrupt rx fifos */
1092 static void
1093 rx_int_complete(struct urb *urb)
1094 {
1095 	int len, status, i;
1096 	__u8 *buf, maxlen, fifon;
1097 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1098 	struct hfcsusb *hw = fifo->hw;
1099 	static __u8 eof[8];
1100 	unsigned long flags;
1101 
1102 	spin_lock_irqsave(&hw->lock, flags);
1103 	if (fifo->stop_gracefull) {
1104 		fifo->stop_gracefull = 0;
1105 		fifo->active = 0;
1106 		spin_unlock_irqrestore(&hw->lock, flags);
1107 		return;
1108 	}
1109 	spin_unlock_irqrestore(&hw->lock, flags);
1110 
1111 	fifon = fifo->fifonum;
1112 	if ((!fifo->active) || (urb->status)) {
1113 		if (debug & DBG_HFC_URB_ERROR)
1114 			printk(KERN_DEBUG
1115 			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1116 			       hw->name, __func__, fifon, urb->status);
1117 
1118 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1119 		return;
1120 	}
1121 	len = urb->actual_length;
1122 	buf = fifo->buffer;
1123 	maxlen = fifo->usb_packet_maxlen;
1124 
1125 	/* USB data log for every D INT in */
1126 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1127 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1128 		       hw->name, __func__, len);
1129 		for (i = 0; i < len; i++)
1130 			printk("%02x ", buf[i]);
1131 		printk("\n");
1132 	}
1133 
1134 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1135 		/* the threshold mask is in the 2nd status byte */
1136 		hw->threshold_mask = buf[1];
1137 
1138 		/* signal S0 layer1 state change */
1139 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1140 			hw->dch.state = (buf[0] >> 4);
1141 			schedule_event(&hw->dch, FLG_PHCHANGE);
1142 		}
1143 
1144 		eof[fifon] = buf[0] & 1;
1145 		/* if we have more than the 2 status bytes -> collect data */
1146 		if (len > 2)
1147 			hfcsusb_rx_frame(fifo, buf + 2,
1148 					 urb->actual_length - 2,
1149 					 (len < maxlen) ? eof[fifon] : 0);
1150 	} else {
1151 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1152 				 (len < maxlen) ? eof[fifon] : 0);
1153 	}
1154 	fifo->last_urblen = urb->actual_length;
1155 
1156 	status = usb_submit_urb(urb, GFP_ATOMIC);
1157 	if (status) {
1158 		if (debug & DEBUG_HW)
1159 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1160 			       hw->name, __func__);
1161 	}
1162 }
1163 
1164 /* transmit completion routine for all ISO tx fifos */
1165 static void
1166 tx_iso_complete(struct urb *urb)
1167 {
1168 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1169 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1170 	struct hfcsusb *hw = fifo->hw;
1171 	struct sk_buff *tx_skb;
1172 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1173 		errcode, hdlc, i;
1174 	int *tx_idx;
1175 	int frame_complete, fifon, status, fillempty = 0;
1176 	__u8 threshbit, *p;
1177 	unsigned long flags;
1178 
1179 	spin_lock_irqsave(&hw->lock, flags);
1180 	if (fifo->stop_gracefull) {
1181 		fifo->stop_gracefull = 0;
1182 		fifo->active = 0;
1183 		spin_unlock_irqrestore(&hw->lock, flags);
1184 		return;
1185 	}
1186 
1187 	if (fifo->dch) {
1188 		tx_skb = fifo->dch->tx_skb;
1189 		tx_idx = &fifo->dch->tx_idx;
1190 		hdlc = 1;
1191 	} else if (fifo->bch) {
1192 		tx_skb = fifo->bch->tx_skb;
1193 		tx_idx = &fifo->bch->tx_idx;
1194 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1195 		if (!tx_skb && !hdlc &&
1196 		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1197 			fillempty = 1;
1198 	} else {
1199 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1200 		       hw->name, __func__);
1201 		spin_unlock_irqrestore(&hw->lock, flags);
1202 		return;
1203 	}
1204 
1205 	fifon = fifo->fifonum;
1206 	status = urb->status;
1207 
1208 	tx_offset = 0;
1209 
1210 	/*
1211 	 * ISO transfer only partially completed,
1212 	 * look at individual frame status for details
1213 	 */
1214 	if (status == -EXDEV) {
1215 		if (debug & DBG_HFC_URB_ERROR)
1216 			printk(KERN_DEBUG "%s: %s: "
1217 			       "-EXDEV (%i) fifon (%d)\n",
1218 			       hw->name, __func__, status, fifon);
1219 
1220 		/* clear status, so go on with ISO transfers */
1221 		status = 0;
1222 	}
1223 
1224 	if (fifo->active && !status) {
1225 		/* is FifoFull-threshold set for our channel? */
1226 		threshbit = (hw->threshold_mask & (1 << fifon));
1227 		num_isoc_packets = iso_packets[fifon];
1228 
1229 		/* predict dataflow to avoid fifo overflow */
1230 		if (fifon >= HFCUSB_D_TX)
1231 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1232 		else
1233 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1234 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1235 			      context_iso_urb->buffer, num_isoc_packets,
1236 			      fifo->usb_packet_maxlen, fifo->intervall,
1237 			      (usb_complete_t)tx_iso_complete, urb->context);
1238 		memset(context_iso_urb->buffer, 0,
1239 		       sizeof(context_iso_urb->buffer));
1240 		frame_complete = 0;
1241 
1242 		for (k = 0; k < num_isoc_packets; ++k) {
1243 			/* analyze tx success of previous ISO packets */
1244 			if (debug & DBG_HFC_URB_ERROR) {
1245 				errcode = urb->iso_frame_desc[k].status;
1246 				if (errcode) {
1247 					printk(KERN_DEBUG "%s: %s: "
1248 					       "ISO packet %i, status: %i\n",
1249 					       hw->name, __func__, k, errcode);
1250 				}
1251 			}
1252 
1253 			/* Generate next ISO Packets */
1254 			if (tx_skb)
1255 				remain = tx_skb->len - *tx_idx;
1256 			else if (fillempty)
1257 				remain = 15; /* > not complete */
1258 			else
1259 				remain = 0;
1260 
1261 			if (remain > 0) {
1262 				fifo->bit_line -= sink;
1263 				current_len = (0 - fifo->bit_line) / 8;
1264 				if (current_len > 14)
1265 					current_len = 14;
1266 				if (current_len < 0)
1267 					current_len = 0;
1268 				if (remain < current_len)
1269 					current_len = remain;
1270 
1271 				/* how much bit do we put on the line? */
1272 				fifo->bit_line += current_len * 8;
1273 
1274 				context_iso_urb->buffer[tx_offset] = 0;
1275 				if (current_len == remain) {
1276 					if (hdlc) {
1277 						/* signal frame completion */
1278 						context_iso_urb->
1279 							buffer[tx_offset] = 1;
1280 						/* add 2 byte flags and 16bit
1281 						 * CRC at end of ISDN frame */
1282 						fifo->bit_line += 32;
1283 					}
1284 					frame_complete = 1;
1285 				}
1286 
1287 				/* copy tx data to iso-urb buffer */
1288 				p = context_iso_urb->buffer + tx_offset + 1;
1289 				if (fillempty) {
1290 					memset(p, fifo->bch->fill[0],
1291 					       current_len);
1292 				} else {
1293 					memcpy(p, (tx_skb->data + *tx_idx),
1294 					       current_len);
1295 					*tx_idx += current_len;
1296 				}
1297 				urb->iso_frame_desc[k].offset = tx_offset;
1298 				urb->iso_frame_desc[k].length = current_len + 1;
1299 
1300 				/* USB data log for every D ISO out */
1301 				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1302 				    (debug & DBG_HFC_USB_VERBOSE)) {
1303 					printk(KERN_DEBUG
1304 					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1305 					       hw->name, __func__,
1306 					       k, num_isoc_packets - 1,
1307 					       urb->iso_frame_desc[k].offset,
1308 					       urb->iso_frame_desc[k].length);
1309 
1310 					for (i = urb->iso_frame_desc[k].offset;
1311 					     i < (urb->iso_frame_desc[k].offset
1312 						  + urb->iso_frame_desc[k].length);
1313 					     i++)
1314 						printk("%x ",
1315 						       context_iso_urb->buffer[i]);
1316 
1317 					printk(" skb->len(%i) tx-idx(%d)\n",
1318 					       tx_skb->len, *tx_idx);
1319 				}
1320 
1321 				tx_offset += (current_len + 1);
1322 			} else {
1323 				urb->iso_frame_desc[k].offset = tx_offset++;
1324 				urb->iso_frame_desc[k].length = 1;
1325 				/* we lower data margin every msec */
1326 				fifo->bit_line -= sink;
1327 				if (fifo->bit_line < BITLINE_INF)
1328 					fifo->bit_line = BITLINE_INF;
1329 			}
1330 
1331 			if (frame_complete) {
1332 				frame_complete = 0;
1333 
1334 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1335 					printk(KERN_DEBUG  "%s: %s: "
1336 					       "fifon(%i) new TX len(%i): ",
1337 					       hw->name, __func__,
1338 					       fifon, tx_skb->len);
1339 					i = 0;
1340 					while (i < tx_skb->len)
1341 						printk("%02x ",
1342 						       tx_skb->data[i++]);
1343 					printk("\n");
1344 				}
1345 
1346 				dev_kfree_skb(tx_skb);
1347 				tx_skb = NULL;
1348 				if (fifo->dch && get_next_dframe(fifo->dch))
1349 					tx_skb = fifo->dch->tx_skb;
1350 				else if (fifo->bch &&
1351 					 get_next_bframe(fifo->bch))
1352 					tx_skb = fifo->bch->tx_skb;
1353 			}
1354 		}
1355 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1356 		if (errcode < 0) {
1357 			if (debug & DEBUG_HW)
1358 				printk(KERN_DEBUG
1359 				       "%s: %s: error submitting ISO URB: %d \n",
1360 				       hw->name, __func__, errcode);
1361 		}
1362 
1363 		/*
1364 		 * abuse DChannel tx iso completion to trigger NT mode state
1365 		 * changes tx_iso_complete is assumed to be called every
1366 		 * fifo->intervall (ms)
1367 		 */
1368 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1369 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1370 			if ((--hw->nt_timer) < 0)
1371 				schedule_event(&hw->dch, FLG_PHCHANGE);
1372 		}
1373 
1374 	} else {
1375 		if (status && (debug & DBG_HFC_URB_ERROR))
1376 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1377 			       "fifonum=%d\n",
1378 			       hw->name, __func__,
1379 			       symbolic(urb_errlist, status), status, fifon);
1380 	}
1381 	spin_unlock_irqrestore(&hw->lock, flags);
1382 }
1383 
1384 /*
1385  * allocs urbs and start isoc transfer with two pending urbs to avoid
1386  * gaps in the transfer chain
1387  */
1388 static int
1389 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1390 		 usb_complete_t complete, int packet_size)
1391 {
1392 	struct hfcsusb *hw = fifo->hw;
1393 	int i, k, errcode;
1394 
1395 	if (debug)
1396 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1397 		       hw->name, __func__, fifo->fifonum);
1398 
1399 	/* allocate Memory for Iso out Urbs */
1400 	for (i = 0; i < 2; i++) {
1401 		if (!(fifo->iso[i].urb)) {
1402 			fifo->iso[i].urb =
1403 				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1404 			if (!(fifo->iso[i].urb)) {
1405 				printk(KERN_DEBUG
1406 				       "%s: %s: alloc urb for fifo %i failed",
1407 				       hw->name, __func__, fifo->fifonum);
1408 			}
1409 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1410 			fifo->iso[i].indx = i;
1411 
1412 			/* Init the first iso */
1413 			if (ISO_BUFFER_SIZE >=
1414 			    (fifo->usb_packet_maxlen *
1415 			     num_packets_per_urb)) {
1416 				fill_isoc_urb(fifo->iso[i].urb,
1417 					      fifo->hw->dev, fifo->pipe,
1418 					      fifo->iso[i].buffer,
1419 					      num_packets_per_urb,
1420 					      fifo->usb_packet_maxlen,
1421 					      fifo->intervall, complete,
1422 					      &fifo->iso[i]);
1423 				memset(fifo->iso[i].buffer, 0,
1424 				       sizeof(fifo->iso[i].buffer));
1425 
1426 				for (k = 0; k < num_packets_per_urb; k++) {
1427 					fifo->iso[i].urb->
1428 						iso_frame_desc[k].offset =
1429 						k * packet_size;
1430 					fifo->iso[i].urb->
1431 						iso_frame_desc[k].length =
1432 						packet_size;
1433 				}
1434 			} else {
1435 				printk(KERN_DEBUG
1436 				       "%s: %s: ISO Buffer size to small!\n",
1437 				       hw->name, __func__);
1438 			}
1439 		}
1440 		fifo->bit_line = BITLINE_INF;
1441 
1442 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1443 		fifo->active = (errcode >= 0) ? 1 : 0;
1444 		fifo->stop_gracefull = 0;
1445 		if (errcode < 0) {
1446 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1447 			       hw->name, __func__,
1448 			       symbolic(urb_errlist, errcode), i);
1449 		}
1450 	}
1451 	return fifo->active;
1452 }
1453 
1454 static void
1455 stop_iso_gracefull(struct usb_fifo *fifo)
1456 {
1457 	struct hfcsusb *hw = fifo->hw;
1458 	int i, timeout;
1459 	u_long flags;
1460 
1461 	for (i = 0; i < 2; i++) {
1462 		spin_lock_irqsave(&hw->lock, flags);
1463 		if (debug)
1464 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1465 			       hw->name, __func__, fifo->fifonum, i);
1466 		fifo->stop_gracefull = 1;
1467 		spin_unlock_irqrestore(&hw->lock, flags);
1468 	}
1469 
1470 	for (i = 0; i < 2; i++) {
1471 		timeout = 3;
1472 		while (fifo->stop_gracefull && timeout--)
1473 			schedule_timeout_interruptible((HZ / 1000) * 16);
1474 		if (debug && fifo->stop_gracefull)
1475 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1476 			       hw->name, __func__, fifo->fifonum, i);
1477 	}
1478 }
1479 
1480 static void
1481 stop_int_gracefull(struct usb_fifo *fifo)
1482 {
1483 	struct hfcsusb *hw = fifo->hw;
1484 	int timeout;
1485 	u_long flags;
1486 
1487 	spin_lock_irqsave(&hw->lock, flags);
1488 	if (debug)
1489 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1490 		       hw->name, __func__, fifo->fifonum);
1491 	fifo->stop_gracefull = 1;
1492 	spin_unlock_irqrestore(&hw->lock, flags);
1493 
1494 	timeout = 3;
1495 	while (fifo->stop_gracefull && timeout--)
1496 		schedule_timeout_interruptible((HZ / 1000) * 3);
1497 	if (debug && fifo->stop_gracefull)
1498 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1499 		       hw->name, __func__, fifo->fifonum);
1500 }
1501 
1502 /* start the interrupt transfer for the given fifo */
1503 static void
1504 start_int_fifo(struct usb_fifo *fifo)
1505 {
1506 	struct hfcsusb *hw = fifo->hw;
1507 	int errcode;
1508 
1509 	if (debug)
1510 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1511 		       hw->name, __func__, fifo->fifonum);
1512 
1513 	if (!fifo->urb) {
1514 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1515 		if (!fifo->urb)
1516 			return;
1517 	}
1518 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1519 			 fifo->buffer, fifo->usb_packet_maxlen,
1520 			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1521 	fifo->active = 1;
1522 	fifo->stop_gracefull = 0;
1523 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1524 	if (errcode) {
1525 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1526 		       hw->name, __func__, errcode);
1527 		fifo->active = 0;
1528 	}
1529 }
1530 
1531 static void
1532 setPortMode(struct hfcsusb *hw)
1533 {
1534 	if (debug & DEBUG_HW)
1535 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1536 		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1537 
1538 	if (hw->protocol == ISDN_P_TE_S0) {
1539 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1540 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1541 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1542 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1543 		write_reg(hw, HFCUSB_STATES, 3);
1544 	} else {
1545 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1546 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1547 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1548 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1549 		write_reg(hw, HFCUSB_STATES, 1);
1550 	}
1551 }
1552 
1553 static void
1554 reset_hfcsusb(struct hfcsusb *hw)
1555 {
1556 	struct usb_fifo *fifo;
1557 	int i;
1558 
1559 	if (debug & DEBUG_HW)
1560 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1561 
1562 	/* do Chip reset */
1563 	write_reg(hw, HFCUSB_CIRM, 8);
1564 
1565 	/* aux = output, reset off */
1566 	write_reg(hw, HFCUSB_CIRM, 0x10);
1567 
1568 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1569 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1570 		  ((hw->packet_size / 8) << 4));
1571 
1572 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1573 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1574 
1575 	/* enable PCM/GCI master mode */
1576 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1577 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1578 
1579 	/* init the fifos */
1580 	write_reg(hw, HFCUSB_F_THRES,
1581 		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1582 
1583 	fifo = hw->fifos;
1584 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1585 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1586 		fifo[i].max_size =
1587 			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1588 		fifo[i].last_urblen = 0;
1589 
1590 		/* set 2 bit for D- & E-channel */
1591 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1592 
1593 		/* enable all fifos */
1594 		if (i == HFCUSB_D_TX)
1595 			write_reg(hw, HFCUSB_CON_HDLC,
1596 				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1597 		else
1598 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1599 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1600 	}
1601 
1602 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1603 	handle_led(hw, LED_POWER_ON);
1604 }
1605 
1606 /* start USB data pipes dependand on device's endpoint configuration */
1607 static void
1608 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1609 {
1610 	/* quick check if endpoint already running */
1611 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1612 		return;
1613 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1614 		return;
1615 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1616 		return;
1617 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1618 		return;
1619 
1620 	/* start rx endpoints using USB INT IN method */
1621 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1622 		start_int_fifo(hw->fifos + channel * 2 + 1);
1623 
1624 	/* start rx endpoints using USB ISO IN method */
1625 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1626 		switch (channel) {
1627 		case HFC_CHAN_D:
1628 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1629 					 ISOC_PACKETS_D,
1630 					 (usb_complete_t)rx_iso_complete,
1631 					 16);
1632 			break;
1633 		case HFC_CHAN_E:
1634 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1635 					 ISOC_PACKETS_D,
1636 					 (usb_complete_t)rx_iso_complete,
1637 					 16);
1638 			break;
1639 		case HFC_CHAN_B1:
1640 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1641 					 ISOC_PACKETS_B,
1642 					 (usb_complete_t)rx_iso_complete,
1643 					 16);
1644 			break;
1645 		case HFC_CHAN_B2:
1646 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1647 					 ISOC_PACKETS_B,
1648 					 (usb_complete_t)rx_iso_complete,
1649 					 16);
1650 			break;
1651 		}
1652 	}
1653 
1654 	/* start tx endpoints using USB ISO OUT method */
1655 	switch (channel) {
1656 	case HFC_CHAN_D:
1657 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1658 				 ISOC_PACKETS_B,
1659 				 (usb_complete_t)tx_iso_complete, 1);
1660 		break;
1661 	case HFC_CHAN_B1:
1662 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1663 				 ISOC_PACKETS_D,
1664 				 (usb_complete_t)tx_iso_complete, 1);
1665 		break;
1666 	case HFC_CHAN_B2:
1667 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1668 				 ISOC_PACKETS_B,
1669 				 (usb_complete_t)tx_iso_complete, 1);
1670 		break;
1671 	}
1672 }
1673 
1674 /* stop USB data pipes dependand on device's endpoint configuration */
1675 static void
1676 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1677 {
1678 	/* quick check if endpoint currently running */
1679 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1680 		return;
1681 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1682 		return;
1683 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1684 		return;
1685 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1686 		return;
1687 
1688 	/* rx endpoints using USB INT IN method */
1689 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1690 		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1691 
1692 	/* rx endpoints using USB ISO IN method */
1693 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1694 		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1695 
1696 	/* tx endpoints using USB ISO OUT method */
1697 	if (channel != HFC_CHAN_E)
1698 		stop_iso_gracefull(hw->fifos + channel * 2);
1699 }
1700 
1701 
1702 /* Hardware Initialization */
1703 static int
1704 setup_hfcsusb(struct hfcsusb *hw)
1705 {
1706 	u_char b;
1707 
1708 	if (debug & DBG_HFC_CALL_TRACE)
1709 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1710 
1711 	/* check the chip id */
1712 	if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1713 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1714 		       hw->name, __func__);
1715 		return 1;
1716 	}
1717 	if (b != HFCUSB_CHIPID) {
1718 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1719 		       hw->name, __func__, b);
1720 		return 1;
1721 	}
1722 
1723 	/* first set the needed config, interface and alternate */
1724 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1725 
1726 	hw->led_state = 0;
1727 
1728 	/* init the background machinery for control requests */
1729 	hw->ctrl_read.bRequestType = 0xc0;
1730 	hw->ctrl_read.bRequest = 1;
1731 	hw->ctrl_read.wLength = cpu_to_le16(1);
1732 	hw->ctrl_write.bRequestType = 0x40;
1733 	hw->ctrl_write.bRequest = 0;
1734 	hw->ctrl_write.wLength = 0;
1735 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1736 			     (u_char *)&hw->ctrl_write, NULL, 0,
1737 			     (usb_complete_t)ctrl_complete, hw);
1738 
1739 	reset_hfcsusb(hw);
1740 	return 0;
1741 }
1742 
1743 static void
1744 release_hw(struct hfcsusb *hw)
1745 {
1746 	if (debug & DBG_HFC_CALL_TRACE)
1747 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1748 
1749 	/*
1750 	 * stop all endpoints gracefully
1751 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1752 	 *       signals after calling mISDN_unregister_device()
1753 	 */
1754 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1755 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1756 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1757 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1758 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1759 	if (hw->protocol == ISDN_P_TE_S0)
1760 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1761 
1762 	mISDN_unregister_device(&hw->dch.dev);
1763 	mISDN_freebchannel(&hw->bch[1]);
1764 	mISDN_freebchannel(&hw->bch[0]);
1765 	mISDN_freedchannel(&hw->dch);
1766 
1767 	if (hw->ctrl_urb) {
1768 		usb_kill_urb(hw->ctrl_urb);
1769 		usb_free_urb(hw->ctrl_urb);
1770 		hw->ctrl_urb = NULL;
1771 	}
1772 
1773 	if (hw->intf)
1774 		usb_set_intfdata(hw->intf, NULL);
1775 	list_del(&hw->list);
1776 	kfree(hw);
1777 	hw = NULL;
1778 }
1779 
1780 static void
1781 deactivate_bchannel(struct bchannel *bch)
1782 {
1783 	struct hfcsusb *hw = bch->hw;
1784 	u_long flags;
1785 
1786 	if (bch->debug & DEBUG_HW)
1787 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1788 		       hw->name, __func__, bch->nr);
1789 
1790 	spin_lock_irqsave(&hw->lock, flags);
1791 	mISDN_clear_bchannel(bch);
1792 	spin_unlock_irqrestore(&hw->lock, flags);
1793 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1794 	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1795 }
1796 
1797 /*
1798  * Layer 1 B-channel hardware access
1799  */
1800 static int
1801 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1802 {
1803 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1804 	int		ret = -EINVAL;
1805 
1806 	if (bch->debug & DEBUG_HW)
1807 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1808 
1809 	switch (cmd) {
1810 	case HW_TESTRX_RAW:
1811 	case HW_TESTRX_HDLC:
1812 	case HW_TESTRX_OFF:
1813 		ret = -EINVAL;
1814 		break;
1815 
1816 	case CLOSE_CHANNEL:
1817 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1818 		deactivate_bchannel(bch);
1819 		ch->protocol = ISDN_P_NONE;
1820 		ch->peer = NULL;
1821 		module_put(THIS_MODULE);
1822 		ret = 0;
1823 		break;
1824 	case CONTROL_CHANNEL:
1825 		ret = channel_bctrl(bch, arg);
1826 		break;
1827 	default:
1828 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1829 		       __func__, cmd);
1830 	}
1831 	return ret;
1832 }
1833 
1834 static int
1835 setup_instance(struct hfcsusb *hw, struct device *parent)
1836 {
1837 	u_long	flags;
1838 	int	err, i;
1839 
1840 	if (debug & DBG_HFC_CALL_TRACE)
1841 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1842 
1843 	spin_lock_init(&hw->ctrl_lock);
1844 	spin_lock_init(&hw->lock);
1845 
1846 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1847 	hw->dch.debug = debug & 0xFFFF;
1848 	hw->dch.hw = hw;
1849 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1850 	hw->dch.dev.D.send = hfcusb_l2l1D;
1851 	hw->dch.dev.D.ctrl = hfc_dctrl;
1852 
1853 	/* enable E-Channel logging */
1854 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1855 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1856 
1857 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1858 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1859 	hw->dch.dev.nrbchan = 2;
1860 	for (i = 0; i < 2; i++) {
1861 		hw->bch[i].nr = i + 1;
1862 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1863 		hw->bch[i].debug = debug;
1864 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1865 		hw->bch[i].hw = hw;
1866 		hw->bch[i].ch.send = hfcusb_l2l1B;
1867 		hw->bch[i].ch.ctrl = hfc_bctrl;
1868 		hw->bch[i].ch.nr = i + 1;
1869 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1870 	}
1871 
1872 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1873 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1874 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1875 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1876 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1877 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1878 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1879 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1880 
1881 	err = setup_hfcsusb(hw);
1882 	if (err)
1883 		goto out;
1884 
1885 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1886 		 hfcsusb_cnt + 1);
1887 	printk(KERN_INFO "%s: registered as '%s'\n",
1888 	       DRIVER_NAME, hw->name);
1889 
1890 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1891 	if (err)
1892 		goto out;
1893 
1894 	hfcsusb_cnt++;
1895 	write_lock_irqsave(&HFClock, flags);
1896 	list_add_tail(&hw->list, &HFClist);
1897 	write_unlock_irqrestore(&HFClock, flags);
1898 	return 0;
1899 
1900 out:
1901 	mISDN_freebchannel(&hw->bch[1]);
1902 	mISDN_freebchannel(&hw->bch[0]);
1903 	mISDN_freedchannel(&hw->dch);
1904 	kfree(hw);
1905 	return err;
1906 }
1907 
1908 static int
1909 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1910 {
1911 	struct hfcsusb			*hw;
1912 	struct usb_device		*dev = interface_to_usbdev(intf);
1913 	struct usb_host_interface	*iface = intf->cur_altsetting;
1914 	struct usb_host_interface	*iface_used = NULL;
1915 	struct usb_host_endpoint	*ep;
1916 	struct hfcsusb_vdata		*driver_info;
1917 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1918 		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1919 		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1920 		alt_used = 0;
1921 
1922 	vend_idx = 0xffff;
1923 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1924 		if ((le16_to_cpu(dev->descriptor.idVendor)
1925 		     == hfcsusb_idtab[i].idVendor) &&
1926 		    (le16_to_cpu(dev->descriptor.idProduct)
1927 		     == hfcsusb_idtab[i].idProduct)) {
1928 			vend_idx = i;
1929 			continue;
1930 		}
1931 	}
1932 
1933 	printk(KERN_DEBUG
1934 	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1935 	       __func__, ifnum, iface->desc.bAlternateSetting,
1936 	       intf->minor, vend_idx);
1937 
1938 	if (vend_idx == 0xffff) {
1939 		printk(KERN_WARNING
1940 		       "%s: no valid vendor found in USB descriptor\n",
1941 		       __func__);
1942 		return -EIO;
1943 	}
1944 	/* if vendor and product ID is OK, start probing alternate settings */
1945 	alt_idx = 0;
1946 	small_match = -1;
1947 
1948 	/* default settings */
1949 	iso_packet_size = 16;
1950 	packet_size = 64;
1951 
1952 	while (alt_idx < intf->num_altsetting) {
1953 		iface = intf->altsetting + alt_idx;
1954 		probe_alt_setting = iface->desc.bAlternateSetting;
1955 		cfg_used = 0;
1956 
1957 		while (validconf[cfg_used][0]) {
1958 			cfg_found = 1;
1959 			vcf = validconf[cfg_used];
1960 			ep = iface->endpoint;
1961 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1962 
1963 			/* check for all endpoints in this alternate setting */
1964 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1965 				ep_addr = ep->desc.bEndpointAddress;
1966 
1967 				/* get endpoint base */
1968 				idx = ((ep_addr & 0x7f) - 1) * 2;
1969 				if (ep_addr & 0x80)
1970 					idx++;
1971 				attr = ep->desc.bmAttributes;
1972 
1973 				if (cmptbl[idx] != EP_NOP) {
1974 					if (cmptbl[idx] == EP_NUL)
1975 						cfg_found = 0;
1976 					if (attr == USB_ENDPOINT_XFER_INT
1977 					    && cmptbl[idx] == EP_INT)
1978 						cmptbl[idx] = EP_NUL;
1979 					if (attr == USB_ENDPOINT_XFER_BULK
1980 					    && cmptbl[idx] == EP_BLK)
1981 						cmptbl[idx] = EP_NUL;
1982 					if (attr == USB_ENDPOINT_XFER_ISOC
1983 					    && cmptbl[idx] == EP_ISO)
1984 						cmptbl[idx] = EP_NUL;
1985 
1986 					if (attr == USB_ENDPOINT_XFER_INT &&
1987 					    ep->desc.bInterval < vcf[17]) {
1988 						cfg_found = 0;
1989 					}
1990 				}
1991 				ep++;
1992 			}
1993 
1994 			for (i = 0; i < 16; i++)
1995 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1996 					cfg_found = 0;
1997 
1998 			if (cfg_found) {
1999 				if (small_match < cfg_used) {
2000 					small_match = cfg_used;
2001 					alt_used = probe_alt_setting;
2002 					iface_used = iface;
2003 				}
2004 			}
2005 			cfg_used++;
2006 		}
2007 		alt_idx++;
2008 	}	/* (alt_idx < intf->num_altsetting) */
2009 
2010 	/* not found a valid USB Ta Endpoint config */
2011 	if (small_match == -1)
2012 		return -EIO;
2013 
2014 	iface = iface_used;
2015 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2016 	if (!hw)
2017 		return -ENOMEM;	/* got no mem */
2018 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2019 
2020 	ep = iface->endpoint;
2021 	vcf = validconf[small_match];
2022 
2023 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2024 		struct usb_fifo *f;
2025 
2026 		ep_addr = ep->desc.bEndpointAddress;
2027 		/* get endpoint base */
2028 		idx = ((ep_addr & 0x7f) - 1) * 2;
2029 		if (ep_addr & 0x80)
2030 			idx++;
2031 		f = &hw->fifos[idx & 7];
2032 
2033 		/* init Endpoints */
2034 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2035 			ep++;
2036 			continue;
2037 		}
2038 		switch (ep->desc.bmAttributes) {
2039 		case USB_ENDPOINT_XFER_INT:
2040 			f->pipe = usb_rcvintpipe(dev,
2041 						 ep->desc.bEndpointAddress);
2042 			f->usb_transfer_mode = USB_INT;
2043 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2044 			break;
2045 		case USB_ENDPOINT_XFER_BULK:
2046 			if (ep_addr & 0x80)
2047 				f->pipe = usb_rcvbulkpipe(dev,
2048 							  ep->desc.bEndpointAddress);
2049 			else
2050 				f->pipe = usb_sndbulkpipe(dev,
2051 							  ep->desc.bEndpointAddress);
2052 			f->usb_transfer_mode = USB_BULK;
2053 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2054 			break;
2055 		case USB_ENDPOINT_XFER_ISOC:
2056 			if (ep_addr & 0x80)
2057 				f->pipe = usb_rcvisocpipe(dev,
2058 							  ep->desc.bEndpointAddress);
2059 			else
2060 				f->pipe = usb_sndisocpipe(dev,
2061 							  ep->desc.bEndpointAddress);
2062 			f->usb_transfer_mode = USB_ISOC;
2063 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2064 			break;
2065 		default:
2066 			f->pipe = 0;
2067 		}
2068 
2069 		if (f->pipe) {
2070 			f->fifonum = idx & 7;
2071 			f->hw = hw;
2072 			f->usb_packet_maxlen =
2073 				le16_to_cpu(ep->desc.wMaxPacketSize);
2074 			f->intervall = ep->desc.bInterval;
2075 		}
2076 		ep++;
2077 	}
2078 	hw->dev = dev; /* save device */
2079 	hw->if_used = ifnum; /* save used interface */
2080 	hw->alt_used = alt_used; /* and alternate config */
2081 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2082 	hw->cfg_used = vcf[16];	/* store used config */
2083 	hw->vend_idx = vend_idx; /* store found vendor */
2084 	hw->packet_size = packet_size;
2085 	hw->iso_packet_size = iso_packet_size;
2086 
2087 	/* create the control pipes needed for register access */
2088 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2089 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2090 
2091 	driver_info = (struct hfcsusb_vdata *)
2092 		      hfcsusb_idtab[vend_idx].driver_info;
2093 
2094 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2095 	if (!hw->ctrl_urb) {
2096 		pr_warn("%s: No memory for control urb\n",
2097 			driver_info->vend_name);
2098 		kfree(hw);
2099 		return -ENOMEM;
2100 	}
2101 
2102 	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2103 		hw->name, __func__, driver_info->vend_name,
2104 		conf_str[small_match], ifnum, alt_used);
2105 
2106 	if (setup_instance(hw, dev->dev.parent))
2107 		return -EIO;
2108 
2109 	hw->intf = intf;
2110 	usb_set_intfdata(hw->intf, hw);
2111 	return 0;
2112 }
2113 
2114 /* function called when an active device is removed */
2115 static void
2116 hfcsusb_disconnect(struct usb_interface *intf)
2117 {
2118 	struct hfcsusb *hw = usb_get_intfdata(intf);
2119 	struct hfcsusb *next;
2120 	int cnt = 0;
2121 
2122 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2123 
2124 	handle_led(hw, LED_POWER_OFF);
2125 	release_hw(hw);
2126 
2127 	list_for_each_entry_safe(hw, next, &HFClist, list)
2128 		cnt++;
2129 	if (!cnt)
2130 		hfcsusb_cnt = 0;
2131 
2132 	usb_set_intfdata(intf, NULL);
2133 }
2134 
2135 static struct usb_driver hfcsusb_drv = {
2136 	.name = DRIVER_NAME,
2137 	.id_table = hfcsusb_idtab,
2138 	.probe = hfcsusb_probe,
2139 	.disconnect = hfcsusb_disconnect,
2140 	.disable_hub_initiated_lpm = 1,
2141 };
2142 
2143 module_usb_driver(hfcsusb_drv);
2144