1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32 
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39 
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42 
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45 
46 
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51 
52 static int hfcsusb_cnt;
53 
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64 
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69 	if (debug & DBG_HFC_CALL_TRACE)
70 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71 
72 	if (hw->ctrl_cnt) {
73 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 		hw->ctrl_urb->transfer_buffer = NULL;
76 		hw->ctrl_urb->transfer_buffer_length = 0;
77 		hw->ctrl_write.wIndex =
78 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 		hw->ctrl_write.wValue =
80 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81 
82 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83 	}
84 }
85 
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92 	struct ctrl_buf *buf;
93 
94 	if (debug & DBG_HFC_CALL_TRACE)
95 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 		       hw->name, __func__, reg, val);
97 
98 	spin_lock(&hw->ctrl_lock);
99 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100 		spin_unlock(&hw->ctrl_lock);
101 		return 1;
102 	}
103 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104 	buf->hfcs_reg = reg;
105 	buf->reg_val = val;
106 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107 		hw->ctrl_in_idx = 0;
108 	if (++hw->ctrl_cnt == 1)
109 		ctrl_start_transfer(hw);
110 	spin_unlock(&hw->ctrl_lock);
111 
112 	return 0;
113 }
114 
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120 
121 	if (debug & DBG_HFC_CALL_TRACE)
122 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123 
124 	urb->dev = hw->dev;
125 	if (hw->ctrl_cnt) {
126 		hw->ctrl_cnt--;	/* decrement actual count */
127 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 			hw->ctrl_out_idx = 0;	/* pointer wrap */
129 
130 		ctrl_start_transfer(hw); /* start next transfer */
131 	}
132 }
133 
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138 	if (set_on) {
139 		if (led_bits < 0)
140 			hw->led_state &= ~abs(led_bits);
141 		else
142 			hw->led_state |= led_bits;
143 	} else {
144 		if (led_bits < 0)
145 			hw->led_state |= abs(led_bits);
146 		else
147 			hw->led_state &= ~led_bits;
148 	}
149 }
150 
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 		hfcsusb_idtab[hw->vend_idx].driver_info;
157 	__u8 tmpled;
158 
159 	if (driver_info->led_scheme == LED_OFF)
160 		return;
161 	tmpled = hw->led_state;
162 
163 	switch (event) {
164 	case LED_POWER_ON:
165 		set_led_bit(hw, driver_info->led_bits[0], 1);
166 		set_led_bit(hw, driver_info->led_bits[1], 0);
167 		set_led_bit(hw, driver_info->led_bits[2], 0);
168 		set_led_bit(hw, driver_info->led_bits[3], 0);
169 		break;
170 	case LED_POWER_OFF:
171 		set_led_bit(hw, driver_info->led_bits[0], 0);
172 		set_led_bit(hw, driver_info->led_bits[1], 0);
173 		set_led_bit(hw, driver_info->led_bits[2], 0);
174 		set_led_bit(hw, driver_info->led_bits[3], 0);
175 		break;
176 	case LED_S0_ON:
177 		set_led_bit(hw, driver_info->led_bits[1], 1);
178 		break;
179 	case LED_S0_OFF:
180 		set_led_bit(hw, driver_info->led_bits[1], 0);
181 		break;
182 	case LED_B1_ON:
183 		set_led_bit(hw, driver_info->led_bits[2], 1);
184 		break;
185 	case LED_B1_OFF:
186 		set_led_bit(hw, driver_info->led_bits[2], 0);
187 		break;
188 	case LED_B2_ON:
189 		set_led_bit(hw, driver_info->led_bits[3], 1);
190 		break;
191 	case LED_B2_OFF:
192 		set_led_bit(hw, driver_info->led_bits[3], 0);
193 		break;
194 	}
195 
196 	if (hw->led_state != tmpled) {
197 		if (debug & DBG_HFC_CALL_TRACE)
198 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 			       hw->name, __func__,
200 			       HFCUSB_P_DATA, hw->led_state);
201 
202 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203 	}
204 }
205 
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
213 	struct hfcsusb		*hw = bch->hw;
214 	int			ret = -EINVAL;
215 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
216 	u_long			flags;
217 
218 	if (debug & DBG_HFC_CALL_TRACE)
219 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220 
221 	switch (hh->prim) {
222 	case PH_DATA_REQ:
223 		spin_lock_irqsave(&hw->lock, flags);
224 		ret = bchannel_senddata(bch, skb);
225 		spin_unlock_irqrestore(&hw->lock, flags);
226 		if (debug & DBG_HFC_CALL_TRACE)
227 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 			       hw->name, __func__, ret);
229 		if (ret > 0) {
230 			/*
231 			 * other l1 drivers don't send early confirms on
232 			 * transp data, but hfcsusb does because tx_next
233 			 * skb is needed in tx_iso_complete()
234 			 */
235 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
236 			ret = 0;
237 		}
238 		return ret;
239 	case PH_ACTIVATE_REQ:
240 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
241 			hfcsusb_start_endpoint(hw, bch->nr);
242 			ret = hfcsusb_setup_bch(bch, ch->protocol);
243 		} else
244 			ret = 0;
245 		if (!ret)
246 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
247 				    0, NULL, GFP_KERNEL);
248 		break;
249 	case PH_DEACTIVATE_REQ:
250 		deactivate_bchannel(bch);
251 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
252 			    0, NULL, GFP_KERNEL);
253 		ret = 0;
254 		break;
255 	}
256 	if (!ret)
257 		dev_kfree_skb(skb);
258 	return ret;
259 }
260 
261 /*
262  * send full D/B channel status information
263  * as MPH_INFORMATION_IND
264  */
265 static void
266 hfcsusb_ph_info(struct hfcsusb *hw)
267 {
268 	struct ph_info *phi;
269 	struct dchannel *dch = &hw->dch;
270 	int i;
271 
272 	phi = kzalloc(sizeof(struct ph_info) +
273 		      dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
274 	phi->dch.ch.protocol = hw->protocol;
275 	phi->dch.ch.Flags = dch->Flags;
276 	phi->dch.state = dch->state;
277 	phi->dch.num_bch = dch->dev.nrbchan;
278 	for (i = 0; i < dch->dev.nrbchan; i++) {
279 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
280 		phi->bch[i].Flags = hw->bch[i].Flags;
281 	}
282 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
283 		    sizeof(struct ph_info_dch) + dch->dev.nrbchan *
284 		    sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
285 	kfree(phi);
286 }
287 
288 /*
289  * Layer2 -> Layer 1 Dchannel data
290  */
291 static int
292 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
293 {
294 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
295 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
296 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
297 	struct hfcsusb		*hw = dch->hw;
298 	int			ret = -EINVAL;
299 	u_long			flags;
300 
301 	switch (hh->prim) {
302 	case PH_DATA_REQ:
303 		if (debug & DBG_HFC_CALL_TRACE)
304 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
305 			       hw->name, __func__);
306 
307 		spin_lock_irqsave(&hw->lock, flags);
308 		ret = dchannel_senddata(dch, skb);
309 		spin_unlock_irqrestore(&hw->lock, flags);
310 		if (ret > 0) {
311 			ret = 0;
312 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
313 		}
314 		break;
315 
316 	case PH_ACTIVATE_REQ:
317 		if (debug & DBG_HFC_CALL_TRACE)
318 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
319 			       hw->name, __func__,
320 			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
321 
322 		if (hw->protocol == ISDN_P_NT_S0) {
323 			ret = 0;
324 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
325 				_queue_data(&dch->dev.D,
326 					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
327 					    NULL, GFP_ATOMIC);
328 			} else {
329 				hfcsusb_ph_command(hw,
330 						   HFC_L1_ACTIVATE_NT);
331 				test_and_set_bit(FLG_L2_ACTIVATED,
332 						 &dch->Flags);
333 			}
334 		} else {
335 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
336 			ret = l1_event(dch->l1, hh->prim);
337 		}
338 		break;
339 
340 	case PH_DEACTIVATE_REQ:
341 		if (debug & DBG_HFC_CALL_TRACE)
342 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
343 			       hw->name, __func__);
344 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
345 
346 		if (hw->protocol == ISDN_P_NT_S0) {
347 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
348 			spin_lock_irqsave(&hw->lock, flags);
349 			skb_queue_purge(&dch->squeue);
350 			if (dch->tx_skb) {
351 				dev_kfree_skb(dch->tx_skb);
352 				dch->tx_skb = NULL;
353 			}
354 			dch->tx_idx = 0;
355 			if (dch->rx_skb) {
356 				dev_kfree_skb(dch->rx_skb);
357 				dch->rx_skb = NULL;
358 			}
359 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
360 			spin_unlock_irqrestore(&hw->lock, flags);
361 #ifdef FIXME
362 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
363 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
364 #endif
365 			ret = 0;
366 		} else
367 			ret = l1_event(dch->l1, hh->prim);
368 		break;
369 	case MPH_INFORMATION_REQ:
370 		hfcsusb_ph_info(hw);
371 		ret = 0;
372 		break;
373 	}
374 
375 	return ret;
376 }
377 
378 /*
379  * Layer 1 callback function
380  */
381 static int
382 hfc_l1callback(struct dchannel *dch, u_int cmd)
383 {
384 	struct hfcsusb *hw = dch->hw;
385 
386 	if (debug & DBG_HFC_CALL_TRACE)
387 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
388 		       hw->name, __func__, cmd);
389 
390 	switch (cmd) {
391 	case INFO3_P8:
392 	case INFO3_P10:
393 	case HW_RESET_REQ:
394 	case HW_POWERUP_REQ:
395 		break;
396 
397 	case HW_DEACT_REQ:
398 		skb_queue_purge(&dch->squeue);
399 		if (dch->tx_skb) {
400 			dev_kfree_skb(dch->tx_skb);
401 			dch->tx_skb = NULL;
402 		}
403 		dch->tx_idx = 0;
404 		if (dch->rx_skb) {
405 			dev_kfree_skb(dch->rx_skb);
406 			dch->rx_skb = NULL;
407 		}
408 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
409 		break;
410 	case PH_ACTIVATE_IND:
411 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
412 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
413 			    GFP_ATOMIC);
414 		break;
415 	case PH_DEACTIVATE_IND:
416 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
417 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
418 			    GFP_ATOMIC);
419 		break;
420 	default:
421 		if (dch->debug & DEBUG_HW)
422 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
423 			       hw->name, __func__, cmd);
424 		return -1;
425 	}
426 	hfcsusb_ph_info(hw);
427 	return 0;
428 }
429 
430 static int
431 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
432 	      struct channel_req *rq)
433 {
434 	int err = 0;
435 
436 	if (debug & DEBUG_HW_OPEN)
437 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
438 		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
439 		       __builtin_return_address(0));
440 	if (rq->protocol == ISDN_P_NONE)
441 		return -EINVAL;
442 
443 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
444 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
445 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
446 
447 	/* E-Channel logging */
448 	if (rq->adr.channel == 1) {
449 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
450 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
451 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
452 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
453 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
454 		} else
455 			return -EINVAL;
456 	}
457 
458 	if (!hw->initdone) {
459 		hw->protocol = rq->protocol;
460 		if (rq->protocol == ISDN_P_TE_S0) {
461 			err = create_l1(&hw->dch, hfc_l1callback);
462 			if (err)
463 				return err;
464 		}
465 		setPortMode(hw);
466 		ch->protocol = rq->protocol;
467 		hw->initdone = 1;
468 	} else {
469 		if (rq->protocol != ch->protocol)
470 			return -EPROTONOSUPPORT;
471 	}
472 
473 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
474 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
475 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
476 			    0, NULL, GFP_KERNEL);
477 	rq->ch = ch;
478 	if (!try_module_get(THIS_MODULE))
479 		printk(KERN_WARNING "%s: %s: cannot get module\n",
480 		       hw->name, __func__);
481 	return 0;
482 }
483 
484 static int
485 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
486 {
487 	struct bchannel		*bch;
488 
489 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
490 		return -EINVAL;
491 	if (rq->protocol == ISDN_P_NONE)
492 		return -EINVAL;
493 
494 	if (debug & DBG_HFC_CALL_TRACE)
495 		printk(KERN_DEBUG "%s: %s B%i\n",
496 		       hw->name, __func__, rq->adr.channel);
497 
498 	bch = &hw->bch[rq->adr.channel - 1];
499 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
500 		return -EBUSY; /* b-channel can be only open once */
501 	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
502 	bch->ch.protocol = rq->protocol;
503 	rq->ch = &bch->ch;
504 
505 	/* start USB endpoint for bchannel */
506 	if (rq->adr.channel  == 1)
507 		hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
508 	else
509 		hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
510 
511 	if (!try_module_get(THIS_MODULE))
512 		printk(KERN_WARNING "%s: %s:cannot get module\n",
513 		       hw->name, __func__);
514 	return 0;
515 }
516 
517 static int
518 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
519 {
520 	int ret = 0;
521 
522 	if (debug & DBG_HFC_CALL_TRACE)
523 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
524 		       hw->name, __func__, (cq->op), (cq->channel));
525 
526 	switch (cq->op) {
527 	case MISDN_CTRL_GETOP:
528 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
529 			MISDN_CTRL_DISCONNECT;
530 		break;
531 	default:
532 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
533 		       hw->name, __func__, cq->op);
534 		ret = -EINVAL;
535 		break;
536 	}
537 	return ret;
538 }
539 
540 /*
541  * device control function
542  */
543 static int
544 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
545 {
546 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
547 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
548 	struct hfcsusb		*hw = dch->hw;
549 	struct channel_req	*rq;
550 	int			err = 0;
551 
552 	if (dch->debug & DEBUG_HW)
553 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
554 		       hw->name, __func__, cmd, arg);
555 	switch (cmd) {
556 	case OPEN_CHANNEL:
557 		rq = arg;
558 		if ((rq->protocol == ISDN_P_TE_S0) ||
559 		    (rq->protocol == ISDN_P_NT_S0))
560 			err = open_dchannel(hw, ch, rq);
561 		else
562 			err = open_bchannel(hw, rq);
563 		if (!err)
564 			hw->open++;
565 		break;
566 	case CLOSE_CHANNEL:
567 		hw->open--;
568 		if (debug & DEBUG_HW_OPEN)
569 			printk(KERN_DEBUG
570 			       "%s: %s: dev(%d) close from %p (open %d)\n",
571 			       hw->name, __func__, hw->dch.dev.id,
572 			       __builtin_return_address(0), hw->open);
573 		if (!hw->open) {
574 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
575 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
576 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
577 			handle_led(hw, LED_POWER_ON);
578 		}
579 		module_put(THIS_MODULE);
580 		break;
581 	case CONTROL_CHANNEL:
582 		err = channel_ctrl(hw, arg);
583 		break;
584 	default:
585 		if (dch->debug & DEBUG_HW)
586 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
587 			       hw->name, __func__, cmd);
588 		return -EINVAL;
589 	}
590 	return err;
591 }
592 
593 /*
594  * S0 TE state change event handler
595  */
596 static void
597 ph_state_te(struct dchannel *dch)
598 {
599 	struct hfcsusb *hw = dch->hw;
600 
601 	if (debug & DEBUG_HW) {
602 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
603 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
604 			       HFC_TE_LAYER1_STATES[dch->state]);
605 		else
606 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
607 			       hw->name, __func__, dch->state);
608 	}
609 
610 	switch (dch->state) {
611 	case 0:
612 		l1_event(dch->l1, HW_RESET_IND);
613 		break;
614 	case 3:
615 		l1_event(dch->l1, HW_DEACT_IND);
616 		break;
617 	case 5:
618 	case 8:
619 		l1_event(dch->l1, ANYSIGNAL);
620 		break;
621 	case 6:
622 		l1_event(dch->l1, INFO2);
623 		break;
624 	case 7:
625 		l1_event(dch->l1, INFO4_P8);
626 		break;
627 	}
628 	if (dch->state == 7)
629 		handle_led(hw, LED_S0_ON);
630 	else
631 		handle_led(hw, LED_S0_OFF);
632 }
633 
634 /*
635  * S0 NT state change event handler
636  */
637 static void
638 ph_state_nt(struct dchannel *dch)
639 {
640 	struct hfcsusb *hw = dch->hw;
641 
642 	if (debug & DEBUG_HW) {
643 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
644 			printk(KERN_DEBUG "%s: %s: %s\n",
645 			       hw->name, __func__,
646 			       HFC_NT_LAYER1_STATES[dch->state]);
647 
648 		else
649 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
650 			       hw->name, __func__, dch->state);
651 	}
652 
653 	switch (dch->state) {
654 	case (1):
655 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
656 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
657 		hw->nt_timer = 0;
658 		hw->timers &= ~NT_ACTIVATION_TIMER;
659 		handle_led(hw, LED_S0_OFF);
660 		break;
661 
662 	case (2):
663 		if (hw->nt_timer < 0) {
664 			hw->nt_timer = 0;
665 			hw->timers &= ~NT_ACTIVATION_TIMER;
666 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
667 		} else {
668 			hw->timers |= NT_ACTIVATION_TIMER;
669 			hw->nt_timer = NT_T1_COUNT;
670 			/* allow G2 -> G3 transition */
671 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
672 		}
673 		break;
674 	case (3):
675 		hw->nt_timer = 0;
676 		hw->timers &= ~NT_ACTIVATION_TIMER;
677 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
678 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
679 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
680 		handle_led(hw, LED_S0_ON);
681 		break;
682 	case (4):
683 		hw->nt_timer = 0;
684 		hw->timers &= ~NT_ACTIVATION_TIMER;
685 		break;
686 	default:
687 		break;
688 	}
689 	hfcsusb_ph_info(hw);
690 }
691 
692 static void
693 ph_state(struct dchannel *dch)
694 {
695 	struct hfcsusb *hw = dch->hw;
696 
697 	if (hw->protocol == ISDN_P_NT_S0)
698 		ph_state_nt(dch);
699 	else if (hw->protocol == ISDN_P_TE_S0)
700 		ph_state_te(dch);
701 }
702 
703 /*
704  * disable/enable BChannel for desired protocoll
705  */
706 static int
707 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
708 {
709 	struct hfcsusb *hw = bch->hw;
710 	__u8 conhdlc, sctrl, sctrl_r;
711 
712 	if (debug & DEBUG_HW)
713 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
714 		       hw->name, __func__, bch->state, protocol,
715 		       bch->nr);
716 
717 	/* setup val for CON_HDLC */
718 	conhdlc = 0;
719 	if (protocol > ISDN_P_NONE)
720 		conhdlc = 8;	/* enable FIFO */
721 
722 	switch (protocol) {
723 	case (-1):	/* used for init */
724 		bch->state = -1;
725 		/* fall through */
726 	case (ISDN_P_NONE):
727 		if (bch->state == ISDN_P_NONE)
728 			return 0; /* already in idle state */
729 		bch->state = ISDN_P_NONE;
730 		clear_bit(FLG_HDLC, &bch->Flags);
731 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
732 		break;
733 	case (ISDN_P_B_RAW):
734 		conhdlc |= 2;
735 		bch->state = protocol;
736 		set_bit(FLG_TRANSPARENT, &bch->Flags);
737 		break;
738 	case (ISDN_P_B_HDLC):
739 		bch->state = protocol;
740 		set_bit(FLG_HDLC, &bch->Flags);
741 		break;
742 	default:
743 		if (debug & DEBUG_HW)
744 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
745 			       hw->name, __func__, protocol);
746 		return -ENOPROTOOPT;
747 	}
748 
749 	if (protocol >= ISDN_P_NONE) {
750 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
751 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
752 		write_reg(hw, HFCUSB_INC_RES_F, 2);
753 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
754 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
755 		write_reg(hw, HFCUSB_INC_RES_F, 2);
756 
757 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
758 		sctrl_r = 0x0;
759 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
760 			sctrl |= 1;
761 			sctrl_r |= 1;
762 		}
763 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
764 			sctrl |= 2;
765 			sctrl_r |= 2;
766 		}
767 		write_reg(hw, HFCUSB_SCTRL, sctrl);
768 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
769 
770 		if (protocol > ISDN_P_NONE)
771 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
772 		else
773 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
774 				   LED_B2_OFF);
775 	}
776 	hfcsusb_ph_info(hw);
777 	return 0;
778 }
779 
780 static void
781 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
782 {
783 	if (debug & DEBUG_HW)
784 		printk(KERN_DEBUG "%s: %s: %x\n",
785 		       hw->name, __func__, command);
786 
787 	switch (command) {
788 	case HFC_L1_ACTIVATE_TE:
789 		/* force sending sending INFO1 */
790 		write_reg(hw, HFCUSB_STATES, 0x14);
791 		/* start l1 activation */
792 		write_reg(hw, HFCUSB_STATES, 0x04);
793 		break;
794 
795 	case HFC_L1_FORCE_DEACTIVATE_TE:
796 		write_reg(hw, HFCUSB_STATES, 0x10);
797 		write_reg(hw, HFCUSB_STATES, 0x03);
798 		break;
799 
800 	case HFC_L1_ACTIVATE_NT:
801 		if (hw->dch.state == 3)
802 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
803 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
804 		else
805 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
806 				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
807 		break;
808 
809 	case HFC_L1_DEACTIVATE_NT:
810 		write_reg(hw, HFCUSB_STATES,
811 			  HFCUSB_DO_ACTION);
812 		break;
813 	}
814 }
815 
816 /*
817  * Layer 1 B-channel hardware access
818  */
819 static int
820 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
821 {
822 	int	ret = 0;
823 
824 	switch (cq->op) {
825 	case MISDN_CTRL_GETOP:
826 		cq->op = MISDN_CTRL_FILL_EMPTY;
827 		break;
828 	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
829 		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
830 		if (debug & DEBUG_HW_OPEN)
831 			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
832 			       "off=%d)\n", __func__, bch->nr, !!cq->p1);
833 		break;
834 	default:
835 		printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
836 		ret = -EINVAL;
837 		break;
838 	}
839 	return ret;
840 }
841 
842 /* collect data from incoming interrupt or isochron USB data */
843 static void
844 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
845 		 int finish)
846 {
847 	struct hfcsusb	*hw = fifo->hw;
848 	struct sk_buff	*rx_skb = NULL;
849 	int		maxlen = 0;
850 	int		fifon = fifo->fifonum;
851 	int		i;
852 	int		hdlc = 0;
853 
854 	if (debug & DBG_HFC_CALL_TRACE)
855 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
856 		       "dch(%p) bch(%p) ech(%p)\n",
857 		       hw->name, __func__, fifon, len,
858 		       fifo->dch, fifo->bch, fifo->ech);
859 
860 	if (!len)
861 		return;
862 
863 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
864 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
865 		       hw->name, __func__);
866 		return;
867 	}
868 
869 	spin_lock(&hw->lock);
870 	if (fifo->dch) {
871 		rx_skb = fifo->dch->rx_skb;
872 		maxlen = fifo->dch->maxlen;
873 		hdlc = 1;
874 	}
875 	if (fifo->bch) {
876 		rx_skb = fifo->bch->rx_skb;
877 		maxlen = fifo->bch->maxlen;
878 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
879 	}
880 	if (fifo->ech) {
881 		rx_skb = fifo->ech->rx_skb;
882 		maxlen = fifo->ech->maxlen;
883 		hdlc = 1;
884 	}
885 
886 	if (!rx_skb) {
887 		rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
888 		if (rx_skb) {
889 			if (fifo->dch)
890 				fifo->dch->rx_skb = rx_skb;
891 			if (fifo->bch)
892 				fifo->bch->rx_skb = rx_skb;
893 			if (fifo->ech)
894 				fifo->ech->rx_skb = rx_skb;
895 			skb_trim(rx_skb, 0);
896 		} else {
897 			printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
898 			       hw->name, __func__);
899 			spin_unlock(&hw->lock);
900 			return;
901 		}
902 	}
903 
904 	if (fifo->dch || fifo->ech) {
905 		/* D/E-Channel SKB range check */
906 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
907 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
908 			       "for fifo(%d) HFCUSB_D_RX\n",
909 			       hw->name, __func__, fifon);
910 			skb_trim(rx_skb, 0);
911 			spin_unlock(&hw->lock);
912 			return;
913 		}
914 	} else if (fifo->bch) {
915 		/* B-Channel SKB range check */
916 		if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
917 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
918 			       "for fifo(%d) HFCUSB_B_RX\n",
919 			       hw->name, __func__, fifon);
920 			skb_trim(rx_skb, 0);
921 			spin_unlock(&hw->lock);
922 			return;
923 		}
924 	}
925 
926 	memcpy(skb_put(rx_skb, len), data, len);
927 
928 	if (hdlc) {
929 		/* we have a complete hdlc packet */
930 		if (finish) {
931 			if ((rx_skb->len > 3) &&
932 			    (!(rx_skb->data[rx_skb->len - 1]))) {
933 				if (debug & DBG_HFC_FIFO_VERBOSE) {
934 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
935 					       " new RX len(%i): ",
936 					       hw->name, __func__, fifon,
937 					       rx_skb->len);
938 					i = 0;
939 					while (i < rx_skb->len)
940 						printk("%02x ",
941 						       rx_skb->data[i++]);
942 					printk("\n");
943 				}
944 
945 				/* remove CRC & status */
946 				skb_trim(rx_skb, rx_skb->len - 3);
947 
948 				if (fifo->dch)
949 					recv_Dchannel(fifo->dch);
950 				if (fifo->bch)
951 					recv_Bchannel(fifo->bch, MISDN_ID_ANY);
952 				if (fifo->ech)
953 					recv_Echannel(fifo->ech,
954 						      &hw->dch);
955 			} else {
956 				if (debug & DBG_HFC_FIFO_VERBOSE) {
957 					printk(KERN_DEBUG
958 					       "%s: CRC or minlen ERROR fifon(%i) "
959 					       "RX len(%i): ",
960 					       hw->name, fifon, rx_skb->len);
961 					i = 0;
962 					while (i < rx_skb->len)
963 						printk("%02x ",
964 						       rx_skb->data[i++]);
965 					printk("\n");
966 				}
967 				skb_trim(rx_skb, 0);
968 			}
969 		}
970 	} else {
971 		/* deliver transparent data to layer2 */
972 		if (rx_skb->len >= poll)
973 			recv_Bchannel(fifo->bch, MISDN_ID_ANY);
974 	}
975 	spin_unlock(&hw->lock);
976 }
977 
978 static void
979 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
980 	      void *buf, int num_packets, int packet_size, int interval,
981 	      usb_complete_t complete, void *context)
982 {
983 	int k;
984 
985 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
986 			  complete, context);
987 
988 	urb->number_of_packets = num_packets;
989 	urb->transfer_flags = URB_ISO_ASAP;
990 	urb->actual_length = 0;
991 	urb->interval = interval;
992 
993 	for (k = 0; k < num_packets; k++) {
994 		urb->iso_frame_desc[k].offset = packet_size * k;
995 		urb->iso_frame_desc[k].length = packet_size;
996 		urb->iso_frame_desc[k].actual_length = 0;
997 	}
998 }
999 
1000 /* receive completion routine for all ISO tx fifos   */
1001 static void
1002 rx_iso_complete(struct urb *urb)
1003 {
1004 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1005 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1006 	struct hfcsusb *hw = fifo->hw;
1007 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
1008 		status, iso_status, i;
1009 	__u8 *buf;
1010 	static __u8 eof[8];
1011 	__u8 s0_state;
1012 
1013 	fifon = fifo->fifonum;
1014 	status = urb->status;
1015 
1016 	spin_lock(&hw->lock);
1017 	if (fifo->stop_gracefull) {
1018 		fifo->stop_gracefull = 0;
1019 		fifo->active = 0;
1020 		spin_unlock(&hw->lock);
1021 		return;
1022 	}
1023 	spin_unlock(&hw->lock);
1024 
1025 	/*
1026 	 * ISO transfer only partially completed,
1027 	 * look at individual frame status for details
1028 	 */
1029 	if (status == -EXDEV) {
1030 		if (debug & DEBUG_HW)
1031 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
1032 			       "urb->status %d, fifonum %d\n",
1033 			       hw->name, __func__,  status, fifon);
1034 
1035 		/* clear status, so go on with ISO transfers */
1036 		status = 0;
1037 	}
1038 
1039 	s0_state = 0;
1040 	if (fifo->active && !status) {
1041 		num_isoc_packets = iso_packets[fifon];
1042 		maxlen = fifo->usb_packet_maxlen;
1043 
1044 		for (k = 0; k < num_isoc_packets; ++k) {
1045 			len = urb->iso_frame_desc[k].actual_length;
1046 			offset = urb->iso_frame_desc[k].offset;
1047 			buf = context_iso_urb->buffer + offset;
1048 			iso_status = urb->iso_frame_desc[k].status;
1049 
1050 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1051 				printk(KERN_DEBUG "%s: %s: "
1052 				       "ISO packet %i, status: %i\n",
1053 				       hw->name, __func__, k, iso_status);
1054 			}
1055 
1056 			/* USB data log for every D ISO in */
1057 			if ((fifon == HFCUSB_D_RX) &&
1058 			    (debug & DBG_HFC_USB_VERBOSE)) {
1059 				printk(KERN_DEBUG
1060 				       "%s: %s: %d (%d/%d) len(%d) ",
1061 				       hw->name, __func__, urb->start_frame,
1062 				       k, num_isoc_packets - 1,
1063 				       len);
1064 				for (i = 0; i < len; i++)
1065 					printk("%x ", buf[i]);
1066 				printk("\n");
1067 			}
1068 
1069 			if (!iso_status) {
1070 				if (fifo->last_urblen != maxlen) {
1071 					/*
1072 					 * save fifo fill-level threshold bits
1073 					 * to use them later in TX ISO URB
1074 					 * completions
1075 					 */
1076 					hw->threshold_mask = buf[1];
1077 
1078 					if (fifon == HFCUSB_D_RX)
1079 						s0_state = (buf[0] >> 4);
1080 
1081 					eof[fifon] = buf[0] & 1;
1082 					if (len > 2)
1083 						hfcsusb_rx_frame(fifo, buf + 2,
1084 								 len - 2, (len < maxlen)
1085 								 ? eof[fifon] : 0);
1086 				} else
1087 					hfcsusb_rx_frame(fifo, buf, len,
1088 							 (len < maxlen) ?
1089 							 eof[fifon] : 0);
1090 				fifo->last_urblen = len;
1091 			}
1092 		}
1093 
1094 		/* signal S0 layer1 state change */
1095 		if ((s0_state) && (hw->initdone) &&
1096 		    (s0_state != hw->dch.state)) {
1097 			hw->dch.state = s0_state;
1098 			schedule_event(&hw->dch, FLG_PHCHANGE);
1099 		}
1100 
1101 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1102 			      context_iso_urb->buffer, num_isoc_packets,
1103 			      fifo->usb_packet_maxlen, fifo->intervall,
1104 			      (usb_complete_t)rx_iso_complete, urb->context);
1105 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1106 		if (errcode < 0) {
1107 			if (debug & DEBUG_HW)
1108 				printk(KERN_DEBUG "%s: %s: error submitting "
1109 				       "ISO URB: %d\n",
1110 				       hw->name, __func__, errcode);
1111 		}
1112 	} else {
1113 		if (status && (debug & DBG_HFC_URB_INFO))
1114 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1115 			       "urb->status %d, fifonum %d\n",
1116 			       hw->name, __func__, status, fifon);
1117 	}
1118 }
1119 
1120 /* receive completion routine for all interrupt rx fifos */
1121 static void
1122 rx_int_complete(struct urb *urb)
1123 {
1124 	int len, status, i;
1125 	__u8 *buf, maxlen, fifon;
1126 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1127 	struct hfcsusb *hw = fifo->hw;
1128 	static __u8 eof[8];
1129 
1130 	spin_lock(&hw->lock);
1131 	if (fifo->stop_gracefull) {
1132 		fifo->stop_gracefull = 0;
1133 		fifo->active = 0;
1134 		spin_unlock(&hw->lock);
1135 		return;
1136 	}
1137 	spin_unlock(&hw->lock);
1138 
1139 	fifon = fifo->fifonum;
1140 	if ((!fifo->active) || (urb->status)) {
1141 		if (debug & DBG_HFC_URB_ERROR)
1142 			printk(KERN_DEBUG
1143 			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1144 			       hw->name, __func__, fifon, urb->status);
1145 
1146 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1147 		return;
1148 	}
1149 	len = urb->actual_length;
1150 	buf = fifo->buffer;
1151 	maxlen = fifo->usb_packet_maxlen;
1152 
1153 	/* USB data log for every D INT in */
1154 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1155 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1156 		       hw->name, __func__, len);
1157 		for (i = 0; i < len; i++)
1158 			printk("%02x ", buf[i]);
1159 		printk("\n");
1160 	}
1161 
1162 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1163 		/* the threshold mask is in the 2nd status byte */
1164 		hw->threshold_mask = buf[1];
1165 
1166 		/* signal S0 layer1 state change */
1167 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1168 			hw->dch.state = (buf[0] >> 4);
1169 			schedule_event(&hw->dch, FLG_PHCHANGE);
1170 		}
1171 
1172 		eof[fifon] = buf[0] & 1;
1173 		/* if we have more than the 2 status bytes -> collect data */
1174 		if (len > 2)
1175 			hfcsusb_rx_frame(fifo, buf + 2,
1176 					 urb->actual_length - 2,
1177 					 (len < maxlen) ? eof[fifon] : 0);
1178 	} else {
1179 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1180 				 (len < maxlen) ? eof[fifon] : 0);
1181 	}
1182 	fifo->last_urblen = urb->actual_length;
1183 
1184 	status = usb_submit_urb(urb, GFP_ATOMIC);
1185 	if (status) {
1186 		if (debug & DEBUG_HW)
1187 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1188 			       hw->name, __func__);
1189 	}
1190 }
1191 
1192 /* transmit completion routine for all ISO tx fifos */
1193 static void
1194 tx_iso_complete(struct urb *urb)
1195 {
1196 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1197 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1198 	struct hfcsusb *hw = fifo->hw;
1199 	struct sk_buff *tx_skb;
1200 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1201 		errcode, hdlc, i;
1202 	int *tx_idx;
1203 	int frame_complete, fifon, status;
1204 	__u8 threshbit;
1205 
1206 	spin_lock(&hw->lock);
1207 	if (fifo->stop_gracefull) {
1208 		fifo->stop_gracefull = 0;
1209 		fifo->active = 0;
1210 		spin_unlock(&hw->lock);
1211 		return;
1212 	}
1213 
1214 	if (fifo->dch) {
1215 		tx_skb = fifo->dch->tx_skb;
1216 		tx_idx = &fifo->dch->tx_idx;
1217 		hdlc = 1;
1218 	} else if (fifo->bch) {
1219 		tx_skb = fifo->bch->tx_skb;
1220 		tx_idx = &fifo->bch->tx_idx;
1221 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1222 	} else {
1223 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1224 		       hw->name, __func__);
1225 		spin_unlock(&hw->lock);
1226 		return;
1227 	}
1228 
1229 	fifon = fifo->fifonum;
1230 	status = urb->status;
1231 
1232 	tx_offset = 0;
1233 
1234 	/*
1235 	 * ISO transfer only partially completed,
1236 	 * look at individual frame status for details
1237 	 */
1238 	if (status == -EXDEV) {
1239 		if (debug & DBG_HFC_URB_ERROR)
1240 			printk(KERN_DEBUG "%s: %s: "
1241 			       "-EXDEV (%i) fifon (%d)\n",
1242 			       hw->name, __func__, status, fifon);
1243 
1244 		/* clear status, so go on with ISO transfers */
1245 		status = 0;
1246 	}
1247 
1248 	if (fifo->active && !status) {
1249 		/* is FifoFull-threshold set for our channel? */
1250 		threshbit = (hw->threshold_mask & (1 << fifon));
1251 		num_isoc_packets = iso_packets[fifon];
1252 
1253 		/* predict dataflow to avoid fifo overflow */
1254 		if (fifon >= HFCUSB_D_TX)
1255 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1256 		else
1257 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1258 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1259 			      context_iso_urb->buffer, num_isoc_packets,
1260 			      fifo->usb_packet_maxlen, fifo->intervall,
1261 			      (usb_complete_t)tx_iso_complete, urb->context);
1262 		memset(context_iso_urb->buffer, 0,
1263 		       sizeof(context_iso_urb->buffer));
1264 		frame_complete = 0;
1265 
1266 		for (k = 0; k < num_isoc_packets; ++k) {
1267 			/* analyze tx success of previous ISO packets */
1268 			if (debug & DBG_HFC_URB_ERROR) {
1269 				errcode = urb->iso_frame_desc[k].status;
1270 				if (errcode) {
1271 					printk(KERN_DEBUG "%s: %s: "
1272 					       "ISO packet %i, status: %i\n",
1273 					       hw->name, __func__, k, errcode);
1274 				}
1275 			}
1276 
1277 			/* Generate next ISO Packets */
1278 			if (tx_skb)
1279 				remain = tx_skb->len - *tx_idx;
1280 			else
1281 				remain = 0;
1282 
1283 			if (remain > 0) {
1284 				fifo->bit_line -= sink;
1285 				current_len = (0 - fifo->bit_line) / 8;
1286 				if (current_len > 14)
1287 					current_len = 14;
1288 				if (current_len < 0)
1289 					current_len = 0;
1290 				if (remain < current_len)
1291 					current_len = remain;
1292 
1293 				/* how much bit do we put on the line? */
1294 				fifo->bit_line += current_len * 8;
1295 
1296 				context_iso_urb->buffer[tx_offset] = 0;
1297 				if (current_len == remain) {
1298 					if (hdlc) {
1299 						/* signal frame completion */
1300 						context_iso_urb->
1301 							buffer[tx_offset] = 1;
1302 						/* add 2 byte flags and 16bit
1303 						 * CRC at end of ISDN frame */
1304 						fifo->bit_line += 32;
1305 					}
1306 					frame_complete = 1;
1307 				}
1308 
1309 				/* copy tx data to iso-urb buffer */
1310 				memcpy(context_iso_urb->buffer + tx_offset + 1,
1311 				       (tx_skb->data + *tx_idx), current_len);
1312 				*tx_idx += current_len;
1313 
1314 				urb->iso_frame_desc[k].offset = tx_offset;
1315 				urb->iso_frame_desc[k].length = current_len + 1;
1316 
1317 				/* USB data log for every D ISO out */
1318 				if ((fifon == HFCUSB_D_RX) &&
1319 				    (debug & DBG_HFC_USB_VERBOSE)) {
1320 					printk(KERN_DEBUG
1321 					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1322 					       hw->name, __func__,
1323 					       k, num_isoc_packets - 1,
1324 					       urb->iso_frame_desc[k].offset,
1325 					       urb->iso_frame_desc[k].length);
1326 
1327 					for (i = urb->iso_frame_desc[k].offset;
1328 					     i < (urb->iso_frame_desc[k].offset
1329 						  + urb->iso_frame_desc[k].length);
1330 					     i++)
1331 						printk("%x ",
1332 						       context_iso_urb->buffer[i]);
1333 
1334 					printk(" skb->len(%i) tx-idx(%d)\n",
1335 					       tx_skb->len, *tx_idx);
1336 				}
1337 
1338 				tx_offset += (current_len + 1);
1339 			} else {
1340 				urb->iso_frame_desc[k].offset = tx_offset++;
1341 				urb->iso_frame_desc[k].length = 1;
1342 				/* we lower data margin every msec */
1343 				fifo->bit_line -= sink;
1344 				if (fifo->bit_line < BITLINE_INF)
1345 					fifo->bit_line = BITLINE_INF;
1346 			}
1347 
1348 			if (frame_complete) {
1349 				frame_complete = 0;
1350 
1351 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1352 					printk(KERN_DEBUG  "%s: %s: "
1353 					       "fifon(%i) new TX len(%i): ",
1354 					       hw->name, __func__,
1355 					       fifon, tx_skb->len);
1356 					i = 0;
1357 					while (i < tx_skb->len)
1358 						printk("%02x ",
1359 						       tx_skb->data[i++]);
1360 					printk("\n");
1361 				}
1362 
1363 				dev_kfree_skb(tx_skb);
1364 				tx_skb = NULL;
1365 				if (fifo->dch && get_next_dframe(fifo->dch))
1366 					tx_skb = fifo->dch->tx_skb;
1367 				else if (fifo->bch &&
1368 					 get_next_bframe(fifo->bch)) {
1369 					if (test_bit(FLG_TRANSPARENT,
1370 						     &fifo->bch->Flags))
1371 						confirm_Bsend(fifo->bch);
1372 					tx_skb = fifo->bch->tx_skb;
1373 				}
1374 			}
1375 		}
1376 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1377 		if (errcode < 0) {
1378 			if (debug & DEBUG_HW)
1379 				printk(KERN_DEBUG
1380 				       "%s: %s: error submitting ISO URB: %d \n",
1381 				       hw->name, __func__, errcode);
1382 		}
1383 
1384 		/*
1385 		 * abuse DChannel tx iso completion to trigger NT mode state
1386 		 * changes tx_iso_complete is assumed to be called every
1387 		 * fifo->intervall (ms)
1388 		 */
1389 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1390 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1391 			if ((--hw->nt_timer) < 0)
1392 				schedule_event(&hw->dch, FLG_PHCHANGE);
1393 		}
1394 
1395 	} else {
1396 		if (status && (debug & DBG_HFC_URB_ERROR))
1397 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1398 			       "fifonum=%d\n",
1399 			       hw->name, __func__,
1400 			       symbolic(urb_errlist, status), status, fifon);
1401 	}
1402 	spin_unlock(&hw->lock);
1403 }
1404 
1405 /*
1406  * allocs urbs and start isoc transfer with two pending urbs to avoid
1407  * gaps in the transfer chain
1408  */
1409 static int
1410 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1411 		 usb_complete_t complete, int packet_size)
1412 {
1413 	struct hfcsusb *hw = fifo->hw;
1414 	int i, k, errcode;
1415 
1416 	if (debug)
1417 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1418 		       hw->name, __func__, fifo->fifonum);
1419 
1420 	/* allocate Memory for Iso out Urbs */
1421 	for (i = 0; i < 2; i++) {
1422 		if (!(fifo->iso[i].urb)) {
1423 			fifo->iso[i].urb =
1424 				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1425 			if (!(fifo->iso[i].urb)) {
1426 				printk(KERN_DEBUG
1427 				       "%s: %s: alloc urb for fifo %i failed",
1428 				       hw->name, __func__, fifo->fifonum);
1429 			}
1430 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1431 			fifo->iso[i].indx = i;
1432 
1433 			/* Init the first iso */
1434 			if (ISO_BUFFER_SIZE >=
1435 			    (fifo->usb_packet_maxlen *
1436 			     num_packets_per_urb)) {
1437 				fill_isoc_urb(fifo->iso[i].urb,
1438 					      fifo->hw->dev, fifo->pipe,
1439 					      fifo->iso[i].buffer,
1440 					      num_packets_per_urb,
1441 					      fifo->usb_packet_maxlen,
1442 					      fifo->intervall, complete,
1443 					      &fifo->iso[i]);
1444 				memset(fifo->iso[i].buffer, 0,
1445 				       sizeof(fifo->iso[i].buffer));
1446 
1447 				for (k = 0; k < num_packets_per_urb; k++) {
1448 					fifo->iso[i].urb->
1449 						iso_frame_desc[k].offset =
1450 						k * packet_size;
1451 					fifo->iso[i].urb->
1452 						iso_frame_desc[k].length =
1453 						packet_size;
1454 				}
1455 			} else {
1456 				printk(KERN_DEBUG
1457 				       "%s: %s: ISO Buffer size to small!\n",
1458 				       hw->name, __func__);
1459 			}
1460 		}
1461 		fifo->bit_line = BITLINE_INF;
1462 
1463 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1464 		fifo->active = (errcode >= 0) ? 1 : 0;
1465 		fifo->stop_gracefull = 0;
1466 		if (errcode < 0) {
1467 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1468 			       hw->name, __func__,
1469 			       symbolic(urb_errlist, errcode), i);
1470 		}
1471 	}
1472 	return fifo->active;
1473 }
1474 
1475 static void
1476 stop_iso_gracefull(struct usb_fifo *fifo)
1477 {
1478 	struct hfcsusb *hw = fifo->hw;
1479 	int i, timeout;
1480 	u_long flags;
1481 
1482 	for (i = 0; i < 2; i++) {
1483 		spin_lock_irqsave(&hw->lock, flags);
1484 		if (debug)
1485 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1486 			       hw->name, __func__, fifo->fifonum, i);
1487 		fifo->stop_gracefull = 1;
1488 		spin_unlock_irqrestore(&hw->lock, flags);
1489 	}
1490 
1491 	for (i = 0; i < 2; i++) {
1492 		timeout = 3;
1493 		while (fifo->stop_gracefull && timeout--)
1494 			schedule_timeout_interruptible((HZ / 1000) * 16);
1495 		if (debug && fifo->stop_gracefull)
1496 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1497 			       hw->name, __func__, fifo->fifonum, i);
1498 	}
1499 }
1500 
1501 static void
1502 stop_int_gracefull(struct usb_fifo *fifo)
1503 {
1504 	struct hfcsusb *hw = fifo->hw;
1505 	int timeout;
1506 	u_long flags;
1507 
1508 	spin_lock_irqsave(&hw->lock, flags);
1509 	if (debug)
1510 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1511 		       hw->name, __func__, fifo->fifonum);
1512 	fifo->stop_gracefull = 1;
1513 	spin_unlock_irqrestore(&hw->lock, flags);
1514 
1515 	timeout = 3;
1516 	while (fifo->stop_gracefull && timeout--)
1517 		schedule_timeout_interruptible((HZ / 1000) * 3);
1518 	if (debug && fifo->stop_gracefull)
1519 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1520 		       hw->name, __func__, fifo->fifonum);
1521 }
1522 
1523 /* start the interrupt transfer for the given fifo */
1524 static void
1525 start_int_fifo(struct usb_fifo *fifo)
1526 {
1527 	struct hfcsusb *hw = fifo->hw;
1528 	int errcode;
1529 
1530 	if (debug)
1531 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1532 		       hw->name, __func__, fifo->fifonum);
1533 
1534 	if (!fifo->urb) {
1535 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1536 		if (!fifo->urb)
1537 			return;
1538 	}
1539 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1540 			 fifo->buffer, fifo->usb_packet_maxlen,
1541 			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1542 	fifo->active = 1;
1543 	fifo->stop_gracefull = 0;
1544 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1545 	if (errcode) {
1546 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1547 		       hw->name, __func__, errcode);
1548 		fifo->active = 0;
1549 	}
1550 }
1551 
1552 static void
1553 setPortMode(struct hfcsusb *hw)
1554 {
1555 	if (debug & DEBUG_HW)
1556 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1557 		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1558 
1559 	if (hw->protocol == ISDN_P_TE_S0) {
1560 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1561 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1562 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1563 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1564 		write_reg(hw, HFCUSB_STATES, 3);
1565 	} else {
1566 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1567 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1568 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1569 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1570 		write_reg(hw, HFCUSB_STATES, 1);
1571 	}
1572 }
1573 
1574 static void
1575 reset_hfcsusb(struct hfcsusb *hw)
1576 {
1577 	struct usb_fifo *fifo;
1578 	int i;
1579 
1580 	if (debug & DEBUG_HW)
1581 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1582 
1583 	/* do Chip reset */
1584 	write_reg(hw, HFCUSB_CIRM, 8);
1585 
1586 	/* aux = output, reset off */
1587 	write_reg(hw, HFCUSB_CIRM, 0x10);
1588 
1589 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1590 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1591 		  ((hw->packet_size / 8) << 4));
1592 
1593 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1594 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1595 
1596 	/* enable PCM/GCI master mode */
1597 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1598 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1599 
1600 	/* init the fifos */
1601 	write_reg(hw, HFCUSB_F_THRES,
1602 		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1603 
1604 	fifo = hw->fifos;
1605 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1606 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1607 		fifo[i].max_size =
1608 			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1609 		fifo[i].last_urblen = 0;
1610 
1611 		/* set 2 bit for D- & E-channel */
1612 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1613 
1614 		/* enable all fifos */
1615 		if (i == HFCUSB_D_TX)
1616 			write_reg(hw, HFCUSB_CON_HDLC,
1617 				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1618 		else
1619 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1620 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1621 	}
1622 
1623 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1624 	handle_led(hw, LED_POWER_ON);
1625 }
1626 
1627 /* start USB data pipes dependand on device's endpoint configuration */
1628 static void
1629 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1630 {
1631 	/* quick check if endpoint already running */
1632 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1633 		return;
1634 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1635 		return;
1636 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1637 		return;
1638 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1639 		return;
1640 
1641 	/* start rx endpoints using USB INT IN method */
1642 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1643 		start_int_fifo(hw->fifos + channel * 2 + 1);
1644 
1645 	/* start rx endpoints using USB ISO IN method */
1646 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1647 		switch (channel) {
1648 		case HFC_CHAN_D:
1649 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1650 					 ISOC_PACKETS_D,
1651 					 (usb_complete_t)rx_iso_complete,
1652 					 16);
1653 			break;
1654 		case HFC_CHAN_E:
1655 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1656 					 ISOC_PACKETS_D,
1657 					 (usb_complete_t)rx_iso_complete,
1658 					 16);
1659 			break;
1660 		case HFC_CHAN_B1:
1661 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1662 					 ISOC_PACKETS_B,
1663 					 (usb_complete_t)rx_iso_complete,
1664 					 16);
1665 			break;
1666 		case HFC_CHAN_B2:
1667 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1668 					 ISOC_PACKETS_B,
1669 					 (usb_complete_t)rx_iso_complete,
1670 					 16);
1671 			break;
1672 		}
1673 	}
1674 
1675 	/* start tx endpoints using USB ISO OUT method */
1676 	switch (channel) {
1677 	case HFC_CHAN_D:
1678 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1679 				 ISOC_PACKETS_B,
1680 				 (usb_complete_t)tx_iso_complete, 1);
1681 		break;
1682 	case HFC_CHAN_B1:
1683 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1684 				 ISOC_PACKETS_D,
1685 				 (usb_complete_t)tx_iso_complete, 1);
1686 		break;
1687 	case HFC_CHAN_B2:
1688 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1689 				 ISOC_PACKETS_B,
1690 				 (usb_complete_t)tx_iso_complete, 1);
1691 		break;
1692 	}
1693 }
1694 
1695 /* stop USB data pipes dependand on device's endpoint configuration */
1696 static void
1697 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1698 {
1699 	/* quick check if endpoint currently running */
1700 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1701 		return;
1702 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1703 		return;
1704 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1705 		return;
1706 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1707 		return;
1708 
1709 	/* rx endpoints using USB INT IN method */
1710 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1711 		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1712 
1713 	/* rx endpoints using USB ISO IN method */
1714 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1715 		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1716 
1717 	/* tx endpoints using USB ISO OUT method */
1718 	if (channel != HFC_CHAN_E)
1719 		stop_iso_gracefull(hw->fifos + channel * 2);
1720 }
1721 
1722 
1723 /* Hardware Initialization */
1724 static int
1725 setup_hfcsusb(struct hfcsusb *hw)
1726 {
1727 	u_char b;
1728 
1729 	if (debug & DBG_HFC_CALL_TRACE)
1730 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1731 
1732 	/* check the chip id */
1733 	if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1734 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1735 		       hw->name, __func__);
1736 		return 1;
1737 	}
1738 	if (b != HFCUSB_CHIPID) {
1739 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1740 		       hw->name, __func__, b);
1741 		return 1;
1742 	}
1743 
1744 	/* first set the needed config, interface and alternate */
1745 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1746 
1747 	hw->led_state = 0;
1748 
1749 	/* init the background machinery for control requests */
1750 	hw->ctrl_read.bRequestType = 0xc0;
1751 	hw->ctrl_read.bRequest = 1;
1752 	hw->ctrl_read.wLength = cpu_to_le16(1);
1753 	hw->ctrl_write.bRequestType = 0x40;
1754 	hw->ctrl_write.bRequest = 0;
1755 	hw->ctrl_write.wLength = 0;
1756 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1757 			     (u_char *)&hw->ctrl_write, NULL, 0,
1758 			     (usb_complete_t)ctrl_complete, hw);
1759 
1760 	reset_hfcsusb(hw);
1761 	return 0;
1762 }
1763 
1764 static void
1765 release_hw(struct hfcsusb *hw)
1766 {
1767 	if (debug & DBG_HFC_CALL_TRACE)
1768 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1769 
1770 	/*
1771 	 * stop all endpoints gracefully
1772 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1773 	 *       signals after calling mISDN_unregister_device()
1774 	 */
1775 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1776 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1777 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1778 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1779 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1780 	if (hw->protocol == ISDN_P_TE_S0)
1781 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1782 
1783 	mISDN_unregister_device(&hw->dch.dev);
1784 	mISDN_freebchannel(&hw->bch[1]);
1785 	mISDN_freebchannel(&hw->bch[0]);
1786 	mISDN_freedchannel(&hw->dch);
1787 
1788 	if (hw->ctrl_urb) {
1789 		usb_kill_urb(hw->ctrl_urb);
1790 		usb_free_urb(hw->ctrl_urb);
1791 		hw->ctrl_urb = NULL;
1792 	}
1793 
1794 	if (hw->intf)
1795 		usb_set_intfdata(hw->intf, NULL);
1796 	list_del(&hw->list);
1797 	kfree(hw);
1798 	hw = NULL;
1799 }
1800 
1801 static void
1802 deactivate_bchannel(struct bchannel *bch)
1803 {
1804 	struct hfcsusb *hw = bch->hw;
1805 	u_long flags;
1806 
1807 	if (bch->debug & DEBUG_HW)
1808 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1809 		       hw->name, __func__, bch->nr);
1810 
1811 	spin_lock_irqsave(&hw->lock, flags);
1812 	mISDN_clear_bchannel(bch);
1813 	spin_unlock_irqrestore(&hw->lock, flags);
1814 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1815 	hfcsusb_stop_endpoint(hw, bch->nr);
1816 }
1817 
1818 /*
1819  * Layer 1 B-channel hardware access
1820  */
1821 static int
1822 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1823 {
1824 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1825 	int		ret = -EINVAL;
1826 
1827 	if (bch->debug & DEBUG_HW)
1828 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1829 
1830 	switch (cmd) {
1831 	case HW_TESTRX_RAW:
1832 	case HW_TESTRX_HDLC:
1833 	case HW_TESTRX_OFF:
1834 		ret = -EINVAL;
1835 		break;
1836 
1837 	case CLOSE_CHANNEL:
1838 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1839 		if (test_bit(FLG_ACTIVE, &bch->Flags))
1840 			deactivate_bchannel(bch);
1841 		ch->protocol = ISDN_P_NONE;
1842 		ch->peer = NULL;
1843 		module_put(THIS_MODULE);
1844 		ret = 0;
1845 		break;
1846 	case CONTROL_CHANNEL:
1847 		ret = channel_bctrl(bch, arg);
1848 		break;
1849 	default:
1850 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1851 		       __func__, cmd);
1852 	}
1853 	return ret;
1854 }
1855 
1856 static int
1857 setup_instance(struct hfcsusb *hw, struct device *parent)
1858 {
1859 	u_long	flags;
1860 	int	err, i;
1861 
1862 	if (debug & DBG_HFC_CALL_TRACE)
1863 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1864 
1865 	spin_lock_init(&hw->ctrl_lock);
1866 	spin_lock_init(&hw->lock);
1867 
1868 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1869 	hw->dch.debug = debug & 0xFFFF;
1870 	hw->dch.hw = hw;
1871 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1872 	hw->dch.dev.D.send = hfcusb_l2l1D;
1873 	hw->dch.dev.D.ctrl = hfc_dctrl;
1874 
1875 	/* enable E-Channel logging */
1876 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1877 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1878 
1879 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1880 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1881 	hw->dch.dev.nrbchan = 2;
1882 	for (i = 0; i < 2; i++) {
1883 		hw->bch[i].nr = i + 1;
1884 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1885 		hw->bch[i].debug = debug;
1886 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
1887 		hw->bch[i].hw = hw;
1888 		hw->bch[i].ch.send = hfcusb_l2l1B;
1889 		hw->bch[i].ch.ctrl = hfc_bctrl;
1890 		hw->bch[i].ch.nr = i + 1;
1891 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1892 	}
1893 
1894 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1895 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1896 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1897 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1898 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1899 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1900 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1901 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1902 
1903 	err = setup_hfcsusb(hw);
1904 	if (err)
1905 		goto out;
1906 
1907 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1908 		 hfcsusb_cnt + 1);
1909 	printk(KERN_INFO "%s: registered as '%s'\n",
1910 	       DRIVER_NAME, hw->name);
1911 
1912 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1913 	if (err)
1914 		goto out;
1915 
1916 	hfcsusb_cnt++;
1917 	write_lock_irqsave(&HFClock, flags);
1918 	list_add_tail(&hw->list, &HFClist);
1919 	write_unlock_irqrestore(&HFClock, flags);
1920 	return 0;
1921 
1922 out:
1923 	mISDN_freebchannel(&hw->bch[1]);
1924 	mISDN_freebchannel(&hw->bch[0]);
1925 	mISDN_freedchannel(&hw->dch);
1926 	kfree(hw);
1927 	return err;
1928 }
1929 
1930 static int
1931 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1932 {
1933 	struct hfcsusb			*hw;
1934 	struct usb_device		*dev = interface_to_usbdev(intf);
1935 	struct usb_host_interface	*iface = intf->cur_altsetting;
1936 	struct usb_host_interface	*iface_used = NULL;
1937 	struct usb_host_endpoint	*ep;
1938 	struct hfcsusb_vdata		*driver_info;
1939 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1940 		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1941 		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1942 		alt_used = 0;
1943 
1944 	vend_idx = 0xffff;
1945 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1946 		if ((le16_to_cpu(dev->descriptor.idVendor)
1947 		     == hfcsusb_idtab[i].idVendor) &&
1948 		    (le16_to_cpu(dev->descriptor.idProduct)
1949 		     == hfcsusb_idtab[i].idProduct)) {
1950 			vend_idx = i;
1951 			continue;
1952 		}
1953 	}
1954 
1955 	printk(KERN_DEBUG
1956 	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1957 	       __func__, ifnum, iface->desc.bAlternateSetting,
1958 	       intf->minor, vend_idx);
1959 
1960 	if (vend_idx == 0xffff) {
1961 		printk(KERN_WARNING
1962 		       "%s: no valid vendor found in USB descriptor\n",
1963 		       __func__);
1964 		return -EIO;
1965 	}
1966 	/* if vendor and product ID is OK, start probing alternate settings */
1967 	alt_idx = 0;
1968 	small_match = -1;
1969 
1970 	/* default settings */
1971 	iso_packet_size = 16;
1972 	packet_size = 64;
1973 
1974 	while (alt_idx < intf->num_altsetting) {
1975 		iface = intf->altsetting + alt_idx;
1976 		probe_alt_setting = iface->desc.bAlternateSetting;
1977 		cfg_used = 0;
1978 
1979 		while (validconf[cfg_used][0]) {
1980 			cfg_found = 1;
1981 			vcf = validconf[cfg_used];
1982 			ep = iface->endpoint;
1983 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1984 
1985 			/* check for all endpoints in this alternate setting */
1986 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1987 				ep_addr = ep->desc.bEndpointAddress;
1988 
1989 				/* get endpoint base */
1990 				idx = ((ep_addr & 0x7f) - 1) * 2;
1991 				if (ep_addr & 0x80)
1992 					idx++;
1993 				attr = ep->desc.bmAttributes;
1994 
1995 				if (cmptbl[idx] != EP_NOP) {
1996 					if (cmptbl[idx] == EP_NUL)
1997 						cfg_found = 0;
1998 					if (attr == USB_ENDPOINT_XFER_INT
1999 					    && cmptbl[idx] == EP_INT)
2000 						cmptbl[idx] = EP_NUL;
2001 					if (attr == USB_ENDPOINT_XFER_BULK
2002 					    && cmptbl[idx] == EP_BLK)
2003 						cmptbl[idx] = EP_NUL;
2004 					if (attr == USB_ENDPOINT_XFER_ISOC
2005 					    && cmptbl[idx] == EP_ISO)
2006 						cmptbl[idx] = EP_NUL;
2007 
2008 					if (attr == USB_ENDPOINT_XFER_INT &&
2009 					    ep->desc.bInterval < vcf[17]) {
2010 						cfg_found = 0;
2011 					}
2012 				}
2013 				ep++;
2014 			}
2015 
2016 			for (i = 0; i < 16; i++)
2017 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2018 					cfg_found = 0;
2019 
2020 			if (cfg_found) {
2021 				if (small_match < cfg_used) {
2022 					small_match = cfg_used;
2023 					alt_used = probe_alt_setting;
2024 					iface_used = iface;
2025 				}
2026 			}
2027 			cfg_used++;
2028 		}
2029 		alt_idx++;
2030 	}	/* (alt_idx < intf->num_altsetting) */
2031 
2032 	/* not found a valid USB Ta Endpoint config */
2033 	if (small_match == -1)
2034 		return -EIO;
2035 
2036 	iface = iface_used;
2037 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2038 	if (!hw)
2039 		return -ENOMEM;	/* got no mem */
2040 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2041 
2042 	ep = iface->endpoint;
2043 	vcf = validconf[small_match];
2044 
2045 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2046 		struct usb_fifo *f;
2047 
2048 		ep_addr = ep->desc.bEndpointAddress;
2049 		/* get endpoint base */
2050 		idx = ((ep_addr & 0x7f) - 1) * 2;
2051 		if (ep_addr & 0x80)
2052 			idx++;
2053 		f = &hw->fifos[idx & 7];
2054 
2055 		/* init Endpoints */
2056 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2057 			ep++;
2058 			continue;
2059 		}
2060 		switch (ep->desc.bmAttributes) {
2061 		case USB_ENDPOINT_XFER_INT:
2062 			f->pipe = usb_rcvintpipe(dev,
2063 						 ep->desc.bEndpointAddress);
2064 			f->usb_transfer_mode = USB_INT;
2065 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2066 			break;
2067 		case USB_ENDPOINT_XFER_BULK:
2068 			if (ep_addr & 0x80)
2069 				f->pipe = usb_rcvbulkpipe(dev,
2070 							  ep->desc.bEndpointAddress);
2071 			else
2072 				f->pipe = usb_sndbulkpipe(dev,
2073 							  ep->desc.bEndpointAddress);
2074 			f->usb_transfer_mode = USB_BULK;
2075 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2076 			break;
2077 		case USB_ENDPOINT_XFER_ISOC:
2078 			if (ep_addr & 0x80)
2079 				f->pipe = usb_rcvisocpipe(dev,
2080 							  ep->desc.bEndpointAddress);
2081 			else
2082 				f->pipe = usb_sndisocpipe(dev,
2083 							  ep->desc.bEndpointAddress);
2084 			f->usb_transfer_mode = USB_ISOC;
2085 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2086 			break;
2087 		default:
2088 			f->pipe = 0;
2089 		}
2090 
2091 		if (f->pipe) {
2092 			f->fifonum = idx & 7;
2093 			f->hw = hw;
2094 			f->usb_packet_maxlen =
2095 				le16_to_cpu(ep->desc.wMaxPacketSize);
2096 			f->intervall = ep->desc.bInterval;
2097 		}
2098 		ep++;
2099 	}
2100 	hw->dev = dev; /* save device */
2101 	hw->if_used = ifnum; /* save used interface */
2102 	hw->alt_used = alt_used; /* and alternate config */
2103 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2104 	hw->cfg_used = vcf[16];	/* store used config */
2105 	hw->vend_idx = vend_idx; /* store found vendor */
2106 	hw->packet_size = packet_size;
2107 	hw->iso_packet_size = iso_packet_size;
2108 
2109 	/* create the control pipes needed for register access */
2110 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2111 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2112 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2113 
2114 	driver_info =
2115 		(struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
2116 	printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2117 	       hw->name, __func__, driver_info->vend_name,
2118 	       conf_str[small_match], ifnum, alt_used);
2119 
2120 	if (setup_instance(hw, dev->dev.parent))
2121 		return -EIO;
2122 
2123 	hw->intf = intf;
2124 	usb_set_intfdata(hw->intf, hw);
2125 	return 0;
2126 }
2127 
2128 /* function called when an active device is removed */
2129 static void
2130 hfcsusb_disconnect(struct usb_interface *intf)
2131 {
2132 	struct hfcsusb *hw = usb_get_intfdata(intf);
2133 	struct hfcsusb *next;
2134 	int cnt = 0;
2135 
2136 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2137 
2138 	handle_led(hw, LED_POWER_OFF);
2139 	release_hw(hw);
2140 
2141 	list_for_each_entry_safe(hw, next, &HFClist, list)
2142 		cnt++;
2143 	if (!cnt)
2144 		hfcsusb_cnt = 0;
2145 
2146 	usb_set_intfdata(intf, NULL);
2147 }
2148 
2149 static struct usb_driver hfcsusb_drv = {
2150 	.name = DRIVER_NAME,
2151 	.id_table = hfcsusb_idtab,
2152 	.probe = hfcsusb_probe,
2153 	.disconnect = hfcsusb_disconnect,
2154 };
2155 
2156 module_usb_driver(hfcsusb_drv);
2157