1 /* hfcsusb.c 2 * mISDN driver for Colognechip HFC-S USB chip 3 * 4 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de) 5 * Copyright 2008 by Martin Bachem (info@bachem-it.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2, or (at your option) 10 * any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 * 21 * 22 * module params 23 * debug=<n>, default=0, with n=0xHHHHGGGG 24 * H - l1 driver flags described in hfcsusb.h 25 * G - common mISDN debug flags described at mISDNhw.h 26 * 27 * poll=<n>, default 128 28 * n : burst size of PH_DATA_IND at transparent rx data 29 * 30 * Revision: 0.3.3 (socket), 2008-11-05 31 */ 32 33 #include <linux/module.h> 34 #include <linux/delay.h> 35 #include <linux/usb.h> 36 #include <linux/mISDNhw.h> 37 #include <linux/slab.h> 38 #include "hfcsusb.h" 39 40 static unsigned int debug; 41 static int poll = DEFAULT_TRANSP_BURST_SZ; 42 43 static LIST_HEAD(HFClist); 44 static DEFINE_RWLOCK(HFClock); 45 46 47 MODULE_AUTHOR("Martin Bachem"); 48 MODULE_LICENSE("GPL"); 49 module_param(debug, uint, S_IRUGO | S_IWUSR); 50 module_param(poll, int, 0); 51 52 static int hfcsusb_cnt; 53 54 /* some function prototypes */ 55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command); 56 static void release_hw(struct hfcsusb *hw); 57 static void reset_hfcsusb(struct hfcsusb *hw); 58 static void setPortMode(struct hfcsusb *hw); 59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel); 60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel); 61 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol); 62 static void deactivate_bchannel(struct bchannel *bch); 63 static void hfcsusb_ph_info(struct hfcsusb *hw); 64 65 /* start next background transfer for control channel */ 66 static void 67 ctrl_start_transfer(struct hfcsusb *hw) 68 { 69 if (debug & DBG_HFC_CALL_TRACE) 70 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 71 72 if (hw->ctrl_cnt) { 73 hw->ctrl_urb->pipe = hw->ctrl_out_pipe; 74 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write; 75 hw->ctrl_urb->transfer_buffer = NULL; 76 hw->ctrl_urb->transfer_buffer_length = 0; 77 hw->ctrl_write.wIndex = 78 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg); 79 hw->ctrl_write.wValue = 80 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val); 81 82 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC); 83 } 84 } 85 86 /* 87 * queue a control transfer request to write HFC-S USB 88 * chip register using CTRL resuest queue 89 */ 90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val) 91 { 92 struct ctrl_buf *buf; 93 94 if (debug & DBG_HFC_CALL_TRACE) 95 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n", 96 hw->name, __func__, reg, val); 97 98 spin_lock(&hw->ctrl_lock); 99 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) { 100 spin_unlock(&hw->ctrl_lock); 101 return 1; 102 } 103 buf = &hw->ctrl_buff[hw->ctrl_in_idx]; 104 buf->hfcs_reg = reg; 105 buf->reg_val = val; 106 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE) 107 hw->ctrl_in_idx = 0; 108 if (++hw->ctrl_cnt == 1) 109 ctrl_start_transfer(hw); 110 spin_unlock(&hw->ctrl_lock); 111 112 return 0; 113 } 114 115 /* control completion routine handling background control cmds */ 116 static void 117 ctrl_complete(struct urb *urb) 118 { 119 struct hfcsusb *hw = (struct hfcsusb *) urb->context; 120 121 if (debug & DBG_HFC_CALL_TRACE) 122 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 123 124 urb->dev = hw->dev; 125 if (hw->ctrl_cnt) { 126 hw->ctrl_cnt--; /* decrement actual count */ 127 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE) 128 hw->ctrl_out_idx = 0; /* pointer wrap */ 129 130 ctrl_start_transfer(hw); /* start next transfer */ 131 } 132 } 133 134 /* handle LED bits */ 135 static void 136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on) 137 { 138 if (set_on) { 139 if (led_bits < 0) 140 hw->led_state &= ~abs(led_bits); 141 else 142 hw->led_state |= led_bits; 143 } else { 144 if (led_bits < 0) 145 hw->led_state |= abs(led_bits); 146 else 147 hw->led_state &= ~led_bits; 148 } 149 } 150 151 /* handle LED requests */ 152 static void 153 handle_led(struct hfcsusb *hw, int event) 154 { 155 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *) 156 hfcsusb_idtab[hw->vend_idx].driver_info; 157 __u8 tmpled; 158 159 if (driver_info->led_scheme == LED_OFF) 160 return; 161 tmpled = hw->led_state; 162 163 switch (event) { 164 case LED_POWER_ON: 165 set_led_bit(hw, driver_info->led_bits[0], 1); 166 set_led_bit(hw, driver_info->led_bits[1], 0); 167 set_led_bit(hw, driver_info->led_bits[2], 0); 168 set_led_bit(hw, driver_info->led_bits[3], 0); 169 break; 170 case LED_POWER_OFF: 171 set_led_bit(hw, driver_info->led_bits[0], 0); 172 set_led_bit(hw, driver_info->led_bits[1], 0); 173 set_led_bit(hw, driver_info->led_bits[2], 0); 174 set_led_bit(hw, driver_info->led_bits[3], 0); 175 break; 176 case LED_S0_ON: 177 set_led_bit(hw, driver_info->led_bits[1], 1); 178 break; 179 case LED_S0_OFF: 180 set_led_bit(hw, driver_info->led_bits[1], 0); 181 break; 182 case LED_B1_ON: 183 set_led_bit(hw, driver_info->led_bits[2], 1); 184 break; 185 case LED_B1_OFF: 186 set_led_bit(hw, driver_info->led_bits[2], 0); 187 break; 188 case LED_B2_ON: 189 set_led_bit(hw, driver_info->led_bits[3], 1); 190 break; 191 case LED_B2_OFF: 192 set_led_bit(hw, driver_info->led_bits[3], 0); 193 break; 194 } 195 196 if (hw->led_state != tmpled) { 197 if (debug & DBG_HFC_CALL_TRACE) 198 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n", 199 hw->name, __func__, 200 HFCUSB_P_DATA, hw->led_state); 201 202 write_reg(hw, HFCUSB_P_DATA, hw->led_state); 203 } 204 } 205 206 /* 207 * Layer2 -> Layer 1 Bchannel data 208 */ 209 static int 210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) 211 { 212 struct bchannel *bch = container_of(ch, struct bchannel, ch); 213 struct hfcsusb *hw = bch->hw; 214 int ret = -EINVAL; 215 struct mISDNhead *hh = mISDN_HEAD_P(skb); 216 u_long flags; 217 218 if (debug & DBG_HFC_CALL_TRACE) 219 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 220 221 switch (hh->prim) { 222 case PH_DATA_REQ: 223 spin_lock_irqsave(&hw->lock, flags); 224 ret = bchannel_senddata(bch, skb); 225 spin_unlock_irqrestore(&hw->lock, flags); 226 if (debug & DBG_HFC_CALL_TRACE) 227 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n", 228 hw->name, __func__, ret); 229 if (ret > 0) { 230 /* 231 * other l1 drivers don't send early confirms on 232 * transp data, but hfcsusb does because tx_next 233 * skb is needed in tx_iso_complete() 234 */ 235 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL); 236 ret = 0; 237 } 238 return ret; 239 case PH_ACTIVATE_REQ: 240 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { 241 hfcsusb_start_endpoint(hw, bch->nr); 242 ret = hfcsusb_setup_bch(bch, ch->protocol); 243 } else 244 ret = 0; 245 if (!ret) 246 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 247 0, NULL, GFP_KERNEL); 248 break; 249 case PH_DEACTIVATE_REQ: 250 deactivate_bchannel(bch); 251 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 252 0, NULL, GFP_KERNEL); 253 ret = 0; 254 break; 255 } 256 if (!ret) 257 dev_kfree_skb(skb); 258 return ret; 259 } 260 261 /* 262 * send full D/B channel status information 263 * as MPH_INFORMATION_IND 264 */ 265 static void 266 hfcsusb_ph_info(struct hfcsusb *hw) 267 { 268 struct ph_info *phi; 269 struct dchannel *dch = &hw->dch; 270 int i; 271 272 phi = kzalloc(sizeof(struct ph_info) + 273 dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC); 274 phi->dch.ch.protocol = hw->protocol; 275 phi->dch.ch.Flags = dch->Flags; 276 phi->dch.state = dch->state; 277 phi->dch.num_bch = dch->dev.nrbchan; 278 for (i = 0; i < dch->dev.nrbchan; i++) { 279 phi->bch[i].protocol = hw->bch[i].ch.protocol; 280 phi->bch[i].Flags = hw->bch[i].Flags; 281 } 282 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY, 283 sizeof(struct ph_info_dch) + dch->dev.nrbchan * 284 sizeof(struct ph_info_ch), phi, GFP_ATOMIC); 285 kfree(phi); 286 } 287 288 /* 289 * Layer2 -> Layer 1 Dchannel data 290 */ 291 static int 292 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) 293 { 294 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 295 struct dchannel *dch = container_of(dev, struct dchannel, dev); 296 struct mISDNhead *hh = mISDN_HEAD_P(skb); 297 struct hfcsusb *hw = dch->hw; 298 int ret = -EINVAL; 299 u_long flags; 300 301 switch (hh->prim) { 302 case PH_DATA_REQ: 303 if (debug & DBG_HFC_CALL_TRACE) 304 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n", 305 hw->name, __func__); 306 307 spin_lock_irqsave(&hw->lock, flags); 308 ret = dchannel_senddata(dch, skb); 309 spin_unlock_irqrestore(&hw->lock, flags); 310 if (ret > 0) { 311 ret = 0; 312 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL); 313 } 314 break; 315 316 case PH_ACTIVATE_REQ: 317 if (debug & DBG_HFC_CALL_TRACE) 318 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n", 319 hw->name, __func__, 320 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE"); 321 322 if (hw->protocol == ISDN_P_NT_S0) { 323 ret = 0; 324 if (test_bit(FLG_ACTIVE, &dch->Flags)) { 325 _queue_data(&dch->dev.D, 326 PH_ACTIVATE_IND, MISDN_ID_ANY, 0, 327 NULL, GFP_ATOMIC); 328 } else { 329 hfcsusb_ph_command(hw, 330 HFC_L1_ACTIVATE_NT); 331 test_and_set_bit(FLG_L2_ACTIVATED, 332 &dch->Flags); 333 } 334 } else { 335 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE); 336 ret = l1_event(dch->l1, hh->prim); 337 } 338 break; 339 340 case PH_DEACTIVATE_REQ: 341 if (debug & DBG_HFC_CALL_TRACE) 342 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n", 343 hw->name, __func__); 344 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 345 346 if (hw->protocol == ISDN_P_NT_S0) { 347 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT); 348 spin_lock_irqsave(&hw->lock, flags); 349 skb_queue_purge(&dch->squeue); 350 if (dch->tx_skb) { 351 dev_kfree_skb(dch->tx_skb); 352 dch->tx_skb = NULL; 353 } 354 dch->tx_idx = 0; 355 if (dch->rx_skb) { 356 dev_kfree_skb(dch->rx_skb); 357 dch->rx_skb = NULL; 358 } 359 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 360 spin_unlock_irqrestore(&hw->lock, flags); 361 #ifdef FIXME 362 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) 363 dchannel_sched_event(&hc->dch, D_CLEARBUSY); 364 #endif 365 ret = 0; 366 } else 367 ret = l1_event(dch->l1, hh->prim); 368 break; 369 case MPH_INFORMATION_REQ: 370 hfcsusb_ph_info(hw); 371 ret = 0; 372 break; 373 } 374 375 return ret; 376 } 377 378 /* 379 * Layer 1 callback function 380 */ 381 static int 382 hfc_l1callback(struct dchannel *dch, u_int cmd) 383 { 384 struct hfcsusb *hw = dch->hw; 385 386 if (debug & DBG_HFC_CALL_TRACE) 387 printk(KERN_DEBUG "%s: %s cmd 0x%x\n", 388 hw->name, __func__, cmd); 389 390 switch (cmd) { 391 case INFO3_P8: 392 case INFO3_P10: 393 case HW_RESET_REQ: 394 case HW_POWERUP_REQ: 395 break; 396 397 case HW_DEACT_REQ: 398 skb_queue_purge(&dch->squeue); 399 if (dch->tx_skb) { 400 dev_kfree_skb(dch->tx_skb); 401 dch->tx_skb = NULL; 402 } 403 dch->tx_idx = 0; 404 if (dch->rx_skb) { 405 dev_kfree_skb(dch->rx_skb); 406 dch->rx_skb = NULL; 407 } 408 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 409 break; 410 case PH_ACTIVATE_IND: 411 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 412 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 413 GFP_ATOMIC); 414 break; 415 case PH_DEACTIVATE_IND: 416 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 417 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 418 GFP_ATOMIC); 419 break; 420 default: 421 if (dch->debug & DEBUG_HW) 422 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n", 423 hw->name, __func__, cmd); 424 return -1; 425 } 426 hfcsusb_ph_info(hw); 427 return 0; 428 } 429 430 static int 431 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch, 432 struct channel_req *rq) 433 { 434 int err = 0; 435 436 if (debug & DEBUG_HW_OPEN) 437 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n", 438 hw->name, __func__, hw->dch.dev.id, rq->adr.channel, 439 __builtin_return_address(0)); 440 if (rq->protocol == ISDN_P_NONE) 441 return -EINVAL; 442 443 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags); 444 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags); 445 hfcsusb_start_endpoint(hw, HFC_CHAN_D); 446 447 /* E-Channel logging */ 448 if (rq->adr.channel == 1) { 449 if (hw->fifos[HFCUSB_PCM_RX].pipe) { 450 hfcsusb_start_endpoint(hw, HFC_CHAN_E); 451 set_bit(FLG_ACTIVE, &hw->ech.Flags); 452 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND, 453 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 454 } else 455 return -EINVAL; 456 } 457 458 if (!hw->initdone) { 459 hw->protocol = rq->protocol; 460 if (rq->protocol == ISDN_P_TE_S0) { 461 err = create_l1(&hw->dch, hfc_l1callback); 462 if (err) 463 return err; 464 } 465 setPortMode(hw); 466 ch->protocol = rq->protocol; 467 hw->initdone = 1; 468 } else { 469 if (rq->protocol != ch->protocol) 470 return -EPROTONOSUPPORT; 471 } 472 473 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) || 474 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7))) 475 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 476 0, NULL, GFP_KERNEL); 477 rq->ch = ch; 478 if (!try_module_get(THIS_MODULE)) 479 printk(KERN_WARNING "%s: %s: cannot get module\n", 480 hw->name, __func__); 481 return 0; 482 } 483 484 static int 485 open_bchannel(struct hfcsusb *hw, struct channel_req *rq) 486 { 487 struct bchannel *bch; 488 489 if (rq->adr.channel == 0 || rq->adr.channel > 2) 490 return -EINVAL; 491 if (rq->protocol == ISDN_P_NONE) 492 return -EINVAL; 493 494 if (debug & DBG_HFC_CALL_TRACE) 495 printk(KERN_DEBUG "%s: %s B%i\n", 496 hw->name, __func__, rq->adr.channel); 497 498 bch = &hw->bch[rq->adr.channel - 1]; 499 if (test_and_set_bit(FLG_OPEN, &bch->Flags)) 500 return -EBUSY; /* b-channel can be only open once */ 501 test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags); 502 bch->ch.protocol = rq->protocol; 503 rq->ch = &bch->ch; 504 505 /* start USB endpoint for bchannel */ 506 if (rq->adr.channel == 1) 507 hfcsusb_start_endpoint(hw, HFC_CHAN_B1); 508 else 509 hfcsusb_start_endpoint(hw, HFC_CHAN_B2); 510 511 if (!try_module_get(THIS_MODULE)) 512 printk(KERN_WARNING "%s: %s:cannot get module\n", 513 hw->name, __func__); 514 return 0; 515 } 516 517 static int 518 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq) 519 { 520 int ret = 0; 521 522 if (debug & DBG_HFC_CALL_TRACE) 523 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n", 524 hw->name, __func__, (cq->op), (cq->channel)); 525 526 switch (cq->op) { 527 case MISDN_CTRL_GETOP: 528 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | 529 MISDN_CTRL_DISCONNECT; 530 break; 531 default: 532 printk(KERN_WARNING "%s: %s: unknown Op %x\n", 533 hw->name, __func__, cq->op); 534 ret = -EINVAL; 535 break; 536 } 537 return ret; 538 } 539 540 /* 541 * device control function 542 */ 543 static int 544 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 545 { 546 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 547 struct dchannel *dch = container_of(dev, struct dchannel, dev); 548 struct hfcsusb *hw = dch->hw; 549 struct channel_req *rq; 550 int err = 0; 551 552 if (dch->debug & DEBUG_HW) 553 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n", 554 hw->name, __func__, cmd, arg); 555 switch (cmd) { 556 case OPEN_CHANNEL: 557 rq = arg; 558 if ((rq->protocol == ISDN_P_TE_S0) || 559 (rq->protocol == ISDN_P_NT_S0)) 560 err = open_dchannel(hw, ch, rq); 561 else 562 err = open_bchannel(hw, rq); 563 if (!err) 564 hw->open++; 565 break; 566 case CLOSE_CHANNEL: 567 hw->open--; 568 if (debug & DEBUG_HW_OPEN) 569 printk(KERN_DEBUG 570 "%s: %s: dev(%d) close from %p (open %d)\n", 571 hw->name, __func__, hw->dch.dev.id, 572 __builtin_return_address(0), hw->open); 573 if (!hw->open) { 574 hfcsusb_stop_endpoint(hw, HFC_CHAN_D); 575 if (hw->fifos[HFCUSB_PCM_RX].pipe) 576 hfcsusb_stop_endpoint(hw, HFC_CHAN_E); 577 handle_led(hw, LED_POWER_ON); 578 } 579 module_put(THIS_MODULE); 580 break; 581 case CONTROL_CHANNEL: 582 err = channel_ctrl(hw, arg); 583 break; 584 default: 585 if (dch->debug & DEBUG_HW) 586 printk(KERN_DEBUG "%s: %s: unknown command %x\n", 587 hw->name, __func__, cmd); 588 return -EINVAL; 589 } 590 return err; 591 } 592 593 /* 594 * S0 TE state change event handler 595 */ 596 static void 597 ph_state_te(struct dchannel *dch) 598 { 599 struct hfcsusb *hw = dch->hw; 600 601 if (debug & DEBUG_HW) { 602 if (dch->state <= HFC_MAX_TE_LAYER1_STATE) 603 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__, 604 HFC_TE_LAYER1_STATES[dch->state]); 605 else 606 printk(KERN_DEBUG "%s: %s: TE F%d\n", 607 hw->name, __func__, dch->state); 608 } 609 610 switch (dch->state) { 611 case 0: 612 l1_event(dch->l1, HW_RESET_IND); 613 break; 614 case 3: 615 l1_event(dch->l1, HW_DEACT_IND); 616 break; 617 case 5: 618 case 8: 619 l1_event(dch->l1, ANYSIGNAL); 620 break; 621 case 6: 622 l1_event(dch->l1, INFO2); 623 break; 624 case 7: 625 l1_event(dch->l1, INFO4_P8); 626 break; 627 } 628 if (dch->state == 7) 629 handle_led(hw, LED_S0_ON); 630 else 631 handle_led(hw, LED_S0_OFF); 632 } 633 634 /* 635 * S0 NT state change event handler 636 */ 637 static void 638 ph_state_nt(struct dchannel *dch) 639 { 640 struct hfcsusb *hw = dch->hw; 641 642 if (debug & DEBUG_HW) { 643 if (dch->state <= HFC_MAX_NT_LAYER1_STATE) 644 printk(KERN_DEBUG "%s: %s: %s\n", 645 hw->name, __func__, 646 HFC_NT_LAYER1_STATES[dch->state]); 647 648 else 649 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n", 650 hw->name, __func__, dch->state); 651 } 652 653 switch (dch->state) { 654 case (1): 655 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 656 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 657 hw->nt_timer = 0; 658 hw->timers &= ~NT_ACTIVATION_TIMER; 659 handle_led(hw, LED_S0_OFF); 660 break; 661 662 case (2): 663 if (hw->nt_timer < 0) { 664 hw->nt_timer = 0; 665 hw->timers &= ~NT_ACTIVATION_TIMER; 666 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT); 667 } else { 668 hw->timers |= NT_ACTIVATION_TIMER; 669 hw->nt_timer = NT_T1_COUNT; 670 /* allow G2 -> G3 transition */ 671 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3); 672 } 673 break; 674 case (3): 675 hw->nt_timer = 0; 676 hw->timers &= ~NT_ACTIVATION_TIMER; 677 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 678 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 679 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 680 handle_led(hw, LED_S0_ON); 681 break; 682 case (4): 683 hw->nt_timer = 0; 684 hw->timers &= ~NT_ACTIVATION_TIMER; 685 break; 686 default: 687 break; 688 } 689 hfcsusb_ph_info(hw); 690 } 691 692 static void 693 ph_state(struct dchannel *dch) 694 { 695 struct hfcsusb *hw = dch->hw; 696 697 if (hw->protocol == ISDN_P_NT_S0) 698 ph_state_nt(dch); 699 else if (hw->protocol == ISDN_P_TE_S0) 700 ph_state_te(dch); 701 } 702 703 /* 704 * disable/enable BChannel for desired protocoll 705 */ 706 static int 707 hfcsusb_setup_bch(struct bchannel *bch, int protocol) 708 { 709 struct hfcsusb *hw = bch->hw; 710 __u8 conhdlc, sctrl, sctrl_r; 711 712 if (debug & DEBUG_HW) 713 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n", 714 hw->name, __func__, bch->state, protocol, 715 bch->nr); 716 717 /* setup val for CON_HDLC */ 718 conhdlc = 0; 719 if (protocol > ISDN_P_NONE) 720 conhdlc = 8; /* enable FIFO */ 721 722 switch (protocol) { 723 case (-1): /* used for init */ 724 bch->state = -1; 725 /* fall through */ 726 case (ISDN_P_NONE): 727 if (bch->state == ISDN_P_NONE) 728 return 0; /* already in idle state */ 729 bch->state = ISDN_P_NONE; 730 clear_bit(FLG_HDLC, &bch->Flags); 731 clear_bit(FLG_TRANSPARENT, &bch->Flags); 732 break; 733 case (ISDN_P_B_RAW): 734 conhdlc |= 2; 735 bch->state = protocol; 736 set_bit(FLG_TRANSPARENT, &bch->Flags); 737 break; 738 case (ISDN_P_B_HDLC): 739 bch->state = protocol; 740 set_bit(FLG_HDLC, &bch->Flags); 741 break; 742 default: 743 if (debug & DEBUG_HW) 744 printk(KERN_DEBUG "%s: %s: prot not known %x\n", 745 hw->name, __func__, protocol); 746 return -ENOPROTOOPT; 747 } 748 749 if (protocol >= ISDN_P_NONE) { 750 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2); 751 write_reg(hw, HFCUSB_CON_HDLC, conhdlc); 752 write_reg(hw, HFCUSB_INC_RES_F, 2); 753 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3); 754 write_reg(hw, HFCUSB_CON_HDLC, conhdlc); 755 write_reg(hw, HFCUSB_INC_RES_F, 2); 756 757 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04); 758 sctrl_r = 0x0; 759 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) { 760 sctrl |= 1; 761 sctrl_r |= 1; 762 } 763 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) { 764 sctrl |= 2; 765 sctrl_r |= 2; 766 } 767 write_reg(hw, HFCUSB_SCTRL, sctrl); 768 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r); 769 770 if (protocol > ISDN_P_NONE) 771 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON); 772 else 773 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF : 774 LED_B2_OFF); 775 } 776 hfcsusb_ph_info(hw); 777 return 0; 778 } 779 780 static void 781 hfcsusb_ph_command(struct hfcsusb *hw, u_char command) 782 { 783 if (debug & DEBUG_HW) 784 printk(KERN_DEBUG "%s: %s: %x\n", 785 hw->name, __func__, command); 786 787 switch (command) { 788 case HFC_L1_ACTIVATE_TE: 789 /* force sending sending INFO1 */ 790 write_reg(hw, HFCUSB_STATES, 0x14); 791 /* start l1 activation */ 792 write_reg(hw, HFCUSB_STATES, 0x04); 793 break; 794 795 case HFC_L1_FORCE_DEACTIVATE_TE: 796 write_reg(hw, HFCUSB_STATES, 0x10); 797 write_reg(hw, HFCUSB_STATES, 0x03); 798 break; 799 800 case HFC_L1_ACTIVATE_NT: 801 if (hw->dch.state == 3) 802 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND, 803 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 804 else 805 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE | 806 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3); 807 break; 808 809 case HFC_L1_DEACTIVATE_NT: 810 write_reg(hw, HFCUSB_STATES, 811 HFCUSB_DO_ACTION); 812 break; 813 } 814 } 815 816 /* 817 * Layer 1 B-channel hardware access 818 */ 819 static int 820 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) 821 { 822 int ret = 0; 823 824 switch (cq->op) { 825 case MISDN_CTRL_GETOP: 826 cq->op = MISDN_CTRL_FILL_EMPTY; 827 break; 828 case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */ 829 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags); 830 if (debug & DEBUG_HW_OPEN) 831 printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d " 832 "off=%d)\n", __func__, bch->nr, !!cq->p1); 833 break; 834 default: 835 printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op); 836 ret = -EINVAL; 837 break; 838 } 839 return ret; 840 } 841 842 /* collect data from incoming interrupt or isochron USB data */ 843 static void 844 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len, 845 int finish) 846 { 847 struct hfcsusb *hw = fifo->hw; 848 struct sk_buff *rx_skb = NULL; 849 int maxlen = 0; 850 int fifon = fifo->fifonum; 851 int i; 852 int hdlc = 0; 853 854 if (debug & DBG_HFC_CALL_TRACE) 855 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) " 856 "dch(%p) bch(%p) ech(%p)\n", 857 hw->name, __func__, fifon, len, 858 fifo->dch, fifo->bch, fifo->ech); 859 860 if (!len) 861 return; 862 863 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) { 864 printk(KERN_DEBUG "%s: %s: undefined channel\n", 865 hw->name, __func__); 866 return; 867 } 868 869 spin_lock(&hw->lock); 870 if (fifo->dch) { 871 rx_skb = fifo->dch->rx_skb; 872 maxlen = fifo->dch->maxlen; 873 hdlc = 1; 874 } 875 if (fifo->bch) { 876 rx_skb = fifo->bch->rx_skb; 877 maxlen = fifo->bch->maxlen; 878 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); 879 } 880 if (fifo->ech) { 881 rx_skb = fifo->ech->rx_skb; 882 maxlen = fifo->ech->maxlen; 883 hdlc = 1; 884 } 885 886 if (!rx_skb) { 887 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC); 888 if (rx_skb) { 889 if (fifo->dch) 890 fifo->dch->rx_skb = rx_skb; 891 if (fifo->bch) 892 fifo->bch->rx_skb = rx_skb; 893 if (fifo->ech) 894 fifo->ech->rx_skb = rx_skb; 895 skb_trim(rx_skb, 0); 896 } else { 897 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n", 898 hw->name, __func__); 899 spin_unlock(&hw->lock); 900 return; 901 } 902 } 903 904 if (fifo->dch || fifo->ech) { 905 /* D/E-Channel SKB range check */ 906 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) { 907 printk(KERN_DEBUG "%s: %s: sbk mem exceeded " 908 "for fifo(%d) HFCUSB_D_RX\n", 909 hw->name, __func__, fifon); 910 skb_trim(rx_skb, 0); 911 spin_unlock(&hw->lock); 912 return; 913 } 914 } else if (fifo->bch) { 915 /* B-Channel SKB range check */ 916 if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) { 917 printk(KERN_DEBUG "%s: %s: sbk mem exceeded " 918 "for fifo(%d) HFCUSB_B_RX\n", 919 hw->name, __func__, fifon); 920 skb_trim(rx_skb, 0); 921 spin_unlock(&hw->lock); 922 return; 923 } 924 } 925 926 memcpy(skb_put(rx_skb, len), data, len); 927 928 if (hdlc) { 929 /* we have a complete hdlc packet */ 930 if (finish) { 931 if ((rx_skb->len > 3) && 932 (!(rx_skb->data[rx_skb->len - 1]))) { 933 if (debug & DBG_HFC_FIFO_VERBOSE) { 934 printk(KERN_DEBUG "%s: %s: fifon(%i)" 935 " new RX len(%i): ", 936 hw->name, __func__, fifon, 937 rx_skb->len); 938 i = 0; 939 while (i < rx_skb->len) 940 printk("%02x ", 941 rx_skb->data[i++]); 942 printk("\n"); 943 } 944 945 /* remove CRC & status */ 946 skb_trim(rx_skb, rx_skb->len - 3); 947 948 if (fifo->dch) 949 recv_Dchannel(fifo->dch); 950 if (fifo->bch) 951 recv_Bchannel(fifo->bch, MISDN_ID_ANY); 952 if (fifo->ech) 953 recv_Echannel(fifo->ech, 954 &hw->dch); 955 } else { 956 if (debug & DBG_HFC_FIFO_VERBOSE) { 957 printk(KERN_DEBUG 958 "%s: CRC or minlen ERROR fifon(%i) " 959 "RX len(%i): ", 960 hw->name, fifon, rx_skb->len); 961 i = 0; 962 while (i < rx_skb->len) 963 printk("%02x ", 964 rx_skb->data[i++]); 965 printk("\n"); 966 } 967 skb_trim(rx_skb, 0); 968 } 969 } 970 } else { 971 /* deliver transparent data to layer2 */ 972 if (rx_skb->len >= poll) 973 recv_Bchannel(fifo->bch, MISDN_ID_ANY); 974 } 975 spin_unlock(&hw->lock); 976 } 977 978 static void 979 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, 980 void *buf, int num_packets, int packet_size, int interval, 981 usb_complete_t complete, void *context) 982 { 983 int k; 984 985 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets, 986 complete, context); 987 988 urb->number_of_packets = num_packets; 989 urb->transfer_flags = URB_ISO_ASAP; 990 urb->actual_length = 0; 991 urb->interval = interval; 992 993 for (k = 0; k < num_packets; k++) { 994 urb->iso_frame_desc[k].offset = packet_size * k; 995 urb->iso_frame_desc[k].length = packet_size; 996 urb->iso_frame_desc[k].actual_length = 0; 997 } 998 } 999 1000 /* receive completion routine for all ISO tx fifos */ 1001 static void 1002 rx_iso_complete(struct urb *urb) 1003 { 1004 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context; 1005 struct usb_fifo *fifo = context_iso_urb->owner_fifo; 1006 struct hfcsusb *hw = fifo->hw; 1007 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen, 1008 status, iso_status, i; 1009 __u8 *buf; 1010 static __u8 eof[8]; 1011 __u8 s0_state; 1012 1013 fifon = fifo->fifonum; 1014 status = urb->status; 1015 1016 spin_lock(&hw->lock); 1017 if (fifo->stop_gracefull) { 1018 fifo->stop_gracefull = 0; 1019 fifo->active = 0; 1020 spin_unlock(&hw->lock); 1021 return; 1022 } 1023 spin_unlock(&hw->lock); 1024 1025 /* 1026 * ISO transfer only partially completed, 1027 * look at individual frame status for details 1028 */ 1029 if (status == -EXDEV) { 1030 if (debug & DEBUG_HW) 1031 printk(KERN_DEBUG "%s: %s: with -EXDEV " 1032 "urb->status %d, fifonum %d\n", 1033 hw->name, __func__, status, fifon); 1034 1035 /* clear status, so go on with ISO transfers */ 1036 status = 0; 1037 } 1038 1039 s0_state = 0; 1040 if (fifo->active && !status) { 1041 num_isoc_packets = iso_packets[fifon]; 1042 maxlen = fifo->usb_packet_maxlen; 1043 1044 for (k = 0; k < num_isoc_packets; ++k) { 1045 len = urb->iso_frame_desc[k].actual_length; 1046 offset = urb->iso_frame_desc[k].offset; 1047 buf = context_iso_urb->buffer + offset; 1048 iso_status = urb->iso_frame_desc[k].status; 1049 1050 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) { 1051 printk(KERN_DEBUG "%s: %s: " 1052 "ISO packet %i, status: %i\n", 1053 hw->name, __func__, k, iso_status); 1054 } 1055 1056 /* USB data log for every D ISO in */ 1057 if ((fifon == HFCUSB_D_RX) && 1058 (debug & DBG_HFC_USB_VERBOSE)) { 1059 printk(KERN_DEBUG 1060 "%s: %s: %d (%d/%d) len(%d) ", 1061 hw->name, __func__, urb->start_frame, 1062 k, num_isoc_packets - 1, 1063 len); 1064 for (i = 0; i < len; i++) 1065 printk("%x ", buf[i]); 1066 printk("\n"); 1067 } 1068 1069 if (!iso_status) { 1070 if (fifo->last_urblen != maxlen) { 1071 /* 1072 * save fifo fill-level threshold bits 1073 * to use them later in TX ISO URB 1074 * completions 1075 */ 1076 hw->threshold_mask = buf[1]; 1077 1078 if (fifon == HFCUSB_D_RX) 1079 s0_state = (buf[0] >> 4); 1080 1081 eof[fifon] = buf[0] & 1; 1082 if (len > 2) 1083 hfcsusb_rx_frame(fifo, buf + 2, 1084 len - 2, (len < maxlen) 1085 ? eof[fifon] : 0); 1086 } else 1087 hfcsusb_rx_frame(fifo, buf, len, 1088 (len < maxlen) ? 1089 eof[fifon] : 0); 1090 fifo->last_urblen = len; 1091 } 1092 } 1093 1094 /* signal S0 layer1 state change */ 1095 if ((s0_state) && (hw->initdone) && 1096 (s0_state != hw->dch.state)) { 1097 hw->dch.state = s0_state; 1098 schedule_event(&hw->dch, FLG_PHCHANGE); 1099 } 1100 1101 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe, 1102 context_iso_urb->buffer, num_isoc_packets, 1103 fifo->usb_packet_maxlen, fifo->intervall, 1104 (usb_complete_t)rx_iso_complete, urb->context); 1105 errcode = usb_submit_urb(urb, GFP_ATOMIC); 1106 if (errcode < 0) { 1107 if (debug & DEBUG_HW) 1108 printk(KERN_DEBUG "%s: %s: error submitting " 1109 "ISO URB: %d\n", 1110 hw->name, __func__, errcode); 1111 } 1112 } else { 1113 if (status && (debug & DBG_HFC_URB_INFO)) 1114 printk(KERN_DEBUG "%s: %s: rx_iso_complete : " 1115 "urb->status %d, fifonum %d\n", 1116 hw->name, __func__, status, fifon); 1117 } 1118 } 1119 1120 /* receive completion routine for all interrupt rx fifos */ 1121 static void 1122 rx_int_complete(struct urb *urb) 1123 { 1124 int len, status, i; 1125 __u8 *buf, maxlen, fifon; 1126 struct usb_fifo *fifo = (struct usb_fifo *) urb->context; 1127 struct hfcsusb *hw = fifo->hw; 1128 static __u8 eof[8]; 1129 1130 spin_lock(&hw->lock); 1131 if (fifo->stop_gracefull) { 1132 fifo->stop_gracefull = 0; 1133 fifo->active = 0; 1134 spin_unlock(&hw->lock); 1135 return; 1136 } 1137 spin_unlock(&hw->lock); 1138 1139 fifon = fifo->fifonum; 1140 if ((!fifo->active) || (urb->status)) { 1141 if (debug & DBG_HFC_URB_ERROR) 1142 printk(KERN_DEBUG 1143 "%s: %s: RX-Fifo %i is going down (%i)\n", 1144 hw->name, __func__, fifon, urb->status); 1145 1146 fifo->urb->interval = 0; /* cancel automatic rescheduling */ 1147 return; 1148 } 1149 len = urb->actual_length; 1150 buf = fifo->buffer; 1151 maxlen = fifo->usb_packet_maxlen; 1152 1153 /* USB data log for every D INT in */ 1154 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) { 1155 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ", 1156 hw->name, __func__, len); 1157 for (i = 0; i < len; i++) 1158 printk("%02x ", buf[i]); 1159 printk("\n"); 1160 } 1161 1162 if (fifo->last_urblen != fifo->usb_packet_maxlen) { 1163 /* the threshold mask is in the 2nd status byte */ 1164 hw->threshold_mask = buf[1]; 1165 1166 /* signal S0 layer1 state change */ 1167 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) { 1168 hw->dch.state = (buf[0] >> 4); 1169 schedule_event(&hw->dch, FLG_PHCHANGE); 1170 } 1171 1172 eof[fifon] = buf[0] & 1; 1173 /* if we have more than the 2 status bytes -> collect data */ 1174 if (len > 2) 1175 hfcsusb_rx_frame(fifo, buf + 2, 1176 urb->actual_length - 2, 1177 (len < maxlen) ? eof[fifon] : 0); 1178 } else { 1179 hfcsusb_rx_frame(fifo, buf, urb->actual_length, 1180 (len < maxlen) ? eof[fifon] : 0); 1181 } 1182 fifo->last_urblen = urb->actual_length; 1183 1184 status = usb_submit_urb(urb, GFP_ATOMIC); 1185 if (status) { 1186 if (debug & DEBUG_HW) 1187 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n", 1188 hw->name, __func__); 1189 } 1190 } 1191 1192 /* transmit completion routine for all ISO tx fifos */ 1193 static void 1194 tx_iso_complete(struct urb *urb) 1195 { 1196 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context; 1197 struct usb_fifo *fifo = context_iso_urb->owner_fifo; 1198 struct hfcsusb *hw = fifo->hw; 1199 struct sk_buff *tx_skb; 1200 int k, tx_offset, num_isoc_packets, sink, remain, current_len, 1201 errcode, hdlc, i; 1202 int *tx_idx; 1203 int frame_complete, fifon, status; 1204 __u8 threshbit; 1205 1206 spin_lock(&hw->lock); 1207 if (fifo->stop_gracefull) { 1208 fifo->stop_gracefull = 0; 1209 fifo->active = 0; 1210 spin_unlock(&hw->lock); 1211 return; 1212 } 1213 1214 if (fifo->dch) { 1215 tx_skb = fifo->dch->tx_skb; 1216 tx_idx = &fifo->dch->tx_idx; 1217 hdlc = 1; 1218 } else if (fifo->bch) { 1219 tx_skb = fifo->bch->tx_skb; 1220 tx_idx = &fifo->bch->tx_idx; 1221 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); 1222 } else { 1223 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n", 1224 hw->name, __func__); 1225 spin_unlock(&hw->lock); 1226 return; 1227 } 1228 1229 fifon = fifo->fifonum; 1230 status = urb->status; 1231 1232 tx_offset = 0; 1233 1234 /* 1235 * ISO transfer only partially completed, 1236 * look at individual frame status for details 1237 */ 1238 if (status == -EXDEV) { 1239 if (debug & DBG_HFC_URB_ERROR) 1240 printk(KERN_DEBUG "%s: %s: " 1241 "-EXDEV (%i) fifon (%d)\n", 1242 hw->name, __func__, status, fifon); 1243 1244 /* clear status, so go on with ISO transfers */ 1245 status = 0; 1246 } 1247 1248 if (fifo->active && !status) { 1249 /* is FifoFull-threshold set for our channel? */ 1250 threshbit = (hw->threshold_mask & (1 << fifon)); 1251 num_isoc_packets = iso_packets[fifon]; 1252 1253 /* predict dataflow to avoid fifo overflow */ 1254 if (fifon >= HFCUSB_D_TX) 1255 sink = (threshbit) ? SINK_DMIN : SINK_DMAX; 1256 else 1257 sink = (threshbit) ? SINK_MIN : SINK_MAX; 1258 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe, 1259 context_iso_urb->buffer, num_isoc_packets, 1260 fifo->usb_packet_maxlen, fifo->intervall, 1261 (usb_complete_t)tx_iso_complete, urb->context); 1262 memset(context_iso_urb->buffer, 0, 1263 sizeof(context_iso_urb->buffer)); 1264 frame_complete = 0; 1265 1266 for (k = 0; k < num_isoc_packets; ++k) { 1267 /* analyze tx success of previous ISO packets */ 1268 if (debug & DBG_HFC_URB_ERROR) { 1269 errcode = urb->iso_frame_desc[k].status; 1270 if (errcode) { 1271 printk(KERN_DEBUG "%s: %s: " 1272 "ISO packet %i, status: %i\n", 1273 hw->name, __func__, k, errcode); 1274 } 1275 } 1276 1277 /* Generate next ISO Packets */ 1278 if (tx_skb) 1279 remain = tx_skb->len - *tx_idx; 1280 else 1281 remain = 0; 1282 1283 if (remain > 0) { 1284 fifo->bit_line -= sink; 1285 current_len = (0 - fifo->bit_line) / 8; 1286 if (current_len > 14) 1287 current_len = 14; 1288 if (current_len < 0) 1289 current_len = 0; 1290 if (remain < current_len) 1291 current_len = remain; 1292 1293 /* how much bit do we put on the line? */ 1294 fifo->bit_line += current_len * 8; 1295 1296 context_iso_urb->buffer[tx_offset] = 0; 1297 if (current_len == remain) { 1298 if (hdlc) { 1299 /* signal frame completion */ 1300 context_iso_urb-> 1301 buffer[tx_offset] = 1; 1302 /* add 2 byte flags and 16bit 1303 * CRC at end of ISDN frame */ 1304 fifo->bit_line += 32; 1305 } 1306 frame_complete = 1; 1307 } 1308 1309 /* copy tx data to iso-urb buffer */ 1310 memcpy(context_iso_urb->buffer + tx_offset + 1, 1311 (tx_skb->data + *tx_idx), current_len); 1312 *tx_idx += current_len; 1313 1314 urb->iso_frame_desc[k].offset = tx_offset; 1315 urb->iso_frame_desc[k].length = current_len + 1; 1316 1317 /* USB data log for every D ISO out */ 1318 if ((fifon == HFCUSB_D_RX) && 1319 (debug & DBG_HFC_USB_VERBOSE)) { 1320 printk(KERN_DEBUG 1321 "%s: %s (%d/%d) offs(%d) len(%d) ", 1322 hw->name, __func__, 1323 k, num_isoc_packets - 1, 1324 urb->iso_frame_desc[k].offset, 1325 urb->iso_frame_desc[k].length); 1326 1327 for (i = urb->iso_frame_desc[k].offset; 1328 i < (urb->iso_frame_desc[k].offset 1329 + urb->iso_frame_desc[k].length); 1330 i++) 1331 printk("%x ", 1332 context_iso_urb->buffer[i]); 1333 1334 printk(" skb->len(%i) tx-idx(%d)\n", 1335 tx_skb->len, *tx_idx); 1336 } 1337 1338 tx_offset += (current_len + 1); 1339 } else { 1340 urb->iso_frame_desc[k].offset = tx_offset++; 1341 urb->iso_frame_desc[k].length = 1; 1342 /* we lower data margin every msec */ 1343 fifo->bit_line -= sink; 1344 if (fifo->bit_line < BITLINE_INF) 1345 fifo->bit_line = BITLINE_INF; 1346 } 1347 1348 if (frame_complete) { 1349 frame_complete = 0; 1350 1351 if (debug & DBG_HFC_FIFO_VERBOSE) { 1352 printk(KERN_DEBUG "%s: %s: " 1353 "fifon(%i) new TX len(%i): ", 1354 hw->name, __func__, 1355 fifon, tx_skb->len); 1356 i = 0; 1357 while (i < tx_skb->len) 1358 printk("%02x ", 1359 tx_skb->data[i++]); 1360 printk("\n"); 1361 } 1362 1363 dev_kfree_skb(tx_skb); 1364 tx_skb = NULL; 1365 if (fifo->dch && get_next_dframe(fifo->dch)) 1366 tx_skb = fifo->dch->tx_skb; 1367 else if (fifo->bch && 1368 get_next_bframe(fifo->bch)) { 1369 if (test_bit(FLG_TRANSPARENT, 1370 &fifo->bch->Flags)) 1371 confirm_Bsend(fifo->bch); 1372 tx_skb = fifo->bch->tx_skb; 1373 } 1374 } 1375 } 1376 errcode = usb_submit_urb(urb, GFP_ATOMIC); 1377 if (errcode < 0) { 1378 if (debug & DEBUG_HW) 1379 printk(KERN_DEBUG 1380 "%s: %s: error submitting ISO URB: %d \n", 1381 hw->name, __func__, errcode); 1382 } 1383 1384 /* 1385 * abuse DChannel tx iso completion to trigger NT mode state 1386 * changes tx_iso_complete is assumed to be called every 1387 * fifo->intervall (ms) 1388 */ 1389 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0) 1390 && (hw->timers & NT_ACTIVATION_TIMER)) { 1391 if ((--hw->nt_timer) < 0) 1392 schedule_event(&hw->dch, FLG_PHCHANGE); 1393 } 1394 1395 } else { 1396 if (status && (debug & DBG_HFC_URB_ERROR)) 1397 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)" 1398 "fifonum=%d\n", 1399 hw->name, __func__, 1400 symbolic(urb_errlist, status), status, fifon); 1401 } 1402 spin_unlock(&hw->lock); 1403 } 1404 1405 /* 1406 * allocs urbs and start isoc transfer with two pending urbs to avoid 1407 * gaps in the transfer chain 1408 */ 1409 static int 1410 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb, 1411 usb_complete_t complete, int packet_size) 1412 { 1413 struct hfcsusb *hw = fifo->hw; 1414 int i, k, errcode; 1415 1416 if (debug) 1417 printk(KERN_DEBUG "%s: %s: fifo %i\n", 1418 hw->name, __func__, fifo->fifonum); 1419 1420 /* allocate Memory for Iso out Urbs */ 1421 for (i = 0; i < 2; i++) { 1422 if (!(fifo->iso[i].urb)) { 1423 fifo->iso[i].urb = 1424 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL); 1425 if (!(fifo->iso[i].urb)) { 1426 printk(KERN_DEBUG 1427 "%s: %s: alloc urb for fifo %i failed", 1428 hw->name, __func__, fifo->fifonum); 1429 } 1430 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo; 1431 fifo->iso[i].indx = i; 1432 1433 /* Init the first iso */ 1434 if (ISO_BUFFER_SIZE >= 1435 (fifo->usb_packet_maxlen * 1436 num_packets_per_urb)) { 1437 fill_isoc_urb(fifo->iso[i].urb, 1438 fifo->hw->dev, fifo->pipe, 1439 fifo->iso[i].buffer, 1440 num_packets_per_urb, 1441 fifo->usb_packet_maxlen, 1442 fifo->intervall, complete, 1443 &fifo->iso[i]); 1444 memset(fifo->iso[i].buffer, 0, 1445 sizeof(fifo->iso[i].buffer)); 1446 1447 for (k = 0; k < num_packets_per_urb; k++) { 1448 fifo->iso[i].urb-> 1449 iso_frame_desc[k].offset = 1450 k * packet_size; 1451 fifo->iso[i].urb-> 1452 iso_frame_desc[k].length = 1453 packet_size; 1454 } 1455 } else { 1456 printk(KERN_DEBUG 1457 "%s: %s: ISO Buffer size to small!\n", 1458 hw->name, __func__); 1459 } 1460 } 1461 fifo->bit_line = BITLINE_INF; 1462 1463 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL); 1464 fifo->active = (errcode >= 0) ? 1 : 0; 1465 fifo->stop_gracefull = 0; 1466 if (errcode < 0) { 1467 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n", 1468 hw->name, __func__, 1469 symbolic(urb_errlist, errcode), i); 1470 } 1471 } 1472 return fifo->active; 1473 } 1474 1475 static void 1476 stop_iso_gracefull(struct usb_fifo *fifo) 1477 { 1478 struct hfcsusb *hw = fifo->hw; 1479 int i, timeout; 1480 u_long flags; 1481 1482 for (i = 0; i < 2; i++) { 1483 spin_lock_irqsave(&hw->lock, flags); 1484 if (debug) 1485 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n", 1486 hw->name, __func__, fifo->fifonum, i); 1487 fifo->stop_gracefull = 1; 1488 spin_unlock_irqrestore(&hw->lock, flags); 1489 } 1490 1491 for (i = 0; i < 2; i++) { 1492 timeout = 3; 1493 while (fifo->stop_gracefull && timeout--) 1494 schedule_timeout_interruptible((HZ / 1000) * 16); 1495 if (debug && fifo->stop_gracefull) 1496 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n", 1497 hw->name, __func__, fifo->fifonum, i); 1498 } 1499 } 1500 1501 static void 1502 stop_int_gracefull(struct usb_fifo *fifo) 1503 { 1504 struct hfcsusb *hw = fifo->hw; 1505 int timeout; 1506 u_long flags; 1507 1508 spin_lock_irqsave(&hw->lock, flags); 1509 if (debug) 1510 printk(KERN_DEBUG "%s: %s for fifo %i\n", 1511 hw->name, __func__, fifo->fifonum); 1512 fifo->stop_gracefull = 1; 1513 spin_unlock_irqrestore(&hw->lock, flags); 1514 1515 timeout = 3; 1516 while (fifo->stop_gracefull && timeout--) 1517 schedule_timeout_interruptible((HZ / 1000) * 3); 1518 if (debug && fifo->stop_gracefull) 1519 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n", 1520 hw->name, __func__, fifo->fifonum); 1521 } 1522 1523 /* start the interrupt transfer for the given fifo */ 1524 static void 1525 start_int_fifo(struct usb_fifo *fifo) 1526 { 1527 struct hfcsusb *hw = fifo->hw; 1528 int errcode; 1529 1530 if (debug) 1531 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n", 1532 hw->name, __func__, fifo->fifonum); 1533 1534 if (!fifo->urb) { 1535 fifo->urb = usb_alloc_urb(0, GFP_KERNEL); 1536 if (!fifo->urb) 1537 return; 1538 } 1539 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe, 1540 fifo->buffer, fifo->usb_packet_maxlen, 1541 (usb_complete_t)rx_int_complete, fifo, fifo->intervall); 1542 fifo->active = 1; 1543 fifo->stop_gracefull = 0; 1544 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL); 1545 if (errcode) { 1546 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n", 1547 hw->name, __func__, errcode); 1548 fifo->active = 0; 1549 } 1550 } 1551 1552 static void 1553 setPortMode(struct hfcsusb *hw) 1554 { 1555 if (debug & DEBUG_HW) 1556 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__, 1557 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT"); 1558 1559 if (hw->protocol == ISDN_P_TE_S0) { 1560 write_reg(hw, HFCUSB_SCTRL, 0x40); 1561 write_reg(hw, HFCUSB_SCTRL_E, 0x00); 1562 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE); 1563 write_reg(hw, HFCUSB_STATES, 3 | 0x10); 1564 write_reg(hw, HFCUSB_STATES, 3); 1565 } else { 1566 write_reg(hw, HFCUSB_SCTRL, 0x44); 1567 write_reg(hw, HFCUSB_SCTRL_E, 0x09); 1568 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT); 1569 write_reg(hw, HFCUSB_STATES, 1 | 0x10); 1570 write_reg(hw, HFCUSB_STATES, 1); 1571 } 1572 } 1573 1574 static void 1575 reset_hfcsusb(struct hfcsusb *hw) 1576 { 1577 struct usb_fifo *fifo; 1578 int i; 1579 1580 if (debug & DEBUG_HW) 1581 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 1582 1583 /* do Chip reset */ 1584 write_reg(hw, HFCUSB_CIRM, 8); 1585 1586 /* aux = output, reset off */ 1587 write_reg(hw, HFCUSB_CIRM, 0x10); 1588 1589 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */ 1590 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) | 1591 ((hw->packet_size / 8) << 4)); 1592 1593 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */ 1594 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size); 1595 1596 /* enable PCM/GCI master mode */ 1597 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */ 1598 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */ 1599 1600 /* init the fifos */ 1601 write_reg(hw, HFCUSB_F_THRES, 1602 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4)); 1603 1604 fifo = hw->fifos; 1605 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { 1606 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */ 1607 fifo[i].max_size = 1608 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN; 1609 fifo[i].last_urblen = 0; 1610 1611 /* set 2 bit for D- & E-channel */ 1612 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2)); 1613 1614 /* enable all fifos */ 1615 if (i == HFCUSB_D_TX) 1616 write_reg(hw, HFCUSB_CON_HDLC, 1617 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09); 1618 else 1619 write_reg(hw, HFCUSB_CON_HDLC, 0x08); 1620 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */ 1621 } 1622 1623 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */ 1624 handle_led(hw, LED_POWER_ON); 1625 } 1626 1627 /* start USB data pipes dependand on device's endpoint configuration */ 1628 static void 1629 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel) 1630 { 1631 /* quick check if endpoint already running */ 1632 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active)) 1633 return; 1634 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active)) 1635 return; 1636 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active)) 1637 return; 1638 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active)) 1639 return; 1640 1641 /* start rx endpoints using USB INT IN method */ 1642 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO) 1643 start_int_fifo(hw->fifos + channel * 2 + 1); 1644 1645 /* start rx endpoints using USB ISO IN method */ 1646 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) { 1647 switch (channel) { 1648 case HFC_CHAN_D: 1649 start_isoc_chain(hw->fifos + HFCUSB_D_RX, 1650 ISOC_PACKETS_D, 1651 (usb_complete_t)rx_iso_complete, 1652 16); 1653 break; 1654 case HFC_CHAN_E: 1655 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX, 1656 ISOC_PACKETS_D, 1657 (usb_complete_t)rx_iso_complete, 1658 16); 1659 break; 1660 case HFC_CHAN_B1: 1661 start_isoc_chain(hw->fifos + HFCUSB_B1_RX, 1662 ISOC_PACKETS_B, 1663 (usb_complete_t)rx_iso_complete, 1664 16); 1665 break; 1666 case HFC_CHAN_B2: 1667 start_isoc_chain(hw->fifos + HFCUSB_B2_RX, 1668 ISOC_PACKETS_B, 1669 (usb_complete_t)rx_iso_complete, 1670 16); 1671 break; 1672 } 1673 } 1674 1675 /* start tx endpoints using USB ISO OUT method */ 1676 switch (channel) { 1677 case HFC_CHAN_D: 1678 start_isoc_chain(hw->fifos + HFCUSB_D_TX, 1679 ISOC_PACKETS_B, 1680 (usb_complete_t)tx_iso_complete, 1); 1681 break; 1682 case HFC_CHAN_B1: 1683 start_isoc_chain(hw->fifos + HFCUSB_B1_TX, 1684 ISOC_PACKETS_D, 1685 (usb_complete_t)tx_iso_complete, 1); 1686 break; 1687 case HFC_CHAN_B2: 1688 start_isoc_chain(hw->fifos + HFCUSB_B2_TX, 1689 ISOC_PACKETS_B, 1690 (usb_complete_t)tx_iso_complete, 1); 1691 break; 1692 } 1693 } 1694 1695 /* stop USB data pipes dependand on device's endpoint configuration */ 1696 static void 1697 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel) 1698 { 1699 /* quick check if endpoint currently running */ 1700 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active)) 1701 return; 1702 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active)) 1703 return; 1704 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active)) 1705 return; 1706 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active)) 1707 return; 1708 1709 /* rx endpoints using USB INT IN method */ 1710 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO) 1711 stop_int_gracefull(hw->fifos + channel * 2 + 1); 1712 1713 /* rx endpoints using USB ISO IN method */ 1714 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) 1715 stop_iso_gracefull(hw->fifos + channel * 2 + 1); 1716 1717 /* tx endpoints using USB ISO OUT method */ 1718 if (channel != HFC_CHAN_E) 1719 stop_iso_gracefull(hw->fifos + channel * 2); 1720 } 1721 1722 1723 /* Hardware Initialization */ 1724 static int 1725 setup_hfcsusb(struct hfcsusb *hw) 1726 { 1727 u_char b; 1728 1729 if (debug & DBG_HFC_CALL_TRACE) 1730 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 1731 1732 /* check the chip id */ 1733 if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) { 1734 printk(KERN_DEBUG "%s: %s: cannot read chip id\n", 1735 hw->name, __func__); 1736 return 1; 1737 } 1738 if (b != HFCUSB_CHIPID) { 1739 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n", 1740 hw->name, __func__, b); 1741 return 1; 1742 } 1743 1744 /* first set the needed config, interface and alternate */ 1745 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used); 1746 1747 hw->led_state = 0; 1748 1749 /* init the background machinery for control requests */ 1750 hw->ctrl_read.bRequestType = 0xc0; 1751 hw->ctrl_read.bRequest = 1; 1752 hw->ctrl_read.wLength = cpu_to_le16(1); 1753 hw->ctrl_write.bRequestType = 0x40; 1754 hw->ctrl_write.bRequest = 0; 1755 hw->ctrl_write.wLength = 0; 1756 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe, 1757 (u_char *)&hw->ctrl_write, NULL, 0, 1758 (usb_complete_t)ctrl_complete, hw); 1759 1760 reset_hfcsusb(hw); 1761 return 0; 1762 } 1763 1764 static void 1765 release_hw(struct hfcsusb *hw) 1766 { 1767 if (debug & DBG_HFC_CALL_TRACE) 1768 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 1769 1770 /* 1771 * stop all endpoints gracefully 1772 * TODO: mISDN_core should generate CLOSE_CHANNEL 1773 * signals after calling mISDN_unregister_device() 1774 */ 1775 hfcsusb_stop_endpoint(hw, HFC_CHAN_D); 1776 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1); 1777 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2); 1778 if (hw->fifos[HFCUSB_PCM_RX].pipe) 1779 hfcsusb_stop_endpoint(hw, HFC_CHAN_E); 1780 if (hw->protocol == ISDN_P_TE_S0) 1781 l1_event(hw->dch.l1, CLOSE_CHANNEL); 1782 1783 mISDN_unregister_device(&hw->dch.dev); 1784 mISDN_freebchannel(&hw->bch[1]); 1785 mISDN_freebchannel(&hw->bch[0]); 1786 mISDN_freedchannel(&hw->dch); 1787 1788 if (hw->ctrl_urb) { 1789 usb_kill_urb(hw->ctrl_urb); 1790 usb_free_urb(hw->ctrl_urb); 1791 hw->ctrl_urb = NULL; 1792 } 1793 1794 if (hw->intf) 1795 usb_set_intfdata(hw->intf, NULL); 1796 list_del(&hw->list); 1797 kfree(hw); 1798 hw = NULL; 1799 } 1800 1801 static void 1802 deactivate_bchannel(struct bchannel *bch) 1803 { 1804 struct hfcsusb *hw = bch->hw; 1805 u_long flags; 1806 1807 if (bch->debug & DEBUG_HW) 1808 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n", 1809 hw->name, __func__, bch->nr); 1810 1811 spin_lock_irqsave(&hw->lock, flags); 1812 mISDN_clear_bchannel(bch); 1813 spin_unlock_irqrestore(&hw->lock, flags); 1814 hfcsusb_setup_bch(bch, ISDN_P_NONE); 1815 hfcsusb_stop_endpoint(hw, bch->nr); 1816 } 1817 1818 /* 1819 * Layer 1 B-channel hardware access 1820 */ 1821 static int 1822 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 1823 { 1824 struct bchannel *bch = container_of(ch, struct bchannel, ch); 1825 int ret = -EINVAL; 1826 1827 if (bch->debug & DEBUG_HW) 1828 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); 1829 1830 switch (cmd) { 1831 case HW_TESTRX_RAW: 1832 case HW_TESTRX_HDLC: 1833 case HW_TESTRX_OFF: 1834 ret = -EINVAL; 1835 break; 1836 1837 case CLOSE_CHANNEL: 1838 test_and_clear_bit(FLG_OPEN, &bch->Flags); 1839 if (test_bit(FLG_ACTIVE, &bch->Flags)) 1840 deactivate_bchannel(bch); 1841 ch->protocol = ISDN_P_NONE; 1842 ch->peer = NULL; 1843 module_put(THIS_MODULE); 1844 ret = 0; 1845 break; 1846 case CONTROL_CHANNEL: 1847 ret = channel_bctrl(bch, arg); 1848 break; 1849 default: 1850 printk(KERN_WARNING "%s: unknown prim(%x)\n", 1851 __func__, cmd); 1852 } 1853 return ret; 1854 } 1855 1856 static int 1857 setup_instance(struct hfcsusb *hw, struct device *parent) 1858 { 1859 u_long flags; 1860 int err, i; 1861 1862 if (debug & DBG_HFC_CALL_TRACE) 1863 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 1864 1865 spin_lock_init(&hw->ctrl_lock); 1866 spin_lock_init(&hw->lock); 1867 1868 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state); 1869 hw->dch.debug = debug & 0xFFFF; 1870 hw->dch.hw = hw; 1871 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); 1872 hw->dch.dev.D.send = hfcusb_l2l1D; 1873 hw->dch.dev.D.ctrl = hfc_dctrl; 1874 1875 /* enable E-Channel logging */ 1876 if (hw->fifos[HFCUSB_PCM_RX].pipe) 1877 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL); 1878 1879 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 1880 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 1881 hw->dch.dev.nrbchan = 2; 1882 for (i = 0; i < 2; i++) { 1883 hw->bch[i].nr = i + 1; 1884 set_channelmap(i + 1, hw->dch.dev.channelmap); 1885 hw->bch[i].debug = debug; 1886 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM); 1887 hw->bch[i].hw = hw; 1888 hw->bch[i].ch.send = hfcusb_l2l1B; 1889 hw->bch[i].ch.ctrl = hfc_bctrl; 1890 hw->bch[i].ch.nr = i + 1; 1891 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels); 1892 } 1893 1894 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0]; 1895 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0]; 1896 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1]; 1897 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1]; 1898 hw->fifos[HFCUSB_D_TX].dch = &hw->dch; 1899 hw->fifos[HFCUSB_D_RX].dch = &hw->dch; 1900 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech; 1901 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech; 1902 1903 err = setup_hfcsusb(hw); 1904 if (err) 1905 goto out; 1906 1907 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME, 1908 hfcsusb_cnt + 1); 1909 printk(KERN_INFO "%s: registered as '%s'\n", 1910 DRIVER_NAME, hw->name); 1911 1912 err = mISDN_register_device(&hw->dch.dev, parent, hw->name); 1913 if (err) 1914 goto out; 1915 1916 hfcsusb_cnt++; 1917 write_lock_irqsave(&HFClock, flags); 1918 list_add_tail(&hw->list, &HFClist); 1919 write_unlock_irqrestore(&HFClock, flags); 1920 return 0; 1921 1922 out: 1923 mISDN_freebchannel(&hw->bch[1]); 1924 mISDN_freebchannel(&hw->bch[0]); 1925 mISDN_freedchannel(&hw->dch); 1926 kfree(hw); 1927 return err; 1928 } 1929 1930 static int 1931 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id) 1932 { 1933 struct hfcsusb *hw; 1934 struct usb_device *dev = interface_to_usbdev(intf); 1935 struct usb_host_interface *iface = intf->cur_altsetting; 1936 struct usb_host_interface *iface_used = NULL; 1937 struct usb_host_endpoint *ep; 1938 struct hfcsusb_vdata *driver_info; 1939 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx, 1940 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found, 1941 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size, 1942 alt_used = 0; 1943 1944 vend_idx = 0xffff; 1945 for (i = 0; hfcsusb_idtab[i].idVendor; i++) { 1946 if ((le16_to_cpu(dev->descriptor.idVendor) 1947 == hfcsusb_idtab[i].idVendor) && 1948 (le16_to_cpu(dev->descriptor.idProduct) 1949 == hfcsusb_idtab[i].idProduct)) { 1950 vend_idx = i; 1951 continue; 1952 } 1953 } 1954 1955 printk(KERN_DEBUG 1956 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n", 1957 __func__, ifnum, iface->desc.bAlternateSetting, 1958 intf->minor, vend_idx); 1959 1960 if (vend_idx == 0xffff) { 1961 printk(KERN_WARNING 1962 "%s: no valid vendor found in USB descriptor\n", 1963 __func__); 1964 return -EIO; 1965 } 1966 /* if vendor and product ID is OK, start probing alternate settings */ 1967 alt_idx = 0; 1968 small_match = -1; 1969 1970 /* default settings */ 1971 iso_packet_size = 16; 1972 packet_size = 64; 1973 1974 while (alt_idx < intf->num_altsetting) { 1975 iface = intf->altsetting + alt_idx; 1976 probe_alt_setting = iface->desc.bAlternateSetting; 1977 cfg_used = 0; 1978 1979 while (validconf[cfg_used][0]) { 1980 cfg_found = 1; 1981 vcf = validconf[cfg_used]; 1982 ep = iface->endpoint; 1983 memcpy(cmptbl, vcf, 16 * sizeof(int)); 1984 1985 /* check for all endpoints in this alternate setting */ 1986 for (i = 0; i < iface->desc.bNumEndpoints; i++) { 1987 ep_addr = ep->desc.bEndpointAddress; 1988 1989 /* get endpoint base */ 1990 idx = ((ep_addr & 0x7f) - 1) * 2; 1991 if (ep_addr & 0x80) 1992 idx++; 1993 attr = ep->desc.bmAttributes; 1994 1995 if (cmptbl[idx] != EP_NOP) { 1996 if (cmptbl[idx] == EP_NUL) 1997 cfg_found = 0; 1998 if (attr == USB_ENDPOINT_XFER_INT 1999 && cmptbl[idx] == EP_INT) 2000 cmptbl[idx] = EP_NUL; 2001 if (attr == USB_ENDPOINT_XFER_BULK 2002 && cmptbl[idx] == EP_BLK) 2003 cmptbl[idx] = EP_NUL; 2004 if (attr == USB_ENDPOINT_XFER_ISOC 2005 && cmptbl[idx] == EP_ISO) 2006 cmptbl[idx] = EP_NUL; 2007 2008 if (attr == USB_ENDPOINT_XFER_INT && 2009 ep->desc.bInterval < vcf[17]) { 2010 cfg_found = 0; 2011 } 2012 } 2013 ep++; 2014 } 2015 2016 for (i = 0; i < 16; i++) 2017 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL) 2018 cfg_found = 0; 2019 2020 if (cfg_found) { 2021 if (small_match < cfg_used) { 2022 small_match = cfg_used; 2023 alt_used = probe_alt_setting; 2024 iface_used = iface; 2025 } 2026 } 2027 cfg_used++; 2028 } 2029 alt_idx++; 2030 } /* (alt_idx < intf->num_altsetting) */ 2031 2032 /* not found a valid USB Ta Endpoint config */ 2033 if (small_match == -1) 2034 return -EIO; 2035 2036 iface = iface_used; 2037 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL); 2038 if (!hw) 2039 return -ENOMEM; /* got no mem */ 2040 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME); 2041 2042 ep = iface->endpoint; 2043 vcf = validconf[small_match]; 2044 2045 for (i = 0; i < iface->desc.bNumEndpoints; i++) { 2046 struct usb_fifo *f; 2047 2048 ep_addr = ep->desc.bEndpointAddress; 2049 /* get endpoint base */ 2050 idx = ((ep_addr & 0x7f) - 1) * 2; 2051 if (ep_addr & 0x80) 2052 idx++; 2053 f = &hw->fifos[idx & 7]; 2054 2055 /* init Endpoints */ 2056 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) { 2057 ep++; 2058 continue; 2059 } 2060 switch (ep->desc.bmAttributes) { 2061 case USB_ENDPOINT_XFER_INT: 2062 f->pipe = usb_rcvintpipe(dev, 2063 ep->desc.bEndpointAddress); 2064 f->usb_transfer_mode = USB_INT; 2065 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); 2066 break; 2067 case USB_ENDPOINT_XFER_BULK: 2068 if (ep_addr & 0x80) 2069 f->pipe = usb_rcvbulkpipe(dev, 2070 ep->desc.bEndpointAddress); 2071 else 2072 f->pipe = usb_sndbulkpipe(dev, 2073 ep->desc.bEndpointAddress); 2074 f->usb_transfer_mode = USB_BULK; 2075 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); 2076 break; 2077 case USB_ENDPOINT_XFER_ISOC: 2078 if (ep_addr & 0x80) 2079 f->pipe = usb_rcvisocpipe(dev, 2080 ep->desc.bEndpointAddress); 2081 else 2082 f->pipe = usb_sndisocpipe(dev, 2083 ep->desc.bEndpointAddress); 2084 f->usb_transfer_mode = USB_ISOC; 2085 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); 2086 break; 2087 default: 2088 f->pipe = 0; 2089 } 2090 2091 if (f->pipe) { 2092 f->fifonum = idx & 7; 2093 f->hw = hw; 2094 f->usb_packet_maxlen = 2095 le16_to_cpu(ep->desc.wMaxPacketSize); 2096 f->intervall = ep->desc.bInterval; 2097 } 2098 ep++; 2099 } 2100 hw->dev = dev; /* save device */ 2101 hw->if_used = ifnum; /* save used interface */ 2102 hw->alt_used = alt_used; /* and alternate config */ 2103 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */ 2104 hw->cfg_used = vcf[16]; /* store used config */ 2105 hw->vend_idx = vend_idx; /* store found vendor */ 2106 hw->packet_size = packet_size; 2107 hw->iso_packet_size = iso_packet_size; 2108 2109 /* create the control pipes needed for register access */ 2110 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0); 2111 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0); 2112 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL); 2113 2114 driver_info = 2115 (struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info; 2116 printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n", 2117 hw->name, __func__, driver_info->vend_name, 2118 conf_str[small_match], ifnum, alt_used); 2119 2120 if (setup_instance(hw, dev->dev.parent)) 2121 return -EIO; 2122 2123 hw->intf = intf; 2124 usb_set_intfdata(hw->intf, hw); 2125 return 0; 2126 } 2127 2128 /* function called when an active device is removed */ 2129 static void 2130 hfcsusb_disconnect(struct usb_interface *intf) 2131 { 2132 struct hfcsusb *hw = usb_get_intfdata(intf); 2133 struct hfcsusb *next; 2134 int cnt = 0; 2135 2136 printk(KERN_INFO "%s: device disconnected\n", hw->name); 2137 2138 handle_led(hw, LED_POWER_OFF); 2139 release_hw(hw); 2140 2141 list_for_each_entry_safe(hw, next, &HFClist, list) 2142 cnt++; 2143 if (!cnt) 2144 hfcsusb_cnt = 0; 2145 2146 usb_set_intfdata(intf, NULL); 2147 } 2148 2149 static struct usb_driver hfcsusb_drv = { 2150 .name = DRIVER_NAME, 2151 .id_table = hfcsusb_idtab, 2152 .probe = hfcsusb_probe, 2153 .disconnect = hfcsusb_disconnect, 2154 }; 2155 2156 module_usb_driver(hfcsusb_drv); 2157