1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  */
31 
32 #include <linux/module.h>
33 #include <linux/delay.h>
34 #include <linux/usb.h>
35 #include <linux/mISDNhw.h>
36 #include <linux/slab.h>
37 #include "hfcsusb.h"
38 
39 static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
40 
41 static unsigned int debug;
42 static int poll = DEFAULT_TRANSP_BURST_SZ;
43 
44 static LIST_HEAD(HFClist);
45 static DEFINE_RWLOCK(HFClock);
46 
47 
48 MODULE_AUTHOR("Martin Bachem");
49 MODULE_LICENSE("GPL");
50 module_param(debug, uint, S_IRUGO | S_IWUSR);
51 module_param(poll, int, 0);
52 
53 static int hfcsusb_cnt;
54 
55 /* some function prototypes */
56 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
57 static void release_hw(struct hfcsusb *hw);
58 static void reset_hfcsusb(struct hfcsusb *hw);
59 static void setPortMode(struct hfcsusb *hw);
60 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
61 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
62 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
63 static void deactivate_bchannel(struct bchannel *bch);
64 static void hfcsusb_ph_info(struct hfcsusb *hw);
65 
66 /* start next background transfer for control channel */
67 static void
68 ctrl_start_transfer(struct hfcsusb *hw)
69 {
70 	if (debug & DBG_HFC_CALL_TRACE)
71 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
72 
73 	if (hw->ctrl_cnt) {
74 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
75 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
76 		hw->ctrl_urb->transfer_buffer = NULL;
77 		hw->ctrl_urb->transfer_buffer_length = 0;
78 		hw->ctrl_write.wIndex =
79 		    cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
80 		hw->ctrl_write.wValue =
81 		    cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
82 
83 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
84 	}
85 }
86 
87 /*
88  * queue a control transfer request to write HFC-S USB
89  * chip register using CTRL resuest queue
90  */
91 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
92 {
93 	struct ctrl_buf *buf;
94 
95 	if (debug & DBG_HFC_CALL_TRACE)
96 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
97 			hw->name, __func__, reg, val);
98 
99 	spin_lock(&hw->ctrl_lock);
100 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
101 		spin_unlock(&hw->ctrl_lock);
102 		return 1;
103 	}
104 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
105 	buf->hfcs_reg = reg;
106 	buf->reg_val = val;
107 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
108 		hw->ctrl_in_idx = 0;
109 	if (++hw->ctrl_cnt == 1)
110 		ctrl_start_transfer(hw);
111 	spin_unlock(&hw->ctrl_lock);
112 
113 	return 0;
114 }
115 
116 /* control completion routine handling background control cmds */
117 static void
118 ctrl_complete(struct urb *urb)
119 {
120 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
121 	struct ctrl_buf *buf;
122 
123 	if (debug & DBG_HFC_CALL_TRACE)
124 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
125 
126 	urb->dev = hw->dev;
127 	if (hw->ctrl_cnt) {
128 		buf = &hw->ctrl_buff[hw->ctrl_out_idx];
129 		hw->ctrl_cnt--;	/* decrement actual count */
130 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
131 			hw->ctrl_out_idx = 0;	/* pointer wrap */
132 
133 		ctrl_start_transfer(hw); /* start next transfer */
134 	}
135 }
136 
137 /* handle LED bits   */
138 static void
139 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
140 {
141 	if (set_on) {
142 		if (led_bits < 0)
143 			hw->led_state &= ~abs(led_bits);
144 		else
145 			hw->led_state |= led_bits;
146 	} else {
147 		if (led_bits < 0)
148 			hw->led_state |= abs(led_bits);
149 		else
150 			hw->led_state &= ~led_bits;
151 	}
152 }
153 
154 /* handle LED requests  */
155 static void
156 handle_led(struct hfcsusb *hw, int event)
157 {
158 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
159 		hfcsusb_idtab[hw->vend_idx].driver_info;
160 	__u8 tmpled;
161 
162 	if (driver_info->led_scheme == LED_OFF)
163 		return;
164 	tmpled = hw->led_state;
165 
166 	switch (event) {
167 	case LED_POWER_ON:
168 		set_led_bit(hw, driver_info->led_bits[0], 1);
169 		set_led_bit(hw, driver_info->led_bits[1], 0);
170 		set_led_bit(hw, driver_info->led_bits[2], 0);
171 		set_led_bit(hw, driver_info->led_bits[3], 0);
172 		break;
173 	case LED_POWER_OFF:
174 		set_led_bit(hw, driver_info->led_bits[0], 0);
175 		set_led_bit(hw, driver_info->led_bits[1], 0);
176 		set_led_bit(hw, driver_info->led_bits[2], 0);
177 		set_led_bit(hw, driver_info->led_bits[3], 0);
178 		break;
179 	case LED_S0_ON:
180 		set_led_bit(hw, driver_info->led_bits[1], 1);
181 		break;
182 	case LED_S0_OFF:
183 		set_led_bit(hw, driver_info->led_bits[1], 0);
184 		break;
185 	case LED_B1_ON:
186 		set_led_bit(hw, driver_info->led_bits[2], 1);
187 		break;
188 	case LED_B1_OFF:
189 		set_led_bit(hw, driver_info->led_bits[2], 0);
190 		break;
191 	case LED_B2_ON:
192 		set_led_bit(hw, driver_info->led_bits[3], 1);
193 		break;
194 	case LED_B2_OFF:
195 		set_led_bit(hw, driver_info->led_bits[3], 0);
196 		break;
197 	}
198 
199 	if (hw->led_state != tmpled) {
200 		if (debug & DBG_HFC_CALL_TRACE)
201 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
202 			    hw->name, __func__,
203 			    HFCUSB_P_DATA, hw->led_state);
204 
205 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
206 	}
207 }
208 
209 /*
210  * Layer2 -> Layer 1 Bchannel data
211  */
212 static int
213 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
214 {
215 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
216 	struct hfcsusb		*hw = bch->hw;
217 	int			ret = -EINVAL;
218 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
219 	u_long			flags;
220 
221 	if (debug & DBG_HFC_CALL_TRACE)
222 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
223 
224 	switch (hh->prim) {
225 	case PH_DATA_REQ:
226 		spin_lock_irqsave(&hw->lock, flags);
227 		ret = bchannel_senddata(bch, skb);
228 		spin_unlock_irqrestore(&hw->lock, flags);
229 		if (debug & DBG_HFC_CALL_TRACE)
230 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
231 				hw->name, __func__, ret);
232 		if (ret > 0) {
233 			/*
234 			 * other l1 drivers don't send early confirms on
235 			 * transp data, but hfcsusb does because tx_next
236 			 * skb is needed in tx_iso_complete()
237 			 */
238 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
239 			ret = 0;
240 		}
241 		return ret;
242 	case PH_ACTIVATE_REQ:
243 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
244 			hfcsusb_start_endpoint(hw, bch->nr);
245 			ret = hfcsusb_setup_bch(bch, ch->protocol);
246 		} else
247 			ret = 0;
248 		if (!ret)
249 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
250 				0, NULL, GFP_KERNEL);
251 		break;
252 	case PH_DEACTIVATE_REQ:
253 		deactivate_bchannel(bch);
254 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
255 			0, NULL, GFP_KERNEL);
256 		ret = 0;
257 		break;
258 	}
259 	if (!ret)
260 		dev_kfree_skb(skb);
261 	return ret;
262 }
263 
264 /*
265  * send full D/B channel status information
266  * as MPH_INFORMATION_IND
267  */
268 static void
269 hfcsusb_ph_info(struct hfcsusb *hw)
270 {
271 	struct ph_info *phi;
272 	struct dchannel *dch = &hw->dch;
273 	int i;
274 
275 	phi = kzalloc(sizeof(struct ph_info) +
276 		dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
277 	phi->dch.ch.protocol = hw->protocol;
278 	phi->dch.ch.Flags = dch->Flags;
279 	phi->dch.state = dch->state;
280 	phi->dch.num_bch = dch->dev.nrbchan;
281 	for (i = 0; i < dch->dev.nrbchan; i++) {
282 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
283 		phi->bch[i].Flags = hw->bch[i].Flags;
284 	}
285 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
286 		sizeof(struct ph_info_dch) + dch->dev.nrbchan *
287 		sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
288 }
289 
290 /*
291  * Layer2 -> Layer 1 Dchannel data
292  */
293 static int
294 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
295 {
296 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
297 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
298 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
299 	struct hfcsusb		*hw = dch->hw;
300 	int			ret = -EINVAL;
301 	u_long			flags;
302 
303 	switch (hh->prim) {
304 	case PH_DATA_REQ:
305 		if (debug & DBG_HFC_CALL_TRACE)
306 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
307 				hw->name, __func__);
308 
309 		spin_lock_irqsave(&hw->lock, flags);
310 		ret = dchannel_senddata(dch, skb);
311 		spin_unlock_irqrestore(&hw->lock, flags);
312 		if (ret > 0) {
313 			ret = 0;
314 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
315 		}
316 		break;
317 
318 	case PH_ACTIVATE_REQ:
319 		if (debug & DBG_HFC_CALL_TRACE)
320 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
321 				hw->name, __func__,
322 				(hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
323 
324 		if (hw->protocol == ISDN_P_NT_S0) {
325 			ret = 0;
326 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
327 				_queue_data(&dch->dev.D,
328 					PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
329 					NULL, GFP_ATOMIC);
330 			} else {
331 				hfcsusb_ph_command(hw,
332 					HFC_L1_ACTIVATE_NT);
333 				test_and_set_bit(FLG_L2_ACTIVATED,
334 					&dch->Flags);
335 			}
336 		} else {
337 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
338 			ret = l1_event(dch->l1, hh->prim);
339 		}
340 		break;
341 
342 	case PH_DEACTIVATE_REQ:
343 		if (debug & DBG_HFC_CALL_TRACE)
344 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
345 				hw->name, __func__);
346 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
347 
348 		if (hw->protocol == ISDN_P_NT_S0) {
349 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
350 			spin_lock_irqsave(&hw->lock, flags);
351 			skb_queue_purge(&dch->squeue);
352 			if (dch->tx_skb) {
353 				dev_kfree_skb(dch->tx_skb);
354 				dch->tx_skb = NULL;
355 			}
356 			dch->tx_idx = 0;
357 			if (dch->rx_skb) {
358 				dev_kfree_skb(dch->rx_skb);
359 				dch->rx_skb = NULL;
360 			}
361 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
362 			spin_unlock_irqrestore(&hw->lock, flags);
363 #ifdef FIXME
364 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
365 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
366 #endif
367 			ret = 0;
368 		} else
369 			ret = l1_event(dch->l1, hh->prim);
370 		break;
371 	case MPH_INFORMATION_REQ:
372 		hfcsusb_ph_info(hw);
373 		ret = 0;
374 		break;
375 	}
376 
377 	return ret;
378 }
379 
380 /*
381  * Layer 1 callback function
382  */
383 static int
384 hfc_l1callback(struct dchannel *dch, u_int cmd)
385 {
386 	struct hfcsusb *hw = dch->hw;
387 
388 	if (debug & DBG_HFC_CALL_TRACE)
389 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
390 			hw->name, __func__, cmd);
391 
392 	switch (cmd) {
393 	case INFO3_P8:
394 	case INFO3_P10:
395 	case HW_RESET_REQ:
396 	case HW_POWERUP_REQ:
397 		break;
398 
399 	case HW_DEACT_REQ:
400 		skb_queue_purge(&dch->squeue);
401 		if (dch->tx_skb) {
402 			dev_kfree_skb(dch->tx_skb);
403 			dch->tx_skb = NULL;
404 		}
405 		dch->tx_idx = 0;
406 		if (dch->rx_skb) {
407 			dev_kfree_skb(dch->rx_skb);
408 			dch->rx_skb = NULL;
409 		}
410 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
411 		break;
412 	case PH_ACTIVATE_IND:
413 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
414 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
415 			GFP_ATOMIC);
416 		break;
417 	case PH_DEACTIVATE_IND:
418 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
419 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
420 			GFP_ATOMIC);
421 		break;
422 	default:
423 		if (dch->debug & DEBUG_HW)
424 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
425 			hw->name, __func__, cmd);
426 		return -1;
427 	}
428 	hfcsusb_ph_info(hw);
429 	return 0;
430 }
431 
432 static int
433 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
434     struct channel_req *rq)
435 {
436 	int err = 0;
437 
438 	if (debug & DEBUG_HW_OPEN)
439 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
440 		    hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
441 		    __builtin_return_address(0));
442 	if (rq->protocol == ISDN_P_NONE)
443 		return -EINVAL;
444 
445 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
446 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
447 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
448 
449 	/* E-Channel logging */
450 	if (rq->adr.channel == 1) {
451 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
452 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
453 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
454 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
455 				     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
456 		} else
457 			return -EINVAL;
458 	}
459 
460 	if (!hw->initdone) {
461 		hw->protocol = rq->protocol;
462 		if (rq->protocol == ISDN_P_TE_S0) {
463 			err = create_l1(&hw->dch, hfc_l1callback);
464 			if (err)
465 				return err;
466 		}
467 		setPortMode(hw);
468 		ch->protocol = rq->protocol;
469 		hw->initdone = 1;
470 	} else {
471 		if (rq->protocol != ch->protocol)
472 			return -EPROTONOSUPPORT;
473 	}
474 
475 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
476 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
477 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
478 		    0, NULL, GFP_KERNEL);
479 	rq->ch = ch;
480 	if (!try_module_get(THIS_MODULE))
481 		printk(KERN_WARNING "%s: %s: cannot get module\n",
482 		    hw->name, __func__);
483 	return 0;
484 }
485 
486 static int
487 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
488 {
489 	struct bchannel		*bch;
490 
491 	if (rq->adr.channel > 2)
492 		return -EINVAL;
493 	if (rq->protocol == ISDN_P_NONE)
494 		return -EINVAL;
495 
496 	if (debug & DBG_HFC_CALL_TRACE)
497 		printk(KERN_DEBUG "%s: %s B%i\n",
498 			hw->name, __func__, rq->adr.channel);
499 
500 	bch = &hw->bch[rq->adr.channel - 1];
501 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
502 		return -EBUSY; /* b-channel can be only open once */
503 	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
504 	bch->ch.protocol = rq->protocol;
505 	rq->ch = &bch->ch;
506 
507 	/* start USB endpoint for bchannel */
508 	if (rq->adr.channel  == 1)
509 		hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
510 	else
511 		hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
512 
513 	if (!try_module_get(THIS_MODULE))
514 		printk(KERN_WARNING "%s: %s:cannot get module\n",
515 		    hw->name, __func__);
516 	return 0;
517 }
518 
519 static int
520 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
521 {
522 	int ret = 0;
523 
524 	if (debug & DBG_HFC_CALL_TRACE)
525 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
526 		    hw->name, __func__, (cq->op), (cq->channel));
527 
528 	switch (cq->op) {
529 	case MISDN_CTRL_GETOP:
530 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
531 			 MISDN_CTRL_DISCONNECT;
532 		break;
533 	default:
534 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
535 			hw->name, __func__, cq->op);
536 		ret = -EINVAL;
537 		break;
538 	}
539 	return ret;
540 }
541 
542 /*
543  * device control function
544  */
545 static int
546 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
547 {
548 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
549 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
550 	struct hfcsusb		*hw = dch->hw;
551 	struct channel_req	*rq;
552 	int			err = 0;
553 
554 	if (dch->debug & DEBUG_HW)
555 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
556 		    hw->name, __func__, cmd, arg);
557 	switch (cmd) {
558 	case OPEN_CHANNEL:
559 		rq = arg;
560 		if ((rq->protocol == ISDN_P_TE_S0) ||
561 		    (rq->protocol == ISDN_P_NT_S0))
562 			err = open_dchannel(hw, ch, rq);
563 		else
564 			err = open_bchannel(hw, rq);
565 		if (!err)
566 			hw->open++;
567 		break;
568 	case CLOSE_CHANNEL:
569 		hw->open--;
570 		if (debug & DEBUG_HW_OPEN)
571 			printk(KERN_DEBUG
572 				"%s: %s: dev(%d) close from %p (open %d)\n",
573 				hw->name, __func__, hw->dch.dev.id,
574 				__builtin_return_address(0), hw->open);
575 		if (!hw->open) {
576 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
577 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
578 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
579 			handle_led(hw, LED_POWER_ON);
580 		}
581 		module_put(THIS_MODULE);
582 		break;
583 	case CONTROL_CHANNEL:
584 		err = channel_ctrl(hw, arg);
585 		break;
586 	default:
587 		if (dch->debug & DEBUG_HW)
588 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
589 				hw->name, __func__, cmd);
590 		return -EINVAL;
591 	}
592 	return err;
593 }
594 
595 /*
596  * S0 TE state change event handler
597  */
598 static void
599 ph_state_te(struct dchannel *dch)
600 {
601 	struct hfcsusb *hw = dch->hw;
602 
603 	if (debug & DEBUG_HW) {
604 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
605 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
606 			    HFC_TE_LAYER1_STATES[dch->state]);
607 		else
608 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
609 			    hw->name, __func__, dch->state);
610 	}
611 
612 	switch (dch->state) {
613 	case 0:
614 		l1_event(dch->l1, HW_RESET_IND);
615 		break;
616 	case 3:
617 		l1_event(dch->l1, HW_DEACT_IND);
618 		break;
619 	case 5:
620 	case 8:
621 		l1_event(dch->l1, ANYSIGNAL);
622 		break;
623 	case 6:
624 		l1_event(dch->l1, INFO2);
625 		break;
626 	case 7:
627 		l1_event(dch->l1, INFO4_P8);
628 		break;
629 	}
630 	if (dch->state == 7)
631 		handle_led(hw, LED_S0_ON);
632 	else
633 		handle_led(hw, LED_S0_OFF);
634 }
635 
636 /*
637  * S0 NT state change event handler
638  */
639 static void
640 ph_state_nt(struct dchannel *dch)
641 {
642 	struct hfcsusb *hw = dch->hw;
643 
644 	if (debug & DEBUG_HW) {
645 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
646 			printk(KERN_DEBUG "%s: %s: %s\n",
647 			    hw->name, __func__,
648 			    HFC_NT_LAYER1_STATES[dch->state]);
649 
650 		else
651 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
652 			    hw->name, __func__, dch->state);
653 	}
654 
655 	switch (dch->state) {
656 	case (1):
657 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
658 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
659 		hw->nt_timer = 0;
660 		hw->timers &= ~NT_ACTIVATION_TIMER;
661 		handle_led(hw, LED_S0_OFF);
662 		break;
663 
664 	case (2):
665 		if (hw->nt_timer < 0) {
666 			hw->nt_timer = 0;
667 			hw->timers &= ~NT_ACTIVATION_TIMER;
668 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
669 		} else {
670 			hw->timers |= NT_ACTIVATION_TIMER;
671 			hw->nt_timer = NT_T1_COUNT;
672 			/* allow G2 -> G3 transition */
673 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
674 		}
675 		break;
676 	case (3):
677 		hw->nt_timer = 0;
678 		hw->timers &= ~NT_ACTIVATION_TIMER;
679 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
680 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
681 			MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
682 		handle_led(hw, LED_S0_ON);
683 		break;
684 	case (4):
685 		hw->nt_timer = 0;
686 		hw->timers &= ~NT_ACTIVATION_TIMER;
687 		break;
688 	default:
689 		break;
690 	}
691 	hfcsusb_ph_info(hw);
692 }
693 
694 static void
695 ph_state(struct dchannel *dch)
696 {
697 	struct hfcsusb *hw = dch->hw;
698 
699 	if (hw->protocol == ISDN_P_NT_S0)
700 		ph_state_nt(dch);
701 	else if (hw->protocol == ISDN_P_TE_S0)
702 		ph_state_te(dch);
703 }
704 
705 /*
706  * disable/enable BChannel for desired protocoll
707  */
708 static int
709 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
710 {
711 	struct hfcsusb *hw = bch->hw;
712 	__u8 conhdlc, sctrl, sctrl_r;
713 
714 	if (debug & DEBUG_HW)
715 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
716 		    hw->name, __func__, bch->state, protocol,
717 		    bch->nr);
718 
719 	/* setup val for CON_HDLC */
720 	conhdlc = 0;
721 	if (protocol > ISDN_P_NONE)
722 		conhdlc = 8;	/* enable FIFO */
723 
724 	switch (protocol) {
725 	case (-1):	/* used for init */
726 		bch->state = -1;
727 		/* fall through */
728 	case (ISDN_P_NONE):
729 		if (bch->state == ISDN_P_NONE)
730 			return 0; /* already in idle state */
731 		bch->state = ISDN_P_NONE;
732 		clear_bit(FLG_HDLC, &bch->Flags);
733 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
734 		break;
735 	case (ISDN_P_B_RAW):
736 		conhdlc |= 2;
737 		bch->state = protocol;
738 		set_bit(FLG_TRANSPARENT, &bch->Flags);
739 		break;
740 	case (ISDN_P_B_HDLC):
741 		bch->state = protocol;
742 		set_bit(FLG_HDLC, &bch->Flags);
743 		break;
744 	default:
745 		if (debug & DEBUG_HW)
746 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
747 				hw->name, __func__, protocol);
748 		return -ENOPROTOOPT;
749 	}
750 
751 	if (protocol >= ISDN_P_NONE) {
752 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
753 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
754 		write_reg(hw, HFCUSB_INC_RES_F, 2);
755 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
756 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
757 		write_reg(hw, HFCUSB_INC_RES_F, 2);
758 
759 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
760 		sctrl_r = 0x0;
761 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
762 			sctrl |= 1;
763 			sctrl_r |= 1;
764 		}
765 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
766 			sctrl |= 2;
767 			sctrl_r |= 2;
768 		}
769 		write_reg(hw, HFCUSB_SCTRL, sctrl);
770 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
771 
772 		if (protocol > ISDN_P_NONE)
773 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
774 		else
775 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
776 				LED_B2_OFF);
777 	}
778 	hfcsusb_ph_info(hw);
779 	return 0;
780 }
781 
782 static void
783 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
784 {
785 	if (debug & DEBUG_HW)
786 		printk(KERN_DEBUG "%s: %s: %x\n",
787 		   hw->name, __func__, command);
788 
789 	switch (command) {
790 	case HFC_L1_ACTIVATE_TE:
791 		/* force sending sending INFO1 */
792 		write_reg(hw, HFCUSB_STATES, 0x14);
793 		/* start l1 activation */
794 		write_reg(hw, HFCUSB_STATES, 0x04);
795 		break;
796 
797 	case HFC_L1_FORCE_DEACTIVATE_TE:
798 		write_reg(hw, HFCUSB_STATES, 0x10);
799 		write_reg(hw, HFCUSB_STATES, 0x03);
800 		break;
801 
802 	case HFC_L1_ACTIVATE_NT:
803 		if (hw->dch.state == 3)
804 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
805 				MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
806 		else
807 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
808 				HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
809 		break;
810 
811 	case HFC_L1_DEACTIVATE_NT:
812 		write_reg(hw, HFCUSB_STATES,
813 			HFCUSB_DO_ACTION);
814 		break;
815 	}
816 }
817 
818 /*
819  * Layer 1 B-channel hardware access
820  */
821 static int
822 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
823 {
824 	int	ret = 0;
825 
826 	switch (cq->op) {
827 	case MISDN_CTRL_GETOP:
828 		cq->op = MISDN_CTRL_FILL_EMPTY;
829 		break;
830 	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
831 		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
832 		if (debug & DEBUG_HW_OPEN)
833 			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
834 				"off=%d)\n", __func__, bch->nr, !!cq->p1);
835 		break;
836 	default:
837 		printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
838 		ret = -EINVAL;
839 		break;
840 	}
841 	return ret;
842 }
843 
844 /* collect data from incoming interrupt or isochron USB data */
845 static void
846 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
847 	int finish)
848 {
849 	struct hfcsusb	*hw = fifo->hw;
850 	struct sk_buff	*rx_skb = NULL;
851 	int		maxlen = 0;
852 	int		fifon = fifo->fifonum;
853 	int		i;
854 	int		hdlc = 0;
855 
856 	if (debug & DBG_HFC_CALL_TRACE)
857 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
858 		    "dch(%p) bch(%p) ech(%p)\n",
859 		    hw->name, __func__, fifon, len,
860 		    fifo->dch, fifo->bch, fifo->ech);
861 
862 	if (!len)
863 		return;
864 
865 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
866 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
867 		       hw->name, __func__);
868 		return;
869 	}
870 
871 	spin_lock(&hw->lock);
872 	if (fifo->dch) {
873 		rx_skb = fifo->dch->rx_skb;
874 		maxlen = fifo->dch->maxlen;
875 		hdlc = 1;
876 	}
877 	if (fifo->bch) {
878 		rx_skb = fifo->bch->rx_skb;
879 		maxlen = fifo->bch->maxlen;
880 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
881 	}
882 	if (fifo->ech) {
883 		rx_skb = fifo->ech->rx_skb;
884 		maxlen = fifo->ech->maxlen;
885 		hdlc = 1;
886 	}
887 
888 	if (!rx_skb) {
889 		rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
890 		if (rx_skb) {
891 			if (fifo->dch)
892 				fifo->dch->rx_skb = rx_skb;
893 			if (fifo->bch)
894 				fifo->bch->rx_skb = rx_skb;
895 			if (fifo->ech)
896 				fifo->ech->rx_skb = rx_skb;
897 			skb_trim(rx_skb, 0);
898 		} else {
899 			printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
900 			    hw->name, __func__);
901 			spin_unlock(&hw->lock);
902 			return;
903 		}
904 	}
905 
906 	if (fifo->dch || fifo->ech) {
907 		/* D/E-Channel SKB range check */
908 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
909 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
910 			    "for fifo(%d) HFCUSB_D_RX\n",
911 			    hw->name, __func__, fifon);
912 			skb_trim(rx_skb, 0);
913 			spin_unlock(&hw->lock);
914 			return;
915 		}
916 	} else if (fifo->bch) {
917 		/* B-Channel SKB range check */
918 		if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
919 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
920 			    "for fifo(%d) HFCUSB_B_RX\n",
921 			    hw->name, __func__, fifon);
922 			skb_trim(rx_skb, 0);
923 			spin_unlock(&hw->lock);
924 			return;
925 		}
926 	}
927 
928 	memcpy(skb_put(rx_skb, len), data, len);
929 
930 	if (hdlc) {
931 		/* we have a complete hdlc packet */
932 		if (finish) {
933 			if ((rx_skb->len > 3) &&
934 			   (!(rx_skb->data[rx_skb->len - 1]))) {
935 				if (debug & DBG_HFC_FIFO_VERBOSE) {
936 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
937 					    " new RX len(%i): ",
938 					    hw->name, __func__, fifon,
939 					    rx_skb->len);
940 					i = 0;
941 					while (i < rx_skb->len)
942 						printk("%02x ",
943 						    rx_skb->data[i++]);
944 					printk("\n");
945 				}
946 
947 				/* remove CRC & status */
948 				skb_trim(rx_skb, rx_skb->len - 3);
949 
950 				if (fifo->dch)
951 					recv_Dchannel(fifo->dch);
952 				if (fifo->bch)
953 					recv_Bchannel(fifo->bch, MISDN_ID_ANY);
954 				if (fifo->ech)
955 					recv_Echannel(fifo->ech,
956 						     &hw->dch);
957 			} else {
958 				if (debug & DBG_HFC_FIFO_VERBOSE) {
959 					printk(KERN_DEBUG
960 					    "%s: CRC or minlen ERROR fifon(%i) "
961 					    "RX len(%i): ",
962 					    hw->name, fifon, rx_skb->len);
963 					i = 0;
964 					while (i < rx_skb->len)
965 						printk("%02x ",
966 						    rx_skb->data[i++]);
967 					printk("\n");
968 				}
969 				skb_trim(rx_skb, 0);
970 			}
971 		}
972 	} else {
973 		/* deliver transparent data to layer2 */
974 		if (rx_skb->len >= poll)
975 			recv_Bchannel(fifo->bch, MISDN_ID_ANY);
976 	}
977 	spin_unlock(&hw->lock);
978 }
979 
980 static void
981 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
982 	      void *buf, int num_packets, int packet_size, int interval,
983 	      usb_complete_t complete, void *context)
984 {
985 	int k;
986 
987 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
988 	    complete, context);
989 
990 	urb->number_of_packets = num_packets;
991 	urb->transfer_flags = URB_ISO_ASAP;
992 	urb->actual_length = 0;
993 	urb->interval = interval;
994 
995 	for (k = 0; k < num_packets; k++) {
996 		urb->iso_frame_desc[k].offset = packet_size * k;
997 		urb->iso_frame_desc[k].length = packet_size;
998 		urb->iso_frame_desc[k].actual_length = 0;
999 	}
1000 }
1001 
1002 /* receive completion routine for all ISO tx fifos   */
1003 static void
1004 rx_iso_complete(struct urb *urb)
1005 {
1006 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1007 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1008 	struct hfcsusb *hw = fifo->hw;
1009 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
1010 	    status, iso_status, i;
1011 	__u8 *buf;
1012 	static __u8 eof[8];
1013 	__u8 s0_state;
1014 
1015 	fifon = fifo->fifonum;
1016 	status = urb->status;
1017 
1018 	spin_lock(&hw->lock);
1019 	if (fifo->stop_gracefull) {
1020 		fifo->stop_gracefull = 0;
1021 		fifo->active = 0;
1022 		spin_unlock(&hw->lock);
1023 		return;
1024 	}
1025 	spin_unlock(&hw->lock);
1026 
1027 	/*
1028 	 * ISO transfer only partially completed,
1029 	 * look at individual frame status for details
1030 	 */
1031 	if (status == -EXDEV) {
1032 		if (debug & DEBUG_HW)
1033 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
1034 			    "urb->status %d, fifonum %d\n",
1035 			    hw->name, __func__,  status, fifon);
1036 
1037 		/* clear status, so go on with ISO transfers */
1038 		status = 0;
1039 	}
1040 
1041 	s0_state = 0;
1042 	if (fifo->active && !status) {
1043 		num_isoc_packets = iso_packets[fifon];
1044 		maxlen = fifo->usb_packet_maxlen;
1045 
1046 		for (k = 0; k < num_isoc_packets; ++k) {
1047 			len = urb->iso_frame_desc[k].actual_length;
1048 			offset = urb->iso_frame_desc[k].offset;
1049 			buf = context_iso_urb->buffer + offset;
1050 			iso_status = urb->iso_frame_desc[k].status;
1051 
1052 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1053 				printk(KERN_DEBUG "%s: %s: "
1054 				    "ISO packet %i, status: %i\n",
1055 				    hw->name, __func__, k, iso_status);
1056 			}
1057 
1058 			/* USB data log for every D ISO in */
1059 			if ((fifon == HFCUSB_D_RX) &&
1060 			    (debug & DBG_HFC_USB_VERBOSE)) {
1061 				printk(KERN_DEBUG
1062 				    "%s: %s: %d (%d/%d) len(%d) ",
1063 				    hw->name, __func__, urb->start_frame,
1064 				    k, num_isoc_packets-1,
1065 				    len);
1066 				for (i = 0; i < len; i++)
1067 					printk("%x ", buf[i]);
1068 				printk("\n");
1069 			}
1070 
1071 			if (!iso_status) {
1072 				if (fifo->last_urblen != maxlen) {
1073 					/*
1074 					 * save fifo fill-level threshold bits
1075 					 * to use them later in TX ISO URB
1076 					 * completions
1077 					 */
1078 					hw->threshold_mask = buf[1];
1079 
1080 					if (fifon == HFCUSB_D_RX)
1081 						s0_state = (buf[0] >> 4);
1082 
1083 					eof[fifon] = buf[0] & 1;
1084 					if (len > 2)
1085 						hfcsusb_rx_frame(fifo, buf + 2,
1086 							len - 2, (len < maxlen)
1087 							? eof[fifon] : 0);
1088 				} else
1089 					hfcsusb_rx_frame(fifo, buf, len,
1090 						(len < maxlen) ?
1091 						eof[fifon] : 0);
1092 				fifo->last_urblen = len;
1093 			}
1094 		}
1095 
1096 		/* signal S0 layer1 state change */
1097 		if ((s0_state) && (hw->initdone) &&
1098 		    (s0_state != hw->dch.state)) {
1099 			hw->dch.state = s0_state;
1100 			schedule_event(&hw->dch, FLG_PHCHANGE);
1101 		}
1102 
1103 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1104 			      context_iso_urb->buffer, num_isoc_packets,
1105 			      fifo->usb_packet_maxlen, fifo->intervall,
1106 			      (usb_complete_t)rx_iso_complete, urb->context);
1107 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1108 		if (errcode < 0) {
1109 			if (debug & DEBUG_HW)
1110 				printk(KERN_DEBUG "%s: %s: error submitting "
1111 				    "ISO URB: %d\n",
1112 				    hw->name, __func__, errcode);
1113 		}
1114 	} else {
1115 		if (status && (debug & DBG_HFC_URB_INFO))
1116 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1117 			    "urb->status %d, fifonum %d\n",
1118 			    hw->name, __func__, status, fifon);
1119 	}
1120 }
1121 
1122 /* receive completion routine for all interrupt rx fifos */
1123 static void
1124 rx_int_complete(struct urb *urb)
1125 {
1126 	int len, status, i;
1127 	__u8 *buf, maxlen, fifon;
1128 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1129 	struct hfcsusb *hw = fifo->hw;
1130 	static __u8 eof[8];
1131 
1132 	spin_lock(&hw->lock);
1133 	if (fifo->stop_gracefull) {
1134 		fifo->stop_gracefull = 0;
1135 		fifo->active = 0;
1136 		spin_unlock(&hw->lock);
1137 		return;
1138 	}
1139 	spin_unlock(&hw->lock);
1140 
1141 	fifon = fifo->fifonum;
1142 	if ((!fifo->active) || (urb->status)) {
1143 		if (debug & DBG_HFC_URB_ERROR)
1144 			printk(KERN_DEBUG
1145 			    "%s: %s: RX-Fifo %i is going down (%i)\n",
1146 			    hw->name, __func__, fifon, urb->status);
1147 
1148 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1149 		return;
1150 	}
1151 	len = urb->actual_length;
1152 	buf = fifo->buffer;
1153 	maxlen = fifo->usb_packet_maxlen;
1154 
1155 	/* USB data log for every D INT in */
1156 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1157 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1158 		    hw->name, __func__, len);
1159 		for (i = 0; i < len; i++)
1160 			printk("%02x ", buf[i]);
1161 		printk("\n");
1162 	}
1163 
1164 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1165 		/* the threshold mask is in the 2nd status byte */
1166 		hw->threshold_mask = buf[1];
1167 
1168 		/* signal S0 layer1 state change */
1169 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1170 			hw->dch.state = (buf[0] >> 4);
1171 			schedule_event(&hw->dch, FLG_PHCHANGE);
1172 		}
1173 
1174 		eof[fifon] = buf[0] & 1;
1175 		/* if we have more than the 2 status bytes -> collect data */
1176 		if (len > 2)
1177 			hfcsusb_rx_frame(fifo, buf + 2,
1178 			   urb->actual_length - 2,
1179 			   (len < maxlen) ? eof[fifon] : 0);
1180 	} else {
1181 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1182 				 (len < maxlen) ? eof[fifon] : 0);
1183 	}
1184 	fifo->last_urblen = urb->actual_length;
1185 
1186 	status = usb_submit_urb(urb, GFP_ATOMIC);
1187 	if (status) {
1188 		if (debug & DEBUG_HW)
1189 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1190 			    hw->name, __func__);
1191 	}
1192 }
1193 
1194 /* transmit completion routine for all ISO tx fifos */
1195 static void
1196 tx_iso_complete(struct urb *urb)
1197 {
1198 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1199 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1200 	struct hfcsusb *hw = fifo->hw;
1201 	struct sk_buff *tx_skb;
1202 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1203 	    errcode, hdlc, i;
1204 	int *tx_idx;
1205 	int frame_complete, fifon, status;
1206 	__u8 threshbit;
1207 
1208 	spin_lock(&hw->lock);
1209 	if (fifo->stop_gracefull) {
1210 		fifo->stop_gracefull = 0;
1211 		fifo->active = 0;
1212 		spin_unlock(&hw->lock);
1213 		return;
1214 	}
1215 
1216 	if (fifo->dch) {
1217 		tx_skb = fifo->dch->tx_skb;
1218 		tx_idx = &fifo->dch->tx_idx;
1219 		hdlc = 1;
1220 	} else if (fifo->bch) {
1221 		tx_skb = fifo->bch->tx_skb;
1222 		tx_idx = &fifo->bch->tx_idx;
1223 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1224 	} else {
1225 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1226 		    hw->name, __func__);
1227 		spin_unlock(&hw->lock);
1228 		return;
1229 	}
1230 
1231 	fifon = fifo->fifonum;
1232 	status = urb->status;
1233 
1234 	tx_offset = 0;
1235 
1236 	/*
1237 	 * ISO transfer only partially completed,
1238 	 * look at individual frame status for details
1239 	 */
1240 	if (status == -EXDEV) {
1241 		if (debug & DBG_HFC_URB_ERROR)
1242 			printk(KERN_DEBUG "%s: %s: "
1243 			    "-EXDEV (%i) fifon (%d)\n",
1244 			    hw->name, __func__, status, fifon);
1245 
1246 		/* clear status, so go on with ISO transfers */
1247 		status = 0;
1248 	}
1249 
1250 	if (fifo->active && !status) {
1251 		/* is FifoFull-threshold set for our channel? */
1252 		threshbit = (hw->threshold_mask & (1 << fifon));
1253 		num_isoc_packets = iso_packets[fifon];
1254 
1255 		/* predict dataflow to avoid fifo overflow */
1256 		if (fifon >= HFCUSB_D_TX)
1257 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1258 		else
1259 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1260 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1261 			      context_iso_urb->buffer, num_isoc_packets,
1262 			      fifo->usb_packet_maxlen, fifo->intervall,
1263 			      (usb_complete_t)tx_iso_complete, urb->context);
1264 		memset(context_iso_urb->buffer, 0,
1265 		       sizeof(context_iso_urb->buffer));
1266 		frame_complete = 0;
1267 
1268 		for (k = 0; k < num_isoc_packets; ++k) {
1269 			/* analyze tx success of previous ISO packets */
1270 			if (debug & DBG_HFC_URB_ERROR) {
1271 				errcode = urb->iso_frame_desc[k].status;
1272 				if (errcode) {
1273 					printk(KERN_DEBUG "%s: %s: "
1274 					    "ISO packet %i, status: %i\n",
1275 					     hw->name, __func__, k, errcode);
1276 				}
1277 			}
1278 
1279 			/* Generate next ISO Packets */
1280 			if (tx_skb)
1281 				remain = tx_skb->len - *tx_idx;
1282 			else
1283 				remain = 0;
1284 
1285 			if (remain > 0) {
1286 				fifo->bit_line -= sink;
1287 				current_len = (0 - fifo->bit_line) / 8;
1288 				if (current_len > 14)
1289 					current_len = 14;
1290 				if (current_len < 0)
1291 					current_len = 0;
1292 				if (remain < current_len)
1293 					current_len = remain;
1294 
1295 				/* how much bit do we put on the line? */
1296 				fifo->bit_line += current_len * 8;
1297 
1298 				context_iso_urb->buffer[tx_offset] = 0;
1299 				if (current_len == remain) {
1300 					if (hdlc) {
1301 						/* signal frame completion */
1302 						context_iso_urb->
1303 						    buffer[tx_offset] = 1;
1304 						/* add 2 byte flags and 16bit
1305 						 * CRC at end of ISDN frame */
1306 						fifo->bit_line += 32;
1307 					}
1308 					frame_complete = 1;
1309 				}
1310 
1311 				/* copy tx data to iso-urb buffer */
1312 				memcpy(context_iso_urb->buffer + tx_offset + 1,
1313 				       (tx_skb->data + *tx_idx), current_len);
1314 				*tx_idx += current_len;
1315 
1316 				urb->iso_frame_desc[k].offset = tx_offset;
1317 				urb->iso_frame_desc[k].length = current_len + 1;
1318 
1319 				/* USB data log for every D ISO out */
1320 				if ((fifon == HFCUSB_D_RX) &&
1321 				    (debug & DBG_HFC_USB_VERBOSE)) {
1322 					printk(KERN_DEBUG
1323 					    "%s: %s (%d/%d) offs(%d) len(%d) ",
1324 					    hw->name, __func__,
1325 					    k, num_isoc_packets-1,
1326 					    urb->iso_frame_desc[k].offset,
1327 					    urb->iso_frame_desc[k].length);
1328 
1329 					for (i = urb->iso_frame_desc[k].offset;
1330 					     i < (urb->iso_frame_desc[k].offset
1331 					     + urb->iso_frame_desc[k].length);
1332 					     i++)
1333 						printk("%x ",
1334 						    context_iso_urb->buffer[i]);
1335 
1336 					printk(" skb->len(%i) tx-idx(%d)\n",
1337 					    tx_skb->len, *tx_idx);
1338 				}
1339 
1340 				tx_offset += (current_len + 1);
1341 			} else {
1342 				urb->iso_frame_desc[k].offset = tx_offset++;
1343 				urb->iso_frame_desc[k].length = 1;
1344 				/* we lower data margin every msec */
1345 				fifo->bit_line -= sink;
1346 				if (fifo->bit_line < BITLINE_INF)
1347 					fifo->bit_line = BITLINE_INF;
1348 			}
1349 
1350 			if (frame_complete) {
1351 				frame_complete = 0;
1352 
1353 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1354 					printk(KERN_DEBUG  "%s: %s: "
1355 					    "fifon(%i) new TX len(%i): ",
1356 					    hw->name, __func__,
1357 					    fifon, tx_skb->len);
1358 					i = 0;
1359 					while (i < tx_skb->len)
1360 						printk("%02x ",
1361 						    tx_skb->data[i++]);
1362 					printk("\n");
1363 				}
1364 
1365 				dev_kfree_skb(tx_skb);
1366 				tx_skb = NULL;
1367 				if (fifo->dch && get_next_dframe(fifo->dch))
1368 					tx_skb = fifo->dch->tx_skb;
1369 				else if (fifo->bch &&
1370 				    get_next_bframe(fifo->bch)) {
1371 					if (test_bit(FLG_TRANSPARENT,
1372 					    &fifo->bch->Flags))
1373 						confirm_Bsend(fifo->bch);
1374 					tx_skb = fifo->bch->tx_skb;
1375 				}
1376 			}
1377 		}
1378 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1379 		if (errcode < 0) {
1380 			if (debug & DEBUG_HW)
1381 				printk(KERN_DEBUG
1382 				    "%s: %s: error submitting ISO URB: %d \n",
1383 				    hw->name, __func__, errcode);
1384 		}
1385 
1386 		/*
1387 		 * abuse DChannel tx iso completion to trigger NT mode state
1388 		 * changes tx_iso_complete is assumed to be called every
1389 		 * fifo->intervall (ms)
1390 		 */
1391 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1392 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1393 			if ((--hw->nt_timer) < 0)
1394 				schedule_event(&hw->dch, FLG_PHCHANGE);
1395 		}
1396 
1397 	} else {
1398 		if (status && (debug & DBG_HFC_URB_ERROR))
1399 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1400 			    "fifonum=%d\n",
1401 			    hw->name, __func__,
1402 			    symbolic(urb_errlist, status), status, fifon);
1403 	}
1404 	spin_unlock(&hw->lock);
1405 }
1406 
1407 /*
1408  * allocs urbs and start isoc transfer with two pending urbs to avoid
1409  * gaps in the transfer chain
1410  */
1411 static int
1412 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1413 		 usb_complete_t complete, int packet_size)
1414 {
1415 	struct hfcsusb *hw = fifo->hw;
1416 	int i, k, errcode;
1417 
1418 	if (debug)
1419 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1420 		    hw->name, __func__, fifo->fifonum);
1421 
1422 	/* allocate Memory for Iso out Urbs */
1423 	for (i = 0; i < 2; i++) {
1424 		if (!(fifo->iso[i].urb)) {
1425 			fifo->iso[i].urb =
1426 			    usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1427 			if (!(fifo->iso[i].urb)) {
1428 				printk(KERN_DEBUG
1429 				    "%s: %s: alloc urb for fifo %i failed",
1430 				    hw->name, __func__, fifo->fifonum);
1431 			}
1432 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1433 			fifo->iso[i].indx = i;
1434 
1435 			/* Init the first iso */
1436 			if (ISO_BUFFER_SIZE >=
1437 			    (fifo->usb_packet_maxlen *
1438 			     num_packets_per_urb)) {
1439 				fill_isoc_urb(fifo->iso[i].urb,
1440 				    fifo->hw->dev, fifo->pipe,
1441 				    fifo->iso[i].buffer,
1442 				    num_packets_per_urb,
1443 				    fifo->usb_packet_maxlen,
1444 				    fifo->intervall, complete,
1445 				    &fifo->iso[i]);
1446 				memset(fifo->iso[i].buffer, 0,
1447 				       sizeof(fifo->iso[i].buffer));
1448 
1449 				for (k = 0; k < num_packets_per_urb; k++) {
1450 					fifo->iso[i].urb->
1451 					    iso_frame_desc[k].offset =
1452 					    k * packet_size;
1453 					fifo->iso[i].urb->
1454 					    iso_frame_desc[k].length =
1455 					    packet_size;
1456 				}
1457 			} else {
1458 				printk(KERN_DEBUG
1459 				    "%s: %s: ISO Buffer size to small!\n",
1460 				    hw->name, __func__);
1461 			}
1462 		}
1463 		fifo->bit_line = BITLINE_INF;
1464 
1465 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1466 		fifo->active = (errcode >= 0) ? 1 : 0;
1467 		fifo->stop_gracefull = 0;
1468 		if (errcode < 0) {
1469 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1470 			    hw->name, __func__,
1471 			    symbolic(urb_errlist, errcode), i);
1472 		}
1473 	}
1474 	return fifo->active;
1475 }
1476 
1477 static void
1478 stop_iso_gracefull(struct usb_fifo *fifo)
1479 {
1480 	struct hfcsusb *hw = fifo->hw;
1481 	int i, timeout;
1482 	u_long flags;
1483 
1484 	for (i = 0; i < 2; i++) {
1485 		spin_lock_irqsave(&hw->lock, flags);
1486 		if (debug)
1487 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1488 			       hw->name, __func__, fifo->fifonum, i);
1489 		fifo->stop_gracefull = 1;
1490 		spin_unlock_irqrestore(&hw->lock, flags);
1491 	}
1492 
1493 	for (i = 0; i < 2; i++) {
1494 		timeout = 3;
1495 		while (fifo->stop_gracefull && timeout--)
1496 			schedule_timeout_interruptible((HZ/1000)*16);
1497 		if (debug && fifo->stop_gracefull)
1498 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1499 				hw->name, __func__, fifo->fifonum, i);
1500 	}
1501 }
1502 
1503 static void
1504 stop_int_gracefull(struct usb_fifo *fifo)
1505 {
1506 	struct hfcsusb *hw = fifo->hw;
1507 	int timeout;
1508 	u_long flags;
1509 
1510 	spin_lock_irqsave(&hw->lock, flags);
1511 	if (debug)
1512 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1513 		       hw->name, __func__, fifo->fifonum);
1514 	fifo->stop_gracefull = 1;
1515 	spin_unlock_irqrestore(&hw->lock, flags);
1516 
1517 	timeout = 3;
1518 	while (fifo->stop_gracefull && timeout--)
1519 		schedule_timeout_interruptible((HZ/1000)*3);
1520 	if (debug && fifo->stop_gracefull)
1521 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1522 		       hw->name, __func__, fifo->fifonum);
1523 }
1524 
1525 /* start the interrupt transfer for the given fifo */
1526 static void
1527 start_int_fifo(struct usb_fifo *fifo)
1528 {
1529 	struct hfcsusb *hw = fifo->hw;
1530 	int errcode;
1531 
1532 	if (debug)
1533 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1534 		    hw->name, __func__, fifo->fifonum);
1535 
1536 	if (!fifo->urb) {
1537 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1538 		if (!fifo->urb)
1539 			return;
1540 	}
1541 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1542 	    fifo->buffer, fifo->usb_packet_maxlen,
1543 	    (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1544 	fifo->active = 1;
1545 	fifo->stop_gracefull = 0;
1546 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1547 	if (errcode) {
1548 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1549 		    hw->name, __func__, errcode);
1550 		fifo->active = 0;
1551 	}
1552 }
1553 
1554 static void
1555 setPortMode(struct hfcsusb *hw)
1556 {
1557 	if (debug & DEBUG_HW)
1558 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1559 		   (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1560 
1561 	if (hw->protocol == ISDN_P_TE_S0) {
1562 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1563 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1564 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1565 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1566 		write_reg(hw, HFCUSB_STATES, 3);
1567 	} else {
1568 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1569 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1570 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1571 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1572 		write_reg(hw, HFCUSB_STATES, 1);
1573 	}
1574 }
1575 
1576 static void
1577 reset_hfcsusb(struct hfcsusb *hw)
1578 {
1579 	struct usb_fifo *fifo;
1580 	int i;
1581 
1582 	if (debug & DEBUG_HW)
1583 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1584 
1585 	/* do Chip reset */
1586 	write_reg(hw, HFCUSB_CIRM, 8);
1587 
1588 	/* aux = output, reset off */
1589 	write_reg(hw, HFCUSB_CIRM, 0x10);
1590 
1591 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1592 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1593 	    ((hw->packet_size / 8) << 4));
1594 
1595 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1596 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1597 
1598 	/* enable PCM/GCI master mode */
1599 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1600 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1601 
1602 	/* init the fifos */
1603 	write_reg(hw, HFCUSB_F_THRES,
1604 	    (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1605 
1606 	fifo = hw->fifos;
1607 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1608 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1609 		fifo[i].max_size =
1610 		    (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1611 		fifo[i].last_urblen = 0;
1612 
1613 		/* set 2 bit for D- & E-channel */
1614 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1615 
1616 		/* enable all fifos */
1617 		if (i == HFCUSB_D_TX)
1618 			write_reg(hw, HFCUSB_CON_HDLC,
1619 			    (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1620 		else
1621 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1622 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1623 	}
1624 
1625 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1626 	handle_led(hw, LED_POWER_ON);
1627 }
1628 
1629 /* start USB data pipes dependand on device's endpoint configuration */
1630 static void
1631 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1632 {
1633 	/* quick check if endpoint already running */
1634 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1635 		return;
1636 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1637 		return;
1638 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1639 		return;
1640 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1641 		return;
1642 
1643 	/* start rx endpoints using USB INT IN method */
1644 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1645 		start_int_fifo(hw->fifos + channel*2 + 1);
1646 
1647 	/* start rx endpoints using USB ISO IN method */
1648 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1649 		switch (channel) {
1650 		case HFC_CHAN_D:
1651 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1652 				ISOC_PACKETS_D,
1653 				(usb_complete_t)rx_iso_complete,
1654 				16);
1655 			break;
1656 		case HFC_CHAN_E:
1657 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1658 				ISOC_PACKETS_D,
1659 				(usb_complete_t)rx_iso_complete,
1660 				16);
1661 			break;
1662 		case HFC_CHAN_B1:
1663 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1664 				ISOC_PACKETS_B,
1665 				(usb_complete_t)rx_iso_complete,
1666 				16);
1667 			break;
1668 		case HFC_CHAN_B2:
1669 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1670 				ISOC_PACKETS_B,
1671 				(usb_complete_t)rx_iso_complete,
1672 				16);
1673 			break;
1674 		}
1675 	}
1676 
1677 	/* start tx endpoints using USB ISO OUT method */
1678 	switch (channel) {
1679 	case HFC_CHAN_D:
1680 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1681 			ISOC_PACKETS_B,
1682 			(usb_complete_t)tx_iso_complete, 1);
1683 		break;
1684 	case HFC_CHAN_B1:
1685 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1686 			ISOC_PACKETS_D,
1687 			(usb_complete_t)tx_iso_complete, 1);
1688 		break;
1689 	case HFC_CHAN_B2:
1690 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1691 			ISOC_PACKETS_B,
1692 			(usb_complete_t)tx_iso_complete, 1);
1693 		break;
1694 	}
1695 }
1696 
1697 /* stop USB data pipes dependand on device's endpoint configuration */
1698 static void
1699 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1700 {
1701 	/* quick check if endpoint currently running */
1702 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1703 		return;
1704 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1705 		return;
1706 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1707 		return;
1708 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1709 		return;
1710 
1711 	/* rx endpoints using USB INT IN method */
1712 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1713 		stop_int_gracefull(hw->fifos + channel*2 + 1);
1714 
1715 	/* rx endpoints using USB ISO IN method */
1716 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1717 		stop_iso_gracefull(hw->fifos + channel*2 + 1);
1718 
1719 	/* tx endpoints using USB ISO OUT method */
1720 	if (channel != HFC_CHAN_E)
1721 		stop_iso_gracefull(hw->fifos + channel*2);
1722 }
1723 
1724 
1725 /* Hardware Initialization */
1726 static int
1727 setup_hfcsusb(struct hfcsusb *hw)
1728 {
1729 	int err;
1730 	u_char b;
1731 
1732 	if (debug & DBG_HFC_CALL_TRACE)
1733 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1734 
1735 	/* check the chip id */
1736 	if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1737 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1738 		    hw->name, __func__);
1739 		return 1;
1740 	}
1741 	if (b != HFCUSB_CHIPID) {
1742 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1743 		    hw->name, __func__, b);
1744 		return 1;
1745 	}
1746 
1747 	/* first set the needed config, interface and alternate */
1748 	err = usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1749 
1750 	hw->led_state = 0;
1751 
1752 	/* init the background machinery for control requests */
1753 	hw->ctrl_read.bRequestType = 0xc0;
1754 	hw->ctrl_read.bRequest = 1;
1755 	hw->ctrl_read.wLength = cpu_to_le16(1);
1756 	hw->ctrl_write.bRequestType = 0x40;
1757 	hw->ctrl_write.bRequest = 0;
1758 	hw->ctrl_write.wLength = 0;
1759 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1760 	    (u_char *)&hw->ctrl_write, NULL, 0,
1761 	    (usb_complete_t)ctrl_complete, hw);
1762 
1763 	reset_hfcsusb(hw);
1764 	return 0;
1765 }
1766 
1767 static void
1768 release_hw(struct hfcsusb *hw)
1769 {
1770 	if (debug & DBG_HFC_CALL_TRACE)
1771 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1772 
1773 	/*
1774 	 * stop all endpoints gracefully
1775 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1776 	 *       signals after calling mISDN_unregister_device()
1777 	 */
1778 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1779 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1780 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1781 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1782 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1783 	if (hw->protocol == ISDN_P_TE_S0)
1784 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1785 
1786 	mISDN_unregister_device(&hw->dch.dev);
1787 	mISDN_freebchannel(&hw->bch[1]);
1788 	mISDN_freebchannel(&hw->bch[0]);
1789 	mISDN_freedchannel(&hw->dch);
1790 
1791 	if (hw->ctrl_urb) {
1792 		usb_kill_urb(hw->ctrl_urb);
1793 		usb_free_urb(hw->ctrl_urb);
1794 		hw->ctrl_urb = NULL;
1795 	}
1796 
1797 	if (hw->intf)
1798 		usb_set_intfdata(hw->intf, NULL);
1799 	list_del(&hw->list);
1800 	kfree(hw);
1801 	hw = NULL;
1802 }
1803 
1804 static void
1805 deactivate_bchannel(struct bchannel *bch)
1806 {
1807 	struct hfcsusb *hw = bch->hw;
1808 	u_long flags;
1809 
1810 	if (bch->debug & DEBUG_HW)
1811 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1812 		    hw->name, __func__, bch->nr);
1813 
1814 	spin_lock_irqsave(&hw->lock, flags);
1815 	mISDN_clear_bchannel(bch);
1816 	spin_unlock_irqrestore(&hw->lock, flags);
1817 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1818 	hfcsusb_stop_endpoint(hw, bch->nr);
1819 }
1820 
1821 /*
1822  * Layer 1 B-channel hardware access
1823  */
1824 static int
1825 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1826 {
1827 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1828 	int		ret = -EINVAL;
1829 
1830 	if (bch->debug & DEBUG_HW)
1831 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1832 
1833 	switch (cmd) {
1834 	case HW_TESTRX_RAW:
1835 	case HW_TESTRX_HDLC:
1836 	case HW_TESTRX_OFF:
1837 		ret = -EINVAL;
1838 		break;
1839 
1840 	case CLOSE_CHANNEL:
1841 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1842 		if (test_bit(FLG_ACTIVE, &bch->Flags))
1843 			deactivate_bchannel(bch);
1844 		ch->protocol = ISDN_P_NONE;
1845 		ch->peer = NULL;
1846 		module_put(THIS_MODULE);
1847 		ret = 0;
1848 		break;
1849 	case CONTROL_CHANNEL:
1850 		ret = channel_bctrl(bch, arg);
1851 		break;
1852 	default:
1853 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1854 			__func__, cmd);
1855 	}
1856 	return ret;
1857 }
1858 
1859 static int
1860 setup_instance(struct hfcsusb *hw, struct device *parent)
1861 {
1862 	u_long	flags;
1863 	int	err, i;
1864 
1865 	if (debug & DBG_HFC_CALL_TRACE)
1866 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1867 
1868 	spin_lock_init(&hw->ctrl_lock);
1869 	spin_lock_init(&hw->lock);
1870 
1871 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1872 	hw->dch.debug = debug & 0xFFFF;
1873 	hw->dch.hw = hw;
1874 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1875 	hw->dch.dev.D.send = hfcusb_l2l1D;
1876 	hw->dch.dev.D.ctrl = hfc_dctrl;
1877 
1878 	/* enable E-Channel logging */
1879 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1880 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1881 
1882 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1883 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1884 	hw->dch.dev.nrbchan = 2;
1885 	for (i = 0; i < 2; i++) {
1886 		hw->bch[i].nr = i + 1;
1887 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1888 		hw->bch[i].debug = debug;
1889 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
1890 		hw->bch[i].hw = hw;
1891 		hw->bch[i].ch.send = hfcusb_l2l1B;
1892 		hw->bch[i].ch.ctrl = hfc_bctrl;
1893 		hw->bch[i].ch.nr = i + 1;
1894 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1895 	}
1896 
1897 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1898 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1899 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1900 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1901 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1902 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1903 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1904 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1905 
1906 	err = setup_hfcsusb(hw);
1907 	if (err)
1908 		goto out;
1909 
1910 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1911 	    hfcsusb_cnt + 1);
1912 	printk(KERN_INFO "%s: registered as '%s'\n",
1913 	    DRIVER_NAME, hw->name);
1914 
1915 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1916 	if (err)
1917 		goto out;
1918 
1919 	hfcsusb_cnt++;
1920 	write_lock_irqsave(&HFClock, flags);
1921 	list_add_tail(&hw->list, &HFClist);
1922 	write_unlock_irqrestore(&HFClock, flags);
1923 	return 0;
1924 
1925 out:
1926 	mISDN_freebchannel(&hw->bch[1]);
1927 	mISDN_freebchannel(&hw->bch[0]);
1928 	mISDN_freedchannel(&hw->dch);
1929 	kfree(hw);
1930 	return err;
1931 }
1932 
1933 static int
1934 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1935 {
1936 	struct hfcsusb			*hw;
1937 	struct usb_device		*dev = interface_to_usbdev(intf);
1938 	struct usb_host_interface	*iface = intf->cur_altsetting;
1939 	struct usb_host_interface	*iface_used = NULL;
1940 	struct usb_host_endpoint	*ep;
1941 	struct hfcsusb_vdata		*driver_info;
1942 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1943 	    probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1944 	    ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1945 	    alt_used = 0;
1946 
1947 	vend_idx = 0xffff;
1948 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1949 		if ((le16_to_cpu(dev->descriptor.idVendor)
1950 		       == hfcsusb_idtab[i].idVendor) &&
1951 		    (le16_to_cpu(dev->descriptor.idProduct)
1952 		       == hfcsusb_idtab[i].idProduct)) {
1953 			vend_idx = i;
1954 			continue;
1955 		}
1956 	}
1957 
1958 	printk(KERN_DEBUG
1959 	    "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1960 	    __func__, ifnum, iface->desc.bAlternateSetting,
1961 	    intf->minor, vend_idx);
1962 
1963 	if (vend_idx == 0xffff) {
1964 		printk(KERN_WARNING
1965 		    "%s: no valid vendor found in USB descriptor\n",
1966 		    __func__);
1967 		return -EIO;
1968 	}
1969 	/* if vendor and product ID is OK, start probing alternate settings */
1970 	alt_idx = 0;
1971 	small_match = -1;
1972 
1973 	/* default settings */
1974 	iso_packet_size = 16;
1975 	packet_size = 64;
1976 
1977 	while (alt_idx < intf->num_altsetting) {
1978 		iface = intf->altsetting + alt_idx;
1979 		probe_alt_setting = iface->desc.bAlternateSetting;
1980 		cfg_used = 0;
1981 
1982 		while (validconf[cfg_used][0]) {
1983 			cfg_found = 1;
1984 			vcf = validconf[cfg_used];
1985 			ep = iface->endpoint;
1986 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1987 
1988 			/* check for all endpoints in this alternate setting */
1989 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1990 				ep_addr = ep->desc.bEndpointAddress;
1991 
1992 				/* get endpoint base */
1993 				idx = ((ep_addr & 0x7f) - 1) * 2;
1994 				if (ep_addr & 0x80)
1995 					idx++;
1996 				attr = ep->desc.bmAttributes;
1997 
1998 				if (cmptbl[idx] != EP_NOP) {
1999 					if (cmptbl[idx] == EP_NUL)
2000 						cfg_found = 0;
2001 					if (attr == USB_ENDPOINT_XFER_INT
2002 						&& cmptbl[idx] == EP_INT)
2003 						cmptbl[idx] = EP_NUL;
2004 					if (attr == USB_ENDPOINT_XFER_BULK
2005 						&& cmptbl[idx] == EP_BLK)
2006 						cmptbl[idx] = EP_NUL;
2007 					if (attr == USB_ENDPOINT_XFER_ISOC
2008 						&& cmptbl[idx] == EP_ISO)
2009 						cmptbl[idx] = EP_NUL;
2010 
2011 					if (attr == USB_ENDPOINT_XFER_INT &&
2012 						ep->desc.bInterval < vcf[17]) {
2013 						cfg_found = 0;
2014 					}
2015 				}
2016 				ep++;
2017 			}
2018 
2019 			for (i = 0; i < 16; i++)
2020 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2021 					cfg_found = 0;
2022 
2023 			if (cfg_found) {
2024 				if (small_match < cfg_used) {
2025 					small_match = cfg_used;
2026 					alt_used = probe_alt_setting;
2027 					iface_used = iface;
2028 				}
2029 			}
2030 			cfg_used++;
2031 		}
2032 		alt_idx++;
2033 	}	/* (alt_idx < intf->num_altsetting) */
2034 
2035 	/* not found a valid USB Ta Endpoint config */
2036 	if (small_match == -1)
2037 		return -EIO;
2038 
2039 	iface = iface_used;
2040 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2041 	if (!hw)
2042 		return -ENOMEM;	/* got no mem */
2043 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2044 
2045 	ep = iface->endpoint;
2046 	vcf = validconf[small_match];
2047 
2048 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2049 		struct usb_fifo *f;
2050 
2051 		ep_addr = ep->desc.bEndpointAddress;
2052 		/* get endpoint base */
2053 		idx = ((ep_addr & 0x7f) - 1) * 2;
2054 		if (ep_addr & 0x80)
2055 			idx++;
2056 		f = &hw->fifos[idx & 7];
2057 
2058 		/* init Endpoints */
2059 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2060 			ep++;
2061 			continue;
2062 		}
2063 		switch (ep->desc.bmAttributes) {
2064 		case USB_ENDPOINT_XFER_INT:
2065 			f->pipe = usb_rcvintpipe(dev,
2066 				ep->desc.bEndpointAddress);
2067 			f->usb_transfer_mode = USB_INT;
2068 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2069 			break;
2070 		case USB_ENDPOINT_XFER_BULK:
2071 			if (ep_addr & 0x80)
2072 				f->pipe = usb_rcvbulkpipe(dev,
2073 					ep->desc.bEndpointAddress);
2074 			else
2075 				f->pipe = usb_sndbulkpipe(dev,
2076 					ep->desc.bEndpointAddress);
2077 			f->usb_transfer_mode = USB_BULK;
2078 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2079 			break;
2080 		case USB_ENDPOINT_XFER_ISOC:
2081 			if (ep_addr & 0x80)
2082 				f->pipe = usb_rcvisocpipe(dev,
2083 					ep->desc.bEndpointAddress);
2084 			else
2085 				f->pipe = usb_sndisocpipe(dev,
2086 					ep->desc.bEndpointAddress);
2087 			f->usb_transfer_mode = USB_ISOC;
2088 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2089 			break;
2090 		default:
2091 			f->pipe = 0;
2092 		}
2093 
2094 		if (f->pipe) {
2095 			f->fifonum = idx & 7;
2096 			f->hw = hw;
2097 			f->usb_packet_maxlen =
2098 			    le16_to_cpu(ep->desc.wMaxPacketSize);
2099 			f->intervall = ep->desc.bInterval;
2100 		}
2101 		ep++;
2102 	}
2103 	hw->dev = dev; /* save device */
2104 	hw->if_used = ifnum; /* save used interface */
2105 	hw->alt_used = alt_used; /* and alternate config */
2106 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2107 	hw->cfg_used = vcf[16];	/* store used config */
2108 	hw->vend_idx = vend_idx; /* store found vendor */
2109 	hw->packet_size = packet_size;
2110 	hw->iso_packet_size = iso_packet_size;
2111 
2112 	/* create the control pipes needed for register access */
2113 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2114 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2115 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2116 
2117 	driver_info =
2118 		(struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
2119 	printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2120 	    hw->name, __func__, driver_info->vend_name,
2121 	    conf_str[small_match], ifnum, alt_used);
2122 
2123 	if (setup_instance(hw, dev->dev.parent))
2124 		return -EIO;
2125 
2126 	hw->intf = intf;
2127 	usb_set_intfdata(hw->intf, hw);
2128 	return 0;
2129 }
2130 
2131 /* function called when an active device is removed */
2132 static void
2133 hfcsusb_disconnect(struct usb_interface *intf)
2134 {
2135 	struct hfcsusb *hw = usb_get_intfdata(intf);
2136 	struct hfcsusb *next;
2137 	int cnt = 0;
2138 
2139 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2140 
2141 	handle_led(hw, LED_POWER_OFF);
2142 	release_hw(hw);
2143 
2144 	list_for_each_entry_safe(hw, next, &HFClist, list)
2145 		cnt++;
2146 	if (!cnt)
2147 		hfcsusb_cnt = 0;
2148 
2149 	usb_set_intfdata(intf, NULL);
2150 }
2151 
2152 static struct usb_driver hfcsusb_drv = {
2153 	.name = DRIVER_NAME,
2154 	.id_table = hfcsusb_idtab,
2155 	.probe = hfcsusb_probe,
2156 	.disconnect = hfcsusb_disconnect,
2157 };
2158 
2159 static int __init
2160 hfcsusb_init(void)
2161 {
2162 	printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
2163 	    hfcsusb_rev, debug, poll);
2164 
2165 	if (usb_register(&hfcsusb_drv)) {
2166 		printk(KERN_INFO DRIVER_NAME
2167 		    ": Unable to register hfcsusb module at usb stack\n");
2168 		return -ENODEV;
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 static void __exit
2175 hfcsusb_cleanup(void)
2176 {
2177 	if (debug & DBG_HFC_CALL_TRACE)
2178 		printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
2179 
2180 	/* unregister Hardware */
2181 	usb_deregister(&hfcsusb_drv);	/* release our driver */
2182 }
2183 
2184 module_init(hfcsusb_init);
2185 module_exit(hfcsusb_cleanup);
2186