1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32 
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39 
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42 
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45 
46 
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51 
52 static int hfcsusb_cnt;
53 
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64 
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69 	if (debug & DBG_HFC_CALL_TRACE)
70 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71 
72 	if (hw->ctrl_cnt) {
73 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 		hw->ctrl_urb->transfer_buffer = NULL;
76 		hw->ctrl_urb->transfer_buffer_length = 0;
77 		hw->ctrl_write.wIndex =
78 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 		hw->ctrl_write.wValue =
80 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81 
82 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83 	}
84 }
85 
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92 	struct ctrl_buf *buf;
93 
94 	if (debug & DBG_HFC_CALL_TRACE)
95 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 		       hw->name, __func__, reg, val);
97 
98 	spin_lock(&hw->ctrl_lock);
99 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100 		spin_unlock(&hw->ctrl_lock);
101 		return 1;
102 	}
103 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104 	buf->hfcs_reg = reg;
105 	buf->reg_val = val;
106 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107 		hw->ctrl_in_idx = 0;
108 	if (++hw->ctrl_cnt == 1)
109 		ctrl_start_transfer(hw);
110 	spin_unlock(&hw->ctrl_lock);
111 
112 	return 0;
113 }
114 
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120 
121 	if (debug & DBG_HFC_CALL_TRACE)
122 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123 
124 	urb->dev = hw->dev;
125 	if (hw->ctrl_cnt) {
126 		hw->ctrl_cnt--;	/* decrement actual count */
127 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 			hw->ctrl_out_idx = 0;	/* pointer wrap */
129 
130 		ctrl_start_transfer(hw); /* start next transfer */
131 	}
132 }
133 
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138 	if (set_on) {
139 		if (led_bits < 0)
140 			hw->led_state &= ~abs(led_bits);
141 		else
142 			hw->led_state |= led_bits;
143 	} else {
144 		if (led_bits < 0)
145 			hw->led_state |= abs(led_bits);
146 		else
147 			hw->led_state &= ~led_bits;
148 	}
149 }
150 
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 		hfcsusb_idtab[hw->vend_idx].driver_info;
157 	__u8 tmpled;
158 
159 	if (driver_info->led_scheme == LED_OFF)
160 		return;
161 	tmpled = hw->led_state;
162 
163 	switch (event) {
164 	case LED_POWER_ON:
165 		set_led_bit(hw, driver_info->led_bits[0], 1);
166 		set_led_bit(hw, driver_info->led_bits[1], 0);
167 		set_led_bit(hw, driver_info->led_bits[2], 0);
168 		set_led_bit(hw, driver_info->led_bits[3], 0);
169 		break;
170 	case LED_POWER_OFF:
171 		set_led_bit(hw, driver_info->led_bits[0], 0);
172 		set_led_bit(hw, driver_info->led_bits[1], 0);
173 		set_led_bit(hw, driver_info->led_bits[2], 0);
174 		set_led_bit(hw, driver_info->led_bits[3], 0);
175 		break;
176 	case LED_S0_ON:
177 		set_led_bit(hw, driver_info->led_bits[1], 1);
178 		break;
179 	case LED_S0_OFF:
180 		set_led_bit(hw, driver_info->led_bits[1], 0);
181 		break;
182 	case LED_B1_ON:
183 		set_led_bit(hw, driver_info->led_bits[2], 1);
184 		break;
185 	case LED_B1_OFF:
186 		set_led_bit(hw, driver_info->led_bits[2], 0);
187 		break;
188 	case LED_B2_ON:
189 		set_led_bit(hw, driver_info->led_bits[3], 1);
190 		break;
191 	case LED_B2_OFF:
192 		set_led_bit(hw, driver_info->led_bits[3], 0);
193 		break;
194 	}
195 
196 	if (hw->led_state != tmpled) {
197 		if (debug & DBG_HFC_CALL_TRACE)
198 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 			       hw->name, __func__,
200 			       HFCUSB_P_DATA, hw->led_state);
201 
202 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203 	}
204 }
205 
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
213 	struct hfcsusb		*hw = bch->hw;
214 	int			ret = -EINVAL;
215 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
216 	u_long			flags;
217 
218 	if (debug & DBG_HFC_CALL_TRACE)
219 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220 
221 	switch (hh->prim) {
222 	case PH_DATA_REQ:
223 		spin_lock_irqsave(&hw->lock, flags);
224 		ret = bchannel_senddata(bch, skb);
225 		spin_unlock_irqrestore(&hw->lock, flags);
226 		if (debug & DBG_HFC_CALL_TRACE)
227 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 			       hw->name, __func__, ret);
229 		if (ret > 0)
230 			ret = 0;
231 		return ret;
232 	case PH_ACTIVATE_REQ:
233 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234 			hfcsusb_start_endpoint(hw, bch->nr - 1);
235 			ret = hfcsusb_setup_bch(bch, ch->protocol);
236 		} else
237 			ret = 0;
238 		if (!ret)
239 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240 				    0, NULL, GFP_KERNEL);
241 		break;
242 	case PH_DEACTIVATE_REQ:
243 		deactivate_bchannel(bch);
244 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245 			    0, NULL, GFP_KERNEL);
246 		ret = 0;
247 		break;
248 	}
249 	if (!ret)
250 		dev_kfree_skb(skb);
251 	return ret;
252 }
253 
254 /*
255  * send full D/B channel status information
256  * as MPH_INFORMATION_IND
257  */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261 	struct ph_info *phi;
262 	struct dchannel *dch = &hw->dch;
263 	int i;
264 
265 	phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
266 	if (!phi)
267 		return;
268 
269 	phi->dch.ch.protocol = hw->protocol;
270 	phi->dch.ch.Flags = dch->Flags;
271 	phi->dch.state = dch->state;
272 	phi->dch.num_bch = dch->dev.nrbchan;
273 	for (i = 0; i < dch->dev.nrbchan; i++) {
274 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
275 		phi->bch[i].Flags = hw->bch[i].Flags;
276 	}
277 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
278 		    sizeof(struct ph_info_dch) + dch->dev.nrbchan *
279 		    sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
280 	kfree(phi);
281 }
282 
283 /*
284  * Layer2 -> Layer 1 Dchannel data
285  */
286 static int
287 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
288 {
289 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
290 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
291 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
292 	struct hfcsusb		*hw = dch->hw;
293 	int			ret = -EINVAL;
294 	u_long			flags;
295 
296 	switch (hh->prim) {
297 	case PH_DATA_REQ:
298 		if (debug & DBG_HFC_CALL_TRACE)
299 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
300 			       hw->name, __func__);
301 
302 		spin_lock_irqsave(&hw->lock, flags);
303 		ret = dchannel_senddata(dch, skb);
304 		spin_unlock_irqrestore(&hw->lock, flags);
305 		if (ret > 0) {
306 			ret = 0;
307 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
308 		}
309 		break;
310 
311 	case PH_ACTIVATE_REQ:
312 		if (debug & DBG_HFC_CALL_TRACE)
313 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
314 			       hw->name, __func__,
315 			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
316 
317 		if (hw->protocol == ISDN_P_NT_S0) {
318 			ret = 0;
319 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
320 				_queue_data(&dch->dev.D,
321 					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
322 					    NULL, GFP_ATOMIC);
323 			} else {
324 				hfcsusb_ph_command(hw,
325 						   HFC_L1_ACTIVATE_NT);
326 				test_and_set_bit(FLG_L2_ACTIVATED,
327 						 &dch->Flags);
328 			}
329 		} else {
330 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
331 			ret = l1_event(dch->l1, hh->prim);
332 		}
333 		break;
334 
335 	case PH_DEACTIVATE_REQ:
336 		if (debug & DBG_HFC_CALL_TRACE)
337 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
338 			       hw->name, __func__);
339 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
340 
341 		if (hw->protocol == ISDN_P_NT_S0) {
342 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
343 			spin_lock_irqsave(&hw->lock, flags);
344 			skb_queue_purge(&dch->squeue);
345 			if (dch->tx_skb) {
346 				dev_kfree_skb(dch->tx_skb);
347 				dch->tx_skb = NULL;
348 			}
349 			dch->tx_idx = 0;
350 			if (dch->rx_skb) {
351 				dev_kfree_skb(dch->rx_skb);
352 				dch->rx_skb = NULL;
353 			}
354 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
355 			spin_unlock_irqrestore(&hw->lock, flags);
356 #ifdef FIXME
357 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
358 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
359 #endif
360 			ret = 0;
361 		} else
362 			ret = l1_event(dch->l1, hh->prim);
363 		break;
364 	case MPH_INFORMATION_REQ:
365 		hfcsusb_ph_info(hw);
366 		ret = 0;
367 		break;
368 	}
369 
370 	return ret;
371 }
372 
373 /*
374  * Layer 1 callback function
375  */
376 static int
377 hfc_l1callback(struct dchannel *dch, u_int cmd)
378 {
379 	struct hfcsusb *hw = dch->hw;
380 
381 	if (debug & DBG_HFC_CALL_TRACE)
382 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
383 		       hw->name, __func__, cmd);
384 
385 	switch (cmd) {
386 	case INFO3_P8:
387 	case INFO3_P10:
388 	case HW_RESET_REQ:
389 	case HW_POWERUP_REQ:
390 		break;
391 
392 	case HW_DEACT_REQ:
393 		skb_queue_purge(&dch->squeue);
394 		if (dch->tx_skb) {
395 			dev_kfree_skb(dch->tx_skb);
396 			dch->tx_skb = NULL;
397 		}
398 		dch->tx_idx = 0;
399 		if (dch->rx_skb) {
400 			dev_kfree_skb(dch->rx_skb);
401 			dch->rx_skb = NULL;
402 		}
403 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
404 		break;
405 	case PH_ACTIVATE_IND:
406 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
407 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
408 			    GFP_ATOMIC);
409 		break;
410 	case PH_DEACTIVATE_IND:
411 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
412 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
413 			    GFP_ATOMIC);
414 		break;
415 	default:
416 		if (dch->debug & DEBUG_HW)
417 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
418 			       hw->name, __func__, cmd);
419 		return -1;
420 	}
421 	hfcsusb_ph_info(hw);
422 	return 0;
423 }
424 
425 static int
426 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
427 	      struct channel_req *rq)
428 {
429 	int err = 0;
430 
431 	if (debug & DEBUG_HW_OPEN)
432 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
433 		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
434 		       __builtin_return_address(0));
435 	if (rq->protocol == ISDN_P_NONE)
436 		return -EINVAL;
437 
438 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
439 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
440 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
441 
442 	/* E-Channel logging */
443 	if (rq->adr.channel == 1) {
444 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
445 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
446 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
447 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
448 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
449 		} else
450 			return -EINVAL;
451 	}
452 
453 	if (!hw->initdone) {
454 		hw->protocol = rq->protocol;
455 		if (rq->protocol == ISDN_P_TE_S0) {
456 			err = create_l1(&hw->dch, hfc_l1callback);
457 			if (err)
458 				return err;
459 		}
460 		setPortMode(hw);
461 		ch->protocol = rq->protocol;
462 		hw->initdone = 1;
463 	} else {
464 		if (rq->protocol != ch->protocol)
465 			return -EPROTONOSUPPORT;
466 	}
467 
468 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
469 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
470 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
471 			    0, NULL, GFP_KERNEL);
472 	rq->ch = ch;
473 	if (!try_module_get(THIS_MODULE))
474 		printk(KERN_WARNING "%s: %s: cannot get module\n",
475 		       hw->name, __func__);
476 	return 0;
477 }
478 
479 static int
480 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
481 {
482 	struct bchannel		*bch;
483 
484 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
485 		return -EINVAL;
486 	if (rq->protocol == ISDN_P_NONE)
487 		return -EINVAL;
488 
489 	if (debug & DBG_HFC_CALL_TRACE)
490 		printk(KERN_DEBUG "%s: %s B%i\n",
491 		       hw->name, __func__, rq->adr.channel);
492 
493 	bch = &hw->bch[rq->adr.channel - 1];
494 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
495 		return -EBUSY; /* b-channel can be only open once */
496 	bch->ch.protocol = rq->protocol;
497 	rq->ch = &bch->ch;
498 
499 	if (!try_module_get(THIS_MODULE))
500 		printk(KERN_WARNING "%s: %s:cannot get module\n",
501 		       hw->name, __func__);
502 	return 0;
503 }
504 
505 static int
506 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
507 {
508 	int ret = 0;
509 
510 	if (debug & DBG_HFC_CALL_TRACE)
511 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
512 		       hw->name, __func__, (cq->op), (cq->channel));
513 
514 	switch (cq->op) {
515 	case MISDN_CTRL_GETOP:
516 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
517 			MISDN_CTRL_DISCONNECT;
518 		break;
519 	default:
520 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
521 		       hw->name, __func__, cq->op);
522 		ret = -EINVAL;
523 		break;
524 	}
525 	return ret;
526 }
527 
528 /*
529  * device control function
530  */
531 static int
532 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
533 {
534 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
535 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
536 	struct hfcsusb		*hw = dch->hw;
537 	struct channel_req	*rq;
538 	int			err = 0;
539 
540 	if (dch->debug & DEBUG_HW)
541 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
542 		       hw->name, __func__, cmd, arg);
543 	switch (cmd) {
544 	case OPEN_CHANNEL:
545 		rq = arg;
546 		if ((rq->protocol == ISDN_P_TE_S0) ||
547 		    (rq->protocol == ISDN_P_NT_S0))
548 			err = open_dchannel(hw, ch, rq);
549 		else
550 			err = open_bchannel(hw, rq);
551 		if (!err)
552 			hw->open++;
553 		break;
554 	case CLOSE_CHANNEL:
555 		hw->open--;
556 		if (debug & DEBUG_HW_OPEN)
557 			printk(KERN_DEBUG
558 			       "%s: %s: dev(%d) close from %p (open %d)\n",
559 			       hw->name, __func__, hw->dch.dev.id,
560 			       __builtin_return_address(0), hw->open);
561 		if (!hw->open) {
562 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
563 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
564 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
565 			handle_led(hw, LED_POWER_ON);
566 		}
567 		module_put(THIS_MODULE);
568 		break;
569 	case CONTROL_CHANNEL:
570 		err = channel_ctrl(hw, arg);
571 		break;
572 	default:
573 		if (dch->debug & DEBUG_HW)
574 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
575 			       hw->name, __func__, cmd);
576 		return -EINVAL;
577 	}
578 	return err;
579 }
580 
581 /*
582  * S0 TE state change event handler
583  */
584 static void
585 ph_state_te(struct dchannel *dch)
586 {
587 	struct hfcsusb *hw = dch->hw;
588 
589 	if (debug & DEBUG_HW) {
590 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
591 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
592 			       HFC_TE_LAYER1_STATES[dch->state]);
593 		else
594 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
595 			       hw->name, __func__, dch->state);
596 	}
597 
598 	switch (dch->state) {
599 	case 0:
600 		l1_event(dch->l1, HW_RESET_IND);
601 		break;
602 	case 3:
603 		l1_event(dch->l1, HW_DEACT_IND);
604 		break;
605 	case 5:
606 	case 8:
607 		l1_event(dch->l1, ANYSIGNAL);
608 		break;
609 	case 6:
610 		l1_event(dch->l1, INFO2);
611 		break;
612 	case 7:
613 		l1_event(dch->l1, INFO4_P8);
614 		break;
615 	}
616 	if (dch->state == 7)
617 		handle_led(hw, LED_S0_ON);
618 	else
619 		handle_led(hw, LED_S0_OFF);
620 }
621 
622 /*
623  * S0 NT state change event handler
624  */
625 static void
626 ph_state_nt(struct dchannel *dch)
627 {
628 	struct hfcsusb *hw = dch->hw;
629 
630 	if (debug & DEBUG_HW) {
631 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
632 			printk(KERN_DEBUG "%s: %s: %s\n",
633 			       hw->name, __func__,
634 			       HFC_NT_LAYER1_STATES[dch->state]);
635 
636 		else
637 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
638 			       hw->name, __func__, dch->state);
639 	}
640 
641 	switch (dch->state) {
642 	case (1):
643 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
644 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
645 		hw->nt_timer = 0;
646 		hw->timers &= ~NT_ACTIVATION_TIMER;
647 		handle_led(hw, LED_S0_OFF);
648 		break;
649 
650 	case (2):
651 		if (hw->nt_timer < 0) {
652 			hw->nt_timer = 0;
653 			hw->timers &= ~NT_ACTIVATION_TIMER;
654 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
655 		} else {
656 			hw->timers |= NT_ACTIVATION_TIMER;
657 			hw->nt_timer = NT_T1_COUNT;
658 			/* allow G2 -> G3 transition */
659 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
660 		}
661 		break;
662 	case (3):
663 		hw->nt_timer = 0;
664 		hw->timers &= ~NT_ACTIVATION_TIMER;
665 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
666 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
667 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
668 		handle_led(hw, LED_S0_ON);
669 		break;
670 	case (4):
671 		hw->nt_timer = 0;
672 		hw->timers &= ~NT_ACTIVATION_TIMER;
673 		break;
674 	default:
675 		break;
676 	}
677 	hfcsusb_ph_info(hw);
678 }
679 
680 static void
681 ph_state(struct dchannel *dch)
682 {
683 	struct hfcsusb *hw = dch->hw;
684 
685 	if (hw->protocol == ISDN_P_NT_S0)
686 		ph_state_nt(dch);
687 	else if (hw->protocol == ISDN_P_TE_S0)
688 		ph_state_te(dch);
689 }
690 
691 /*
692  * disable/enable BChannel for desired protocoll
693  */
694 static int
695 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
696 {
697 	struct hfcsusb *hw = bch->hw;
698 	__u8 conhdlc, sctrl, sctrl_r;
699 
700 	if (debug & DEBUG_HW)
701 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
702 		       hw->name, __func__, bch->state, protocol,
703 		       bch->nr);
704 
705 	/* setup val for CON_HDLC */
706 	conhdlc = 0;
707 	if (protocol > ISDN_P_NONE)
708 		conhdlc = 8;	/* enable FIFO */
709 
710 	switch (protocol) {
711 	case (-1):	/* used for init */
712 		bch->state = -1;
713 		/* fall through */
714 	case (ISDN_P_NONE):
715 		if (bch->state == ISDN_P_NONE)
716 			return 0; /* already in idle state */
717 		bch->state = ISDN_P_NONE;
718 		clear_bit(FLG_HDLC, &bch->Flags);
719 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
720 		break;
721 	case (ISDN_P_B_RAW):
722 		conhdlc |= 2;
723 		bch->state = protocol;
724 		set_bit(FLG_TRANSPARENT, &bch->Flags);
725 		break;
726 	case (ISDN_P_B_HDLC):
727 		bch->state = protocol;
728 		set_bit(FLG_HDLC, &bch->Flags);
729 		break;
730 	default:
731 		if (debug & DEBUG_HW)
732 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
733 			       hw->name, __func__, protocol);
734 		return -ENOPROTOOPT;
735 	}
736 
737 	if (protocol >= ISDN_P_NONE) {
738 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
739 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
740 		write_reg(hw, HFCUSB_INC_RES_F, 2);
741 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
742 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
743 		write_reg(hw, HFCUSB_INC_RES_F, 2);
744 
745 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
746 		sctrl_r = 0x0;
747 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
748 			sctrl |= 1;
749 			sctrl_r |= 1;
750 		}
751 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
752 			sctrl |= 2;
753 			sctrl_r |= 2;
754 		}
755 		write_reg(hw, HFCUSB_SCTRL, sctrl);
756 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
757 
758 		if (protocol > ISDN_P_NONE)
759 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
760 		else
761 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
762 				   LED_B2_OFF);
763 	}
764 	hfcsusb_ph_info(hw);
765 	return 0;
766 }
767 
768 static void
769 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
770 {
771 	if (debug & DEBUG_HW)
772 		printk(KERN_DEBUG "%s: %s: %x\n",
773 		       hw->name, __func__, command);
774 
775 	switch (command) {
776 	case HFC_L1_ACTIVATE_TE:
777 		/* force sending sending INFO1 */
778 		write_reg(hw, HFCUSB_STATES, 0x14);
779 		/* start l1 activation */
780 		write_reg(hw, HFCUSB_STATES, 0x04);
781 		break;
782 
783 	case HFC_L1_FORCE_DEACTIVATE_TE:
784 		write_reg(hw, HFCUSB_STATES, 0x10);
785 		write_reg(hw, HFCUSB_STATES, 0x03);
786 		break;
787 
788 	case HFC_L1_ACTIVATE_NT:
789 		if (hw->dch.state == 3)
790 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
791 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
792 		else
793 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
794 				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
795 		break;
796 
797 	case HFC_L1_DEACTIVATE_NT:
798 		write_reg(hw, HFCUSB_STATES,
799 			  HFCUSB_DO_ACTION);
800 		break;
801 	}
802 }
803 
804 /*
805  * Layer 1 B-channel hardware access
806  */
807 static int
808 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
809 {
810 	return mISDN_ctrl_bchannel(bch, cq);
811 }
812 
813 /* collect data from incoming interrupt or isochron USB data */
814 static void
815 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
816 		 int finish)
817 {
818 	struct hfcsusb	*hw = fifo->hw;
819 	struct sk_buff	*rx_skb = NULL;
820 	int		maxlen = 0;
821 	int		fifon = fifo->fifonum;
822 	int		i;
823 	int		hdlc = 0;
824 	unsigned long	flags;
825 
826 	if (debug & DBG_HFC_CALL_TRACE)
827 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
828 		       "dch(%p) bch(%p) ech(%p)\n",
829 		       hw->name, __func__, fifon, len,
830 		       fifo->dch, fifo->bch, fifo->ech);
831 
832 	if (!len)
833 		return;
834 
835 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
836 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
837 		       hw->name, __func__);
838 		return;
839 	}
840 
841 	spin_lock_irqsave(&hw->lock, flags);
842 	if (fifo->dch) {
843 		rx_skb = fifo->dch->rx_skb;
844 		maxlen = fifo->dch->maxlen;
845 		hdlc = 1;
846 	}
847 	if (fifo->bch) {
848 		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
849 			fifo->bch->dropcnt += len;
850 			spin_unlock_irqrestore(&hw->lock, flags);
851 			return;
852 		}
853 		maxlen = bchannel_get_rxbuf(fifo->bch, len);
854 		rx_skb = fifo->bch->rx_skb;
855 		if (maxlen < 0) {
856 			if (rx_skb)
857 				skb_trim(rx_skb, 0);
858 			pr_warning("%s.B%d: No bufferspace for %d bytes\n",
859 				   hw->name, fifo->bch->nr, len);
860 			spin_unlock_irqrestore(&hw->lock, flags);
861 			return;
862 		}
863 		maxlen = fifo->bch->maxlen;
864 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
865 	}
866 	if (fifo->ech) {
867 		rx_skb = fifo->ech->rx_skb;
868 		maxlen = fifo->ech->maxlen;
869 		hdlc = 1;
870 	}
871 
872 	if (fifo->dch || fifo->ech) {
873 		if (!rx_skb) {
874 			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
875 			if (rx_skb) {
876 				if (fifo->dch)
877 					fifo->dch->rx_skb = rx_skb;
878 				if (fifo->ech)
879 					fifo->ech->rx_skb = rx_skb;
880 				skb_trim(rx_skb, 0);
881 			} else {
882 				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
883 				       hw->name, __func__);
884 				spin_unlock_irqrestore(&hw->lock, flags);
885 				return;
886 			}
887 		}
888 		/* D/E-Channel SKB range check */
889 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
890 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
891 			       "for fifo(%d) HFCUSB_D_RX\n",
892 			       hw->name, __func__, fifon);
893 			skb_trim(rx_skb, 0);
894 			spin_unlock_irqrestore(&hw->lock, flags);
895 			return;
896 		}
897 	}
898 
899 	skb_put_data(rx_skb, data, len);
900 
901 	if (hdlc) {
902 		/* we have a complete hdlc packet */
903 		if (finish) {
904 			if ((rx_skb->len > 3) &&
905 			    (!(rx_skb->data[rx_skb->len - 1]))) {
906 				if (debug & DBG_HFC_FIFO_VERBOSE) {
907 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
908 					       " new RX len(%i): ",
909 					       hw->name, __func__, fifon,
910 					       rx_skb->len);
911 					i = 0;
912 					while (i < rx_skb->len)
913 						printk("%02x ",
914 						       rx_skb->data[i++]);
915 					printk("\n");
916 				}
917 
918 				/* remove CRC & status */
919 				skb_trim(rx_skb, rx_skb->len - 3);
920 
921 				if (fifo->dch)
922 					recv_Dchannel(fifo->dch);
923 				if (fifo->bch)
924 					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
925 						      0);
926 				if (fifo->ech)
927 					recv_Echannel(fifo->ech,
928 						      &hw->dch);
929 			} else {
930 				if (debug & DBG_HFC_FIFO_VERBOSE) {
931 					printk(KERN_DEBUG
932 					       "%s: CRC or minlen ERROR fifon(%i) "
933 					       "RX len(%i): ",
934 					       hw->name, fifon, rx_skb->len);
935 					i = 0;
936 					while (i < rx_skb->len)
937 						printk("%02x ",
938 						       rx_skb->data[i++]);
939 					printk("\n");
940 				}
941 				skb_trim(rx_skb, 0);
942 			}
943 		}
944 	} else {
945 		/* deliver transparent data to layer2 */
946 		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
947 	}
948 	spin_unlock_irqrestore(&hw->lock, flags);
949 }
950 
951 static void
952 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
953 	      void *buf, int num_packets, int packet_size, int interval,
954 	      usb_complete_t complete, void *context)
955 {
956 	int k;
957 
958 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
959 			  complete, context);
960 
961 	urb->number_of_packets = num_packets;
962 	urb->transfer_flags = URB_ISO_ASAP;
963 	urb->actual_length = 0;
964 	urb->interval = interval;
965 
966 	for (k = 0; k < num_packets; k++) {
967 		urb->iso_frame_desc[k].offset = packet_size * k;
968 		urb->iso_frame_desc[k].length = packet_size;
969 		urb->iso_frame_desc[k].actual_length = 0;
970 	}
971 }
972 
973 /* receive completion routine for all ISO tx fifos   */
974 static void
975 rx_iso_complete(struct urb *urb)
976 {
977 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
978 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
979 	struct hfcsusb *hw = fifo->hw;
980 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
981 		status, iso_status, i;
982 	__u8 *buf;
983 	static __u8 eof[8];
984 	__u8 s0_state;
985 	unsigned long flags;
986 
987 	fifon = fifo->fifonum;
988 	status = urb->status;
989 
990 	spin_lock_irqsave(&hw->lock, flags);
991 	if (fifo->stop_gracefull) {
992 		fifo->stop_gracefull = 0;
993 		fifo->active = 0;
994 		spin_unlock_irqrestore(&hw->lock, flags);
995 		return;
996 	}
997 	spin_unlock_irqrestore(&hw->lock, flags);
998 
999 	/*
1000 	 * ISO transfer only partially completed,
1001 	 * look at individual frame status for details
1002 	 */
1003 	if (status == -EXDEV) {
1004 		if (debug & DEBUG_HW)
1005 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
1006 			       "urb->status %d, fifonum %d\n",
1007 			       hw->name, __func__,  status, fifon);
1008 
1009 		/* clear status, so go on with ISO transfers */
1010 		status = 0;
1011 	}
1012 
1013 	s0_state = 0;
1014 	if (fifo->active && !status) {
1015 		num_isoc_packets = iso_packets[fifon];
1016 		maxlen = fifo->usb_packet_maxlen;
1017 
1018 		for (k = 0; k < num_isoc_packets; ++k) {
1019 			len = urb->iso_frame_desc[k].actual_length;
1020 			offset = urb->iso_frame_desc[k].offset;
1021 			buf = context_iso_urb->buffer + offset;
1022 			iso_status = urb->iso_frame_desc[k].status;
1023 
1024 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1025 				printk(KERN_DEBUG "%s: %s: "
1026 				       "ISO packet %i, status: %i\n",
1027 				       hw->name, __func__, k, iso_status);
1028 			}
1029 
1030 			/* USB data log for every D ISO in */
1031 			if ((fifon == HFCUSB_D_RX) &&
1032 			    (debug & DBG_HFC_USB_VERBOSE)) {
1033 				printk(KERN_DEBUG
1034 				       "%s: %s: %d (%d/%d) len(%d) ",
1035 				       hw->name, __func__, urb->start_frame,
1036 				       k, num_isoc_packets - 1,
1037 				       len);
1038 				for (i = 0; i < len; i++)
1039 					printk("%x ", buf[i]);
1040 				printk("\n");
1041 			}
1042 
1043 			if (!iso_status) {
1044 				if (fifo->last_urblen != maxlen) {
1045 					/*
1046 					 * save fifo fill-level threshold bits
1047 					 * to use them later in TX ISO URB
1048 					 * completions
1049 					 */
1050 					hw->threshold_mask = buf[1];
1051 
1052 					if (fifon == HFCUSB_D_RX)
1053 						s0_state = (buf[0] >> 4);
1054 
1055 					eof[fifon] = buf[0] & 1;
1056 					if (len > 2)
1057 						hfcsusb_rx_frame(fifo, buf + 2,
1058 								 len - 2, (len < maxlen)
1059 								 ? eof[fifon] : 0);
1060 				} else
1061 					hfcsusb_rx_frame(fifo, buf, len,
1062 							 (len < maxlen) ?
1063 							 eof[fifon] : 0);
1064 				fifo->last_urblen = len;
1065 			}
1066 		}
1067 
1068 		/* signal S0 layer1 state change */
1069 		if ((s0_state) && (hw->initdone) &&
1070 		    (s0_state != hw->dch.state)) {
1071 			hw->dch.state = s0_state;
1072 			schedule_event(&hw->dch, FLG_PHCHANGE);
1073 		}
1074 
1075 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1076 			      context_iso_urb->buffer, num_isoc_packets,
1077 			      fifo->usb_packet_maxlen, fifo->intervall,
1078 			      (usb_complete_t)rx_iso_complete, urb->context);
1079 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1080 		if (errcode < 0) {
1081 			if (debug & DEBUG_HW)
1082 				printk(KERN_DEBUG "%s: %s: error submitting "
1083 				       "ISO URB: %d\n",
1084 				       hw->name, __func__, errcode);
1085 		}
1086 	} else {
1087 		if (status && (debug & DBG_HFC_URB_INFO))
1088 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1089 			       "urb->status %d, fifonum %d\n",
1090 			       hw->name, __func__, status, fifon);
1091 	}
1092 }
1093 
1094 /* receive completion routine for all interrupt rx fifos */
1095 static void
1096 rx_int_complete(struct urb *urb)
1097 {
1098 	int len, status, i;
1099 	__u8 *buf, maxlen, fifon;
1100 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1101 	struct hfcsusb *hw = fifo->hw;
1102 	static __u8 eof[8];
1103 	unsigned long flags;
1104 
1105 	spin_lock_irqsave(&hw->lock, flags);
1106 	if (fifo->stop_gracefull) {
1107 		fifo->stop_gracefull = 0;
1108 		fifo->active = 0;
1109 		spin_unlock_irqrestore(&hw->lock, flags);
1110 		return;
1111 	}
1112 	spin_unlock_irqrestore(&hw->lock, flags);
1113 
1114 	fifon = fifo->fifonum;
1115 	if ((!fifo->active) || (urb->status)) {
1116 		if (debug & DBG_HFC_URB_ERROR)
1117 			printk(KERN_DEBUG
1118 			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1119 			       hw->name, __func__, fifon, urb->status);
1120 
1121 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1122 		return;
1123 	}
1124 	len = urb->actual_length;
1125 	buf = fifo->buffer;
1126 	maxlen = fifo->usb_packet_maxlen;
1127 
1128 	/* USB data log for every D INT in */
1129 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1130 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1131 		       hw->name, __func__, len);
1132 		for (i = 0; i < len; i++)
1133 			printk("%02x ", buf[i]);
1134 		printk("\n");
1135 	}
1136 
1137 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1138 		/* the threshold mask is in the 2nd status byte */
1139 		hw->threshold_mask = buf[1];
1140 
1141 		/* signal S0 layer1 state change */
1142 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1143 			hw->dch.state = (buf[0] >> 4);
1144 			schedule_event(&hw->dch, FLG_PHCHANGE);
1145 		}
1146 
1147 		eof[fifon] = buf[0] & 1;
1148 		/* if we have more than the 2 status bytes -> collect data */
1149 		if (len > 2)
1150 			hfcsusb_rx_frame(fifo, buf + 2,
1151 					 urb->actual_length - 2,
1152 					 (len < maxlen) ? eof[fifon] : 0);
1153 	} else {
1154 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1155 				 (len < maxlen) ? eof[fifon] : 0);
1156 	}
1157 	fifo->last_urblen = urb->actual_length;
1158 
1159 	status = usb_submit_urb(urb, GFP_ATOMIC);
1160 	if (status) {
1161 		if (debug & DEBUG_HW)
1162 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1163 			       hw->name, __func__);
1164 	}
1165 }
1166 
1167 /* transmit completion routine for all ISO tx fifos */
1168 static void
1169 tx_iso_complete(struct urb *urb)
1170 {
1171 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1172 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1173 	struct hfcsusb *hw = fifo->hw;
1174 	struct sk_buff *tx_skb;
1175 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1176 		errcode, hdlc, i;
1177 	int *tx_idx;
1178 	int frame_complete, fifon, status, fillempty = 0;
1179 	__u8 threshbit, *p;
1180 	unsigned long flags;
1181 
1182 	spin_lock_irqsave(&hw->lock, flags);
1183 	if (fifo->stop_gracefull) {
1184 		fifo->stop_gracefull = 0;
1185 		fifo->active = 0;
1186 		spin_unlock_irqrestore(&hw->lock, flags);
1187 		return;
1188 	}
1189 
1190 	if (fifo->dch) {
1191 		tx_skb = fifo->dch->tx_skb;
1192 		tx_idx = &fifo->dch->tx_idx;
1193 		hdlc = 1;
1194 	} else if (fifo->bch) {
1195 		tx_skb = fifo->bch->tx_skb;
1196 		tx_idx = &fifo->bch->tx_idx;
1197 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1198 		if (!tx_skb && !hdlc &&
1199 		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1200 			fillempty = 1;
1201 	} else {
1202 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1203 		       hw->name, __func__);
1204 		spin_unlock_irqrestore(&hw->lock, flags);
1205 		return;
1206 	}
1207 
1208 	fifon = fifo->fifonum;
1209 	status = urb->status;
1210 
1211 	tx_offset = 0;
1212 
1213 	/*
1214 	 * ISO transfer only partially completed,
1215 	 * look at individual frame status for details
1216 	 */
1217 	if (status == -EXDEV) {
1218 		if (debug & DBG_HFC_URB_ERROR)
1219 			printk(KERN_DEBUG "%s: %s: "
1220 			       "-EXDEV (%i) fifon (%d)\n",
1221 			       hw->name, __func__, status, fifon);
1222 
1223 		/* clear status, so go on with ISO transfers */
1224 		status = 0;
1225 	}
1226 
1227 	if (fifo->active && !status) {
1228 		/* is FifoFull-threshold set for our channel? */
1229 		threshbit = (hw->threshold_mask & (1 << fifon));
1230 		num_isoc_packets = iso_packets[fifon];
1231 
1232 		/* predict dataflow to avoid fifo overflow */
1233 		if (fifon >= HFCUSB_D_TX)
1234 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1235 		else
1236 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1237 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1238 			      context_iso_urb->buffer, num_isoc_packets,
1239 			      fifo->usb_packet_maxlen, fifo->intervall,
1240 			      (usb_complete_t)tx_iso_complete, urb->context);
1241 		memset(context_iso_urb->buffer, 0,
1242 		       sizeof(context_iso_urb->buffer));
1243 		frame_complete = 0;
1244 
1245 		for (k = 0; k < num_isoc_packets; ++k) {
1246 			/* analyze tx success of previous ISO packets */
1247 			if (debug & DBG_HFC_URB_ERROR) {
1248 				errcode = urb->iso_frame_desc[k].status;
1249 				if (errcode) {
1250 					printk(KERN_DEBUG "%s: %s: "
1251 					       "ISO packet %i, status: %i\n",
1252 					       hw->name, __func__, k, errcode);
1253 				}
1254 			}
1255 
1256 			/* Generate next ISO Packets */
1257 			if (tx_skb)
1258 				remain = tx_skb->len - *tx_idx;
1259 			else if (fillempty)
1260 				remain = 15; /* > not complete */
1261 			else
1262 				remain = 0;
1263 
1264 			if (remain > 0) {
1265 				fifo->bit_line -= sink;
1266 				current_len = (0 - fifo->bit_line) / 8;
1267 				if (current_len > 14)
1268 					current_len = 14;
1269 				if (current_len < 0)
1270 					current_len = 0;
1271 				if (remain < current_len)
1272 					current_len = remain;
1273 
1274 				/* how much bit do we put on the line? */
1275 				fifo->bit_line += current_len * 8;
1276 
1277 				context_iso_urb->buffer[tx_offset] = 0;
1278 				if (current_len == remain) {
1279 					if (hdlc) {
1280 						/* signal frame completion */
1281 						context_iso_urb->
1282 							buffer[tx_offset] = 1;
1283 						/* add 2 byte flags and 16bit
1284 						 * CRC at end of ISDN frame */
1285 						fifo->bit_line += 32;
1286 					}
1287 					frame_complete = 1;
1288 				}
1289 
1290 				/* copy tx data to iso-urb buffer */
1291 				p = context_iso_urb->buffer + tx_offset + 1;
1292 				if (fillempty) {
1293 					memset(p, fifo->bch->fill[0],
1294 					       current_len);
1295 				} else {
1296 					memcpy(p, (tx_skb->data + *tx_idx),
1297 					       current_len);
1298 					*tx_idx += current_len;
1299 				}
1300 				urb->iso_frame_desc[k].offset = tx_offset;
1301 				urb->iso_frame_desc[k].length = current_len + 1;
1302 
1303 				/* USB data log for every D ISO out */
1304 				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1305 				    (debug & DBG_HFC_USB_VERBOSE)) {
1306 					printk(KERN_DEBUG
1307 					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1308 					       hw->name, __func__,
1309 					       k, num_isoc_packets - 1,
1310 					       urb->iso_frame_desc[k].offset,
1311 					       urb->iso_frame_desc[k].length);
1312 
1313 					for (i = urb->iso_frame_desc[k].offset;
1314 					     i < (urb->iso_frame_desc[k].offset
1315 						  + urb->iso_frame_desc[k].length);
1316 					     i++)
1317 						printk("%x ",
1318 						       context_iso_urb->buffer[i]);
1319 
1320 					printk(" skb->len(%i) tx-idx(%d)\n",
1321 					       tx_skb->len, *tx_idx);
1322 				}
1323 
1324 				tx_offset += (current_len + 1);
1325 			} else {
1326 				urb->iso_frame_desc[k].offset = tx_offset++;
1327 				urb->iso_frame_desc[k].length = 1;
1328 				/* we lower data margin every msec */
1329 				fifo->bit_line -= sink;
1330 				if (fifo->bit_line < BITLINE_INF)
1331 					fifo->bit_line = BITLINE_INF;
1332 			}
1333 
1334 			if (frame_complete) {
1335 				frame_complete = 0;
1336 
1337 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1338 					printk(KERN_DEBUG  "%s: %s: "
1339 					       "fifon(%i) new TX len(%i): ",
1340 					       hw->name, __func__,
1341 					       fifon, tx_skb->len);
1342 					i = 0;
1343 					while (i < tx_skb->len)
1344 						printk("%02x ",
1345 						       tx_skb->data[i++]);
1346 					printk("\n");
1347 				}
1348 
1349 				dev_kfree_skb(tx_skb);
1350 				tx_skb = NULL;
1351 				if (fifo->dch && get_next_dframe(fifo->dch))
1352 					tx_skb = fifo->dch->tx_skb;
1353 				else if (fifo->bch &&
1354 					 get_next_bframe(fifo->bch))
1355 					tx_skb = fifo->bch->tx_skb;
1356 			}
1357 		}
1358 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1359 		if (errcode < 0) {
1360 			if (debug & DEBUG_HW)
1361 				printk(KERN_DEBUG
1362 				       "%s: %s: error submitting ISO URB: %d \n",
1363 				       hw->name, __func__, errcode);
1364 		}
1365 
1366 		/*
1367 		 * abuse DChannel tx iso completion to trigger NT mode state
1368 		 * changes tx_iso_complete is assumed to be called every
1369 		 * fifo->intervall (ms)
1370 		 */
1371 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1372 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1373 			if ((--hw->nt_timer) < 0)
1374 				schedule_event(&hw->dch, FLG_PHCHANGE);
1375 		}
1376 
1377 	} else {
1378 		if (status && (debug & DBG_HFC_URB_ERROR))
1379 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1380 			       "fifonum=%d\n",
1381 			       hw->name, __func__,
1382 			       symbolic(urb_errlist, status), status, fifon);
1383 	}
1384 	spin_unlock_irqrestore(&hw->lock, flags);
1385 }
1386 
1387 /*
1388  * allocs urbs and start isoc transfer with two pending urbs to avoid
1389  * gaps in the transfer chain
1390  */
1391 static int
1392 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1393 		 usb_complete_t complete, int packet_size)
1394 {
1395 	struct hfcsusb *hw = fifo->hw;
1396 	int i, k, errcode;
1397 
1398 	if (debug)
1399 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1400 		       hw->name, __func__, fifo->fifonum);
1401 
1402 	/* allocate Memory for Iso out Urbs */
1403 	for (i = 0; i < 2; i++) {
1404 		if (!(fifo->iso[i].urb)) {
1405 			fifo->iso[i].urb =
1406 				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1407 			if (!(fifo->iso[i].urb)) {
1408 				printk(KERN_DEBUG
1409 				       "%s: %s: alloc urb for fifo %i failed",
1410 				       hw->name, __func__, fifo->fifonum);
1411 			}
1412 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1413 			fifo->iso[i].indx = i;
1414 
1415 			/* Init the first iso */
1416 			if (ISO_BUFFER_SIZE >=
1417 			    (fifo->usb_packet_maxlen *
1418 			     num_packets_per_urb)) {
1419 				fill_isoc_urb(fifo->iso[i].urb,
1420 					      fifo->hw->dev, fifo->pipe,
1421 					      fifo->iso[i].buffer,
1422 					      num_packets_per_urb,
1423 					      fifo->usb_packet_maxlen,
1424 					      fifo->intervall, complete,
1425 					      &fifo->iso[i]);
1426 				memset(fifo->iso[i].buffer, 0,
1427 				       sizeof(fifo->iso[i].buffer));
1428 
1429 				for (k = 0; k < num_packets_per_urb; k++) {
1430 					fifo->iso[i].urb->
1431 						iso_frame_desc[k].offset =
1432 						k * packet_size;
1433 					fifo->iso[i].urb->
1434 						iso_frame_desc[k].length =
1435 						packet_size;
1436 				}
1437 			} else {
1438 				printk(KERN_DEBUG
1439 				       "%s: %s: ISO Buffer size to small!\n",
1440 				       hw->name, __func__);
1441 			}
1442 		}
1443 		fifo->bit_line = BITLINE_INF;
1444 
1445 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1446 		fifo->active = (errcode >= 0) ? 1 : 0;
1447 		fifo->stop_gracefull = 0;
1448 		if (errcode < 0) {
1449 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1450 			       hw->name, __func__,
1451 			       symbolic(urb_errlist, errcode), i);
1452 		}
1453 	}
1454 	return fifo->active;
1455 }
1456 
1457 static void
1458 stop_iso_gracefull(struct usb_fifo *fifo)
1459 {
1460 	struct hfcsusb *hw = fifo->hw;
1461 	int i, timeout;
1462 	u_long flags;
1463 
1464 	for (i = 0; i < 2; i++) {
1465 		spin_lock_irqsave(&hw->lock, flags);
1466 		if (debug)
1467 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1468 			       hw->name, __func__, fifo->fifonum, i);
1469 		fifo->stop_gracefull = 1;
1470 		spin_unlock_irqrestore(&hw->lock, flags);
1471 	}
1472 
1473 	for (i = 0; i < 2; i++) {
1474 		timeout = 3;
1475 		while (fifo->stop_gracefull && timeout--)
1476 			schedule_timeout_interruptible((HZ / 1000) * 16);
1477 		if (debug && fifo->stop_gracefull)
1478 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1479 			       hw->name, __func__, fifo->fifonum, i);
1480 	}
1481 }
1482 
1483 static void
1484 stop_int_gracefull(struct usb_fifo *fifo)
1485 {
1486 	struct hfcsusb *hw = fifo->hw;
1487 	int timeout;
1488 	u_long flags;
1489 
1490 	spin_lock_irqsave(&hw->lock, flags);
1491 	if (debug)
1492 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1493 		       hw->name, __func__, fifo->fifonum);
1494 	fifo->stop_gracefull = 1;
1495 	spin_unlock_irqrestore(&hw->lock, flags);
1496 
1497 	timeout = 3;
1498 	while (fifo->stop_gracefull && timeout--)
1499 		schedule_timeout_interruptible((HZ / 1000) * 3);
1500 	if (debug && fifo->stop_gracefull)
1501 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1502 		       hw->name, __func__, fifo->fifonum);
1503 }
1504 
1505 /* start the interrupt transfer for the given fifo */
1506 static void
1507 start_int_fifo(struct usb_fifo *fifo)
1508 {
1509 	struct hfcsusb *hw = fifo->hw;
1510 	int errcode;
1511 
1512 	if (debug)
1513 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1514 		       hw->name, __func__, fifo->fifonum);
1515 
1516 	if (!fifo->urb) {
1517 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1518 		if (!fifo->urb)
1519 			return;
1520 	}
1521 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1522 			 fifo->buffer, fifo->usb_packet_maxlen,
1523 			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1524 	fifo->active = 1;
1525 	fifo->stop_gracefull = 0;
1526 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1527 	if (errcode) {
1528 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1529 		       hw->name, __func__, errcode);
1530 		fifo->active = 0;
1531 	}
1532 }
1533 
1534 static void
1535 setPortMode(struct hfcsusb *hw)
1536 {
1537 	if (debug & DEBUG_HW)
1538 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1539 		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1540 
1541 	if (hw->protocol == ISDN_P_TE_S0) {
1542 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1543 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1544 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1545 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1546 		write_reg(hw, HFCUSB_STATES, 3);
1547 	} else {
1548 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1549 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1550 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1551 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1552 		write_reg(hw, HFCUSB_STATES, 1);
1553 	}
1554 }
1555 
1556 static void
1557 reset_hfcsusb(struct hfcsusb *hw)
1558 {
1559 	struct usb_fifo *fifo;
1560 	int i;
1561 
1562 	if (debug & DEBUG_HW)
1563 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1564 
1565 	/* do Chip reset */
1566 	write_reg(hw, HFCUSB_CIRM, 8);
1567 
1568 	/* aux = output, reset off */
1569 	write_reg(hw, HFCUSB_CIRM, 0x10);
1570 
1571 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1572 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1573 		  ((hw->packet_size / 8) << 4));
1574 
1575 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1576 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1577 
1578 	/* enable PCM/GCI master mode */
1579 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1580 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1581 
1582 	/* init the fifos */
1583 	write_reg(hw, HFCUSB_F_THRES,
1584 		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1585 
1586 	fifo = hw->fifos;
1587 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1588 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1589 		fifo[i].max_size =
1590 			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1591 		fifo[i].last_urblen = 0;
1592 
1593 		/* set 2 bit for D- & E-channel */
1594 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1595 
1596 		/* enable all fifos */
1597 		if (i == HFCUSB_D_TX)
1598 			write_reg(hw, HFCUSB_CON_HDLC,
1599 				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1600 		else
1601 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1602 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1603 	}
1604 
1605 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1606 	handle_led(hw, LED_POWER_ON);
1607 }
1608 
1609 /* start USB data pipes dependand on device's endpoint configuration */
1610 static void
1611 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1612 {
1613 	/* quick check if endpoint already running */
1614 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1615 		return;
1616 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1617 		return;
1618 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1619 		return;
1620 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1621 		return;
1622 
1623 	/* start rx endpoints using USB INT IN method */
1624 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1625 		start_int_fifo(hw->fifos + channel * 2 + 1);
1626 
1627 	/* start rx endpoints using USB ISO IN method */
1628 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1629 		switch (channel) {
1630 		case HFC_CHAN_D:
1631 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1632 					 ISOC_PACKETS_D,
1633 					 (usb_complete_t)rx_iso_complete,
1634 					 16);
1635 			break;
1636 		case HFC_CHAN_E:
1637 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1638 					 ISOC_PACKETS_D,
1639 					 (usb_complete_t)rx_iso_complete,
1640 					 16);
1641 			break;
1642 		case HFC_CHAN_B1:
1643 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1644 					 ISOC_PACKETS_B,
1645 					 (usb_complete_t)rx_iso_complete,
1646 					 16);
1647 			break;
1648 		case HFC_CHAN_B2:
1649 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1650 					 ISOC_PACKETS_B,
1651 					 (usb_complete_t)rx_iso_complete,
1652 					 16);
1653 			break;
1654 		}
1655 	}
1656 
1657 	/* start tx endpoints using USB ISO OUT method */
1658 	switch (channel) {
1659 	case HFC_CHAN_D:
1660 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1661 				 ISOC_PACKETS_B,
1662 				 (usb_complete_t)tx_iso_complete, 1);
1663 		break;
1664 	case HFC_CHAN_B1:
1665 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1666 				 ISOC_PACKETS_D,
1667 				 (usb_complete_t)tx_iso_complete, 1);
1668 		break;
1669 	case HFC_CHAN_B2:
1670 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1671 				 ISOC_PACKETS_B,
1672 				 (usb_complete_t)tx_iso_complete, 1);
1673 		break;
1674 	}
1675 }
1676 
1677 /* stop USB data pipes dependand on device's endpoint configuration */
1678 static void
1679 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1680 {
1681 	/* quick check if endpoint currently running */
1682 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1683 		return;
1684 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1685 		return;
1686 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1687 		return;
1688 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1689 		return;
1690 
1691 	/* rx endpoints using USB INT IN method */
1692 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1693 		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1694 
1695 	/* rx endpoints using USB ISO IN method */
1696 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1697 		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1698 
1699 	/* tx endpoints using USB ISO OUT method */
1700 	if (channel != HFC_CHAN_E)
1701 		stop_iso_gracefull(hw->fifos + channel * 2);
1702 }
1703 
1704 
1705 /* Hardware Initialization */
1706 static int
1707 setup_hfcsusb(struct hfcsusb *hw)
1708 {
1709 	u_char b;
1710 
1711 	if (debug & DBG_HFC_CALL_TRACE)
1712 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1713 
1714 	/* check the chip id */
1715 	if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1716 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1717 		       hw->name, __func__);
1718 		return 1;
1719 	}
1720 	if (b != HFCUSB_CHIPID) {
1721 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1722 		       hw->name, __func__, b);
1723 		return 1;
1724 	}
1725 
1726 	/* first set the needed config, interface and alternate */
1727 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1728 
1729 	hw->led_state = 0;
1730 
1731 	/* init the background machinery for control requests */
1732 	hw->ctrl_read.bRequestType = 0xc0;
1733 	hw->ctrl_read.bRequest = 1;
1734 	hw->ctrl_read.wLength = cpu_to_le16(1);
1735 	hw->ctrl_write.bRequestType = 0x40;
1736 	hw->ctrl_write.bRequest = 0;
1737 	hw->ctrl_write.wLength = 0;
1738 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1739 			     (u_char *)&hw->ctrl_write, NULL, 0,
1740 			     (usb_complete_t)ctrl_complete, hw);
1741 
1742 	reset_hfcsusb(hw);
1743 	return 0;
1744 }
1745 
1746 static void
1747 release_hw(struct hfcsusb *hw)
1748 {
1749 	if (debug & DBG_HFC_CALL_TRACE)
1750 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1751 
1752 	/*
1753 	 * stop all endpoints gracefully
1754 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1755 	 *       signals after calling mISDN_unregister_device()
1756 	 */
1757 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1758 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1759 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1760 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1761 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1762 	if (hw->protocol == ISDN_P_TE_S0)
1763 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1764 
1765 	mISDN_unregister_device(&hw->dch.dev);
1766 	mISDN_freebchannel(&hw->bch[1]);
1767 	mISDN_freebchannel(&hw->bch[0]);
1768 	mISDN_freedchannel(&hw->dch);
1769 
1770 	if (hw->ctrl_urb) {
1771 		usb_kill_urb(hw->ctrl_urb);
1772 		usb_free_urb(hw->ctrl_urb);
1773 		hw->ctrl_urb = NULL;
1774 	}
1775 
1776 	if (hw->intf)
1777 		usb_set_intfdata(hw->intf, NULL);
1778 	list_del(&hw->list);
1779 	kfree(hw);
1780 	hw = NULL;
1781 }
1782 
1783 static void
1784 deactivate_bchannel(struct bchannel *bch)
1785 {
1786 	struct hfcsusb *hw = bch->hw;
1787 	u_long flags;
1788 
1789 	if (bch->debug & DEBUG_HW)
1790 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1791 		       hw->name, __func__, bch->nr);
1792 
1793 	spin_lock_irqsave(&hw->lock, flags);
1794 	mISDN_clear_bchannel(bch);
1795 	spin_unlock_irqrestore(&hw->lock, flags);
1796 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1797 	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1798 }
1799 
1800 /*
1801  * Layer 1 B-channel hardware access
1802  */
1803 static int
1804 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1805 {
1806 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1807 	int		ret = -EINVAL;
1808 
1809 	if (bch->debug & DEBUG_HW)
1810 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1811 
1812 	switch (cmd) {
1813 	case HW_TESTRX_RAW:
1814 	case HW_TESTRX_HDLC:
1815 	case HW_TESTRX_OFF:
1816 		ret = -EINVAL;
1817 		break;
1818 
1819 	case CLOSE_CHANNEL:
1820 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1821 		deactivate_bchannel(bch);
1822 		ch->protocol = ISDN_P_NONE;
1823 		ch->peer = NULL;
1824 		module_put(THIS_MODULE);
1825 		ret = 0;
1826 		break;
1827 	case CONTROL_CHANNEL:
1828 		ret = channel_bctrl(bch, arg);
1829 		break;
1830 	default:
1831 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1832 		       __func__, cmd);
1833 	}
1834 	return ret;
1835 }
1836 
1837 static int
1838 setup_instance(struct hfcsusb *hw, struct device *parent)
1839 {
1840 	u_long	flags;
1841 	int	err, i;
1842 
1843 	if (debug & DBG_HFC_CALL_TRACE)
1844 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1845 
1846 	spin_lock_init(&hw->ctrl_lock);
1847 	spin_lock_init(&hw->lock);
1848 
1849 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1850 	hw->dch.debug = debug & 0xFFFF;
1851 	hw->dch.hw = hw;
1852 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1853 	hw->dch.dev.D.send = hfcusb_l2l1D;
1854 	hw->dch.dev.D.ctrl = hfc_dctrl;
1855 
1856 	/* enable E-Channel logging */
1857 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1858 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1859 
1860 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1861 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1862 	hw->dch.dev.nrbchan = 2;
1863 	for (i = 0; i < 2; i++) {
1864 		hw->bch[i].nr = i + 1;
1865 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1866 		hw->bch[i].debug = debug;
1867 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1868 		hw->bch[i].hw = hw;
1869 		hw->bch[i].ch.send = hfcusb_l2l1B;
1870 		hw->bch[i].ch.ctrl = hfc_bctrl;
1871 		hw->bch[i].ch.nr = i + 1;
1872 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1873 	}
1874 
1875 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1876 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1877 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1878 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1879 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1880 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1881 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1882 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1883 
1884 	err = setup_hfcsusb(hw);
1885 	if (err)
1886 		goto out;
1887 
1888 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1889 		 hfcsusb_cnt + 1);
1890 	printk(KERN_INFO "%s: registered as '%s'\n",
1891 	       DRIVER_NAME, hw->name);
1892 
1893 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1894 	if (err)
1895 		goto out;
1896 
1897 	hfcsusb_cnt++;
1898 	write_lock_irqsave(&HFClock, flags);
1899 	list_add_tail(&hw->list, &HFClist);
1900 	write_unlock_irqrestore(&HFClock, flags);
1901 	return 0;
1902 
1903 out:
1904 	mISDN_freebchannel(&hw->bch[1]);
1905 	mISDN_freebchannel(&hw->bch[0]);
1906 	mISDN_freedchannel(&hw->dch);
1907 	kfree(hw);
1908 	return err;
1909 }
1910 
1911 static int
1912 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1913 {
1914 	struct hfcsusb			*hw;
1915 	struct usb_device		*dev = interface_to_usbdev(intf);
1916 	struct usb_host_interface	*iface = intf->cur_altsetting;
1917 	struct usb_host_interface	*iface_used = NULL;
1918 	struct usb_host_endpoint	*ep;
1919 	struct hfcsusb_vdata		*driver_info;
1920 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1921 		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1922 		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1923 		alt_used = 0;
1924 
1925 	vend_idx = 0xffff;
1926 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1927 		if ((le16_to_cpu(dev->descriptor.idVendor)
1928 		     == hfcsusb_idtab[i].idVendor) &&
1929 		    (le16_to_cpu(dev->descriptor.idProduct)
1930 		     == hfcsusb_idtab[i].idProduct)) {
1931 			vend_idx = i;
1932 			continue;
1933 		}
1934 	}
1935 
1936 	printk(KERN_DEBUG
1937 	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1938 	       __func__, ifnum, iface->desc.bAlternateSetting,
1939 	       intf->minor, vend_idx);
1940 
1941 	if (vend_idx == 0xffff) {
1942 		printk(KERN_WARNING
1943 		       "%s: no valid vendor found in USB descriptor\n",
1944 		       __func__);
1945 		return -EIO;
1946 	}
1947 	/* if vendor and product ID is OK, start probing alternate settings */
1948 	alt_idx = 0;
1949 	small_match = -1;
1950 
1951 	/* default settings */
1952 	iso_packet_size = 16;
1953 	packet_size = 64;
1954 
1955 	while (alt_idx < intf->num_altsetting) {
1956 		iface = intf->altsetting + alt_idx;
1957 		probe_alt_setting = iface->desc.bAlternateSetting;
1958 		cfg_used = 0;
1959 
1960 		while (validconf[cfg_used][0]) {
1961 			cfg_found = 1;
1962 			vcf = validconf[cfg_used];
1963 			ep = iface->endpoint;
1964 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1965 
1966 			/* check for all endpoints in this alternate setting */
1967 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1968 				ep_addr = ep->desc.bEndpointAddress;
1969 
1970 				/* get endpoint base */
1971 				idx = ((ep_addr & 0x7f) - 1) * 2;
1972 				if (ep_addr & 0x80)
1973 					idx++;
1974 				attr = ep->desc.bmAttributes;
1975 
1976 				if (cmptbl[idx] != EP_NOP) {
1977 					if (cmptbl[idx] == EP_NUL)
1978 						cfg_found = 0;
1979 					if (attr == USB_ENDPOINT_XFER_INT
1980 					    && cmptbl[idx] == EP_INT)
1981 						cmptbl[idx] = EP_NUL;
1982 					if (attr == USB_ENDPOINT_XFER_BULK
1983 					    && cmptbl[idx] == EP_BLK)
1984 						cmptbl[idx] = EP_NUL;
1985 					if (attr == USB_ENDPOINT_XFER_ISOC
1986 					    && cmptbl[idx] == EP_ISO)
1987 						cmptbl[idx] = EP_NUL;
1988 
1989 					if (attr == USB_ENDPOINT_XFER_INT &&
1990 					    ep->desc.bInterval < vcf[17]) {
1991 						cfg_found = 0;
1992 					}
1993 				}
1994 				ep++;
1995 			}
1996 
1997 			for (i = 0; i < 16; i++)
1998 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1999 					cfg_found = 0;
2000 
2001 			if (cfg_found) {
2002 				if (small_match < cfg_used) {
2003 					small_match = cfg_used;
2004 					alt_used = probe_alt_setting;
2005 					iface_used = iface;
2006 				}
2007 			}
2008 			cfg_used++;
2009 		}
2010 		alt_idx++;
2011 	}	/* (alt_idx < intf->num_altsetting) */
2012 
2013 	/* not found a valid USB Ta Endpoint config */
2014 	if (small_match == -1)
2015 		return -EIO;
2016 
2017 	iface = iface_used;
2018 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2019 	if (!hw)
2020 		return -ENOMEM;	/* got no mem */
2021 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2022 
2023 	ep = iface->endpoint;
2024 	vcf = validconf[small_match];
2025 
2026 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2027 		struct usb_fifo *f;
2028 
2029 		ep_addr = ep->desc.bEndpointAddress;
2030 		/* get endpoint base */
2031 		idx = ((ep_addr & 0x7f) - 1) * 2;
2032 		if (ep_addr & 0x80)
2033 			idx++;
2034 		f = &hw->fifos[idx & 7];
2035 
2036 		/* init Endpoints */
2037 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2038 			ep++;
2039 			continue;
2040 		}
2041 		switch (ep->desc.bmAttributes) {
2042 		case USB_ENDPOINT_XFER_INT:
2043 			f->pipe = usb_rcvintpipe(dev,
2044 						 ep->desc.bEndpointAddress);
2045 			f->usb_transfer_mode = USB_INT;
2046 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2047 			break;
2048 		case USB_ENDPOINT_XFER_BULK:
2049 			if (ep_addr & 0x80)
2050 				f->pipe = usb_rcvbulkpipe(dev,
2051 							  ep->desc.bEndpointAddress);
2052 			else
2053 				f->pipe = usb_sndbulkpipe(dev,
2054 							  ep->desc.bEndpointAddress);
2055 			f->usb_transfer_mode = USB_BULK;
2056 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2057 			break;
2058 		case USB_ENDPOINT_XFER_ISOC:
2059 			if (ep_addr & 0x80)
2060 				f->pipe = usb_rcvisocpipe(dev,
2061 							  ep->desc.bEndpointAddress);
2062 			else
2063 				f->pipe = usb_sndisocpipe(dev,
2064 							  ep->desc.bEndpointAddress);
2065 			f->usb_transfer_mode = USB_ISOC;
2066 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2067 			break;
2068 		default:
2069 			f->pipe = 0;
2070 		}
2071 
2072 		if (f->pipe) {
2073 			f->fifonum = idx & 7;
2074 			f->hw = hw;
2075 			f->usb_packet_maxlen =
2076 				le16_to_cpu(ep->desc.wMaxPacketSize);
2077 			f->intervall = ep->desc.bInterval;
2078 		}
2079 		ep++;
2080 	}
2081 	hw->dev = dev; /* save device */
2082 	hw->if_used = ifnum; /* save used interface */
2083 	hw->alt_used = alt_used; /* and alternate config */
2084 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2085 	hw->cfg_used = vcf[16];	/* store used config */
2086 	hw->vend_idx = vend_idx; /* store found vendor */
2087 	hw->packet_size = packet_size;
2088 	hw->iso_packet_size = iso_packet_size;
2089 
2090 	/* create the control pipes needed for register access */
2091 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2092 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2093 
2094 	driver_info = (struct hfcsusb_vdata *)
2095 		      hfcsusb_idtab[vend_idx].driver_info;
2096 
2097 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2098 	if (!hw->ctrl_urb) {
2099 		pr_warn("%s: No memory for control urb\n",
2100 			driver_info->vend_name);
2101 		kfree(hw);
2102 		return -ENOMEM;
2103 	}
2104 
2105 	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2106 		hw->name, __func__, driver_info->vend_name,
2107 		conf_str[small_match], ifnum, alt_used);
2108 
2109 	if (setup_instance(hw, dev->dev.parent))
2110 		return -EIO;
2111 
2112 	hw->intf = intf;
2113 	usb_set_intfdata(hw->intf, hw);
2114 	return 0;
2115 }
2116 
2117 /* function called when an active device is removed */
2118 static void
2119 hfcsusb_disconnect(struct usb_interface *intf)
2120 {
2121 	struct hfcsusb *hw = usb_get_intfdata(intf);
2122 	struct hfcsusb *next;
2123 	int cnt = 0;
2124 
2125 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2126 
2127 	handle_led(hw, LED_POWER_OFF);
2128 	release_hw(hw);
2129 
2130 	list_for_each_entry_safe(hw, next, &HFClist, list)
2131 		cnt++;
2132 	if (!cnt)
2133 		hfcsusb_cnt = 0;
2134 
2135 	usb_set_intfdata(intf, NULL);
2136 }
2137 
2138 static struct usb_driver hfcsusb_drv = {
2139 	.name = DRIVER_NAME,
2140 	.id_table = hfcsusb_idtab,
2141 	.probe = hfcsusb_probe,
2142 	.disconnect = hfcsusb_disconnect,
2143 	.disable_hub_initiated_lpm = 1,
2144 };
2145 
2146 module_usb_driver(hfcsusb_drv);
2147