1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3  * mISDN driver for Colognechip HFC-S USB chip
4  *
5  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7  *
8  * module params
9  *   debug=<n>, default=0, with n=0xHHHHGGGG
10  *      H - l1 driver flags described in hfcsusb.h
11  *      G - common mISDN debug flags described at mISDNhw.h
12  *
13  *   poll=<n>, default 128
14  *     n : burst size of PH_DATA_IND at transparent rx data
15  *
16  * Revision: 0.3.3 (socket), 2008-11-05
17  */
18 
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25 
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28 
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31 
32 
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37 
38 static int hfcsusb_cnt;
39 
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static int  hfcsusb_ph_info(struct hfcsusb *hw);
50 
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55 	if (debug & DBG_HFC_CALL_TRACE)
56 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57 
58 	if (hw->ctrl_cnt) {
59 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61 		hw->ctrl_urb->transfer_buffer = NULL;
62 		hw->ctrl_urb->transfer_buffer_length = 0;
63 		hw->ctrl_write.wIndex =
64 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65 		hw->ctrl_write.wValue =
66 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67 
68 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69 	}
70 }
71 
72 /*
73  * queue a control transfer request to write HFC-S USB
74  * chip register using CTRL resuest queue
75  */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78 	struct ctrl_buf *buf;
79 
80 	if (debug & DBG_HFC_CALL_TRACE)
81 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82 		       hw->name, __func__, reg, val);
83 
84 	spin_lock(&hw->ctrl_lock);
85 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86 		spin_unlock(&hw->ctrl_lock);
87 		return 1;
88 	}
89 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90 	buf->hfcs_reg = reg;
91 	buf->reg_val = val;
92 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93 		hw->ctrl_in_idx = 0;
94 	if (++hw->ctrl_cnt == 1)
95 		ctrl_start_transfer(hw);
96 	spin_unlock(&hw->ctrl_lock);
97 
98 	return 0;
99 }
100 
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106 
107 	if (debug & DBG_HFC_CALL_TRACE)
108 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109 
110 	urb->dev = hw->dev;
111 	if (hw->ctrl_cnt) {
112 		hw->ctrl_cnt--;	/* decrement actual count */
113 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114 			hw->ctrl_out_idx = 0;	/* pointer wrap */
115 
116 		ctrl_start_transfer(hw); /* start next transfer */
117 	}
118 }
119 
120 /* handle LED bits   */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124 	if (set_on) {
125 		if (led_bits < 0)
126 			hw->led_state &= ~abs(led_bits);
127 		else
128 			hw->led_state |= led_bits;
129 	} else {
130 		if (led_bits < 0)
131 			hw->led_state |= abs(led_bits);
132 		else
133 			hw->led_state &= ~led_bits;
134 	}
135 }
136 
137 /* handle LED requests  */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142 		hfcsusb_idtab[hw->vend_idx].driver_info;
143 	__u8 tmpled;
144 
145 	if (driver_info->led_scheme == LED_OFF)
146 		return;
147 	tmpled = hw->led_state;
148 
149 	switch (event) {
150 	case LED_POWER_ON:
151 		set_led_bit(hw, driver_info->led_bits[0], 1);
152 		set_led_bit(hw, driver_info->led_bits[1], 0);
153 		set_led_bit(hw, driver_info->led_bits[2], 0);
154 		set_led_bit(hw, driver_info->led_bits[3], 0);
155 		break;
156 	case LED_POWER_OFF:
157 		set_led_bit(hw, driver_info->led_bits[0], 0);
158 		set_led_bit(hw, driver_info->led_bits[1], 0);
159 		set_led_bit(hw, driver_info->led_bits[2], 0);
160 		set_led_bit(hw, driver_info->led_bits[3], 0);
161 		break;
162 	case LED_S0_ON:
163 		set_led_bit(hw, driver_info->led_bits[1], 1);
164 		break;
165 	case LED_S0_OFF:
166 		set_led_bit(hw, driver_info->led_bits[1], 0);
167 		break;
168 	case LED_B1_ON:
169 		set_led_bit(hw, driver_info->led_bits[2], 1);
170 		break;
171 	case LED_B1_OFF:
172 		set_led_bit(hw, driver_info->led_bits[2], 0);
173 		break;
174 	case LED_B2_ON:
175 		set_led_bit(hw, driver_info->led_bits[3], 1);
176 		break;
177 	case LED_B2_OFF:
178 		set_led_bit(hw, driver_info->led_bits[3], 0);
179 		break;
180 	}
181 
182 	if (hw->led_state != tmpled) {
183 		if (debug & DBG_HFC_CALL_TRACE)
184 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185 			       hw->name, __func__,
186 			       HFCUSB_P_DATA, hw->led_state);
187 
188 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189 	}
190 }
191 
192 /*
193  * Layer2 -> Layer 1 Bchannel data
194  */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
199 	struct hfcsusb		*hw = bch->hw;
200 	int			ret = -EINVAL;
201 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
202 	u_long			flags;
203 
204 	if (debug & DBG_HFC_CALL_TRACE)
205 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206 
207 	switch (hh->prim) {
208 	case PH_DATA_REQ:
209 		spin_lock_irqsave(&hw->lock, flags);
210 		ret = bchannel_senddata(bch, skb);
211 		spin_unlock_irqrestore(&hw->lock, flags);
212 		if (debug & DBG_HFC_CALL_TRACE)
213 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214 			       hw->name, __func__, ret);
215 		if (ret > 0)
216 			ret = 0;
217 		return ret;
218 	case PH_ACTIVATE_REQ:
219 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220 			hfcsusb_start_endpoint(hw, bch->nr - 1);
221 			ret = hfcsusb_setup_bch(bch, ch->protocol);
222 		} else
223 			ret = 0;
224 		if (!ret)
225 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226 				    0, NULL, GFP_KERNEL);
227 		break;
228 	case PH_DEACTIVATE_REQ:
229 		deactivate_bchannel(bch);
230 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231 			    0, NULL, GFP_KERNEL);
232 		ret = 0;
233 		break;
234 	}
235 	if (!ret)
236 		dev_kfree_skb(skb);
237 	return ret;
238 }
239 
240 /*
241  * send full D/B channel status information
242  * as MPH_INFORMATION_IND
243  */
244 static int
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247 	struct ph_info *phi;
248 	struct dchannel *dch = &hw->dch;
249 	int i;
250 
251 	phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252 	if (!phi)
253 		return -ENOMEM;
254 
255 	phi->dch.ch.protocol = hw->protocol;
256 	phi->dch.ch.Flags = dch->Flags;
257 	phi->dch.state = dch->state;
258 	phi->dch.num_bch = dch->dev.nrbchan;
259 	for (i = 0; i < dch->dev.nrbchan; i++) {
260 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
261 		phi->bch[i].Flags = hw->bch[i].Flags;
262 	}
263 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264 		    struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265 	kfree(phi);
266 
267 	return 0;
268 }
269 
270 /*
271  * Layer2 -> Layer 1 Dchannel data
272  */
273 static int
274 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
275 {
276 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
277 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
278 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
279 	struct hfcsusb		*hw = dch->hw;
280 	int			ret = -EINVAL;
281 	u_long			flags;
282 
283 	switch (hh->prim) {
284 	case PH_DATA_REQ:
285 		if (debug & DBG_HFC_CALL_TRACE)
286 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
287 			       hw->name, __func__);
288 
289 		spin_lock_irqsave(&hw->lock, flags);
290 		ret = dchannel_senddata(dch, skb);
291 		spin_unlock_irqrestore(&hw->lock, flags);
292 		if (ret > 0) {
293 			ret = 0;
294 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
295 		}
296 		break;
297 
298 	case PH_ACTIVATE_REQ:
299 		if (debug & DBG_HFC_CALL_TRACE)
300 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
301 			       hw->name, __func__,
302 			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
303 
304 		if (hw->protocol == ISDN_P_NT_S0) {
305 			ret = 0;
306 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
307 				_queue_data(&dch->dev.D,
308 					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
309 					    NULL, GFP_ATOMIC);
310 			} else {
311 				hfcsusb_ph_command(hw,
312 						   HFC_L1_ACTIVATE_NT);
313 				test_and_set_bit(FLG_L2_ACTIVATED,
314 						 &dch->Flags);
315 			}
316 		} else {
317 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
318 			ret = l1_event(dch->l1, hh->prim);
319 		}
320 		break;
321 
322 	case PH_DEACTIVATE_REQ:
323 		if (debug & DBG_HFC_CALL_TRACE)
324 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
325 			       hw->name, __func__);
326 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
327 
328 		if (hw->protocol == ISDN_P_NT_S0) {
329 			struct sk_buff_head free_queue;
330 
331 			__skb_queue_head_init(&free_queue);
332 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
333 			spin_lock_irqsave(&hw->lock, flags);
334 			skb_queue_splice_init(&dch->squeue, &free_queue);
335 			if (dch->tx_skb) {
336 				__skb_queue_tail(&free_queue, dch->tx_skb);
337 				dch->tx_skb = NULL;
338 			}
339 			dch->tx_idx = 0;
340 			if (dch->rx_skb) {
341 				__skb_queue_tail(&free_queue, dch->rx_skb);
342 				dch->rx_skb = NULL;
343 			}
344 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
345 			spin_unlock_irqrestore(&hw->lock, flags);
346 			__skb_queue_purge(&free_queue);
347 #ifdef FIXME
348 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
349 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
350 #endif
351 			ret = 0;
352 		} else
353 			ret = l1_event(dch->l1, hh->prim);
354 		break;
355 	case MPH_INFORMATION_REQ:
356 		ret = hfcsusb_ph_info(hw);
357 		break;
358 	}
359 
360 	return ret;
361 }
362 
363 /*
364  * Layer 1 callback function
365  */
366 static int
367 hfc_l1callback(struct dchannel *dch, u_int cmd)
368 {
369 	struct hfcsusb *hw = dch->hw;
370 
371 	if (debug & DBG_HFC_CALL_TRACE)
372 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
373 		       hw->name, __func__, cmd);
374 
375 	switch (cmd) {
376 	case INFO3_P8:
377 	case INFO3_P10:
378 	case HW_RESET_REQ:
379 	case HW_POWERUP_REQ:
380 		break;
381 
382 	case HW_DEACT_REQ:
383 		skb_queue_purge(&dch->squeue);
384 		if (dch->tx_skb) {
385 			dev_kfree_skb(dch->tx_skb);
386 			dch->tx_skb = NULL;
387 		}
388 		dch->tx_idx = 0;
389 		if (dch->rx_skb) {
390 			dev_kfree_skb(dch->rx_skb);
391 			dch->rx_skb = NULL;
392 		}
393 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
394 		break;
395 	case PH_ACTIVATE_IND:
396 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
397 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
398 			    GFP_ATOMIC);
399 		break;
400 	case PH_DEACTIVATE_IND:
401 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
402 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
403 			    GFP_ATOMIC);
404 		break;
405 	default:
406 		if (dch->debug & DEBUG_HW)
407 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
408 			       hw->name, __func__, cmd);
409 		return -1;
410 	}
411 	return hfcsusb_ph_info(hw);
412 }
413 
414 static int
415 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
416 	      struct channel_req *rq)
417 {
418 	int err = 0;
419 
420 	if (debug & DEBUG_HW_OPEN)
421 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
422 		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
423 		       __builtin_return_address(0));
424 	if (rq->protocol == ISDN_P_NONE)
425 		return -EINVAL;
426 
427 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
428 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
429 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
430 
431 	/* E-Channel logging */
432 	if (rq->adr.channel == 1) {
433 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
434 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
435 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
436 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
437 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
438 		} else
439 			return -EINVAL;
440 	}
441 
442 	if (!hw->initdone) {
443 		hw->protocol = rq->protocol;
444 		if (rq->protocol == ISDN_P_TE_S0) {
445 			err = create_l1(&hw->dch, hfc_l1callback);
446 			if (err)
447 				return err;
448 		}
449 		setPortMode(hw);
450 		ch->protocol = rq->protocol;
451 		hw->initdone = 1;
452 	} else {
453 		if (rq->protocol != ch->protocol)
454 			return -EPROTONOSUPPORT;
455 	}
456 
457 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
458 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
459 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
460 			    0, NULL, GFP_KERNEL);
461 	rq->ch = ch;
462 	if (!try_module_get(THIS_MODULE))
463 		printk(KERN_WARNING "%s: %s: cannot get module\n",
464 		       hw->name, __func__);
465 	return 0;
466 }
467 
468 static int
469 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
470 {
471 	struct bchannel		*bch;
472 
473 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
474 		return -EINVAL;
475 	if (rq->protocol == ISDN_P_NONE)
476 		return -EINVAL;
477 
478 	if (debug & DBG_HFC_CALL_TRACE)
479 		printk(KERN_DEBUG "%s: %s B%i\n",
480 		       hw->name, __func__, rq->adr.channel);
481 
482 	bch = &hw->bch[rq->adr.channel - 1];
483 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
484 		return -EBUSY; /* b-channel can be only open once */
485 	bch->ch.protocol = rq->protocol;
486 	rq->ch = &bch->ch;
487 
488 	if (!try_module_get(THIS_MODULE))
489 		printk(KERN_WARNING "%s: %s:cannot get module\n",
490 		       hw->name, __func__);
491 	return 0;
492 }
493 
494 static int
495 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
496 {
497 	int ret = 0;
498 
499 	if (debug & DBG_HFC_CALL_TRACE)
500 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
501 		       hw->name, __func__, (cq->op), (cq->channel));
502 
503 	switch (cq->op) {
504 	case MISDN_CTRL_GETOP:
505 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
506 			MISDN_CTRL_DISCONNECT;
507 		break;
508 	default:
509 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
510 		       hw->name, __func__, cq->op);
511 		ret = -EINVAL;
512 		break;
513 	}
514 	return ret;
515 }
516 
517 /*
518  * device control function
519  */
520 static int
521 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
522 {
523 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
524 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
525 	struct hfcsusb		*hw = dch->hw;
526 	struct channel_req	*rq;
527 	int			err = 0;
528 
529 	if (dch->debug & DEBUG_HW)
530 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
531 		       hw->name, __func__, cmd, arg);
532 	switch (cmd) {
533 	case OPEN_CHANNEL:
534 		rq = arg;
535 		if ((rq->protocol == ISDN_P_TE_S0) ||
536 		    (rq->protocol == ISDN_P_NT_S0))
537 			err = open_dchannel(hw, ch, rq);
538 		else
539 			err = open_bchannel(hw, rq);
540 		if (!err)
541 			hw->open++;
542 		break;
543 	case CLOSE_CHANNEL:
544 		hw->open--;
545 		if (debug & DEBUG_HW_OPEN)
546 			printk(KERN_DEBUG
547 			       "%s: %s: dev(%d) close from %p (open %d)\n",
548 			       hw->name, __func__, hw->dch.dev.id,
549 			       __builtin_return_address(0), hw->open);
550 		if (!hw->open) {
551 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
552 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
553 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
554 			handle_led(hw, LED_POWER_ON);
555 		}
556 		module_put(THIS_MODULE);
557 		break;
558 	case CONTROL_CHANNEL:
559 		err = channel_ctrl(hw, arg);
560 		break;
561 	default:
562 		if (dch->debug & DEBUG_HW)
563 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
564 			       hw->name, __func__, cmd);
565 		return -EINVAL;
566 	}
567 	return err;
568 }
569 
570 /*
571  * S0 TE state change event handler
572  */
573 static void
574 ph_state_te(struct dchannel *dch)
575 {
576 	struct hfcsusb *hw = dch->hw;
577 
578 	if (debug & DEBUG_HW) {
579 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
580 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
581 			       HFC_TE_LAYER1_STATES[dch->state]);
582 		else
583 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
584 			       hw->name, __func__, dch->state);
585 	}
586 
587 	switch (dch->state) {
588 	case 0:
589 		l1_event(dch->l1, HW_RESET_IND);
590 		break;
591 	case 3:
592 		l1_event(dch->l1, HW_DEACT_IND);
593 		break;
594 	case 5:
595 	case 8:
596 		l1_event(dch->l1, ANYSIGNAL);
597 		break;
598 	case 6:
599 		l1_event(dch->l1, INFO2);
600 		break;
601 	case 7:
602 		l1_event(dch->l1, INFO4_P8);
603 		break;
604 	}
605 	if (dch->state == 7)
606 		handle_led(hw, LED_S0_ON);
607 	else
608 		handle_led(hw, LED_S0_OFF);
609 }
610 
611 /*
612  * S0 NT state change event handler
613  */
614 static void
615 ph_state_nt(struct dchannel *dch)
616 {
617 	struct hfcsusb *hw = dch->hw;
618 
619 	if (debug & DEBUG_HW) {
620 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
621 			printk(KERN_DEBUG "%s: %s: %s\n",
622 			       hw->name, __func__,
623 			       HFC_NT_LAYER1_STATES[dch->state]);
624 
625 		else
626 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
627 			       hw->name, __func__, dch->state);
628 	}
629 
630 	switch (dch->state) {
631 	case (1):
632 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
633 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
634 		hw->nt_timer = 0;
635 		hw->timers &= ~NT_ACTIVATION_TIMER;
636 		handle_led(hw, LED_S0_OFF);
637 		break;
638 
639 	case (2):
640 		if (hw->nt_timer < 0) {
641 			hw->nt_timer = 0;
642 			hw->timers &= ~NT_ACTIVATION_TIMER;
643 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
644 		} else {
645 			hw->timers |= NT_ACTIVATION_TIMER;
646 			hw->nt_timer = NT_T1_COUNT;
647 			/* allow G2 -> G3 transition */
648 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
649 		}
650 		break;
651 	case (3):
652 		hw->nt_timer = 0;
653 		hw->timers &= ~NT_ACTIVATION_TIMER;
654 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
655 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
656 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
657 		handle_led(hw, LED_S0_ON);
658 		break;
659 	case (4):
660 		hw->nt_timer = 0;
661 		hw->timers &= ~NT_ACTIVATION_TIMER;
662 		break;
663 	default:
664 		break;
665 	}
666 	hfcsusb_ph_info(hw);
667 }
668 
669 static void
670 ph_state(struct dchannel *dch)
671 {
672 	struct hfcsusb *hw = dch->hw;
673 
674 	if (hw->protocol == ISDN_P_NT_S0)
675 		ph_state_nt(dch);
676 	else if (hw->protocol == ISDN_P_TE_S0)
677 		ph_state_te(dch);
678 }
679 
680 /*
681  * disable/enable BChannel for desired protocol
682  */
683 static int
684 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
685 {
686 	struct hfcsusb *hw = bch->hw;
687 	__u8 conhdlc, sctrl, sctrl_r;
688 
689 	if (debug & DEBUG_HW)
690 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
691 		       hw->name, __func__, bch->state, protocol,
692 		       bch->nr);
693 
694 	/* setup val for CON_HDLC */
695 	conhdlc = 0;
696 	if (protocol > ISDN_P_NONE)
697 		conhdlc = 8;	/* enable FIFO */
698 
699 	switch (protocol) {
700 	case (-1):	/* used for init */
701 		bch->state = -1;
702 		fallthrough;
703 	case (ISDN_P_NONE):
704 		if (bch->state == ISDN_P_NONE)
705 			return 0; /* already in idle state */
706 		bch->state = ISDN_P_NONE;
707 		clear_bit(FLG_HDLC, &bch->Flags);
708 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
709 		break;
710 	case (ISDN_P_B_RAW):
711 		conhdlc |= 2;
712 		bch->state = protocol;
713 		set_bit(FLG_TRANSPARENT, &bch->Flags);
714 		break;
715 	case (ISDN_P_B_HDLC):
716 		bch->state = protocol;
717 		set_bit(FLG_HDLC, &bch->Flags);
718 		break;
719 	default:
720 		if (debug & DEBUG_HW)
721 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
722 			       hw->name, __func__, protocol);
723 		return -ENOPROTOOPT;
724 	}
725 
726 	if (protocol >= ISDN_P_NONE) {
727 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
728 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729 		write_reg(hw, HFCUSB_INC_RES_F, 2);
730 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
731 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
732 		write_reg(hw, HFCUSB_INC_RES_F, 2);
733 
734 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
735 		sctrl_r = 0x0;
736 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
737 			sctrl |= 1;
738 			sctrl_r |= 1;
739 		}
740 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
741 			sctrl |= 2;
742 			sctrl_r |= 2;
743 		}
744 		write_reg(hw, HFCUSB_SCTRL, sctrl);
745 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
746 
747 		if (protocol > ISDN_P_NONE)
748 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
749 		else
750 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
751 				   LED_B2_OFF);
752 	}
753 	return hfcsusb_ph_info(hw);
754 }
755 
756 static void
757 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
758 {
759 	if (debug & DEBUG_HW)
760 		printk(KERN_DEBUG "%s: %s: %x\n",
761 		       hw->name, __func__, command);
762 
763 	switch (command) {
764 	case HFC_L1_ACTIVATE_TE:
765 		/* force sending sending INFO1 */
766 		write_reg(hw, HFCUSB_STATES, 0x14);
767 		/* start l1 activation */
768 		write_reg(hw, HFCUSB_STATES, 0x04);
769 		break;
770 
771 	case HFC_L1_FORCE_DEACTIVATE_TE:
772 		write_reg(hw, HFCUSB_STATES, 0x10);
773 		write_reg(hw, HFCUSB_STATES, 0x03);
774 		break;
775 
776 	case HFC_L1_ACTIVATE_NT:
777 		if (hw->dch.state == 3)
778 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
779 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
780 		else
781 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
782 				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
783 		break;
784 
785 	case HFC_L1_DEACTIVATE_NT:
786 		write_reg(hw, HFCUSB_STATES,
787 			  HFCUSB_DO_ACTION);
788 		break;
789 	}
790 }
791 
792 /*
793  * Layer 1 B-channel hardware access
794  */
795 static int
796 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
797 {
798 	return mISDN_ctrl_bchannel(bch, cq);
799 }
800 
801 /* collect data from incoming interrupt or isochron USB data */
802 static void
803 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
804 		 int finish)
805 {
806 	struct hfcsusb	*hw = fifo->hw;
807 	struct sk_buff	*rx_skb = NULL;
808 	int		maxlen = 0;
809 	int		fifon = fifo->fifonum;
810 	int		i;
811 	int		hdlc = 0;
812 	unsigned long	flags;
813 
814 	if (debug & DBG_HFC_CALL_TRACE)
815 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
816 		       "dch(%p) bch(%p) ech(%p)\n",
817 		       hw->name, __func__, fifon, len,
818 		       fifo->dch, fifo->bch, fifo->ech);
819 
820 	if (!len)
821 		return;
822 
823 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
824 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
825 		       hw->name, __func__);
826 		return;
827 	}
828 
829 	spin_lock_irqsave(&hw->lock, flags);
830 	if (fifo->dch) {
831 		rx_skb = fifo->dch->rx_skb;
832 		maxlen = fifo->dch->maxlen;
833 		hdlc = 1;
834 	}
835 	if (fifo->bch) {
836 		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
837 			fifo->bch->dropcnt += len;
838 			spin_unlock_irqrestore(&hw->lock, flags);
839 			return;
840 		}
841 		maxlen = bchannel_get_rxbuf(fifo->bch, len);
842 		rx_skb = fifo->bch->rx_skb;
843 		if (maxlen < 0) {
844 			if (rx_skb)
845 				skb_trim(rx_skb, 0);
846 			pr_warn("%s.B%d: No bufferspace for %d bytes\n",
847 				hw->name, fifo->bch->nr, len);
848 			spin_unlock_irqrestore(&hw->lock, flags);
849 			return;
850 		}
851 		maxlen = fifo->bch->maxlen;
852 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
853 	}
854 	if (fifo->ech) {
855 		rx_skb = fifo->ech->rx_skb;
856 		maxlen = fifo->ech->maxlen;
857 		hdlc = 1;
858 	}
859 
860 	if (fifo->dch || fifo->ech) {
861 		if (!rx_skb) {
862 			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
863 			if (rx_skb) {
864 				if (fifo->dch)
865 					fifo->dch->rx_skb = rx_skb;
866 				if (fifo->ech)
867 					fifo->ech->rx_skb = rx_skb;
868 				skb_trim(rx_skb, 0);
869 			} else {
870 				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
871 				       hw->name, __func__);
872 				spin_unlock_irqrestore(&hw->lock, flags);
873 				return;
874 			}
875 		}
876 		/* D/E-Channel SKB range check */
877 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
878 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
879 			       "for fifo(%d) HFCUSB_D_RX\n",
880 			       hw->name, __func__, fifon);
881 			skb_trim(rx_skb, 0);
882 			spin_unlock_irqrestore(&hw->lock, flags);
883 			return;
884 		}
885 	}
886 
887 	skb_put_data(rx_skb, data, len);
888 
889 	if (hdlc) {
890 		/* we have a complete hdlc packet */
891 		if (finish) {
892 			if ((rx_skb->len > 3) &&
893 			    (!(rx_skb->data[rx_skb->len - 1]))) {
894 				if (debug & DBG_HFC_FIFO_VERBOSE) {
895 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
896 					       " new RX len(%i): ",
897 					       hw->name, __func__, fifon,
898 					       rx_skb->len);
899 					i = 0;
900 					while (i < rx_skb->len)
901 						printk("%02x ",
902 						       rx_skb->data[i++]);
903 					printk("\n");
904 				}
905 
906 				/* remove CRC & status */
907 				skb_trim(rx_skb, rx_skb->len - 3);
908 
909 				if (fifo->dch)
910 					recv_Dchannel(fifo->dch);
911 				if (fifo->bch)
912 					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
913 						      0);
914 				if (fifo->ech)
915 					recv_Echannel(fifo->ech,
916 						      &hw->dch);
917 			} else {
918 				if (debug & DBG_HFC_FIFO_VERBOSE) {
919 					printk(KERN_DEBUG
920 					       "%s: CRC or minlen ERROR fifon(%i) "
921 					       "RX len(%i): ",
922 					       hw->name, fifon, rx_skb->len);
923 					i = 0;
924 					while (i < rx_skb->len)
925 						printk("%02x ",
926 						       rx_skb->data[i++]);
927 					printk("\n");
928 				}
929 				skb_trim(rx_skb, 0);
930 			}
931 		}
932 	} else {
933 		/* deliver transparent data to layer2 */
934 		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
935 	}
936 	spin_unlock_irqrestore(&hw->lock, flags);
937 }
938 
939 static void
940 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
941 	      void *buf, int num_packets, int packet_size, int interval,
942 	      usb_complete_t complete, void *context)
943 {
944 	int k;
945 
946 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
947 			  complete, context);
948 
949 	urb->number_of_packets = num_packets;
950 	urb->transfer_flags = URB_ISO_ASAP;
951 	urb->actual_length = 0;
952 	urb->interval = interval;
953 
954 	for (k = 0; k < num_packets; k++) {
955 		urb->iso_frame_desc[k].offset = packet_size * k;
956 		urb->iso_frame_desc[k].length = packet_size;
957 		urb->iso_frame_desc[k].actual_length = 0;
958 	}
959 }
960 
961 /* receive completion routine for all ISO tx fifos   */
962 static void
963 rx_iso_complete(struct urb *urb)
964 {
965 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
966 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
967 	struct hfcsusb *hw = fifo->hw;
968 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
969 		status, iso_status, i;
970 	__u8 *buf;
971 	static __u8 eof[8];
972 	__u8 s0_state;
973 	unsigned long flags;
974 
975 	fifon = fifo->fifonum;
976 	status = urb->status;
977 
978 	spin_lock_irqsave(&hw->lock, flags);
979 	if (fifo->stop_gracefull) {
980 		fifo->stop_gracefull = 0;
981 		fifo->active = 0;
982 		spin_unlock_irqrestore(&hw->lock, flags);
983 		return;
984 	}
985 	spin_unlock_irqrestore(&hw->lock, flags);
986 
987 	/*
988 	 * ISO transfer only partially completed,
989 	 * look at individual frame status for details
990 	 */
991 	if (status == -EXDEV) {
992 		if (debug & DEBUG_HW)
993 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
994 			       "urb->status %d, fifonum %d\n",
995 			       hw->name, __func__,  status, fifon);
996 
997 		/* clear status, so go on with ISO transfers */
998 		status = 0;
999 	}
1000 
1001 	s0_state = 0;
1002 	if (fifo->active && !status) {
1003 		num_isoc_packets = iso_packets[fifon];
1004 		maxlen = fifo->usb_packet_maxlen;
1005 
1006 		for (k = 0; k < num_isoc_packets; ++k) {
1007 			len = urb->iso_frame_desc[k].actual_length;
1008 			offset = urb->iso_frame_desc[k].offset;
1009 			buf = context_iso_urb->buffer + offset;
1010 			iso_status = urb->iso_frame_desc[k].status;
1011 
1012 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1013 				printk(KERN_DEBUG "%s: %s: "
1014 				       "ISO packet %i, status: %i\n",
1015 				       hw->name, __func__, k, iso_status);
1016 			}
1017 
1018 			/* USB data log for every D ISO in */
1019 			if ((fifon == HFCUSB_D_RX) &&
1020 			    (debug & DBG_HFC_USB_VERBOSE)) {
1021 				printk(KERN_DEBUG
1022 				       "%s: %s: %d (%d/%d) len(%d) ",
1023 				       hw->name, __func__, urb->start_frame,
1024 				       k, num_isoc_packets - 1,
1025 				       len);
1026 				for (i = 0; i < len; i++)
1027 					printk("%x ", buf[i]);
1028 				printk("\n");
1029 			}
1030 
1031 			if (!iso_status) {
1032 				if (fifo->last_urblen != maxlen) {
1033 					/*
1034 					 * save fifo fill-level threshold bits
1035 					 * to use them later in TX ISO URB
1036 					 * completions
1037 					 */
1038 					hw->threshold_mask = buf[1];
1039 
1040 					if (fifon == HFCUSB_D_RX)
1041 						s0_state = (buf[0] >> 4);
1042 
1043 					eof[fifon] = buf[0] & 1;
1044 					if (len > 2)
1045 						hfcsusb_rx_frame(fifo, buf + 2,
1046 								 len - 2, (len < maxlen)
1047 								 ? eof[fifon] : 0);
1048 				} else
1049 					hfcsusb_rx_frame(fifo, buf, len,
1050 							 (len < maxlen) ?
1051 							 eof[fifon] : 0);
1052 				fifo->last_urblen = len;
1053 			}
1054 		}
1055 
1056 		/* signal S0 layer1 state change */
1057 		if ((s0_state) && (hw->initdone) &&
1058 		    (s0_state != hw->dch.state)) {
1059 			hw->dch.state = s0_state;
1060 			schedule_event(&hw->dch, FLG_PHCHANGE);
1061 		}
1062 
1063 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1064 			      context_iso_urb->buffer, num_isoc_packets,
1065 			      fifo->usb_packet_maxlen, fifo->intervall,
1066 			      (usb_complete_t)rx_iso_complete, urb->context);
1067 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1068 		if (errcode < 0) {
1069 			if (debug & DEBUG_HW)
1070 				printk(KERN_DEBUG "%s: %s: error submitting "
1071 				       "ISO URB: %d\n",
1072 				       hw->name, __func__, errcode);
1073 		}
1074 	} else {
1075 		if (status && (debug & DBG_HFC_URB_INFO))
1076 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1077 			       "urb->status %d, fifonum %d\n",
1078 			       hw->name, __func__, status, fifon);
1079 	}
1080 }
1081 
1082 /* receive completion routine for all interrupt rx fifos */
1083 static void
1084 rx_int_complete(struct urb *urb)
1085 {
1086 	int len, status, i;
1087 	__u8 *buf, maxlen, fifon;
1088 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1089 	struct hfcsusb *hw = fifo->hw;
1090 	static __u8 eof[8];
1091 	unsigned long flags;
1092 
1093 	spin_lock_irqsave(&hw->lock, flags);
1094 	if (fifo->stop_gracefull) {
1095 		fifo->stop_gracefull = 0;
1096 		fifo->active = 0;
1097 		spin_unlock_irqrestore(&hw->lock, flags);
1098 		return;
1099 	}
1100 	spin_unlock_irqrestore(&hw->lock, flags);
1101 
1102 	fifon = fifo->fifonum;
1103 	if ((!fifo->active) || (urb->status)) {
1104 		if (debug & DBG_HFC_URB_ERROR)
1105 			printk(KERN_DEBUG
1106 			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1107 			       hw->name, __func__, fifon, urb->status);
1108 
1109 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1110 		return;
1111 	}
1112 	len = urb->actual_length;
1113 	buf = fifo->buffer;
1114 	maxlen = fifo->usb_packet_maxlen;
1115 
1116 	/* USB data log for every D INT in */
1117 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1118 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1119 		       hw->name, __func__, len);
1120 		for (i = 0; i < len; i++)
1121 			printk("%02x ", buf[i]);
1122 		printk("\n");
1123 	}
1124 
1125 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1126 		/* the threshold mask is in the 2nd status byte */
1127 		hw->threshold_mask = buf[1];
1128 
1129 		/* signal S0 layer1 state change */
1130 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1131 			hw->dch.state = (buf[0] >> 4);
1132 			schedule_event(&hw->dch, FLG_PHCHANGE);
1133 		}
1134 
1135 		eof[fifon] = buf[0] & 1;
1136 		/* if we have more than the 2 status bytes -> collect data */
1137 		if (len > 2)
1138 			hfcsusb_rx_frame(fifo, buf + 2,
1139 					 urb->actual_length - 2,
1140 					 (len < maxlen) ? eof[fifon] : 0);
1141 	} else {
1142 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1143 				 (len < maxlen) ? eof[fifon] : 0);
1144 	}
1145 	fifo->last_urblen = urb->actual_length;
1146 
1147 	status = usb_submit_urb(urb, GFP_ATOMIC);
1148 	if (status) {
1149 		if (debug & DEBUG_HW)
1150 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1151 			       hw->name, __func__);
1152 	}
1153 }
1154 
1155 /* transmit completion routine for all ISO tx fifos */
1156 static void
1157 tx_iso_complete(struct urb *urb)
1158 {
1159 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1160 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1161 	struct hfcsusb *hw = fifo->hw;
1162 	struct sk_buff *tx_skb;
1163 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1164 		errcode, hdlc, i;
1165 	int *tx_idx;
1166 	int frame_complete, fifon, status, fillempty = 0;
1167 	__u8 threshbit, *p;
1168 	unsigned long flags;
1169 
1170 	spin_lock_irqsave(&hw->lock, flags);
1171 	if (fifo->stop_gracefull) {
1172 		fifo->stop_gracefull = 0;
1173 		fifo->active = 0;
1174 		spin_unlock_irqrestore(&hw->lock, flags);
1175 		return;
1176 	}
1177 
1178 	if (fifo->dch) {
1179 		tx_skb = fifo->dch->tx_skb;
1180 		tx_idx = &fifo->dch->tx_idx;
1181 		hdlc = 1;
1182 	} else if (fifo->bch) {
1183 		tx_skb = fifo->bch->tx_skb;
1184 		tx_idx = &fifo->bch->tx_idx;
1185 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1186 		if (!tx_skb && !hdlc &&
1187 		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1188 			fillempty = 1;
1189 	} else {
1190 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1191 		       hw->name, __func__);
1192 		spin_unlock_irqrestore(&hw->lock, flags);
1193 		return;
1194 	}
1195 
1196 	fifon = fifo->fifonum;
1197 	status = urb->status;
1198 
1199 	tx_offset = 0;
1200 
1201 	/*
1202 	 * ISO transfer only partially completed,
1203 	 * look at individual frame status for details
1204 	 */
1205 	if (status == -EXDEV) {
1206 		if (debug & DBG_HFC_URB_ERROR)
1207 			printk(KERN_DEBUG "%s: %s: "
1208 			       "-EXDEV (%i) fifon (%d)\n",
1209 			       hw->name, __func__, status, fifon);
1210 
1211 		/* clear status, so go on with ISO transfers */
1212 		status = 0;
1213 	}
1214 
1215 	if (fifo->active && !status) {
1216 		/* is FifoFull-threshold set for our channel? */
1217 		threshbit = (hw->threshold_mask & (1 << fifon));
1218 		num_isoc_packets = iso_packets[fifon];
1219 
1220 		/* predict dataflow to avoid fifo overflow */
1221 		if (fifon >= HFCUSB_D_TX)
1222 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1223 		else
1224 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1225 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1226 			      context_iso_urb->buffer, num_isoc_packets,
1227 			      fifo->usb_packet_maxlen, fifo->intervall,
1228 			      (usb_complete_t)tx_iso_complete, urb->context);
1229 		memset(context_iso_urb->buffer, 0,
1230 		       sizeof(context_iso_urb->buffer));
1231 		frame_complete = 0;
1232 
1233 		for (k = 0; k < num_isoc_packets; ++k) {
1234 			/* analyze tx success of previous ISO packets */
1235 			if (debug & DBG_HFC_URB_ERROR) {
1236 				errcode = urb->iso_frame_desc[k].status;
1237 				if (errcode) {
1238 					printk(KERN_DEBUG "%s: %s: "
1239 					       "ISO packet %i, status: %i\n",
1240 					       hw->name, __func__, k, errcode);
1241 				}
1242 			}
1243 
1244 			/* Generate next ISO Packets */
1245 			if (tx_skb)
1246 				remain = tx_skb->len - *tx_idx;
1247 			else if (fillempty)
1248 				remain = 15; /* > not complete */
1249 			else
1250 				remain = 0;
1251 
1252 			if (remain > 0) {
1253 				fifo->bit_line -= sink;
1254 				current_len = (0 - fifo->bit_line) / 8;
1255 				if (current_len > 14)
1256 					current_len = 14;
1257 				if (current_len < 0)
1258 					current_len = 0;
1259 				if (remain < current_len)
1260 					current_len = remain;
1261 
1262 				/* how much bit do we put on the line? */
1263 				fifo->bit_line += current_len * 8;
1264 
1265 				context_iso_urb->buffer[tx_offset] = 0;
1266 				if (current_len == remain) {
1267 					if (hdlc) {
1268 						/* signal frame completion */
1269 						context_iso_urb->
1270 							buffer[tx_offset] = 1;
1271 						/* add 2 byte flags and 16bit
1272 						 * CRC at end of ISDN frame */
1273 						fifo->bit_line += 32;
1274 					}
1275 					frame_complete = 1;
1276 				}
1277 
1278 				/* copy tx data to iso-urb buffer */
1279 				p = context_iso_urb->buffer + tx_offset + 1;
1280 				if (fillempty) {
1281 					memset(p, fifo->bch->fill[0],
1282 					       current_len);
1283 				} else {
1284 					memcpy(p, (tx_skb->data + *tx_idx),
1285 					       current_len);
1286 					*tx_idx += current_len;
1287 				}
1288 				urb->iso_frame_desc[k].offset = tx_offset;
1289 				urb->iso_frame_desc[k].length = current_len + 1;
1290 
1291 				/* USB data log for every D ISO out */
1292 				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1293 				    (debug & DBG_HFC_USB_VERBOSE)) {
1294 					printk(KERN_DEBUG
1295 					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1296 					       hw->name, __func__,
1297 					       k, num_isoc_packets - 1,
1298 					       urb->iso_frame_desc[k].offset,
1299 					       urb->iso_frame_desc[k].length);
1300 
1301 					for (i = urb->iso_frame_desc[k].offset;
1302 					     i < (urb->iso_frame_desc[k].offset
1303 						  + urb->iso_frame_desc[k].length);
1304 					     i++)
1305 						printk("%x ",
1306 						       context_iso_urb->buffer[i]);
1307 
1308 					printk(" skb->len(%i) tx-idx(%d)\n",
1309 					       tx_skb->len, *tx_idx);
1310 				}
1311 
1312 				tx_offset += (current_len + 1);
1313 			} else {
1314 				urb->iso_frame_desc[k].offset = tx_offset++;
1315 				urb->iso_frame_desc[k].length = 1;
1316 				/* we lower data margin every msec */
1317 				fifo->bit_line -= sink;
1318 				if (fifo->bit_line < BITLINE_INF)
1319 					fifo->bit_line = BITLINE_INF;
1320 			}
1321 
1322 			if (frame_complete) {
1323 				frame_complete = 0;
1324 
1325 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1326 					printk(KERN_DEBUG  "%s: %s: "
1327 					       "fifon(%i) new TX len(%i): ",
1328 					       hw->name, __func__,
1329 					       fifon, tx_skb->len);
1330 					i = 0;
1331 					while (i < tx_skb->len)
1332 						printk("%02x ",
1333 						       tx_skb->data[i++]);
1334 					printk("\n");
1335 				}
1336 
1337 				dev_consume_skb_irq(tx_skb);
1338 				tx_skb = NULL;
1339 				if (fifo->dch && get_next_dframe(fifo->dch))
1340 					tx_skb = fifo->dch->tx_skb;
1341 				else if (fifo->bch &&
1342 					 get_next_bframe(fifo->bch))
1343 					tx_skb = fifo->bch->tx_skb;
1344 			}
1345 		}
1346 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1347 		if (errcode < 0) {
1348 			if (debug & DEBUG_HW)
1349 				printk(KERN_DEBUG
1350 				       "%s: %s: error submitting ISO URB: %d \n",
1351 				       hw->name, __func__, errcode);
1352 		}
1353 
1354 		/*
1355 		 * abuse DChannel tx iso completion to trigger NT mode state
1356 		 * changes tx_iso_complete is assumed to be called every
1357 		 * fifo->intervall (ms)
1358 		 */
1359 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1360 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1361 			if ((--hw->nt_timer) < 0)
1362 				schedule_event(&hw->dch, FLG_PHCHANGE);
1363 		}
1364 
1365 	} else {
1366 		if (status && (debug & DBG_HFC_URB_ERROR))
1367 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1368 			       "fifonum=%d\n",
1369 			       hw->name, __func__,
1370 			       symbolic(urb_errlist, status), status, fifon);
1371 	}
1372 	spin_unlock_irqrestore(&hw->lock, flags);
1373 }
1374 
1375 /*
1376  * allocs urbs and start isoc transfer with two pending urbs to avoid
1377  * gaps in the transfer chain
1378  */
1379 static int
1380 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1381 		 usb_complete_t complete, int packet_size)
1382 {
1383 	struct hfcsusb *hw = fifo->hw;
1384 	int i, k, errcode;
1385 
1386 	if (debug)
1387 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1388 		       hw->name, __func__, fifo->fifonum);
1389 
1390 	/* allocate Memory for Iso out Urbs */
1391 	for (i = 0; i < 2; i++) {
1392 		if (!(fifo->iso[i].urb)) {
1393 			fifo->iso[i].urb =
1394 				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1395 			if (!(fifo->iso[i].urb)) {
1396 				printk(KERN_DEBUG
1397 				       "%s: %s: alloc urb for fifo %i failed",
1398 				       hw->name, __func__, fifo->fifonum);
1399 				continue;
1400 			}
1401 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1402 			fifo->iso[i].indx = i;
1403 
1404 			/* Init the first iso */
1405 			if (ISO_BUFFER_SIZE >=
1406 			    (fifo->usb_packet_maxlen *
1407 			     num_packets_per_urb)) {
1408 				fill_isoc_urb(fifo->iso[i].urb,
1409 					      fifo->hw->dev, fifo->pipe,
1410 					      fifo->iso[i].buffer,
1411 					      num_packets_per_urb,
1412 					      fifo->usb_packet_maxlen,
1413 					      fifo->intervall, complete,
1414 					      &fifo->iso[i]);
1415 				memset(fifo->iso[i].buffer, 0,
1416 				       sizeof(fifo->iso[i].buffer));
1417 
1418 				for (k = 0; k < num_packets_per_urb; k++) {
1419 					fifo->iso[i].urb->
1420 						iso_frame_desc[k].offset =
1421 						k * packet_size;
1422 					fifo->iso[i].urb->
1423 						iso_frame_desc[k].length =
1424 						packet_size;
1425 				}
1426 			} else {
1427 				printk(KERN_DEBUG
1428 				       "%s: %s: ISO Buffer size to small!\n",
1429 				       hw->name, __func__);
1430 			}
1431 		}
1432 		fifo->bit_line = BITLINE_INF;
1433 
1434 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1435 		fifo->active = (errcode >= 0) ? 1 : 0;
1436 		fifo->stop_gracefull = 0;
1437 		if (errcode < 0) {
1438 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1439 			       hw->name, __func__,
1440 			       symbolic(urb_errlist, errcode), i);
1441 		}
1442 	}
1443 	return fifo->active;
1444 }
1445 
1446 static void
1447 stop_iso_gracefull(struct usb_fifo *fifo)
1448 {
1449 	struct hfcsusb *hw = fifo->hw;
1450 	int i, timeout;
1451 	u_long flags;
1452 
1453 	for (i = 0; i < 2; i++) {
1454 		spin_lock_irqsave(&hw->lock, flags);
1455 		if (debug)
1456 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1457 			       hw->name, __func__, fifo->fifonum, i);
1458 		fifo->stop_gracefull = 1;
1459 		spin_unlock_irqrestore(&hw->lock, flags);
1460 	}
1461 
1462 	for (i = 0; i < 2; i++) {
1463 		timeout = 3;
1464 		while (fifo->stop_gracefull && timeout--)
1465 			schedule_timeout_interruptible((HZ / 1000) * 16);
1466 		if (debug && fifo->stop_gracefull)
1467 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1468 			       hw->name, __func__, fifo->fifonum, i);
1469 	}
1470 }
1471 
1472 static void
1473 stop_int_gracefull(struct usb_fifo *fifo)
1474 {
1475 	struct hfcsusb *hw = fifo->hw;
1476 	int timeout;
1477 	u_long flags;
1478 
1479 	spin_lock_irqsave(&hw->lock, flags);
1480 	if (debug)
1481 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1482 		       hw->name, __func__, fifo->fifonum);
1483 	fifo->stop_gracefull = 1;
1484 	spin_unlock_irqrestore(&hw->lock, flags);
1485 
1486 	timeout = 3;
1487 	while (fifo->stop_gracefull && timeout--)
1488 		schedule_timeout_interruptible((HZ / 1000) * 3);
1489 	if (debug && fifo->stop_gracefull)
1490 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1491 		       hw->name, __func__, fifo->fifonum);
1492 }
1493 
1494 /* start the interrupt transfer for the given fifo */
1495 static void
1496 start_int_fifo(struct usb_fifo *fifo)
1497 {
1498 	struct hfcsusb *hw = fifo->hw;
1499 	int errcode;
1500 
1501 	if (debug)
1502 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1503 		       hw->name, __func__, fifo->fifonum);
1504 
1505 	if (!fifo->urb) {
1506 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1507 		if (!fifo->urb)
1508 			return;
1509 	}
1510 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1511 			 fifo->buffer, fifo->usb_packet_maxlen,
1512 			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1513 	fifo->active = 1;
1514 	fifo->stop_gracefull = 0;
1515 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1516 	if (errcode) {
1517 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1518 		       hw->name, __func__, errcode);
1519 		fifo->active = 0;
1520 	}
1521 }
1522 
1523 static void
1524 setPortMode(struct hfcsusb *hw)
1525 {
1526 	if (debug & DEBUG_HW)
1527 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1528 		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1529 
1530 	if (hw->protocol == ISDN_P_TE_S0) {
1531 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1532 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1533 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1534 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1535 		write_reg(hw, HFCUSB_STATES, 3);
1536 	} else {
1537 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1538 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1539 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1540 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1541 		write_reg(hw, HFCUSB_STATES, 1);
1542 	}
1543 }
1544 
1545 static void
1546 reset_hfcsusb(struct hfcsusb *hw)
1547 {
1548 	struct usb_fifo *fifo;
1549 	int i;
1550 
1551 	if (debug & DEBUG_HW)
1552 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1553 
1554 	/* do Chip reset */
1555 	write_reg(hw, HFCUSB_CIRM, 8);
1556 
1557 	/* aux = output, reset off */
1558 	write_reg(hw, HFCUSB_CIRM, 0x10);
1559 
1560 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1561 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1562 		  ((hw->packet_size / 8) << 4));
1563 
1564 	/* set USB_SIZE_I to match the wMaxPacketSize for ISO transfers */
1565 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1566 
1567 	/* enable PCM/GCI master mode */
1568 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1569 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1570 
1571 	/* init the fifos */
1572 	write_reg(hw, HFCUSB_F_THRES,
1573 		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1574 
1575 	fifo = hw->fifos;
1576 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1577 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1578 		fifo[i].max_size =
1579 			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1580 		fifo[i].last_urblen = 0;
1581 
1582 		/* set 2 bit for D- & E-channel */
1583 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1584 
1585 		/* enable all fifos */
1586 		if (i == HFCUSB_D_TX)
1587 			write_reg(hw, HFCUSB_CON_HDLC,
1588 				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1589 		else
1590 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1591 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1592 	}
1593 
1594 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1595 	handle_led(hw, LED_POWER_ON);
1596 }
1597 
1598 /* start USB data pipes dependand on device's endpoint configuration */
1599 static void
1600 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1601 {
1602 	/* quick check if endpoint already running */
1603 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1604 		return;
1605 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1606 		return;
1607 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1608 		return;
1609 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1610 		return;
1611 
1612 	/* start rx endpoints using USB INT IN method */
1613 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1614 		start_int_fifo(hw->fifos + channel * 2 + 1);
1615 
1616 	/* start rx endpoints using USB ISO IN method */
1617 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1618 		switch (channel) {
1619 		case HFC_CHAN_D:
1620 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1621 					 ISOC_PACKETS_D,
1622 					 (usb_complete_t)rx_iso_complete,
1623 					 16);
1624 			break;
1625 		case HFC_CHAN_E:
1626 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1627 					 ISOC_PACKETS_D,
1628 					 (usb_complete_t)rx_iso_complete,
1629 					 16);
1630 			break;
1631 		case HFC_CHAN_B1:
1632 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1633 					 ISOC_PACKETS_B,
1634 					 (usb_complete_t)rx_iso_complete,
1635 					 16);
1636 			break;
1637 		case HFC_CHAN_B2:
1638 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1639 					 ISOC_PACKETS_B,
1640 					 (usb_complete_t)rx_iso_complete,
1641 					 16);
1642 			break;
1643 		}
1644 	}
1645 
1646 	/* start tx endpoints using USB ISO OUT method */
1647 	switch (channel) {
1648 	case HFC_CHAN_D:
1649 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1650 				 ISOC_PACKETS_B,
1651 				 (usb_complete_t)tx_iso_complete, 1);
1652 		break;
1653 	case HFC_CHAN_B1:
1654 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1655 				 ISOC_PACKETS_D,
1656 				 (usb_complete_t)tx_iso_complete, 1);
1657 		break;
1658 	case HFC_CHAN_B2:
1659 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1660 				 ISOC_PACKETS_B,
1661 				 (usb_complete_t)tx_iso_complete, 1);
1662 		break;
1663 	}
1664 }
1665 
1666 /* stop USB data pipes dependand on device's endpoint configuration */
1667 static void
1668 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1669 {
1670 	/* quick check if endpoint currently running */
1671 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1672 		return;
1673 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1674 		return;
1675 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1676 		return;
1677 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1678 		return;
1679 
1680 	/* rx endpoints using USB INT IN method */
1681 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1682 		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1683 
1684 	/* rx endpoints using USB ISO IN method */
1685 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1686 		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1687 
1688 	/* tx endpoints using USB ISO OUT method */
1689 	if (channel != HFC_CHAN_E)
1690 		stop_iso_gracefull(hw->fifos + channel * 2);
1691 }
1692 
1693 
1694 /* Hardware Initialization */
1695 static int
1696 setup_hfcsusb(struct hfcsusb *hw)
1697 {
1698 	void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1699 	u_char b;
1700 	int ret;
1701 
1702 	if (debug & DBG_HFC_CALL_TRACE)
1703 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1704 
1705 	if (!dmabuf)
1706 		return -ENOMEM;
1707 
1708 	ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1709 
1710 	memcpy(&b, dmabuf, sizeof(u_char));
1711 	kfree(dmabuf);
1712 
1713 	/* check the chip id */
1714 	if (ret != 1) {
1715 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1716 		       hw->name, __func__);
1717 		return 1;
1718 	}
1719 	if (b != HFCUSB_CHIPID) {
1720 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1721 		       hw->name, __func__, b);
1722 		return 1;
1723 	}
1724 
1725 	/* first set the needed config, interface and alternate */
1726 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1727 
1728 	hw->led_state = 0;
1729 
1730 	/* init the background machinery for control requests */
1731 	hw->ctrl_read.bRequestType = 0xc0;
1732 	hw->ctrl_read.bRequest = 1;
1733 	hw->ctrl_read.wLength = cpu_to_le16(1);
1734 	hw->ctrl_write.bRequestType = 0x40;
1735 	hw->ctrl_write.bRequest = 0;
1736 	hw->ctrl_write.wLength = 0;
1737 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1738 			     (u_char *)&hw->ctrl_write, NULL, 0,
1739 			     (usb_complete_t)ctrl_complete, hw);
1740 
1741 	reset_hfcsusb(hw);
1742 	return 0;
1743 }
1744 
1745 static void
1746 release_hw(struct hfcsusb *hw)
1747 {
1748 	if (debug & DBG_HFC_CALL_TRACE)
1749 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1750 
1751 	/*
1752 	 * stop all endpoints gracefully
1753 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1754 	 *       signals after calling mISDN_unregister_device()
1755 	 */
1756 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1757 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1758 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1759 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1760 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1761 	if (hw->protocol == ISDN_P_TE_S0)
1762 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1763 
1764 	mISDN_unregister_device(&hw->dch.dev);
1765 	mISDN_freebchannel(&hw->bch[1]);
1766 	mISDN_freebchannel(&hw->bch[0]);
1767 	mISDN_freedchannel(&hw->dch);
1768 
1769 	if (hw->ctrl_urb) {
1770 		usb_kill_urb(hw->ctrl_urb);
1771 		usb_free_urb(hw->ctrl_urb);
1772 		hw->ctrl_urb = NULL;
1773 	}
1774 
1775 	if (hw->intf)
1776 		usb_set_intfdata(hw->intf, NULL);
1777 	list_del(&hw->list);
1778 	kfree(hw);
1779 	hw = NULL;
1780 }
1781 
1782 static void
1783 deactivate_bchannel(struct bchannel *bch)
1784 {
1785 	struct hfcsusb *hw = bch->hw;
1786 	u_long flags;
1787 
1788 	if (bch->debug & DEBUG_HW)
1789 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1790 		       hw->name, __func__, bch->nr);
1791 
1792 	spin_lock_irqsave(&hw->lock, flags);
1793 	mISDN_clear_bchannel(bch);
1794 	spin_unlock_irqrestore(&hw->lock, flags);
1795 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1796 	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1797 }
1798 
1799 /*
1800  * Layer 1 B-channel hardware access
1801  */
1802 static int
1803 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1804 {
1805 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1806 	int		ret = -EINVAL;
1807 
1808 	if (bch->debug & DEBUG_HW)
1809 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1810 
1811 	switch (cmd) {
1812 	case HW_TESTRX_RAW:
1813 	case HW_TESTRX_HDLC:
1814 	case HW_TESTRX_OFF:
1815 		ret = -EINVAL;
1816 		break;
1817 
1818 	case CLOSE_CHANNEL:
1819 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1820 		deactivate_bchannel(bch);
1821 		ch->protocol = ISDN_P_NONE;
1822 		ch->peer = NULL;
1823 		module_put(THIS_MODULE);
1824 		ret = 0;
1825 		break;
1826 	case CONTROL_CHANNEL:
1827 		ret = channel_bctrl(bch, arg);
1828 		break;
1829 	default:
1830 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1831 		       __func__, cmd);
1832 	}
1833 	return ret;
1834 }
1835 
1836 static int
1837 setup_instance(struct hfcsusb *hw, struct device *parent)
1838 {
1839 	u_long	flags;
1840 	int	err, i;
1841 
1842 	if (debug & DBG_HFC_CALL_TRACE)
1843 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1844 
1845 	spin_lock_init(&hw->ctrl_lock);
1846 	spin_lock_init(&hw->lock);
1847 
1848 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1849 	hw->dch.debug = debug & 0xFFFF;
1850 	hw->dch.hw = hw;
1851 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1852 	hw->dch.dev.D.send = hfcusb_l2l1D;
1853 	hw->dch.dev.D.ctrl = hfc_dctrl;
1854 
1855 	/* enable E-Channel logging */
1856 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1857 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1858 
1859 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1860 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1861 	hw->dch.dev.nrbchan = 2;
1862 	for (i = 0; i < 2; i++) {
1863 		hw->bch[i].nr = i + 1;
1864 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1865 		hw->bch[i].debug = debug;
1866 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1867 		hw->bch[i].hw = hw;
1868 		hw->bch[i].ch.send = hfcusb_l2l1B;
1869 		hw->bch[i].ch.ctrl = hfc_bctrl;
1870 		hw->bch[i].ch.nr = i + 1;
1871 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1872 	}
1873 
1874 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1875 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1876 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1877 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1878 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1879 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1880 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1881 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1882 
1883 	err = setup_hfcsusb(hw);
1884 	if (err)
1885 		goto out;
1886 
1887 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1888 		 hfcsusb_cnt + 1);
1889 	printk(KERN_INFO "%s: registered as '%s'\n",
1890 	       DRIVER_NAME, hw->name);
1891 
1892 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1893 	if (err)
1894 		goto out;
1895 
1896 	hfcsusb_cnt++;
1897 	write_lock_irqsave(&HFClock, flags);
1898 	list_add_tail(&hw->list, &HFClist);
1899 	write_unlock_irqrestore(&HFClock, flags);
1900 	return 0;
1901 
1902 out:
1903 	mISDN_freebchannel(&hw->bch[1]);
1904 	mISDN_freebchannel(&hw->bch[0]);
1905 	mISDN_freedchannel(&hw->dch);
1906 	kfree(hw);
1907 	return err;
1908 }
1909 
1910 static int
1911 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1912 {
1913 	struct hfcsusb			*hw;
1914 	struct usb_device		*dev = interface_to_usbdev(intf);
1915 	struct usb_host_interface	*iface = intf->cur_altsetting;
1916 	struct usb_host_interface	*iface_used = NULL;
1917 	struct usb_host_endpoint	*ep;
1918 	struct hfcsusb_vdata		*driver_info;
1919 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1920 		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1921 		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1922 		alt_used = 0;
1923 
1924 	vend_idx = 0xffff;
1925 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1926 		if ((le16_to_cpu(dev->descriptor.idVendor)
1927 		     == hfcsusb_idtab[i].idVendor) &&
1928 		    (le16_to_cpu(dev->descriptor.idProduct)
1929 		     == hfcsusb_idtab[i].idProduct)) {
1930 			vend_idx = i;
1931 			continue;
1932 		}
1933 	}
1934 
1935 	printk(KERN_DEBUG
1936 	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1937 	       __func__, ifnum, iface->desc.bAlternateSetting,
1938 	       intf->minor, vend_idx);
1939 
1940 	if (vend_idx == 0xffff) {
1941 		printk(KERN_WARNING
1942 		       "%s: no valid vendor found in USB descriptor\n",
1943 		       __func__);
1944 		return -EIO;
1945 	}
1946 	/* if vendor and product ID is OK, start probing alternate settings */
1947 	alt_idx = 0;
1948 	small_match = -1;
1949 
1950 	/* default settings */
1951 	iso_packet_size = 16;
1952 	packet_size = 64;
1953 
1954 	while (alt_idx < intf->num_altsetting) {
1955 		iface = intf->altsetting + alt_idx;
1956 		probe_alt_setting = iface->desc.bAlternateSetting;
1957 		cfg_used = 0;
1958 
1959 		while (validconf[cfg_used][0]) {
1960 			cfg_found = 1;
1961 			vcf = validconf[cfg_used];
1962 			ep = iface->endpoint;
1963 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1964 
1965 			/* check for all endpoints in this alternate setting */
1966 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1967 				ep_addr = ep->desc.bEndpointAddress;
1968 
1969 				/* get endpoint base */
1970 				idx = ((ep_addr & 0x7f) - 1) * 2;
1971 				if (idx > 15)
1972 					return -EIO;
1973 
1974 				if (ep_addr & 0x80)
1975 					idx++;
1976 				attr = ep->desc.bmAttributes;
1977 
1978 				if (cmptbl[idx] != EP_NOP) {
1979 					if (cmptbl[idx] == EP_NUL)
1980 						cfg_found = 0;
1981 					if (attr == USB_ENDPOINT_XFER_INT
1982 					    && cmptbl[idx] == EP_INT)
1983 						cmptbl[idx] = EP_NUL;
1984 					if (attr == USB_ENDPOINT_XFER_BULK
1985 					    && cmptbl[idx] == EP_BLK)
1986 						cmptbl[idx] = EP_NUL;
1987 					if (attr == USB_ENDPOINT_XFER_ISOC
1988 					    && cmptbl[idx] == EP_ISO)
1989 						cmptbl[idx] = EP_NUL;
1990 
1991 					if (attr == USB_ENDPOINT_XFER_INT &&
1992 					    ep->desc.bInterval < vcf[17]) {
1993 						cfg_found = 0;
1994 					}
1995 				}
1996 				ep++;
1997 			}
1998 
1999 			for (i = 0; i < 16; i++)
2000 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2001 					cfg_found = 0;
2002 
2003 			if (cfg_found) {
2004 				if (small_match < cfg_used) {
2005 					small_match = cfg_used;
2006 					alt_used = probe_alt_setting;
2007 					iface_used = iface;
2008 				}
2009 			}
2010 			cfg_used++;
2011 		}
2012 		alt_idx++;
2013 	}	/* (alt_idx < intf->num_altsetting) */
2014 
2015 	/* not found a valid USB Ta Endpoint config */
2016 	if (small_match == -1)
2017 		return -EIO;
2018 
2019 	iface = iface_used;
2020 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2021 	if (!hw)
2022 		return -ENOMEM;	/* got no mem */
2023 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2024 
2025 	ep = iface->endpoint;
2026 	vcf = validconf[small_match];
2027 
2028 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2029 		struct usb_fifo *f;
2030 
2031 		ep_addr = ep->desc.bEndpointAddress;
2032 		/* get endpoint base */
2033 		idx = ((ep_addr & 0x7f) - 1) * 2;
2034 		if (ep_addr & 0x80)
2035 			idx++;
2036 		f = &hw->fifos[idx & 7];
2037 
2038 		/* init Endpoints */
2039 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2040 			ep++;
2041 			continue;
2042 		}
2043 		switch (ep->desc.bmAttributes) {
2044 		case USB_ENDPOINT_XFER_INT:
2045 			f->pipe = usb_rcvintpipe(dev,
2046 						 ep->desc.bEndpointAddress);
2047 			f->usb_transfer_mode = USB_INT;
2048 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2049 			break;
2050 		case USB_ENDPOINT_XFER_BULK:
2051 			if (ep_addr & 0x80)
2052 				f->pipe = usb_rcvbulkpipe(dev,
2053 							  ep->desc.bEndpointAddress);
2054 			else
2055 				f->pipe = usb_sndbulkpipe(dev,
2056 							  ep->desc.bEndpointAddress);
2057 			f->usb_transfer_mode = USB_BULK;
2058 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2059 			break;
2060 		case USB_ENDPOINT_XFER_ISOC:
2061 			if (ep_addr & 0x80)
2062 				f->pipe = usb_rcvisocpipe(dev,
2063 							  ep->desc.bEndpointAddress);
2064 			else
2065 				f->pipe = usb_sndisocpipe(dev,
2066 							  ep->desc.bEndpointAddress);
2067 			f->usb_transfer_mode = USB_ISOC;
2068 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2069 			break;
2070 		default:
2071 			f->pipe = 0;
2072 		}
2073 
2074 		if (f->pipe) {
2075 			f->fifonum = idx & 7;
2076 			f->hw = hw;
2077 			f->usb_packet_maxlen =
2078 				le16_to_cpu(ep->desc.wMaxPacketSize);
2079 			f->intervall = ep->desc.bInterval;
2080 		}
2081 		ep++;
2082 	}
2083 	hw->dev = dev; /* save device */
2084 	hw->if_used = ifnum; /* save used interface */
2085 	hw->alt_used = alt_used; /* and alternate config */
2086 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2087 	hw->cfg_used = vcf[16];	/* store used config */
2088 	hw->vend_idx = vend_idx; /* store found vendor */
2089 	hw->packet_size = packet_size;
2090 	hw->iso_packet_size = iso_packet_size;
2091 
2092 	/* create the control pipes needed for register access */
2093 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2094 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2095 
2096 	driver_info = (struct hfcsusb_vdata *)
2097 		      hfcsusb_idtab[vend_idx].driver_info;
2098 
2099 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2100 	if (!hw->ctrl_urb) {
2101 		pr_warn("%s: No memory for control urb\n",
2102 			driver_info->vend_name);
2103 		kfree(hw);
2104 		return -ENOMEM;
2105 	}
2106 
2107 	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2108 		hw->name, __func__, driver_info->vend_name,
2109 		conf_str[small_match], ifnum, alt_used);
2110 
2111 	if (setup_instance(hw, dev->dev.parent))
2112 		return -EIO;
2113 
2114 	hw->intf = intf;
2115 	usb_set_intfdata(hw->intf, hw);
2116 	return 0;
2117 }
2118 
2119 /* function called when an active device is removed */
2120 static void
2121 hfcsusb_disconnect(struct usb_interface *intf)
2122 {
2123 	struct hfcsusb *hw = usb_get_intfdata(intf);
2124 	struct hfcsusb *next;
2125 	int cnt = 0;
2126 
2127 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2128 
2129 	handle_led(hw, LED_POWER_OFF);
2130 	release_hw(hw);
2131 
2132 	list_for_each_entry_safe(hw, next, &HFClist, list)
2133 		cnt++;
2134 	if (!cnt)
2135 		hfcsusb_cnt = 0;
2136 
2137 	usb_set_intfdata(intf, NULL);
2138 }
2139 
2140 static struct usb_driver hfcsusb_drv = {
2141 	.name = DRIVER_NAME,
2142 	.id_table = hfcsusb_idtab,
2143 	.probe = hfcsusb_probe,
2144 	.disconnect = hfcsusb_disconnect,
2145 	.disable_hub_initiated_lpm = 1,
2146 };
2147 
2148 module_usb_driver(hfcsusb_drv);
2149