1 /* hfcsusb.c
2  * mISDN driver for Colognechip HFC-S USB chip
3  *
4  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
5  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  *
22  * module params
23  *   debug=<n>, default=0, with n=0xHHHHGGGG
24  *      H - l1 driver flags described in hfcsusb.h
25  *      G - common mISDN debug flags described at mISDNhw.h
26  *
27  *   poll=<n>, default 128
28  *     n : burst size of PH_DATA_IND at transparent rx data
29  *
30  * Revision: 0.3.3 (socket), 2008-11-05
31  */
32 
33 #include <linux/module.h>
34 #include <linux/delay.h>
35 #include <linux/usb.h>
36 #include <linux/mISDNhw.h>
37 #include <linux/slab.h>
38 #include "hfcsusb.h"
39 
40 static unsigned int debug;
41 static int poll = DEFAULT_TRANSP_BURST_SZ;
42 
43 static LIST_HEAD(HFClist);
44 static DEFINE_RWLOCK(HFClock);
45 
46 
47 MODULE_AUTHOR("Martin Bachem");
48 MODULE_LICENSE("GPL");
49 module_param(debug, uint, S_IRUGO | S_IWUSR);
50 module_param(poll, int, 0);
51 
52 static int hfcsusb_cnt;
53 
54 /* some function prototypes */
55 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
56 static void release_hw(struct hfcsusb *hw);
57 static void reset_hfcsusb(struct hfcsusb *hw);
58 static void setPortMode(struct hfcsusb *hw);
59 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
60 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
61 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
62 static void deactivate_bchannel(struct bchannel *bch);
63 static void hfcsusb_ph_info(struct hfcsusb *hw);
64 
65 /* start next background transfer for control channel */
66 static void
67 ctrl_start_transfer(struct hfcsusb *hw)
68 {
69 	if (debug & DBG_HFC_CALL_TRACE)
70 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
71 
72 	if (hw->ctrl_cnt) {
73 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
74 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
75 		hw->ctrl_urb->transfer_buffer = NULL;
76 		hw->ctrl_urb->transfer_buffer_length = 0;
77 		hw->ctrl_write.wIndex =
78 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
79 		hw->ctrl_write.wValue =
80 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
81 
82 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
83 	}
84 }
85 
86 /*
87  * queue a control transfer request to write HFC-S USB
88  * chip register using CTRL resuest queue
89  */
90 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
91 {
92 	struct ctrl_buf *buf;
93 
94 	if (debug & DBG_HFC_CALL_TRACE)
95 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
96 		       hw->name, __func__, reg, val);
97 
98 	spin_lock(&hw->ctrl_lock);
99 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
100 		spin_unlock(&hw->ctrl_lock);
101 		return 1;
102 	}
103 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
104 	buf->hfcs_reg = reg;
105 	buf->reg_val = val;
106 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
107 		hw->ctrl_in_idx = 0;
108 	if (++hw->ctrl_cnt == 1)
109 		ctrl_start_transfer(hw);
110 	spin_unlock(&hw->ctrl_lock);
111 
112 	return 0;
113 }
114 
115 /* control completion routine handling background control cmds */
116 static void
117 ctrl_complete(struct urb *urb)
118 {
119 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
120 
121 	if (debug & DBG_HFC_CALL_TRACE)
122 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
123 
124 	urb->dev = hw->dev;
125 	if (hw->ctrl_cnt) {
126 		hw->ctrl_cnt--;	/* decrement actual count */
127 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
128 			hw->ctrl_out_idx = 0;	/* pointer wrap */
129 
130 		ctrl_start_transfer(hw); /* start next transfer */
131 	}
132 }
133 
134 /* handle LED bits   */
135 static void
136 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
137 {
138 	if (set_on) {
139 		if (led_bits < 0)
140 			hw->led_state &= ~abs(led_bits);
141 		else
142 			hw->led_state |= led_bits;
143 	} else {
144 		if (led_bits < 0)
145 			hw->led_state |= abs(led_bits);
146 		else
147 			hw->led_state &= ~led_bits;
148 	}
149 }
150 
151 /* handle LED requests  */
152 static void
153 handle_led(struct hfcsusb *hw, int event)
154 {
155 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
156 		hfcsusb_idtab[hw->vend_idx].driver_info;
157 	__u8 tmpled;
158 
159 	if (driver_info->led_scheme == LED_OFF)
160 		return;
161 	tmpled = hw->led_state;
162 
163 	switch (event) {
164 	case LED_POWER_ON:
165 		set_led_bit(hw, driver_info->led_bits[0], 1);
166 		set_led_bit(hw, driver_info->led_bits[1], 0);
167 		set_led_bit(hw, driver_info->led_bits[2], 0);
168 		set_led_bit(hw, driver_info->led_bits[3], 0);
169 		break;
170 	case LED_POWER_OFF:
171 		set_led_bit(hw, driver_info->led_bits[0], 0);
172 		set_led_bit(hw, driver_info->led_bits[1], 0);
173 		set_led_bit(hw, driver_info->led_bits[2], 0);
174 		set_led_bit(hw, driver_info->led_bits[3], 0);
175 		break;
176 	case LED_S0_ON:
177 		set_led_bit(hw, driver_info->led_bits[1], 1);
178 		break;
179 	case LED_S0_OFF:
180 		set_led_bit(hw, driver_info->led_bits[1], 0);
181 		break;
182 	case LED_B1_ON:
183 		set_led_bit(hw, driver_info->led_bits[2], 1);
184 		break;
185 	case LED_B1_OFF:
186 		set_led_bit(hw, driver_info->led_bits[2], 0);
187 		break;
188 	case LED_B2_ON:
189 		set_led_bit(hw, driver_info->led_bits[3], 1);
190 		break;
191 	case LED_B2_OFF:
192 		set_led_bit(hw, driver_info->led_bits[3], 0);
193 		break;
194 	}
195 
196 	if (hw->led_state != tmpled) {
197 		if (debug & DBG_HFC_CALL_TRACE)
198 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
199 			       hw->name, __func__,
200 			       HFCUSB_P_DATA, hw->led_state);
201 
202 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
203 	}
204 }
205 
206 /*
207  * Layer2 -> Layer 1 Bchannel data
208  */
209 static int
210 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
211 {
212 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
213 	struct hfcsusb		*hw = bch->hw;
214 	int			ret = -EINVAL;
215 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
216 	u_long			flags;
217 
218 	if (debug & DBG_HFC_CALL_TRACE)
219 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
220 
221 	switch (hh->prim) {
222 	case PH_DATA_REQ:
223 		spin_lock_irqsave(&hw->lock, flags);
224 		ret = bchannel_senddata(bch, skb);
225 		spin_unlock_irqrestore(&hw->lock, flags);
226 		if (debug & DBG_HFC_CALL_TRACE)
227 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
228 			       hw->name, __func__, ret);
229 		if (ret > 0)
230 			ret = 0;
231 		return ret;
232 	case PH_ACTIVATE_REQ:
233 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
234 			hfcsusb_start_endpoint(hw, bch->nr - 1);
235 			ret = hfcsusb_setup_bch(bch, ch->protocol);
236 		} else
237 			ret = 0;
238 		if (!ret)
239 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
240 				    0, NULL, GFP_KERNEL);
241 		break;
242 	case PH_DEACTIVATE_REQ:
243 		deactivate_bchannel(bch);
244 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
245 			    0, NULL, GFP_KERNEL);
246 		ret = 0;
247 		break;
248 	}
249 	if (!ret)
250 		dev_kfree_skb(skb);
251 	return ret;
252 }
253 
254 /*
255  * send full D/B channel status information
256  * as MPH_INFORMATION_IND
257  */
258 static void
259 hfcsusb_ph_info(struct hfcsusb *hw)
260 {
261 	struct ph_info *phi;
262 	struct dchannel *dch = &hw->dch;
263 	int i;
264 
265 	phi = kzalloc(sizeof(struct ph_info) +
266 		      dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
267 	phi->dch.ch.protocol = hw->protocol;
268 	phi->dch.ch.Flags = dch->Flags;
269 	phi->dch.state = dch->state;
270 	phi->dch.num_bch = dch->dev.nrbchan;
271 	for (i = 0; i < dch->dev.nrbchan; i++) {
272 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
273 		phi->bch[i].Flags = hw->bch[i].Flags;
274 	}
275 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
276 		    sizeof(struct ph_info_dch) + dch->dev.nrbchan *
277 		    sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
278 	kfree(phi);
279 }
280 
281 /*
282  * Layer2 -> Layer 1 Dchannel data
283  */
284 static int
285 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
286 {
287 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
288 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
289 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
290 	struct hfcsusb		*hw = dch->hw;
291 	int			ret = -EINVAL;
292 	u_long			flags;
293 
294 	switch (hh->prim) {
295 	case PH_DATA_REQ:
296 		if (debug & DBG_HFC_CALL_TRACE)
297 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
298 			       hw->name, __func__);
299 
300 		spin_lock_irqsave(&hw->lock, flags);
301 		ret = dchannel_senddata(dch, skb);
302 		spin_unlock_irqrestore(&hw->lock, flags);
303 		if (ret > 0) {
304 			ret = 0;
305 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
306 		}
307 		break;
308 
309 	case PH_ACTIVATE_REQ:
310 		if (debug & DBG_HFC_CALL_TRACE)
311 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
312 			       hw->name, __func__,
313 			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
314 
315 		if (hw->protocol == ISDN_P_NT_S0) {
316 			ret = 0;
317 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
318 				_queue_data(&dch->dev.D,
319 					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
320 					    NULL, GFP_ATOMIC);
321 			} else {
322 				hfcsusb_ph_command(hw,
323 						   HFC_L1_ACTIVATE_NT);
324 				test_and_set_bit(FLG_L2_ACTIVATED,
325 						 &dch->Flags);
326 			}
327 		} else {
328 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
329 			ret = l1_event(dch->l1, hh->prim);
330 		}
331 		break;
332 
333 	case PH_DEACTIVATE_REQ:
334 		if (debug & DBG_HFC_CALL_TRACE)
335 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
336 			       hw->name, __func__);
337 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
338 
339 		if (hw->protocol == ISDN_P_NT_S0) {
340 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
341 			spin_lock_irqsave(&hw->lock, flags);
342 			skb_queue_purge(&dch->squeue);
343 			if (dch->tx_skb) {
344 				dev_kfree_skb(dch->tx_skb);
345 				dch->tx_skb = NULL;
346 			}
347 			dch->tx_idx = 0;
348 			if (dch->rx_skb) {
349 				dev_kfree_skb(dch->rx_skb);
350 				dch->rx_skb = NULL;
351 			}
352 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
353 			spin_unlock_irqrestore(&hw->lock, flags);
354 #ifdef FIXME
355 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
356 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
357 #endif
358 			ret = 0;
359 		} else
360 			ret = l1_event(dch->l1, hh->prim);
361 		break;
362 	case MPH_INFORMATION_REQ:
363 		hfcsusb_ph_info(hw);
364 		ret = 0;
365 		break;
366 	}
367 
368 	return ret;
369 }
370 
371 /*
372  * Layer 1 callback function
373  */
374 static int
375 hfc_l1callback(struct dchannel *dch, u_int cmd)
376 {
377 	struct hfcsusb *hw = dch->hw;
378 
379 	if (debug & DBG_HFC_CALL_TRACE)
380 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
381 		       hw->name, __func__, cmd);
382 
383 	switch (cmd) {
384 	case INFO3_P8:
385 	case INFO3_P10:
386 	case HW_RESET_REQ:
387 	case HW_POWERUP_REQ:
388 		break;
389 
390 	case HW_DEACT_REQ:
391 		skb_queue_purge(&dch->squeue);
392 		if (dch->tx_skb) {
393 			dev_kfree_skb(dch->tx_skb);
394 			dch->tx_skb = NULL;
395 		}
396 		dch->tx_idx = 0;
397 		if (dch->rx_skb) {
398 			dev_kfree_skb(dch->rx_skb);
399 			dch->rx_skb = NULL;
400 		}
401 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
402 		break;
403 	case PH_ACTIVATE_IND:
404 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
405 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
406 			    GFP_ATOMIC);
407 		break;
408 	case PH_DEACTIVATE_IND:
409 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
410 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
411 			    GFP_ATOMIC);
412 		break;
413 	default:
414 		if (dch->debug & DEBUG_HW)
415 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
416 			       hw->name, __func__, cmd);
417 		return -1;
418 	}
419 	hfcsusb_ph_info(hw);
420 	return 0;
421 }
422 
423 static int
424 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
425 	      struct channel_req *rq)
426 {
427 	int err = 0;
428 
429 	if (debug & DEBUG_HW_OPEN)
430 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
431 		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
432 		       __builtin_return_address(0));
433 	if (rq->protocol == ISDN_P_NONE)
434 		return -EINVAL;
435 
436 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
437 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
438 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
439 
440 	/* E-Channel logging */
441 	if (rq->adr.channel == 1) {
442 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
443 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
444 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
445 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
446 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
447 		} else
448 			return -EINVAL;
449 	}
450 
451 	if (!hw->initdone) {
452 		hw->protocol = rq->protocol;
453 		if (rq->protocol == ISDN_P_TE_S0) {
454 			err = create_l1(&hw->dch, hfc_l1callback);
455 			if (err)
456 				return err;
457 		}
458 		setPortMode(hw);
459 		ch->protocol = rq->protocol;
460 		hw->initdone = 1;
461 	} else {
462 		if (rq->protocol != ch->protocol)
463 			return -EPROTONOSUPPORT;
464 	}
465 
466 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
467 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
468 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
469 			    0, NULL, GFP_KERNEL);
470 	rq->ch = ch;
471 	if (!try_module_get(THIS_MODULE))
472 		printk(KERN_WARNING "%s: %s: cannot get module\n",
473 		       hw->name, __func__);
474 	return 0;
475 }
476 
477 static int
478 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
479 {
480 	struct bchannel		*bch;
481 
482 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
483 		return -EINVAL;
484 	if (rq->protocol == ISDN_P_NONE)
485 		return -EINVAL;
486 
487 	if (debug & DBG_HFC_CALL_TRACE)
488 		printk(KERN_DEBUG "%s: %s B%i\n",
489 		       hw->name, __func__, rq->adr.channel);
490 
491 	bch = &hw->bch[rq->adr.channel - 1];
492 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
493 		return -EBUSY; /* b-channel can be only open once */
494 	bch->ch.protocol = rq->protocol;
495 	rq->ch = &bch->ch;
496 
497 	if (!try_module_get(THIS_MODULE))
498 		printk(KERN_WARNING "%s: %s:cannot get module\n",
499 		       hw->name, __func__);
500 	return 0;
501 }
502 
503 static int
504 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
505 {
506 	int ret = 0;
507 
508 	if (debug & DBG_HFC_CALL_TRACE)
509 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
510 		       hw->name, __func__, (cq->op), (cq->channel));
511 
512 	switch (cq->op) {
513 	case MISDN_CTRL_GETOP:
514 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
515 			MISDN_CTRL_DISCONNECT;
516 		break;
517 	default:
518 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
519 		       hw->name, __func__, cq->op);
520 		ret = -EINVAL;
521 		break;
522 	}
523 	return ret;
524 }
525 
526 /*
527  * device control function
528  */
529 static int
530 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
531 {
532 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
533 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
534 	struct hfcsusb		*hw = dch->hw;
535 	struct channel_req	*rq;
536 	int			err = 0;
537 
538 	if (dch->debug & DEBUG_HW)
539 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
540 		       hw->name, __func__, cmd, arg);
541 	switch (cmd) {
542 	case OPEN_CHANNEL:
543 		rq = arg;
544 		if ((rq->protocol == ISDN_P_TE_S0) ||
545 		    (rq->protocol == ISDN_P_NT_S0))
546 			err = open_dchannel(hw, ch, rq);
547 		else
548 			err = open_bchannel(hw, rq);
549 		if (!err)
550 			hw->open++;
551 		break;
552 	case CLOSE_CHANNEL:
553 		hw->open--;
554 		if (debug & DEBUG_HW_OPEN)
555 			printk(KERN_DEBUG
556 			       "%s: %s: dev(%d) close from %p (open %d)\n",
557 			       hw->name, __func__, hw->dch.dev.id,
558 			       __builtin_return_address(0), hw->open);
559 		if (!hw->open) {
560 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
561 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
562 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
563 			handle_led(hw, LED_POWER_ON);
564 		}
565 		module_put(THIS_MODULE);
566 		break;
567 	case CONTROL_CHANNEL:
568 		err = channel_ctrl(hw, arg);
569 		break;
570 	default:
571 		if (dch->debug & DEBUG_HW)
572 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
573 			       hw->name, __func__, cmd);
574 		return -EINVAL;
575 	}
576 	return err;
577 }
578 
579 /*
580  * S0 TE state change event handler
581  */
582 static void
583 ph_state_te(struct dchannel *dch)
584 {
585 	struct hfcsusb *hw = dch->hw;
586 
587 	if (debug & DEBUG_HW) {
588 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
589 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
590 			       HFC_TE_LAYER1_STATES[dch->state]);
591 		else
592 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
593 			       hw->name, __func__, dch->state);
594 	}
595 
596 	switch (dch->state) {
597 	case 0:
598 		l1_event(dch->l1, HW_RESET_IND);
599 		break;
600 	case 3:
601 		l1_event(dch->l1, HW_DEACT_IND);
602 		break;
603 	case 5:
604 	case 8:
605 		l1_event(dch->l1, ANYSIGNAL);
606 		break;
607 	case 6:
608 		l1_event(dch->l1, INFO2);
609 		break;
610 	case 7:
611 		l1_event(dch->l1, INFO4_P8);
612 		break;
613 	}
614 	if (dch->state == 7)
615 		handle_led(hw, LED_S0_ON);
616 	else
617 		handle_led(hw, LED_S0_OFF);
618 }
619 
620 /*
621  * S0 NT state change event handler
622  */
623 static void
624 ph_state_nt(struct dchannel *dch)
625 {
626 	struct hfcsusb *hw = dch->hw;
627 
628 	if (debug & DEBUG_HW) {
629 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
630 			printk(KERN_DEBUG "%s: %s: %s\n",
631 			       hw->name, __func__,
632 			       HFC_NT_LAYER1_STATES[dch->state]);
633 
634 		else
635 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
636 			       hw->name, __func__, dch->state);
637 	}
638 
639 	switch (dch->state) {
640 	case (1):
641 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
642 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
643 		hw->nt_timer = 0;
644 		hw->timers &= ~NT_ACTIVATION_TIMER;
645 		handle_led(hw, LED_S0_OFF);
646 		break;
647 
648 	case (2):
649 		if (hw->nt_timer < 0) {
650 			hw->nt_timer = 0;
651 			hw->timers &= ~NT_ACTIVATION_TIMER;
652 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
653 		} else {
654 			hw->timers |= NT_ACTIVATION_TIMER;
655 			hw->nt_timer = NT_T1_COUNT;
656 			/* allow G2 -> G3 transition */
657 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
658 		}
659 		break;
660 	case (3):
661 		hw->nt_timer = 0;
662 		hw->timers &= ~NT_ACTIVATION_TIMER;
663 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
664 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
665 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
666 		handle_led(hw, LED_S0_ON);
667 		break;
668 	case (4):
669 		hw->nt_timer = 0;
670 		hw->timers &= ~NT_ACTIVATION_TIMER;
671 		break;
672 	default:
673 		break;
674 	}
675 	hfcsusb_ph_info(hw);
676 }
677 
678 static void
679 ph_state(struct dchannel *dch)
680 {
681 	struct hfcsusb *hw = dch->hw;
682 
683 	if (hw->protocol == ISDN_P_NT_S0)
684 		ph_state_nt(dch);
685 	else if (hw->protocol == ISDN_P_TE_S0)
686 		ph_state_te(dch);
687 }
688 
689 /*
690  * disable/enable BChannel for desired protocoll
691  */
692 static int
693 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
694 {
695 	struct hfcsusb *hw = bch->hw;
696 	__u8 conhdlc, sctrl, sctrl_r;
697 
698 	if (debug & DEBUG_HW)
699 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
700 		       hw->name, __func__, bch->state, protocol,
701 		       bch->nr);
702 
703 	/* setup val for CON_HDLC */
704 	conhdlc = 0;
705 	if (protocol > ISDN_P_NONE)
706 		conhdlc = 8;	/* enable FIFO */
707 
708 	switch (protocol) {
709 	case (-1):	/* used for init */
710 		bch->state = -1;
711 		/* fall through */
712 	case (ISDN_P_NONE):
713 		if (bch->state == ISDN_P_NONE)
714 			return 0; /* already in idle state */
715 		bch->state = ISDN_P_NONE;
716 		clear_bit(FLG_HDLC, &bch->Flags);
717 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
718 		break;
719 	case (ISDN_P_B_RAW):
720 		conhdlc |= 2;
721 		bch->state = protocol;
722 		set_bit(FLG_TRANSPARENT, &bch->Flags);
723 		break;
724 	case (ISDN_P_B_HDLC):
725 		bch->state = protocol;
726 		set_bit(FLG_HDLC, &bch->Flags);
727 		break;
728 	default:
729 		if (debug & DEBUG_HW)
730 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
731 			       hw->name, __func__, protocol);
732 		return -ENOPROTOOPT;
733 	}
734 
735 	if (protocol >= ISDN_P_NONE) {
736 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
737 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
738 		write_reg(hw, HFCUSB_INC_RES_F, 2);
739 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
740 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
741 		write_reg(hw, HFCUSB_INC_RES_F, 2);
742 
743 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
744 		sctrl_r = 0x0;
745 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
746 			sctrl |= 1;
747 			sctrl_r |= 1;
748 		}
749 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
750 			sctrl |= 2;
751 			sctrl_r |= 2;
752 		}
753 		write_reg(hw, HFCUSB_SCTRL, sctrl);
754 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
755 
756 		if (protocol > ISDN_P_NONE)
757 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
758 		else
759 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
760 				   LED_B2_OFF);
761 	}
762 	hfcsusb_ph_info(hw);
763 	return 0;
764 }
765 
766 static void
767 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
768 {
769 	if (debug & DEBUG_HW)
770 		printk(KERN_DEBUG "%s: %s: %x\n",
771 		       hw->name, __func__, command);
772 
773 	switch (command) {
774 	case HFC_L1_ACTIVATE_TE:
775 		/* force sending sending INFO1 */
776 		write_reg(hw, HFCUSB_STATES, 0x14);
777 		/* start l1 activation */
778 		write_reg(hw, HFCUSB_STATES, 0x04);
779 		break;
780 
781 	case HFC_L1_FORCE_DEACTIVATE_TE:
782 		write_reg(hw, HFCUSB_STATES, 0x10);
783 		write_reg(hw, HFCUSB_STATES, 0x03);
784 		break;
785 
786 	case HFC_L1_ACTIVATE_NT:
787 		if (hw->dch.state == 3)
788 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
789 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
790 		else
791 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
792 				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
793 		break;
794 
795 	case HFC_L1_DEACTIVATE_NT:
796 		write_reg(hw, HFCUSB_STATES,
797 			  HFCUSB_DO_ACTION);
798 		break;
799 	}
800 }
801 
802 /*
803  * Layer 1 B-channel hardware access
804  */
805 static int
806 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
807 {
808 	return mISDN_ctrl_bchannel(bch, cq);
809 }
810 
811 /* collect data from incoming interrupt or isochron USB data */
812 static void
813 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
814 		 int finish)
815 {
816 	struct hfcsusb	*hw = fifo->hw;
817 	struct sk_buff	*rx_skb = NULL;
818 	int		maxlen = 0;
819 	int		fifon = fifo->fifonum;
820 	int		i;
821 	int		hdlc = 0;
822 
823 	if (debug & DBG_HFC_CALL_TRACE)
824 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
825 		       "dch(%p) bch(%p) ech(%p)\n",
826 		       hw->name, __func__, fifon, len,
827 		       fifo->dch, fifo->bch, fifo->ech);
828 
829 	if (!len)
830 		return;
831 
832 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
833 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
834 		       hw->name, __func__);
835 		return;
836 	}
837 
838 	spin_lock(&hw->lock);
839 	if (fifo->dch) {
840 		rx_skb = fifo->dch->rx_skb;
841 		maxlen = fifo->dch->maxlen;
842 		hdlc = 1;
843 	}
844 	if (fifo->bch) {
845 		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
846 			fifo->bch->dropcnt += len;
847 			spin_unlock(&hw->lock);
848 			return;
849 		}
850 		maxlen = bchannel_get_rxbuf(fifo->bch, len);
851 		rx_skb = fifo->bch->rx_skb;
852 		if (maxlen < 0) {
853 			if (rx_skb)
854 				skb_trim(rx_skb, 0);
855 			pr_warning("%s.B%d: No bufferspace for %d bytes\n",
856 				   hw->name, fifo->bch->nr, len);
857 			spin_unlock(&hw->lock);
858 			return;
859 		}
860 		maxlen = fifo->bch->maxlen;
861 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
862 	}
863 	if (fifo->ech) {
864 		rx_skb = fifo->ech->rx_skb;
865 		maxlen = fifo->ech->maxlen;
866 		hdlc = 1;
867 	}
868 
869 	if (fifo->dch || fifo->ech) {
870 		if (!rx_skb) {
871 			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
872 			if (rx_skb) {
873 				if (fifo->dch)
874 					fifo->dch->rx_skb = rx_skb;
875 				if (fifo->ech)
876 					fifo->ech->rx_skb = rx_skb;
877 				skb_trim(rx_skb, 0);
878 			} else {
879 				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
880 				       hw->name, __func__);
881 				spin_unlock(&hw->lock);
882 				return;
883 			}
884 		}
885 		/* D/E-Channel SKB range check */
886 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
887 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
888 			       "for fifo(%d) HFCUSB_D_RX\n",
889 			       hw->name, __func__, fifon);
890 			skb_trim(rx_skb, 0);
891 			spin_unlock(&hw->lock);
892 			return;
893 		}
894 	}
895 
896 	memcpy(skb_put(rx_skb, len), data, len);
897 
898 	if (hdlc) {
899 		/* we have a complete hdlc packet */
900 		if (finish) {
901 			if ((rx_skb->len > 3) &&
902 			    (!(rx_skb->data[rx_skb->len - 1]))) {
903 				if (debug & DBG_HFC_FIFO_VERBOSE) {
904 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
905 					       " new RX len(%i): ",
906 					       hw->name, __func__, fifon,
907 					       rx_skb->len);
908 					i = 0;
909 					while (i < rx_skb->len)
910 						printk("%02x ",
911 						       rx_skb->data[i++]);
912 					printk("\n");
913 				}
914 
915 				/* remove CRC & status */
916 				skb_trim(rx_skb, rx_skb->len - 3);
917 
918 				if (fifo->dch)
919 					recv_Dchannel(fifo->dch);
920 				if (fifo->bch)
921 					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
922 						      0);
923 				if (fifo->ech)
924 					recv_Echannel(fifo->ech,
925 						      &hw->dch);
926 			} else {
927 				if (debug & DBG_HFC_FIFO_VERBOSE) {
928 					printk(KERN_DEBUG
929 					       "%s: CRC or minlen ERROR fifon(%i) "
930 					       "RX len(%i): ",
931 					       hw->name, fifon, rx_skb->len);
932 					i = 0;
933 					while (i < rx_skb->len)
934 						printk("%02x ",
935 						       rx_skb->data[i++]);
936 					printk("\n");
937 				}
938 				skb_trim(rx_skb, 0);
939 			}
940 		}
941 	} else {
942 		/* deliver transparent data to layer2 */
943 		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
944 	}
945 	spin_unlock(&hw->lock);
946 }
947 
948 static void
949 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
950 	      void *buf, int num_packets, int packet_size, int interval,
951 	      usb_complete_t complete, void *context)
952 {
953 	int k;
954 
955 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
956 			  complete, context);
957 
958 	urb->number_of_packets = num_packets;
959 	urb->transfer_flags = URB_ISO_ASAP;
960 	urb->actual_length = 0;
961 	urb->interval = interval;
962 
963 	for (k = 0; k < num_packets; k++) {
964 		urb->iso_frame_desc[k].offset = packet_size * k;
965 		urb->iso_frame_desc[k].length = packet_size;
966 		urb->iso_frame_desc[k].actual_length = 0;
967 	}
968 }
969 
970 /* receive completion routine for all ISO tx fifos   */
971 static void
972 rx_iso_complete(struct urb *urb)
973 {
974 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
975 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
976 	struct hfcsusb *hw = fifo->hw;
977 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
978 		status, iso_status, i;
979 	__u8 *buf;
980 	static __u8 eof[8];
981 	__u8 s0_state;
982 
983 	fifon = fifo->fifonum;
984 	status = urb->status;
985 
986 	spin_lock(&hw->lock);
987 	if (fifo->stop_gracefull) {
988 		fifo->stop_gracefull = 0;
989 		fifo->active = 0;
990 		spin_unlock(&hw->lock);
991 		return;
992 	}
993 	spin_unlock(&hw->lock);
994 
995 	/*
996 	 * ISO transfer only partially completed,
997 	 * look at individual frame status for details
998 	 */
999 	if (status == -EXDEV) {
1000 		if (debug & DEBUG_HW)
1001 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
1002 			       "urb->status %d, fifonum %d\n",
1003 			       hw->name, __func__,  status, fifon);
1004 
1005 		/* clear status, so go on with ISO transfers */
1006 		status = 0;
1007 	}
1008 
1009 	s0_state = 0;
1010 	if (fifo->active && !status) {
1011 		num_isoc_packets = iso_packets[fifon];
1012 		maxlen = fifo->usb_packet_maxlen;
1013 
1014 		for (k = 0; k < num_isoc_packets; ++k) {
1015 			len = urb->iso_frame_desc[k].actual_length;
1016 			offset = urb->iso_frame_desc[k].offset;
1017 			buf = context_iso_urb->buffer + offset;
1018 			iso_status = urb->iso_frame_desc[k].status;
1019 
1020 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1021 				printk(KERN_DEBUG "%s: %s: "
1022 				       "ISO packet %i, status: %i\n",
1023 				       hw->name, __func__, k, iso_status);
1024 			}
1025 
1026 			/* USB data log for every D ISO in */
1027 			if ((fifon == HFCUSB_D_RX) &&
1028 			    (debug & DBG_HFC_USB_VERBOSE)) {
1029 				printk(KERN_DEBUG
1030 				       "%s: %s: %d (%d/%d) len(%d) ",
1031 				       hw->name, __func__, urb->start_frame,
1032 				       k, num_isoc_packets - 1,
1033 				       len);
1034 				for (i = 0; i < len; i++)
1035 					printk("%x ", buf[i]);
1036 				printk("\n");
1037 			}
1038 
1039 			if (!iso_status) {
1040 				if (fifo->last_urblen != maxlen) {
1041 					/*
1042 					 * save fifo fill-level threshold bits
1043 					 * to use them later in TX ISO URB
1044 					 * completions
1045 					 */
1046 					hw->threshold_mask = buf[1];
1047 
1048 					if (fifon == HFCUSB_D_RX)
1049 						s0_state = (buf[0] >> 4);
1050 
1051 					eof[fifon] = buf[0] & 1;
1052 					if (len > 2)
1053 						hfcsusb_rx_frame(fifo, buf + 2,
1054 								 len - 2, (len < maxlen)
1055 								 ? eof[fifon] : 0);
1056 				} else
1057 					hfcsusb_rx_frame(fifo, buf, len,
1058 							 (len < maxlen) ?
1059 							 eof[fifon] : 0);
1060 				fifo->last_urblen = len;
1061 			}
1062 		}
1063 
1064 		/* signal S0 layer1 state change */
1065 		if ((s0_state) && (hw->initdone) &&
1066 		    (s0_state != hw->dch.state)) {
1067 			hw->dch.state = s0_state;
1068 			schedule_event(&hw->dch, FLG_PHCHANGE);
1069 		}
1070 
1071 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1072 			      context_iso_urb->buffer, num_isoc_packets,
1073 			      fifo->usb_packet_maxlen, fifo->intervall,
1074 			      (usb_complete_t)rx_iso_complete, urb->context);
1075 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1076 		if (errcode < 0) {
1077 			if (debug & DEBUG_HW)
1078 				printk(KERN_DEBUG "%s: %s: error submitting "
1079 				       "ISO URB: %d\n",
1080 				       hw->name, __func__, errcode);
1081 		}
1082 	} else {
1083 		if (status && (debug & DBG_HFC_URB_INFO))
1084 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1085 			       "urb->status %d, fifonum %d\n",
1086 			       hw->name, __func__, status, fifon);
1087 	}
1088 }
1089 
1090 /* receive completion routine for all interrupt rx fifos */
1091 static void
1092 rx_int_complete(struct urb *urb)
1093 {
1094 	int len, status, i;
1095 	__u8 *buf, maxlen, fifon;
1096 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1097 	struct hfcsusb *hw = fifo->hw;
1098 	static __u8 eof[8];
1099 
1100 	spin_lock(&hw->lock);
1101 	if (fifo->stop_gracefull) {
1102 		fifo->stop_gracefull = 0;
1103 		fifo->active = 0;
1104 		spin_unlock(&hw->lock);
1105 		return;
1106 	}
1107 	spin_unlock(&hw->lock);
1108 
1109 	fifon = fifo->fifonum;
1110 	if ((!fifo->active) || (urb->status)) {
1111 		if (debug & DBG_HFC_URB_ERROR)
1112 			printk(KERN_DEBUG
1113 			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1114 			       hw->name, __func__, fifon, urb->status);
1115 
1116 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1117 		return;
1118 	}
1119 	len = urb->actual_length;
1120 	buf = fifo->buffer;
1121 	maxlen = fifo->usb_packet_maxlen;
1122 
1123 	/* USB data log for every D INT in */
1124 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1125 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1126 		       hw->name, __func__, len);
1127 		for (i = 0; i < len; i++)
1128 			printk("%02x ", buf[i]);
1129 		printk("\n");
1130 	}
1131 
1132 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1133 		/* the threshold mask is in the 2nd status byte */
1134 		hw->threshold_mask = buf[1];
1135 
1136 		/* signal S0 layer1 state change */
1137 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1138 			hw->dch.state = (buf[0] >> 4);
1139 			schedule_event(&hw->dch, FLG_PHCHANGE);
1140 		}
1141 
1142 		eof[fifon] = buf[0] & 1;
1143 		/* if we have more than the 2 status bytes -> collect data */
1144 		if (len > 2)
1145 			hfcsusb_rx_frame(fifo, buf + 2,
1146 					 urb->actual_length - 2,
1147 					 (len < maxlen) ? eof[fifon] : 0);
1148 	} else {
1149 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1150 				 (len < maxlen) ? eof[fifon] : 0);
1151 	}
1152 	fifo->last_urblen = urb->actual_length;
1153 
1154 	status = usb_submit_urb(urb, GFP_ATOMIC);
1155 	if (status) {
1156 		if (debug & DEBUG_HW)
1157 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1158 			       hw->name, __func__);
1159 	}
1160 }
1161 
1162 /* transmit completion routine for all ISO tx fifos */
1163 static void
1164 tx_iso_complete(struct urb *urb)
1165 {
1166 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1167 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1168 	struct hfcsusb *hw = fifo->hw;
1169 	struct sk_buff *tx_skb;
1170 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1171 		errcode, hdlc, i;
1172 	int *tx_idx;
1173 	int frame_complete, fifon, status, fillempty = 0;
1174 	__u8 threshbit, *p;
1175 
1176 	spin_lock(&hw->lock);
1177 	if (fifo->stop_gracefull) {
1178 		fifo->stop_gracefull = 0;
1179 		fifo->active = 0;
1180 		spin_unlock(&hw->lock);
1181 		return;
1182 	}
1183 
1184 	if (fifo->dch) {
1185 		tx_skb = fifo->dch->tx_skb;
1186 		tx_idx = &fifo->dch->tx_idx;
1187 		hdlc = 1;
1188 	} else if (fifo->bch) {
1189 		tx_skb = fifo->bch->tx_skb;
1190 		tx_idx = &fifo->bch->tx_idx;
1191 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1192 		if (!tx_skb && !hdlc &&
1193 		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1194 			fillempty = 1;
1195 	} else {
1196 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1197 		       hw->name, __func__);
1198 		spin_unlock(&hw->lock);
1199 		return;
1200 	}
1201 
1202 	fifon = fifo->fifonum;
1203 	status = urb->status;
1204 
1205 	tx_offset = 0;
1206 
1207 	/*
1208 	 * ISO transfer only partially completed,
1209 	 * look at individual frame status for details
1210 	 */
1211 	if (status == -EXDEV) {
1212 		if (debug & DBG_HFC_URB_ERROR)
1213 			printk(KERN_DEBUG "%s: %s: "
1214 			       "-EXDEV (%i) fifon (%d)\n",
1215 			       hw->name, __func__, status, fifon);
1216 
1217 		/* clear status, so go on with ISO transfers */
1218 		status = 0;
1219 	}
1220 
1221 	if (fifo->active && !status) {
1222 		/* is FifoFull-threshold set for our channel? */
1223 		threshbit = (hw->threshold_mask & (1 << fifon));
1224 		num_isoc_packets = iso_packets[fifon];
1225 
1226 		/* predict dataflow to avoid fifo overflow */
1227 		if (fifon >= HFCUSB_D_TX)
1228 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1229 		else
1230 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1231 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1232 			      context_iso_urb->buffer, num_isoc_packets,
1233 			      fifo->usb_packet_maxlen, fifo->intervall,
1234 			      (usb_complete_t)tx_iso_complete, urb->context);
1235 		memset(context_iso_urb->buffer, 0,
1236 		       sizeof(context_iso_urb->buffer));
1237 		frame_complete = 0;
1238 
1239 		for (k = 0; k < num_isoc_packets; ++k) {
1240 			/* analyze tx success of previous ISO packets */
1241 			if (debug & DBG_HFC_URB_ERROR) {
1242 				errcode = urb->iso_frame_desc[k].status;
1243 				if (errcode) {
1244 					printk(KERN_DEBUG "%s: %s: "
1245 					       "ISO packet %i, status: %i\n",
1246 					       hw->name, __func__, k, errcode);
1247 				}
1248 			}
1249 
1250 			/* Generate next ISO Packets */
1251 			if (tx_skb)
1252 				remain = tx_skb->len - *tx_idx;
1253 			else if (fillempty)
1254 				remain = 15; /* > not complete */
1255 			else
1256 				remain = 0;
1257 
1258 			if (remain > 0) {
1259 				fifo->bit_line -= sink;
1260 				current_len = (0 - fifo->bit_line) / 8;
1261 				if (current_len > 14)
1262 					current_len = 14;
1263 				if (current_len < 0)
1264 					current_len = 0;
1265 				if (remain < current_len)
1266 					current_len = remain;
1267 
1268 				/* how much bit do we put on the line? */
1269 				fifo->bit_line += current_len * 8;
1270 
1271 				context_iso_urb->buffer[tx_offset] = 0;
1272 				if (current_len == remain) {
1273 					if (hdlc) {
1274 						/* signal frame completion */
1275 						context_iso_urb->
1276 							buffer[tx_offset] = 1;
1277 						/* add 2 byte flags and 16bit
1278 						 * CRC at end of ISDN frame */
1279 						fifo->bit_line += 32;
1280 					}
1281 					frame_complete = 1;
1282 				}
1283 
1284 				/* copy tx data to iso-urb buffer */
1285 				p = context_iso_urb->buffer + tx_offset + 1;
1286 				if (fillempty) {
1287 					memset(p, fifo->bch->fill[0],
1288 					       current_len);
1289 				} else {
1290 					memcpy(p, (tx_skb->data + *tx_idx),
1291 					       current_len);
1292 					*tx_idx += current_len;
1293 				}
1294 				urb->iso_frame_desc[k].offset = tx_offset;
1295 				urb->iso_frame_desc[k].length = current_len + 1;
1296 
1297 				/* USB data log for every D ISO out */
1298 				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1299 				    (debug & DBG_HFC_USB_VERBOSE)) {
1300 					printk(KERN_DEBUG
1301 					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1302 					       hw->name, __func__,
1303 					       k, num_isoc_packets - 1,
1304 					       urb->iso_frame_desc[k].offset,
1305 					       urb->iso_frame_desc[k].length);
1306 
1307 					for (i = urb->iso_frame_desc[k].offset;
1308 					     i < (urb->iso_frame_desc[k].offset
1309 						  + urb->iso_frame_desc[k].length);
1310 					     i++)
1311 						printk("%x ",
1312 						       context_iso_urb->buffer[i]);
1313 
1314 					printk(" skb->len(%i) tx-idx(%d)\n",
1315 					       tx_skb->len, *tx_idx);
1316 				}
1317 
1318 				tx_offset += (current_len + 1);
1319 			} else {
1320 				urb->iso_frame_desc[k].offset = tx_offset++;
1321 				urb->iso_frame_desc[k].length = 1;
1322 				/* we lower data margin every msec */
1323 				fifo->bit_line -= sink;
1324 				if (fifo->bit_line < BITLINE_INF)
1325 					fifo->bit_line = BITLINE_INF;
1326 			}
1327 
1328 			if (frame_complete) {
1329 				frame_complete = 0;
1330 
1331 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1332 					printk(KERN_DEBUG  "%s: %s: "
1333 					       "fifon(%i) new TX len(%i): ",
1334 					       hw->name, __func__,
1335 					       fifon, tx_skb->len);
1336 					i = 0;
1337 					while (i < tx_skb->len)
1338 						printk("%02x ",
1339 						       tx_skb->data[i++]);
1340 					printk("\n");
1341 				}
1342 
1343 				dev_kfree_skb(tx_skb);
1344 				tx_skb = NULL;
1345 				if (fifo->dch && get_next_dframe(fifo->dch))
1346 					tx_skb = fifo->dch->tx_skb;
1347 				else if (fifo->bch &&
1348 					 get_next_bframe(fifo->bch))
1349 					tx_skb = fifo->bch->tx_skb;
1350 			}
1351 		}
1352 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1353 		if (errcode < 0) {
1354 			if (debug & DEBUG_HW)
1355 				printk(KERN_DEBUG
1356 				       "%s: %s: error submitting ISO URB: %d \n",
1357 				       hw->name, __func__, errcode);
1358 		}
1359 
1360 		/*
1361 		 * abuse DChannel tx iso completion to trigger NT mode state
1362 		 * changes tx_iso_complete is assumed to be called every
1363 		 * fifo->intervall (ms)
1364 		 */
1365 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1366 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1367 			if ((--hw->nt_timer) < 0)
1368 				schedule_event(&hw->dch, FLG_PHCHANGE);
1369 		}
1370 
1371 	} else {
1372 		if (status && (debug & DBG_HFC_URB_ERROR))
1373 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1374 			       "fifonum=%d\n",
1375 			       hw->name, __func__,
1376 			       symbolic(urb_errlist, status), status, fifon);
1377 	}
1378 	spin_unlock(&hw->lock);
1379 }
1380 
1381 /*
1382  * allocs urbs and start isoc transfer with two pending urbs to avoid
1383  * gaps in the transfer chain
1384  */
1385 static int
1386 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1387 		 usb_complete_t complete, int packet_size)
1388 {
1389 	struct hfcsusb *hw = fifo->hw;
1390 	int i, k, errcode;
1391 
1392 	if (debug)
1393 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1394 		       hw->name, __func__, fifo->fifonum);
1395 
1396 	/* allocate Memory for Iso out Urbs */
1397 	for (i = 0; i < 2; i++) {
1398 		if (!(fifo->iso[i].urb)) {
1399 			fifo->iso[i].urb =
1400 				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1401 			if (!(fifo->iso[i].urb)) {
1402 				printk(KERN_DEBUG
1403 				       "%s: %s: alloc urb for fifo %i failed",
1404 				       hw->name, __func__, fifo->fifonum);
1405 			}
1406 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1407 			fifo->iso[i].indx = i;
1408 
1409 			/* Init the first iso */
1410 			if (ISO_BUFFER_SIZE >=
1411 			    (fifo->usb_packet_maxlen *
1412 			     num_packets_per_urb)) {
1413 				fill_isoc_urb(fifo->iso[i].urb,
1414 					      fifo->hw->dev, fifo->pipe,
1415 					      fifo->iso[i].buffer,
1416 					      num_packets_per_urb,
1417 					      fifo->usb_packet_maxlen,
1418 					      fifo->intervall, complete,
1419 					      &fifo->iso[i]);
1420 				memset(fifo->iso[i].buffer, 0,
1421 				       sizeof(fifo->iso[i].buffer));
1422 
1423 				for (k = 0; k < num_packets_per_urb; k++) {
1424 					fifo->iso[i].urb->
1425 						iso_frame_desc[k].offset =
1426 						k * packet_size;
1427 					fifo->iso[i].urb->
1428 						iso_frame_desc[k].length =
1429 						packet_size;
1430 				}
1431 			} else {
1432 				printk(KERN_DEBUG
1433 				       "%s: %s: ISO Buffer size to small!\n",
1434 				       hw->name, __func__);
1435 			}
1436 		}
1437 		fifo->bit_line = BITLINE_INF;
1438 
1439 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1440 		fifo->active = (errcode >= 0) ? 1 : 0;
1441 		fifo->stop_gracefull = 0;
1442 		if (errcode < 0) {
1443 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1444 			       hw->name, __func__,
1445 			       symbolic(urb_errlist, errcode), i);
1446 		}
1447 	}
1448 	return fifo->active;
1449 }
1450 
1451 static void
1452 stop_iso_gracefull(struct usb_fifo *fifo)
1453 {
1454 	struct hfcsusb *hw = fifo->hw;
1455 	int i, timeout;
1456 	u_long flags;
1457 
1458 	for (i = 0; i < 2; i++) {
1459 		spin_lock_irqsave(&hw->lock, flags);
1460 		if (debug)
1461 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1462 			       hw->name, __func__, fifo->fifonum, i);
1463 		fifo->stop_gracefull = 1;
1464 		spin_unlock_irqrestore(&hw->lock, flags);
1465 	}
1466 
1467 	for (i = 0; i < 2; i++) {
1468 		timeout = 3;
1469 		while (fifo->stop_gracefull && timeout--)
1470 			schedule_timeout_interruptible((HZ / 1000) * 16);
1471 		if (debug && fifo->stop_gracefull)
1472 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1473 			       hw->name, __func__, fifo->fifonum, i);
1474 	}
1475 }
1476 
1477 static void
1478 stop_int_gracefull(struct usb_fifo *fifo)
1479 {
1480 	struct hfcsusb *hw = fifo->hw;
1481 	int timeout;
1482 	u_long flags;
1483 
1484 	spin_lock_irqsave(&hw->lock, flags);
1485 	if (debug)
1486 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1487 		       hw->name, __func__, fifo->fifonum);
1488 	fifo->stop_gracefull = 1;
1489 	spin_unlock_irqrestore(&hw->lock, flags);
1490 
1491 	timeout = 3;
1492 	while (fifo->stop_gracefull && timeout--)
1493 		schedule_timeout_interruptible((HZ / 1000) * 3);
1494 	if (debug && fifo->stop_gracefull)
1495 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1496 		       hw->name, __func__, fifo->fifonum);
1497 }
1498 
1499 /* start the interrupt transfer for the given fifo */
1500 static void
1501 start_int_fifo(struct usb_fifo *fifo)
1502 {
1503 	struct hfcsusb *hw = fifo->hw;
1504 	int errcode;
1505 
1506 	if (debug)
1507 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1508 		       hw->name, __func__, fifo->fifonum);
1509 
1510 	if (!fifo->urb) {
1511 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1512 		if (!fifo->urb)
1513 			return;
1514 	}
1515 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1516 			 fifo->buffer, fifo->usb_packet_maxlen,
1517 			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1518 	fifo->active = 1;
1519 	fifo->stop_gracefull = 0;
1520 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1521 	if (errcode) {
1522 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1523 		       hw->name, __func__, errcode);
1524 		fifo->active = 0;
1525 	}
1526 }
1527 
1528 static void
1529 setPortMode(struct hfcsusb *hw)
1530 {
1531 	if (debug & DEBUG_HW)
1532 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1533 		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1534 
1535 	if (hw->protocol == ISDN_P_TE_S0) {
1536 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1537 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1538 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1539 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1540 		write_reg(hw, HFCUSB_STATES, 3);
1541 	} else {
1542 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1543 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1544 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1545 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1546 		write_reg(hw, HFCUSB_STATES, 1);
1547 	}
1548 }
1549 
1550 static void
1551 reset_hfcsusb(struct hfcsusb *hw)
1552 {
1553 	struct usb_fifo *fifo;
1554 	int i;
1555 
1556 	if (debug & DEBUG_HW)
1557 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1558 
1559 	/* do Chip reset */
1560 	write_reg(hw, HFCUSB_CIRM, 8);
1561 
1562 	/* aux = output, reset off */
1563 	write_reg(hw, HFCUSB_CIRM, 0x10);
1564 
1565 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1566 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1567 		  ((hw->packet_size / 8) << 4));
1568 
1569 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1570 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1571 
1572 	/* enable PCM/GCI master mode */
1573 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1574 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1575 
1576 	/* init the fifos */
1577 	write_reg(hw, HFCUSB_F_THRES,
1578 		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1579 
1580 	fifo = hw->fifos;
1581 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1582 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1583 		fifo[i].max_size =
1584 			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1585 		fifo[i].last_urblen = 0;
1586 
1587 		/* set 2 bit for D- & E-channel */
1588 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1589 
1590 		/* enable all fifos */
1591 		if (i == HFCUSB_D_TX)
1592 			write_reg(hw, HFCUSB_CON_HDLC,
1593 				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1594 		else
1595 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1596 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1597 	}
1598 
1599 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1600 	handle_led(hw, LED_POWER_ON);
1601 }
1602 
1603 /* start USB data pipes dependand on device's endpoint configuration */
1604 static void
1605 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1606 {
1607 	/* quick check if endpoint already running */
1608 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1609 		return;
1610 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1611 		return;
1612 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1613 		return;
1614 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1615 		return;
1616 
1617 	/* start rx endpoints using USB INT IN method */
1618 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1619 		start_int_fifo(hw->fifos + channel * 2 + 1);
1620 
1621 	/* start rx endpoints using USB ISO IN method */
1622 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1623 		switch (channel) {
1624 		case HFC_CHAN_D:
1625 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1626 					 ISOC_PACKETS_D,
1627 					 (usb_complete_t)rx_iso_complete,
1628 					 16);
1629 			break;
1630 		case HFC_CHAN_E:
1631 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1632 					 ISOC_PACKETS_D,
1633 					 (usb_complete_t)rx_iso_complete,
1634 					 16);
1635 			break;
1636 		case HFC_CHAN_B1:
1637 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1638 					 ISOC_PACKETS_B,
1639 					 (usb_complete_t)rx_iso_complete,
1640 					 16);
1641 			break;
1642 		case HFC_CHAN_B2:
1643 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1644 					 ISOC_PACKETS_B,
1645 					 (usb_complete_t)rx_iso_complete,
1646 					 16);
1647 			break;
1648 		}
1649 	}
1650 
1651 	/* start tx endpoints using USB ISO OUT method */
1652 	switch (channel) {
1653 	case HFC_CHAN_D:
1654 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1655 				 ISOC_PACKETS_B,
1656 				 (usb_complete_t)tx_iso_complete, 1);
1657 		break;
1658 	case HFC_CHAN_B1:
1659 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1660 				 ISOC_PACKETS_D,
1661 				 (usb_complete_t)tx_iso_complete, 1);
1662 		break;
1663 	case HFC_CHAN_B2:
1664 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1665 				 ISOC_PACKETS_B,
1666 				 (usb_complete_t)tx_iso_complete, 1);
1667 		break;
1668 	}
1669 }
1670 
1671 /* stop USB data pipes dependand on device's endpoint configuration */
1672 static void
1673 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1674 {
1675 	/* quick check if endpoint currently running */
1676 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1677 		return;
1678 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1679 		return;
1680 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1681 		return;
1682 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1683 		return;
1684 
1685 	/* rx endpoints using USB INT IN method */
1686 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1687 		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1688 
1689 	/* rx endpoints using USB ISO IN method */
1690 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1691 		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1692 
1693 	/* tx endpoints using USB ISO OUT method */
1694 	if (channel != HFC_CHAN_E)
1695 		stop_iso_gracefull(hw->fifos + channel * 2);
1696 }
1697 
1698 
1699 /* Hardware Initialization */
1700 static int
1701 setup_hfcsusb(struct hfcsusb *hw)
1702 {
1703 	u_char b;
1704 
1705 	if (debug & DBG_HFC_CALL_TRACE)
1706 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1707 
1708 	/* check the chip id */
1709 	if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
1710 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1711 		       hw->name, __func__);
1712 		return 1;
1713 	}
1714 	if (b != HFCUSB_CHIPID) {
1715 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1716 		       hw->name, __func__, b);
1717 		return 1;
1718 	}
1719 
1720 	/* first set the needed config, interface and alternate */
1721 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1722 
1723 	hw->led_state = 0;
1724 
1725 	/* init the background machinery for control requests */
1726 	hw->ctrl_read.bRequestType = 0xc0;
1727 	hw->ctrl_read.bRequest = 1;
1728 	hw->ctrl_read.wLength = cpu_to_le16(1);
1729 	hw->ctrl_write.bRequestType = 0x40;
1730 	hw->ctrl_write.bRequest = 0;
1731 	hw->ctrl_write.wLength = 0;
1732 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1733 			     (u_char *)&hw->ctrl_write, NULL, 0,
1734 			     (usb_complete_t)ctrl_complete, hw);
1735 
1736 	reset_hfcsusb(hw);
1737 	return 0;
1738 }
1739 
1740 static void
1741 release_hw(struct hfcsusb *hw)
1742 {
1743 	if (debug & DBG_HFC_CALL_TRACE)
1744 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1745 
1746 	/*
1747 	 * stop all endpoints gracefully
1748 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1749 	 *       signals after calling mISDN_unregister_device()
1750 	 */
1751 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1752 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1753 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1754 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1755 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1756 	if (hw->protocol == ISDN_P_TE_S0)
1757 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1758 
1759 	mISDN_unregister_device(&hw->dch.dev);
1760 	mISDN_freebchannel(&hw->bch[1]);
1761 	mISDN_freebchannel(&hw->bch[0]);
1762 	mISDN_freedchannel(&hw->dch);
1763 
1764 	if (hw->ctrl_urb) {
1765 		usb_kill_urb(hw->ctrl_urb);
1766 		usb_free_urb(hw->ctrl_urb);
1767 		hw->ctrl_urb = NULL;
1768 	}
1769 
1770 	if (hw->intf)
1771 		usb_set_intfdata(hw->intf, NULL);
1772 	list_del(&hw->list);
1773 	kfree(hw);
1774 	hw = NULL;
1775 }
1776 
1777 static void
1778 deactivate_bchannel(struct bchannel *bch)
1779 {
1780 	struct hfcsusb *hw = bch->hw;
1781 	u_long flags;
1782 
1783 	if (bch->debug & DEBUG_HW)
1784 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1785 		       hw->name, __func__, bch->nr);
1786 
1787 	spin_lock_irqsave(&hw->lock, flags);
1788 	mISDN_clear_bchannel(bch);
1789 	spin_unlock_irqrestore(&hw->lock, flags);
1790 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1791 	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1792 }
1793 
1794 /*
1795  * Layer 1 B-channel hardware access
1796  */
1797 static int
1798 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1799 {
1800 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1801 	int		ret = -EINVAL;
1802 
1803 	if (bch->debug & DEBUG_HW)
1804 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1805 
1806 	switch (cmd) {
1807 	case HW_TESTRX_RAW:
1808 	case HW_TESTRX_HDLC:
1809 	case HW_TESTRX_OFF:
1810 		ret = -EINVAL;
1811 		break;
1812 
1813 	case CLOSE_CHANNEL:
1814 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1815 		deactivate_bchannel(bch);
1816 		ch->protocol = ISDN_P_NONE;
1817 		ch->peer = NULL;
1818 		module_put(THIS_MODULE);
1819 		ret = 0;
1820 		break;
1821 	case CONTROL_CHANNEL:
1822 		ret = channel_bctrl(bch, arg);
1823 		break;
1824 	default:
1825 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1826 		       __func__, cmd);
1827 	}
1828 	return ret;
1829 }
1830 
1831 static int
1832 setup_instance(struct hfcsusb *hw, struct device *parent)
1833 {
1834 	u_long	flags;
1835 	int	err, i;
1836 
1837 	if (debug & DBG_HFC_CALL_TRACE)
1838 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1839 
1840 	spin_lock_init(&hw->ctrl_lock);
1841 	spin_lock_init(&hw->lock);
1842 
1843 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1844 	hw->dch.debug = debug & 0xFFFF;
1845 	hw->dch.hw = hw;
1846 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1847 	hw->dch.dev.D.send = hfcusb_l2l1D;
1848 	hw->dch.dev.D.ctrl = hfc_dctrl;
1849 
1850 	/* enable E-Channel logging */
1851 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1852 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1853 
1854 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1855 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1856 	hw->dch.dev.nrbchan = 2;
1857 	for (i = 0; i < 2; i++) {
1858 		hw->bch[i].nr = i + 1;
1859 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1860 		hw->bch[i].debug = debug;
1861 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1862 		hw->bch[i].hw = hw;
1863 		hw->bch[i].ch.send = hfcusb_l2l1B;
1864 		hw->bch[i].ch.ctrl = hfc_bctrl;
1865 		hw->bch[i].ch.nr = i + 1;
1866 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1867 	}
1868 
1869 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1870 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1871 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1872 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1873 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1874 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1875 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1876 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1877 
1878 	err = setup_hfcsusb(hw);
1879 	if (err)
1880 		goto out;
1881 
1882 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1883 		 hfcsusb_cnt + 1);
1884 	printk(KERN_INFO "%s: registered as '%s'\n",
1885 	       DRIVER_NAME, hw->name);
1886 
1887 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1888 	if (err)
1889 		goto out;
1890 
1891 	hfcsusb_cnt++;
1892 	write_lock_irqsave(&HFClock, flags);
1893 	list_add_tail(&hw->list, &HFClist);
1894 	write_unlock_irqrestore(&HFClock, flags);
1895 	return 0;
1896 
1897 out:
1898 	mISDN_freebchannel(&hw->bch[1]);
1899 	mISDN_freebchannel(&hw->bch[0]);
1900 	mISDN_freedchannel(&hw->dch);
1901 	kfree(hw);
1902 	return err;
1903 }
1904 
1905 static int
1906 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1907 {
1908 	struct hfcsusb			*hw;
1909 	struct usb_device		*dev = interface_to_usbdev(intf);
1910 	struct usb_host_interface	*iface = intf->cur_altsetting;
1911 	struct usb_host_interface	*iface_used = NULL;
1912 	struct usb_host_endpoint	*ep;
1913 	struct hfcsusb_vdata		*driver_info;
1914 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1915 		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1916 		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1917 		alt_used = 0;
1918 
1919 	vend_idx = 0xffff;
1920 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1921 		if ((le16_to_cpu(dev->descriptor.idVendor)
1922 		     == hfcsusb_idtab[i].idVendor) &&
1923 		    (le16_to_cpu(dev->descriptor.idProduct)
1924 		     == hfcsusb_idtab[i].idProduct)) {
1925 			vend_idx = i;
1926 			continue;
1927 		}
1928 	}
1929 
1930 	printk(KERN_DEBUG
1931 	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1932 	       __func__, ifnum, iface->desc.bAlternateSetting,
1933 	       intf->minor, vend_idx);
1934 
1935 	if (vend_idx == 0xffff) {
1936 		printk(KERN_WARNING
1937 		       "%s: no valid vendor found in USB descriptor\n",
1938 		       __func__);
1939 		return -EIO;
1940 	}
1941 	/* if vendor and product ID is OK, start probing alternate settings */
1942 	alt_idx = 0;
1943 	small_match = -1;
1944 
1945 	/* default settings */
1946 	iso_packet_size = 16;
1947 	packet_size = 64;
1948 
1949 	while (alt_idx < intf->num_altsetting) {
1950 		iface = intf->altsetting + alt_idx;
1951 		probe_alt_setting = iface->desc.bAlternateSetting;
1952 		cfg_used = 0;
1953 
1954 		while (validconf[cfg_used][0]) {
1955 			cfg_found = 1;
1956 			vcf = validconf[cfg_used];
1957 			ep = iface->endpoint;
1958 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1959 
1960 			/* check for all endpoints in this alternate setting */
1961 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1962 				ep_addr = ep->desc.bEndpointAddress;
1963 
1964 				/* get endpoint base */
1965 				idx = ((ep_addr & 0x7f) - 1) * 2;
1966 				if (ep_addr & 0x80)
1967 					idx++;
1968 				attr = ep->desc.bmAttributes;
1969 
1970 				if (cmptbl[idx] != EP_NOP) {
1971 					if (cmptbl[idx] == EP_NUL)
1972 						cfg_found = 0;
1973 					if (attr == USB_ENDPOINT_XFER_INT
1974 					    && cmptbl[idx] == EP_INT)
1975 						cmptbl[idx] = EP_NUL;
1976 					if (attr == USB_ENDPOINT_XFER_BULK
1977 					    && cmptbl[idx] == EP_BLK)
1978 						cmptbl[idx] = EP_NUL;
1979 					if (attr == USB_ENDPOINT_XFER_ISOC
1980 					    && cmptbl[idx] == EP_ISO)
1981 						cmptbl[idx] = EP_NUL;
1982 
1983 					if (attr == USB_ENDPOINT_XFER_INT &&
1984 					    ep->desc.bInterval < vcf[17]) {
1985 						cfg_found = 0;
1986 					}
1987 				}
1988 				ep++;
1989 			}
1990 
1991 			for (i = 0; i < 16; i++)
1992 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1993 					cfg_found = 0;
1994 
1995 			if (cfg_found) {
1996 				if (small_match < cfg_used) {
1997 					small_match = cfg_used;
1998 					alt_used = probe_alt_setting;
1999 					iface_used = iface;
2000 				}
2001 			}
2002 			cfg_used++;
2003 		}
2004 		alt_idx++;
2005 	}	/* (alt_idx < intf->num_altsetting) */
2006 
2007 	/* not found a valid USB Ta Endpoint config */
2008 	if (small_match == -1)
2009 		return -EIO;
2010 
2011 	iface = iface_used;
2012 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2013 	if (!hw)
2014 		return -ENOMEM;	/* got no mem */
2015 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2016 
2017 	ep = iface->endpoint;
2018 	vcf = validconf[small_match];
2019 
2020 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2021 		struct usb_fifo *f;
2022 
2023 		ep_addr = ep->desc.bEndpointAddress;
2024 		/* get endpoint base */
2025 		idx = ((ep_addr & 0x7f) - 1) * 2;
2026 		if (ep_addr & 0x80)
2027 			idx++;
2028 		f = &hw->fifos[idx & 7];
2029 
2030 		/* init Endpoints */
2031 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2032 			ep++;
2033 			continue;
2034 		}
2035 		switch (ep->desc.bmAttributes) {
2036 		case USB_ENDPOINT_XFER_INT:
2037 			f->pipe = usb_rcvintpipe(dev,
2038 						 ep->desc.bEndpointAddress);
2039 			f->usb_transfer_mode = USB_INT;
2040 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2041 			break;
2042 		case USB_ENDPOINT_XFER_BULK:
2043 			if (ep_addr & 0x80)
2044 				f->pipe = usb_rcvbulkpipe(dev,
2045 							  ep->desc.bEndpointAddress);
2046 			else
2047 				f->pipe = usb_sndbulkpipe(dev,
2048 							  ep->desc.bEndpointAddress);
2049 			f->usb_transfer_mode = USB_BULK;
2050 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2051 			break;
2052 		case USB_ENDPOINT_XFER_ISOC:
2053 			if (ep_addr & 0x80)
2054 				f->pipe = usb_rcvisocpipe(dev,
2055 							  ep->desc.bEndpointAddress);
2056 			else
2057 				f->pipe = usb_sndisocpipe(dev,
2058 							  ep->desc.bEndpointAddress);
2059 			f->usb_transfer_mode = USB_ISOC;
2060 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2061 			break;
2062 		default:
2063 			f->pipe = 0;
2064 		}
2065 
2066 		if (f->pipe) {
2067 			f->fifonum = idx & 7;
2068 			f->hw = hw;
2069 			f->usb_packet_maxlen =
2070 				le16_to_cpu(ep->desc.wMaxPacketSize);
2071 			f->intervall = ep->desc.bInterval;
2072 		}
2073 		ep++;
2074 	}
2075 	hw->dev = dev; /* save device */
2076 	hw->if_used = ifnum; /* save used interface */
2077 	hw->alt_used = alt_used; /* and alternate config */
2078 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2079 	hw->cfg_used = vcf[16];	/* store used config */
2080 	hw->vend_idx = vend_idx; /* store found vendor */
2081 	hw->packet_size = packet_size;
2082 	hw->iso_packet_size = iso_packet_size;
2083 
2084 	/* create the control pipes needed for register access */
2085 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2086 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2087 
2088 	driver_info = (struct hfcsusb_vdata *)
2089 		      hfcsusb_idtab[vend_idx].driver_info;
2090 
2091 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2092 	if (!hw->ctrl_urb) {
2093 		pr_warn("%s: No memory for control urb\n",
2094 			driver_info->vend_name);
2095 		kfree(hw);
2096 		return -ENOMEM;
2097 	}
2098 
2099 	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2100 		hw->name, __func__, driver_info->vend_name,
2101 		conf_str[small_match], ifnum, alt_used);
2102 
2103 	if (setup_instance(hw, dev->dev.parent))
2104 		return -EIO;
2105 
2106 	hw->intf = intf;
2107 	usb_set_intfdata(hw->intf, hw);
2108 	return 0;
2109 }
2110 
2111 /* function called when an active device is removed */
2112 static void
2113 hfcsusb_disconnect(struct usb_interface *intf)
2114 {
2115 	struct hfcsusb *hw = usb_get_intfdata(intf);
2116 	struct hfcsusb *next;
2117 	int cnt = 0;
2118 
2119 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2120 
2121 	handle_led(hw, LED_POWER_OFF);
2122 	release_hw(hw);
2123 
2124 	list_for_each_entry_safe(hw, next, &HFClist, list)
2125 		cnt++;
2126 	if (!cnt)
2127 		hfcsusb_cnt = 0;
2128 
2129 	usb_set_intfdata(intf, NULL);
2130 }
2131 
2132 static struct usb_driver hfcsusb_drv = {
2133 	.name = DRIVER_NAME,
2134 	.id_table = hfcsusb_idtab,
2135 	.probe = hfcsusb_probe,
2136 	.disconnect = hfcsusb_disconnect,
2137 	.disable_hub_initiated_lpm = 1,
2138 };
2139 
2140 module_usb_driver(hfcsusb_drv);
2141