1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3  * mISDN driver for Colognechip HFC-S USB chip
4  *
5  * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6  * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7  *
8  * module params
9  *   debug=<n>, default=0, with n=0xHHHHGGGG
10  *      H - l1 driver flags described in hfcsusb.h
11  *      G - common mISDN debug flags described at mISDNhw.h
12  *
13  *   poll=<n>, default 128
14  *     n : burst size of PH_DATA_IND at transparent rx data
15  *
16  * Revision: 0.3.3 (socket), 2008-11-05
17  */
18 
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25 
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28 
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31 
32 
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37 
38 static int hfcsusb_cnt;
39 
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int  hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static int  hfcsusb_ph_info(struct hfcsusb *hw);
50 
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55 	if (debug & DBG_HFC_CALL_TRACE)
56 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57 
58 	if (hw->ctrl_cnt) {
59 		hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60 		hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61 		hw->ctrl_urb->transfer_buffer = NULL;
62 		hw->ctrl_urb->transfer_buffer_length = 0;
63 		hw->ctrl_write.wIndex =
64 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65 		hw->ctrl_write.wValue =
66 			cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67 
68 		usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69 	}
70 }
71 
72 /*
73  * queue a control transfer request to write HFC-S USB
74  * chip register using CTRL resuest queue
75  */
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78 	struct ctrl_buf *buf;
79 
80 	if (debug & DBG_HFC_CALL_TRACE)
81 		printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82 		       hw->name, __func__, reg, val);
83 
84 	spin_lock(&hw->ctrl_lock);
85 	if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86 		spin_unlock(&hw->ctrl_lock);
87 		return 1;
88 	}
89 	buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90 	buf->hfcs_reg = reg;
91 	buf->reg_val = val;
92 	if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93 		hw->ctrl_in_idx = 0;
94 	if (++hw->ctrl_cnt == 1)
95 		ctrl_start_transfer(hw);
96 	spin_unlock(&hw->ctrl_lock);
97 
98 	return 0;
99 }
100 
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
104 {
105 	struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106 
107 	if (debug & DBG_HFC_CALL_TRACE)
108 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109 
110 	urb->dev = hw->dev;
111 	if (hw->ctrl_cnt) {
112 		hw->ctrl_cnt--;	/* decrement actual count */
113 		if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114 			hw->ctrl_out_idx = 0;	/* pointer wrap */
115 
116 		ctrl_start_transfer(hw); /* start next transfer */
117 	}
118 }
119 
120 /* handle LED bits   */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124 	if (set_on) {
125 		if (led_bits < 0)
126 			hw->led_state &= ~abs(led_bits);
127 		else
128 			hw->led_state |= led_bits;
129 	} else {
130 		if (led_bits < 0)
131 			hw->led_state |= abs(led_bits);
132 		else
133 			hw->led_state &= ~led_bits;
134 	}
135 }
136 
137 /* handle LED requests  */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
140 {
141 	struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142 		hfcsusb_idtab[hw->vend_idx].driver_info;
143 	__u8 tmpled;
144 
145 	if (driver_info->led_scheme == LED_OFF)
146 		return;
147 	tmpled = hw->led_state;
148 
149 	switch (event) {
150 	case LED_POWER_ON:
151 		set_led_bit(hw, driver_info->led_bits[0], 1);
152 		set_led_bit(hw, driver_info->led_bits[1], 0);
153 		set_led_bit(hw, driver_info->led_bits[2], 0);
154 		set_led_bit(hw, driver_info->led_bits[3], 0);
155 		break;
156 	case LED_POWER_OFF:
157 		set_led_bit(hw, driver_info->led_bits[0], 0);
158 		set_led_bit(hw, driver_info->led_bits[1], 0);
159 		set_led_bit(hw, driver_info->led_bits[2], 0);
160 		set_led_bit(hw, driver_info->led_bits[3], 0);
161 		break;
162 	case LED_S0_ON:
163 		set_led_bit(hw, driver_info->led_bits[1], 1);
164 		break;
165 	case LED_S0_OFF:
166 		set_led_bit(hw, driver_info->led_bits[1], 0);
167 		break;
168 	case LED_B1_ON:
169 		set_led_bit(hw, driver_info->led_bits[2], 1);
170 		break;
171 	case LED_B1_OFF:
172 		set_led_bit(hw, driver_info->led_bits[2], 0);
173 		break;
174 	case LED_B2_ON:
175 		set_led_bit(hw, driver_info->led_bits[3], 1);
176 		break;
177 	case LED_B2_OFF:
178 		set_led_bit(hw, driver_info->led_bits[3], 0);
179 		break;
180 	}
181 
182 	if (hw->led_state != tmpled) {
183 		if (debug & DBG_HFC_CALL_TRACE)
184 			printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185 			       hw->name, __func__,
186 			       HFCUSB_P_DATA, hw->led_state);
187 
188 		write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189 	}
190 }
191 
192 /*
193  * Layer2 -> Layer 1 Bchannel data
194  */
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
199 	struct hfcsusb		*hw = bch->hw;
200 	int			ret = -EINVAL;
201 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
202 	u_long			flags;
203 
204 	if (debug & DBG_HFC_CALL_TRACE)
205 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206 
207 	switch (hh->prim) {
208 	case PH_DATA_REQ:
209 		spin_lock_irqsave(&hw->lock, flags);
210 		ret = bchannel_senddata(bch, skb);
211 		spin_unlock_irqrestore(&hw->lock, flags);
212 		if (debug & DBG_HFC_CALL_TRACE)
213 			printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214 			       hw->name, __func__, ret);
215 		if (ret > 0)
216 			ret = 0;
217 		return ret;
218 	case PH_ACTIVATE_REQ:
219 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220 			hfcsusb_start_endpoint(hw, bch->nr - 1);
221 			ret = hfcsusb_setup_bch(bch, ch->protocol);
222 		} else
223 			ret = 0;
224 		if (!ret)
225 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226 				    0, NULL, GFP_KERNEL);
227 		break;
228 	case PH_DEACTIVATE_REQ:
229 		deactivate_bchannel(bch);
230 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231 			    0, NULL, GFP_KERNEL);
232 		ret = 0;
233 		break;
234 	}
235 	if (!ret)
236 		dev_kfree_skb(skb);
237 	return ret;
238 }
239 
240 /*
241  * send full D/B channel status information
242  * as MPH_INFORMATION_IND
243  */
244 static int
245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247 	struct ph_info *phi;
248 	struct dchannel *dch = &hw->dch;
249 	int i;
250 
251 	phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252 	if (!phi)
253 		return -ENOMEM;
254 
255 	phi->dch.ch.protocol = hw->protocol;
256 	phi->dch.ch.Flags = dch->Flags;
257 	phi->dch.state = dch->state;
258 	phi->dch.num_bch = dch->dev.nrbchan;
259 	for (i = 0; i < dch->dev.nrbchan; i++) {
260 		phi->bch[i].protocol = hw->bch[i].ch.protocol;
261 		phi->bch[i].Flags = hw->bch[i].Flags;
262 	}
263 	_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264 		    struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265 	kfree(phi);
266 
267 	return 0;
268 }
269 
270 /*
271  * Layer2 -> Layer 1 Dchannel data
272  */
273 static int
274 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
275 {
276 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
277 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
278 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
279 	struct hfcsusb		*hw = dch->hw;
280 	int			ret = -EINVAL;
281 	u_long			flags;
282 
283 	switch (hh->prim) {
284 	case PH_DATA_REQ:
285 		if (debug & DBG_HFC_CALL_TRACE)
286 			printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
287 			       hw->name, __func__);
288 
289 		spin_lock_irqsave(&hw->lock, flags);
290 		ret = dchannel_senddata(dch, skb);
291 		spin_unlock_irqrestore(&hw->lock, flags);
292 		if (ret > 0) {
293 			ret = 0;
294 			queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
295 		}
296 		break;
297 
298 	case PH_ACTIVATE_REQ:
299 		if (debug & DBG_HFC_CALL_TRACE)
300 			printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
301 			       hw->name, __func__,
302 			       (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
303 
304 		if (hw->protocol == ISDN_P_NT_S0) {
305 			ret = 0;
306 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
307 				_queue_data(&dch->dev.D,
308 					    PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
309 					    NULL, GFP_ATOMIC);
310 			} else {
311 				hfcsusb_ph_command(hw,
312 						   HFC_L1_ACTIVATE_NT);
313 				test_and_set_bit(FLG_L2_ACTIVATED,
314 						 &dch->Flags);
315 			}
316 		} else {
317 			hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
318 			ret = l1_event(dch->l1, hh->prim);
319 		}
320 		break;
321 
322 	case PH_DEACTIVATE_REQ:
323 		if (debug & DBG_HFC_CALL_TRACE)
324 			printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
325 			       hw->name, __func__);
326 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
327 
328 		if (hw->protocol == ISDN_P_NT_S0) {
329 			hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
330 			spin_lock_irqsave(&hw->lock, flags);
331 			skb_queue_purge(&dch->squeue);
332 			if (dch->tx_skb) {
333 				dev_kfree_skb(dch->tx_skb);
334 				dch->tx_skb = NULL;
335 			}
336 			dch->tx_idx = 0;
337 			if (dch->rx_skb) {
338 				dev_kfree_skb(dch->rx_skb);
339 				dch->rx_skb = NULL;
340 			}
341 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
342 			spin_unlock_irqrestore(&hw->lock, flags);
343 #ifdef FIXME
344 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
345 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
346 #endif
347 			ret = 0;
348 		} else
349 			ret = l1_event(dch->l1, hh->prim);
350 		break;
351 	case MPH_INFORMATION_REQ:
352 		ret = hfcsusb_ph_info(hw);
353 		break;
354 	}
355 
356 	return ret;
357 }
358 
359 /*
360  * Layer 1 callback function
361  */
362 static int
363 hfc_l1callback(struct dchannel *dch, u_int cmd)
364 {
365 	struct hfcsusb *hw = dch->hw;
366 
367 	if (debug & DBG_HFC_CALL_TRACE)
368 		printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
369 		       hw->name, __func__, cmd);
370 
371 	switch (cmd) {
372 	case INFO3_P8:
373 	case INFO3_P10:
374 	case HW_RESET_REQ:
375 	case HW_POWERUP_REQ:
376 		break;
377 
378 	case HW_DEACT_REQ:
379 		skb_queue_purge(&dch->squeue);
380 		if (dch->tx_skb) {
381 			dev_kfree_skb(dch->tx_skb);
382 			dch->tx_skb = NULL;
383 		}
384 		dch->tx_idx = 0;
385 		if (dch->rx_skb) {
386 			dev_kfree_skb(dch->rx_skb);
387 			dch->rx_skb = NULL;
388 		}
389 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
390 		break;
391 	case PH_ACTIVATE_IND:
392 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
393 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
394 			    GFP_ATOMIC);
395 		break;
396 	case PH_DEACTIVATE_IND:
397 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
398 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
399 			    GFP_ATOMIC);
400 		break;
401 	default:
402 		if (dch->debug & DEBUG_HW)
403 			printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
404 			       hw->name, __func__, cmd);
405 		return -1;
406 	}
407 	return hfcsusb_ph_info(hw);
408 }
409 
410 static int
411 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
412 	      struct channel_req *rq)
413 {
414 	int err = 0;
415 
416 	if (debug & DEBUG_HW_OPEN)
417 		printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
418 		       hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
419 		       __builtin_return_address(0));
420 	if (rq->protocol == ISDN_P_NONE)
421 		return -EINVAL;
422 
423 	test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
424 	test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
425 	hfcsusb_start_endpoint(hw, HFC_CHAN_D);
426 
427 	/* E-Channel logging */
428 	if (rq->adr.channel == 1) {
429 		if (hw->fifos[HFCUSB_PCM_RX].pipe) {
430 			hfcsusb_start_endpoint(hw, HFC_CHAN_E);
431 			set_bit(FLG_ACTIVE, &hw->ech.Flags);
432 			_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
433 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
434 		} else
435 			return -EINVAL;
436 	}
437 
438 	if (!hw->initdone) {
439 		hw->protocol = rq->protocol;
440 		if (rq->protocol == ISDN_P_TE_S0) {
441 			err = create_l1(&hw->dch, hfc_l1callback);
442 			if (err)
443 				return err;
444 		}
445 		setPortMode(hw);
446 		ch->protocol = rq->protocol;
447 		hw->initdone = 1;
448 	} else {
449 		if (rq->protocol != ch->protocol)
450 			return -EPROTONOSUPPORT;
451 	}
452 
453 	if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
454 	    ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
455 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
456 			    0, NULL, GFP_KERNEL);
457 	rq->ch = ch;
458 	if (!try_module_get(THIS_MODULE))
459 		printk(KERN_WARNING "%s: %s: cannot get module\n",
460 		       hw->name, __func__);
461 	return 0;
462 }
463 
464 static int
465 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
466 {
467 	struct bchannel		*bch;
468 
469 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
470 		return -EINVAL;
471 	if (rq->protocol == ISDN_P_NONE)
472 		return -EINVAL;
473 
474 	if (debug & DBG_HFC_CALL_TRACE)
475 		printk(KERN_DEBUG "%s: %s B%i\n",
476 		       hw->name, __func__, rq->adr.channel);
477 
478 	bch = &hw->bch[rq->adr.channel - 1];
479 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
480 		return -EBUSY; /* b-channel can be only open once */
481 	bch->ch.protocol = rq->protocol;
482 	rq->ch = &bch->ch;
483 
484 	if (!try_module_get(THIS_MODULE))
485 		printk(KERN_WARNING "%s: %s:cannot get module\n",
486 		       hw->name, __func__);
487 	return 0;
488 }
489 
490 static int
491 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
492 {
493 	int ret = 0;
494 
495 	if (debug & DBG_HFC_CALL_TRACE)
496 		printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
497 		       hw->name, __func__, (cq->op), (cq->channel));
498 
499 	switch (cq->op) {
500 	case MISDN_CTRL_GETOP:
501 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
502 			MISDN_CTRL_DISCONNECT;
503 		break;
504 	default:
505 		printk(KERN_WARNING "%s: %s: unknown Op %x\n",
506 		       hw->name, __func__, cq->op);
507 		ret = -EINVAL;
508 		break;
509 	}
510 	return ret;
511 }
512 
513 /*
514  * device control function
515  */
516 static int
517 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
518 {
519 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
520 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
521 	struct hfcsusb		*hw = dch->hw;
522 	struct channel_req	*rq;
523 	int			err = 0;
524 
525 	if (dch->debug & DEBUG_HW)
526 		printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
527 		       hw->name, __func__, cmd, arg);
528 	switch (cmd) {
529 	case OPEN_CHANNEL:
530 		rq = arg;
531 		if ((rq->protocol == ISDN_P_TE_S0) ||
532 		    (rq->protocol == ISDN_P_NT_S0))
533 			err = open_dchannel(hw, ch, rq);
534 		else
535 			err = open_bchannel(hw, rq);
536 		if (!err)
537 			hw->open++;
538 		break;
539 	case CLOSE_CHANNEL:
540 		hw->open--;
541 		if (debug & DEBUG_HW_OPEN)
542 			printk(KERN_DEBUG
543 			       "%s: %s: dev(%d) close from %p (open %d)\n",
544 			       hw->name, __func__, hw->dch.dev.id,
545 			       __builtin_return_address(0), hw->open);
546 		if (!hw->open) {
547 			hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
548 			if (hw->fifos[HFCUSB_PCM_RX].pipe)
549 				hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
550 			handle_led(hw, LED_POWER_ON);
551 		}
552 		module_put(THIS_MODULE);
553 		break;
554 	case CONTROL_CHANNEL:
555 		err = channel_ctrl(hw, arg);
556 		break;
557 	default:
558 		if (dch->debug & DEBUG_HW)
559 			printk(KERN_DEBUG "%s: %s: unknown command %x\n",
560 			       hw->name, __func__, cmd);
561 		return -EINVAL;
562 	}
563 	return err;
564 }
565 
566 /*
567  * S0 TE state change event handler
568  */
569 static void
570 ph_state_te(struct dchannel *dch)
571 {
572 	struct hfcsusb *hw = dch->hw;
573 
574 	if (debug & DEBUG_HW) {
575 		if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
576 			printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
577 			       HFC_TE_LAYER1_STATES[dch->state]);
578 		else
579 			printk(KERN_DEBUG "%s: %s: TE F%d\n",
580 			       hw->name, __func__, dch->state);
581 	}
582 
583 	switch (dch->state) {
584 	case 0:
585 		l1_event(dch->l1, HW_RESET_IND);
586 		break;
587 	case 3:
588 		l1_event(dch->l1, HW_DEACT_IND);
589 		break;
590 	case 5:
591 	case 8:
592 		l1_event(dch->l1, ANYSIGNAL);
593 		break;
594 	case 6:
595 		l1_event(dch->l1, INFO2);
596 		break;
597 	case 7:
598 		l1_event(dch->l1, INFO4_P8);
599 		break;
600 	}
601 	if (dch->state == 7)
602 		handle_led(hw, LED_S0_ON);
603 	else
604 		handle_led(hw, LED_S0_OFF);
605 }
606 
607 /*
608  * S0 NT state change event handler
609  */
610 static void
611 ph_state_nt(struct dchannel *dch)
612 {
613 	struct hfcsusb *hw = dch->hw;
614 
615 	if (debug & DEBUG_HW) {
616 		if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
617 			printk(KERN_DEBUG "%s: %s: %s\n",
618 			       hw->name, __func__,
619 			       HFC_NT_LAYER1_STATES[dch->state]);
620 
621 		else
622 			printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
623 			       hw->name, __func__, dch->state);
624 	}
625 
626 	switch (dch->state) {
627 	case (1):
628 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
629 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
630 		hw->nt_timer = 0;
631 		hw->timers &= ~NT_ACTIVATION_TIMER;
632 		handle_led(hw, LED_S0_OFF);
633 		break;
634 
635 	case (2):
636 		if (hw->nt_timer < 0) {
637 			hw->nt_timer = 0;
638 			hw->timers &= ~NT_ACTIVATION_TIMER;
639 			hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
640 		} else {
641 			hw->timers |= NT_ACTIVATION_TIMER;
642 			hw->nt_timer = NT_T1_COUNT;
643 			/* allow G2 -> G3 transition */
644 			write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
645 		}
646 		break;
647 	case (3):
648 		hw->nt_timer = 0;
649 		hw->timers &= ~NT_ACTIVATION_TIMER;
650 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
651 		_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
652 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
653 		handle_led(hw, LED_S0_ON);
654 		break;
655 	case (4):
656 		hw->nt_timer = 0;
657 		hw->timers &= ~NT_ACTIVATION_TIMER;
658 		break;
659 	default:
660 		break;
661 	}
662 	hfcsusb_ph_info(hw);
663 }
664 
665 static void
666 ph_state(struct dchannel *dch)
667 {
668 	struct hfcsusb *hw = dch->hw;
669 
670 	if (hw->protocol == ISDN_P_NT_S0)
671 		ph_state_nt(dch);
672 	else if (hw->protocol == ISDN_P_TE_S0)
673 		ph_state_te(dch);
674 }
675 
676 /*
677  * disable/enable BChannel for desired protocoll
678  */
679 static int
680 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
681 {
682 	struct hfcsusb *hw = bch->hw;
683 	__u8 conhdlc, sctrl, sctrl_r;
684 
685 	if (debug & DEBUG_HW)
686 		printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
687 		       hw->name, __func__, bch->state, protocol,
688 		       bch->nr);
689 
690 	/* setup val for CON_HDLC */
691 	conhdlc = 0;
692 	if (protocol > ISDN_P_NONE)
693 		conhdlc = 8;	/* enable FIFO */
694 
695 	switch (protocol) {
696 	case (-1):	/* used for init */
697 		bch->state = -1;
698 		fallthrough;
699 	case (ISDN_P_NONE):
700 		if (bch->state == ISDN_P_NONE)
701 			return 0; /* already in idle state */
702 		bch->state = ISDN_P_NONE;
703 		clear_bit(FLG_HDLC, &bch->Flags);
704 		clear_bit(FLG_TRANSPARENT, &bch->Flags);
705 		break;
706 	case (ISDN_P_B_RAW):
707 		conhdlc |= 2;
708 		bch->state = protocol;
709 		set_bit(FLG_TRANSPARENT, &bch->Flags);
710 		break;
711 	case (ISDN_P_B_HDLC):
712 		bch->state = protocol;
713 		set_bit(FLG_HDLC, &bch->Flags);
714 		break;
715 	default:
716 		if (debug & DEBUG_HW)
717 			printk(KERN_DEBUG "%s: %s: prot not known %x\n",
718 			       hw->name, __func__, protocol);
719 		return -ENOPROTOOPT;
720 	}
721 
722 	if (protocol >= ISDN_P_NONE) {
723 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
724 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
725 		write_reg(hw, HFCUSB_INC_RES_F, 2);
726 		write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
727 		write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
728 		write_reg(hw, HFCUSB_INC_RES_F, 2);
729 
730 		sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
731 		sctrl_r = 0x0;
732 		if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
733 			sctrl |= 1;
734 			sctrl_r |= 1;
735 		}
736 		if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
737 			sctrl |= 2;
738 			sctrl_r |= 2;
739 		}
740 		write_reg(hw, HFCUSB_SCTRL, sctrl);
741 		write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
742 
743 		if (protocol > ISDN_P_NONE)
744 			handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
745 		else
746 			handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
747 				   LED_B2_OFF);
748 	}
749 	return hfcsusb_ph_info(hw);
750 }
751 
752 static void
753 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
754 {
755 	if (debug & DEBUG_HW)
756 		printk(KERN_DEBUG "%s: %s: %x\n",
757 		       hw->name, __func__, command);
758 
759 	switch (command) {
760 	case HFC_L1_ACTIVATE_TE:
761 		/* force sending sending INFO1 */
762 		write_reg(hw, HFCUSB_STATES, 0x14);
763 		/* start l1 activation */
764 		write_reg(hw, HFCUSB_STATES, 0x04);
765 		break;
766 
767 	case HFC_L1_FORCE_DEACTIVATE_TE:
768 		write_reg(hw, HFCUSB_STATES, 0x10);
769 		write_reg(hw, HFCUSB_STATES, 0x03);
770 		break;
771 
772 	case HFC_L1_ACTIVATE_NT:
773 		if (hw->dch.state == 3)
774 			_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
775 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
776 		else
777 			write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
778 				  HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
779 		break;
780 
781 	case HFC_L1_DEACTIVATE_NT:
782 		write_reg(hw, HFCUSB_STATES,
783 			  HFCUSB_DO_ACTION);
784 		break;
785 	}
786 }
787 
788 /*
789  * Layer 1 B-channel hardware access
790  */
791 static int
792 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
793 {
794 	return mISDN_ctrl_bchannel(bch, cq);
795 }
796 
797 /* collect data from incoming interrupt or isochron USB data */
798 static void
799 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
800 		 int finish)
801 {
802 	struct hfcsusb	*hw = fifo->hw;
803 	struct sk_buff	*rx_skb = NULL;
804 	int		maxlen = 0;
805 	int		fifon = fifo->fifonum;
806 	int		i;
807 	int		hdlc = 0;
808 	unsigned long	flags;
809 
810 	if (debug & DBG_HFC_CALL_TRACE)
811 		printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
812 		       "dch(%p) bch(%p) ech(%p)\n",
813 		       hw->name, __func__, fifon, len,
814 		       fifo->dch, fifo->bch, fifo->ech);
815 
816 	if (!len)
817 		return;
818 
819 	if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
820 		printk(KERN_DEBUG "%s: %s: undefined channel\n",
821 		       hw->name, __func__);
822 		return;
823 	}
824 
825 	spin_lock_irqsave(&hw->lock, flags);
826 	if (fifo->dch) {
827 		rx_skb = fifo->dch->rx_skb;
828 		maxlen = fifo->dch->maxlen;
829 		hdlc = 1;
830 	}
831 	if (fifo->bch) {
832 		if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
833 			fifo->bch->dropcnt += len;
834 			spin_unlock_irqrestore(&hw->lock, flags);
835 			return;
836 		}
837 		maxlen = bchannel_get_rxbuf(fifo->bch, len);
838 		rx_skb = fifo->bch->rx_skb;
839 		if (maxlen < 0) {
840 			if (rx_skb)
841 				skb_trim(rx_skb, 0);
842 			pr_warn("%s.B%d: No bufferspace for %d bytes\n",
843 				hw->name, fifo->bch->nr, len);
844 			spin_unlock_irqrestore(&hw->lock, flags);
845 			return;
846 		}
847 		maxlen = fifo->bch->maxlen;
848 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
849 	}
850 	if (fifo->ech) {
851 		rx_skb = fifo->ech->rx_skb;
852 		maxlen = fifo->ech->maxlen;
853 		hdlc = 1;
854 	}
855 
856 	if (fifo->dch || fifo->ech) {
857 		if (!rx_skb) {
858 			rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
859 			if (rx_skb) {
860 				if (fifo->dch)
861 					fifo->dch->rx_skb = rx_skb;
862 				if (fifo->ech)
863 					fifo->ech->rx_skb = rx_skb;
864 				skb_trim(rx_skb, 0);
865 			} else {
866 				printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
867 				       hw->name, __func__);
868 				spin_unlock_irqrestore(&hw->lock, flags);
869 				return;
870 			}
871 		}
872 		/* D/E-Channel SKB range check */
873 		if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
874 			printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
875 			       "for fifo(%d) HFCUSB_D_RX\n",
876 			       hw->name, __func__, fifon);
877 			skb_trim(rx_skb, 0);
878 			spin_unlock_irqrestore(&hw->lock, flags);
879 			return;
880 		}
881 	}
882 
883 	skb_put_data(rx_skb, data, len);
884 
885 	if (hdlc) {
886 		/* we have a complete hdlc packet */
887 		if (finish) {
888 			if ((rx_skb->len > 3) &&
889 			    (!(rx_skb->data[rx_skb->len - 1]))) {
890 				if (debug & DBG_HFC_FIFO_VERBOSE) {
891 					printk(KERN_DEBUG "%s: %s: fifon(%i)"
892 					       " new RX len(%i): ",
893 					       hw->name, __func__, fifon,
894 					       rx_skb->len);
895 					i = 0;
896 					while (i < rx_skb->len)
897 						printk("%02x ",
898 						       rx_skb->data[i++]);
899 					printk("\n");
900 				}
901 
902 				/* remove CRC & status */
903 				skb_trim(rx_skb, rx_skb->len - 3);
904 
905 				if (fifo->dch)
906 					recv_Dchannel(fifo->dch);
907 				if (fifo->bch)
908 					recv_Bchannel(fifo->bch, MISDN_ID_ANY,
909 						      0);
910 				if (fifo->ech)
911 					recv_Echannel(fifo->ech,
912 						      &hw->dch);
913 			} else {
914 				if (debug & DBG_HFC_FIFO_VERBOSE) {
915 					printk(KERN_DEBUG
916 					       "%s: CRC or minlen ERROR fifon(%i) "
917 					       "RX len(%i): ",
918 					       hw->name, fifon, rx_skb->len);
919 					i = 0;
920 					while (i < rx_skb->len)
921 						printk("%02x ",
922 						       rx_skb->data[i++]);
923 					printk("\n");
924 				}
925 				skb_trim(rx_skb, 0);
926 			}
927 		}
928 	} else {
929 		/* deliver transparent data to layer2 */
930 		recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
931 	}
932 	spin_unlock_irqrestore(&hw->lock, flags);
933 }
934 
935 static void
936 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
937 	      void *buf, int num_packets, int packet_size, int interval,
938 	      usb_complete_t complete, void *context)
939 {
940 	int k;
941 
942 	usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
943 			  complete, context);
944 
945 	urb->number_of_packets = num_packets;
946 	urb->transfer_flags = URB_ISO_ASAP;
947 	urb->actual_length = 0;
948 	urb->interval = interval;
949 
950 	for (k = 0; k < num_packets; k++) {
951 		urb->iso_frame_desc[k].offset = packet_size * k;
952 		urb->iso_frame_desc[k].length = packet_size;
953 		urb->iso_frame_desc[k].actual_length = 0;
954 	}
955 }
956 
957 /* receive completion routine for all ISO tx fifos   */
958 static void
959 rx_iso_complete(struct urb *urb)
960 {
961 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
962 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
963 	struct hfcsusb *hw = fifo->hw;
964 	int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
965 		status, iso_status, i;
966 	__u8 *buf;
967 	static __u8 eof[8];
968 	__u8 s0_state;
969 	unsigned long flags;
970 
971 	fifon = fifo->fifonum;
972 	status = urb->status;
973 
974 	spin_lock_irqsave(&hw->lock, flags);
975 	if (fifo->stop_gracefull) {
976 		fifo->stop_gracefull = 0;
977 		fifo->active = 0;
978 		spin_unlock_irqrestore(&hw->lock, flags);
979 		return;
980 	}
981 	spin_unlock_irqrestore(&hw->lock, flags);
982 
983 	/*
984 	 * ISO transfer only partially completed,
985 	 * look at individual frame status for details
986 	 */
987 	if (status == -EXDEV) {
988 		if (debug & DEBUG_HW)
989 			printk(KERN_DEBUG "%s: %s: with -EXDEV "
990 			       "urb->status %d, fifonum %d\n",
991 			       hw->name, __func__,  status, fifon);
992 
993 		/* clear status, so go on with ISO transfers */
994 		status = 0;
995 	}
996 
997 	s0_state = 0;
998 	if (fifo->active && !status) {
999 		num_isoc_packets = iso_packets[fifon];
1000 		maxlen = fifo->usb_packet_maxlen;
1001 
1002 		for (k = 0; k < num_isoc_packets; ++k) {
1003 			len = urb->iso_frame_desc[k].actual_length;
1004 			offset = urb->iso_frame_desc[k].offset;
1005 			buf = context_iso_urb->buffer + offset;
1006 			iso_status = urb->iso_frame_desc[k].status;
1007 
1008 			if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1009 				printk(KERN_DEBUG "%s: %s: "
1010 				       "ISO packet %i, status: %i\n",
1011 				       hw->name, __func__, k, iso_status);
1012 			}
1013 
1014 			/* USB data log for every D ISO in */
1015 			if ((fifon == HFCUSB_D_RX) &&
1016 			    (debug & DBG_HFC_USB_VERBOSE)) {
1017 				printk(KERN_DEBUG
1018 				       "%s: %s: %d (%d/%d) len(%d) ",
1019 				       hw->name, __func__, urb->start_frame,
1020 				       k, num_isoc_packets - 1,
1021 				       len);
1022 				for (i = 0; i < len; i++)
1023 					printk("%x ", buf[i]);
1024 				printk("\n");
1025 			}
1026 
1027 			if (!iso_status) {
1028 				if (fifo->last_urblen != maxlen) {
1029 					/*
1030 					 * save fifo fill-level threshold bits
1031 					 * to use them later in TX ISO URB
1032 					 * completions
1033 					 */
1034 					hw->threshold_mask = buf[1];
1035 
1036 					if (fifon == HFCUSB_D_RX)
1037 						s0_state = (buf[0] >> 4);
1038 
1039 					eof[fifon] = buf[0] & 1;
1040 					if (len > 2)
1041 						hfcsusb_rx_frame(fifo, buf + 2,
1042 								 len - 2, (len < maxlen)
1043 								 ? eof[fifon] : 0);
1044 				} else
1045 					hfcsusb_rx_frame(fifo, buf, len,
1046 							 (len < maxlen) ?
1047 							 eof[fifon] : 0);
1048 				fifo->last_urblen = len;
1049 			}
1050 		}
1051 
1052 		/* signal S0 layer1 state change */
1053 		if ((s0_state) && (hw->initdone) &&
1054 		    (s0_state != hw->dch.state)) {
1055 			hw->dch.state = s0_state;
1056 			schedule_event(&hw->dch, FLG_PHCHANGE);
1057 		}
1058 
1059 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1060 			      context_iso_urb->buffer, num_isoc_packets,
1061 			      fifo->usb_packet_maxlen, fifo->intervall,
1062 			      (usb_complete_t)rx_iso_complete, urb->context);
1063 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1064 		if (errcode < 0) {
1065 			if (debug & DEBUG_HW)
1066 				printk(KERN_DEBUG "%s: %s: error submitting "
1067 				       "ISO URB: %d\n",
1068 				       hw->name, __func__, errcode);
1069 		}
1070 	} else {
1071 		if (status && (debug & DBG_HFC_URB_INFO))
1072 			printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1073 			       "urb->status %d, fifonum %d\n",
1074 			       hw->name, __func__, status, fifon);
1075 	}
1076 }
1077 
1078 /* receive completion routine for all interrupt rx fifos */
1079 static void
1080 rx_int_complete(struct urb *urb)
1081 {
1082 	int len, status, i;
1083 	__u8 *buf, maxlen, fifon;
1084 	struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1085 	struct hfcsusb *hw = fifo->hw;
1086 	static __u8 eof[8];
1087 	unsigned long flags;
1088 
1089 	spin_lock_irqsave(&hw->lock, flags);
1090 	if (fifo->stop_gracefull) {
1091 		fifo->stop_gracefull = 0;
1092 		fifo->active = 0;
1093 		spin_unlock_irqrestore(&hw->lock, flags);
1094 		return;
1095 	}
1096 	spin_unlock_irqrestore(&hw->lock, flags);
1097 
1098 	fifon = fifo->fifonum;
1099 	if ((!fifo->active) || (urb->status)) {
1100 		if (debug & DBG_HFC_URB_ERROR)
1101 			printk(KERN_DEBUG
1102 			       "%s: %s: RX-Fifo %i is going down (%i)\n",
1103 			       hw->name, __func__, fifon, urb->status);
1104 
1105 		fifo->urb->interval = 0; /* cancel automatic rescheduling */
1106 		return;
1107 	}
1108 	len = urb->actual_length;
1109 	buf = fifo->buffer;
1110 	maxlen = fifo->usb_packet_maxlen;
1111 
1112 	/* USB data log for every D INT in */
1113 	if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1114 		printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1115 		       hw->name, __func__, len);
1116 		for (i = 0; i < len; i++)
1117 			printk("%02x ", buf[i]);
1118 		printk("\n");
1119 	}
1120 
1121 	if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1122 		/* the threshold mask is in the 2nd status byte */
1123 		hw->threshold_mask = buf[1];
1124 
1125 		/* signal S0 layer1 state change */
1126 		if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1127 			hw->dch.state = (buf[0] >> 4);
1128 			schedule_event(&hw->dch, FLG_PHCHANGE);
1129 		}
1130 
1131 		eof[fifon] = buf[0] & 1;
1132 		/* if we have more than the 2 status bytes -> collect data */
1133 		if (len > 2)
1134 			hfcsusb_rx_frame(fifo, buf + 2,
1135 					 urb->actual_length - 2,
1136 					 (len < maxlen) ? eof[fifon] : 0);
1137 	} else {
1138 		hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1139 				 (len < maxlen) ? eof[fifon] : 0);
1140 	}
1141 	fifo->last_urblen = urb->actual_length;
1142 
1143 	status = usb_submit_urb(urb, GFP_ATOMIC);
1144 	if (status) {
1145 		if (debug & DEBUG_HW)
1146 			printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1147 			       hw->name, __func__);
1148 	}
1149 }
1150 
1151 /* transmit completion routine for all ISO tx fifos */
1152 static void
1153 tx_iso_complete(struct urb *urb)
1154 {
1155 	struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1156 	struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1157 	struct hfcsusb *hw = fifo->hw;
1158 	struct sk_buff *tx_skb;
1159 	int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1160 		errcode, hdlc, i;
1161 	int *tx_idx;
1162 	int frame_complete, fifon, status, fillempty = 0;
1163 	__u8 threshbit, *p;
1164 	unsigned long flags;
1165 
1166 	spin_lock_irqsave(&hw->lock, flags);
1167 	if (fifo->stop_gracefull) {
1168 		fifo->stop_gracefull = 0;
1169 		fifo->active = 0;
1170 		spin_unlock_irqrestore(&hw->lock, flags);
1171 		return;
1172 	}
1173 
1174 	if (fifo->dch) {
1175 		tx_skb = fifo->dch->tx_skb;
1176 		tx_idx = &fifo->dch->tx_idx;
1177 		hdlc = 1;
1178 	} else if (fifo->bch) {
1179 		tx_skb = fifo->bch->tx_skb;
1180 		tx_idx = &fifo->bch->tx_idx;
1181 		hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1182 		if (!tx_skb && !hdlc &&
1183 		    test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1184 			fillempty = 1;
1185 	} else {
1186 		printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1187 		       hw->name, __func__);
1188 		spin_unlock_irqrestore(&hw->lock, flags);
1189 		return;
1190 	}
1191 
1192 	fifon = fifo->fifonum;
1193 	status = urb->status;
1194 
1195 	tx_offset = 0;
1196 
1197 	/*
1198 	 * ISO transfer only partially completed,
1199 	 * look at individual frame status for details
1200 	 */
1201 	if (status == -EXDEV) {
1202 		if (debug & DBG_HFC_URB_ERROR)
1203 			printk(KERN_DEBUG "%s: %s: "
1204 			       "-EXDEV (%i) fifon (%d)\n",
1205 			       hw->name, __func__, status, fifon);
1206 
1207 		/* clear status, so go on with ISO transfers */
1208 		status = 0;
1209 	}
1210 
1211 	if (fifo->active && !status) {
1212 		/* is FifoFull-threshold set for our channel? */
1213 		threshbit = (hw->threshold_mask & (1 << fifon));
1214 		num_isoc_packets = iso_packets[fifon];
1215 
1216 		/* predict dataflow to avoid fifo overflow */
1217 		if (fifon >= HFCUSB_D_TX)
1218 			sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1219 		else
1220 			sink = (threshbit) ? SINK_MIN : SINK_MAX;
1221 		fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1222 			      context_iso_urb->buffer, num_isoc_packets,
1223 			      fifo->usb_packet_maxlen, fifo->intervall,
1224 			      (usb_complete_t)tx_iso_complete, urb->context);
1225 		memset(context_iso_urb->buffer, 0,
1226 		       sizeof(context_iso_urb->buffer));
1227 		frame_complete = 0;
1228 
1229 		for (k = 0; k < num_isoc_packets; ++k) {
1230 			/* analyze tx success of previous ISO packets */
1231 			if (debug & DBG_HFC_URB_ERROR) {
1232 				errcode = urb->iso_frame_desc[k].status;
1233 				if (errcode) {
1234 					printk(KERN_DEBUG "%s: %s: "
1235 					       "ISO packet %i, status: %i\n",
1236 					       hw->name, __func__, k, errcode);
1237 				}
1238 			}
1239 
1240 			/* Generate next ISO Packets */
1241 			if (tx_skb)
1242 				remain = tx_skb->len - *tx_idx;
1243 			else if (fillempty)
1244 				remain = 15; /* > not complete */
1245 			else
1246 				remain = 0;
1247 
1248 			if (remain > 0) {
1249 				fifo->bit_line -= sink;
1250 				current_len = (0 - fifo->bit_line) / 8;
1251 				if (current_len > 14)
1252 					current_len = 14;
1253 				if (current_len < 0)
1254 					current_len = 0;
1255 				if (remain < current_len)
1256 					current_len = remain;
1257 
1258 				/* how much bit do we put on the line? */
1259 				fifo->bit_line += current_len * 8;
1260 
1261 				context_iso_urb->buffer[tx_offset] = 0;
1262 				if (current_len == remain) {
1263 					if (hdlc) {
1264 						/* signal frame completion */
1265 						context_iso_urb->
1266 							buffer[tx_offset] = 1;
1267 						/* add 2 byte flags and 16bit
1268 						 * CRC at end of ISDN frame */
1269 						fifo->bit_line += 32;
1270 					}
1271 					frame_complete = 1;
1272 				}
1273 
1274 				/* copy tx data to iso-urb buffer */
1275 				p = context_iso_urb->buffer + tx_offset + 1;
1276 				if (fillempty) {
1277 					memset(p, fifo->bch->fill[0],
1278 					       current_len);
1279 				} else {
1280 					memcpy(p, (tx_skb->data + *tx_idx),
1281 					       current_len);
1282 					*tx_idx += current_len;
1283 				}
1284 				urb->iso_frame_desc[k].offset = tx_offset;
1285 				urb->iso_frame_desc[k].length = current_len + 1;
1286 
1287 				/* USB data log for every D ISO out */
1288 				if ((fifon == HFCUSB_D_RX) && !fillempty &&
1289 				    (debug & DBG_HFC_USB_VERBOSE)) {
1290 					printk(KERN_DEBUG
1291 					       "%s: %s (%d/%d) offs(%d) len(%d) ",
1292 					       hw->name, __func__,
1293 					       k, num_isoc_packets - 1,
1294 					       urb->iso_frame_desc[k].offset,
1295 					       urb->iso_frame_desc[k].length);
1296 
1297 					for (i = urb->iso_frame_desc[k].offset;
1298 					     i < (urb->iso_frame_desc[k].offset
1299 						  + urb->iso_frame_desc[k].length);
1300 					     i++)
1301 						printk("%x ",
1302 						       context_iso_urb->buffer[i]);
1303 
1304 					printk(" skb->len(%i) tx-idx(%d)\n",
1305 					       tx_skb->len, *tx_idx);
1306 				}
1307 
1308 				tx_offset += (current_len + 1);
1309 			} else {
1310 				urb->iso_frame_desc[k].offset = tx_offset++;
1311 				urb->iso_frame_desc[k].length = 1;
1312 				/* we lower data margin every msec */
1313 				fifo->bit_line -= sink;
1314 				if (fifo->bit_line < BITLINE_INF)
1315 					fifo->bit_line = BITLINE_INF;
1316 			}
1317 
1318 			if (frame_complete) {
1319 				frame_complete = 0;
1320 
1321 				if (debug & DBG_HFC_FIFO_VERBOSE) {
1322 					printk(KERN_DEBUG  "%s: %s: "
1323 					       "fifon(%i) new TX len(%i): ",
1324 					       hw->name, __func__,
1325 					       fifon, tx_skb->len);
1326 					i = 0;
1327 					while (i < tx_skb->len)
1328 						printk("%02x ",
1329 						       tx_skb->data[i++]);
1330 					printk("\n");
1331 				}
1332 
1333 				dev_kfree_skb(tx_skb);
1334 				tx_skb = NULL;
1335 				if (fifo->dch && get_next_dframe(fifo->dch))
1336 					tx_skb = fifo->dch->tx_skb;
1337 				else if (fifo->bch &&
1338 					 get_next_bframe(fifo->bch))
1339 					tx_skb = fifo->bch->tx_skb;
1340 			}
1341 		}
1342 		errcode = usb_submit_urb(urb, GFP_ATOMIC);
1343 		if (errcode < 0) {
1344 			if (debug & DEBUG_HW)
1345 				printk(KERN_DEBUG
1346 				       "%s: %s: error submitting ISO URB: %d \n",
1347 				       hw->name, __func__, errcode);
1348 		}
1349 
1350 		/*
1351 		 * abuse DChannel tx iso completion to trigger NT mode state
1352 		 * changes tx_iso_complete is assumed to be called every
1353 		 * fifo->intervall (ms)
1354 		 */
1355 		if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1356 		    && (hw->timers & NT_ACTIVATION_TIMER)) {
1357 			if ((--hw->nt_timer) < 0)
1358 				schedule_event(&hw->dch, FLG_PHCHANGE);
1359 		}
1360 
1361 	} else {
1362 		if (status && (debug & DBG_HFC_URB_ERROR))
1363 			printk(KERN_DEBUG  "%s: %s: urb->status %s (%i)"
1364 			       "fifonum=%d\n",
1365 			       hw->name, __func__,
1366 			       symbolic(urb_errlist, status), status, fifon);
1367 	}
1368 	spin_unlock_irqrestore(&hw->lock, flags);
1369 }
1370 
1371 /*
1372  * allocs urbs and start isoc transfer with two pending urbs to avoid
1373  * gaps in the transfer chain
1374  */
1375 static int
1376 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1377 		 usb_complete_t complete, int packet_size)
1378 {
1379 	struct hfcsusb *hw = fifo->hw;
1380 	int i, k, errcode;
1381 
1382 	if (debug)
1383 		printk(KERN_DEBUG "%s: %s: fifo %i\n",
1384 		       hw->name, __func__, fifo->fifonum);
1385 
1386 	/* allocate Memory for Iso out Urbs */
1387 	for (i = 0; i < 2; i++) {
1388 		if (!(fifo->iso[i].urb)) {
1389 			fifo->iso[i].urb =
1390 				usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1391 			if (!(fifo->iso[i].urb)) {
1392 				printk(KERN_DEBUG
1393 				       "%s: %s: alloc urb for fifo %i failed",
1394 				       hw->name, __func__, fifo->fifonum);
1395 				continue;
1396 			}
1397 			fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1398 			fifo->iso[i].indx = i;
1399 
1400 			/* Init the first iso */
1401 			if (ISO_BUFFER_SIZE >=
1402 			    (fifo->usb_packet_maxlen *
1403 			     num_packets_per_urb)) {
1404 				fill_isoc_urb(fifo->iso[i].urb,
1405 					      fifo->hw->dev, fifo->pipe,
1406 					      fifo->iso[i].buffer,
1407 					      num_packets_per_urb,
1408 					      fifo->usb_packet_maxlen,
1409 					      fifo->intervall, complete,
1410 					      &fifo->iso[i]);
1411 				memset(fifo->iso[i].buffer, 0,
1412 				       sizeof(fifo->iso[i].buffer));
1413 
1414 				for (k = 0; k < num_packets_per_urb; k++) {
1415 					fifo->iso[i].urb->
1416 						iso_frame_desc[k].offset =
1417 						k * packet_size;
1418 					fifo->iso[i].urb->
1419 						iso_frame_desc[k].length =
1420 						packet_size;
1421 				}
1422 			} else {
1423 				printk(KERN_DEBUG
1424 				       "%s: %s: ISO Buffer size to small!\n",
1425 				       hw->name, __func__);
1426 			}
1427 		}
1428 		fifo->bit_line = BITLINE_INF;
1429 
1430 		errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1431 		fifo->active = (errcode >= 0) ? 1 : 0;
1432 		fifo->stop_gracefull = 0;
1433 		if (errcode < 0) {
1434 			printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1435 			       hw->name, __func__,
1436 			       symbolic(urb_errlist, errcode), i);
1437 		}
1438 	}
1439 	return fifo->active;
1440 }
1441 
1442 static void
1443 stop_iso_gracefull(struct usb_fifo *fifo)
1444 {
1445 	struct hfcsusb *hw = fifo->hw;
1446 	int i, timeout;
1447 	u_long flags;
1448 
1449 	for (i = 0; i < 2; i++) {
1450 		spin_lock_irqsave(&hw->lock, flags);
1451 		if (debug)
1452 			printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1453 			       hw->name, __func__, fifo->fifonum, i);
1454 		fifo->stop_gracefull = 1;
1455 		spin_unlock_irqrestore(&hw->lock, flags);
1456 	}
1457 
1458 	for (i = 0; i < 2; i++) {
1459 		timeout = 3;
1460 		while (fifo->stop_gracefull && timeout--)
1461 			schedule_timeout_interruptible((HZ / 1000) * 16);
1462 		if (debug && fifo->stop_gracefull)
1463 			printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1464 			       hw->name, __func__, fifo->fifonum, i);
1465 	}
1466 }
1467 
1468 static void
1469 stop_int_gracefull(struct usb_fifo *fifo)
1470 {
1471 	struct hfcsusb *hw = fifo->hw;
1472 	int timeout;
1473 	u_long flags;
1474 
1475 	spin_lock_irqsave(&hw->lock, flags);
1476 	if (debug)
1477 		printk(KERN_DEBUG "%s: %s for fifo %i\n",
1478 		       hw->name, __func__, fifo->fifonum);
1479 	fifo->stop_gracefull = 1;
1480 	spin_unlock_irqrestore(&hw->lock, flags);
1481 
1482 	timeout = 3;
1483 	while (fifo->stop_gracefull && timeout--)
1484 		schedule_timeout_interruptible((HZ / 1000) * 3);
1485 	if (debug && fifo->stop_gracefull)
1486 		printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1487 		       hw->name, __func__, fifo->fifonum);
1488 }
1489 
1490 /* start the interrupt transfer for the given fifo */
1491 static void
1492 start_int_fifo(struct usb_fifo *fifo)
1493 {
1494 	struct hfcsusb *hw = fifo->hw;
1495 	int errcode;
1496 
1497 	if (debug)
1498 		printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1499 		       hw->name, __func__, fifo->fifonum);
1500 
1501 	if (!fifo->urb) {
1502 		fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1503 		if (!fifo->urb)
1504 			return;
1505 	}
1506 	usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1507 			 fifo->buffer, fifo->usb_packet_maxlen,
1508 			 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1509 	fifo->active = 1;
1510 	fifo->stop_gracefull = 0;
1511 	errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1512 	if (errcode) {
1513 		printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1514 		       hw->name, __func__, errcode);
1515 		fifo->active = 0;
1516 	}
1517 }
1518 
1519 static void
1520 setPortMode(struct hfcsusb *hw)
1521 {
1522 	if (debug & DEBUG_HW)
1523 		printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1524 		       (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1525 
1526 	if (hw->protocol == ISDN_P_TE_S0) {
1527 		write_reg(hw, HFCUSB_SCTRL, 0x40);
1528 		write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1529 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1530 		write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1531 		write_reg(hw, HFCUSB_STATES, 3);
1532 	} else {
1533 		write_reg(hw, HFCUSB_SCTRL, 0x44);
1534 		write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1535 		write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1536 		write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1537 		write_reg(hw, HFCUSB_STATES, 1);
1538 	}
1539 }
1540 
1541 static void
1542 reset_hfcsusb(struct hfcsusb *hw)
1543 {
1544 	struct usb_fifo *fifo;
1545 	int i;
1546 
1547 	if (debug & DEBUG_HW)
1548 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1549 
1550 	/* do Chip reset */
1551 	write_reg(hw, HFCUSB_CIRM, 8);
1552 
1553 	/* aux = output, reset off */
1554 	write_reg(hw, HFCUSB_CIRM, 0x10);
1555 
1556 	/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1557 	write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1558 		  ((hw->packet_size / 8) << 4));
1559 
1560 	/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1561 	write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1562 
1563 	/* enable PCM/GCI master mode */
1564 	write_reg(hw, HFCUSB_MST_MODE1, 0);	/* set default values */
1565 	write_reg(hw, HFCUSB_MST_MODE0, 1);	/* enable master mode */
1566 
1567 	/* init the fifos */
1568 	write_reg(hw, HFCUSB_F_THRES,
1569 		  (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1570 
1571 	fifo = hw->fifos;
1572 	for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1573 		write_reg(hw, HFCUSB_FIFO, i);	/* select the desired fifo */
1574 		fifo[i].max_size =
1575 			(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1576 		fifo[i].last_urblen = 0;
1577 
1578 		/* set 2 bit for D- & E-channel */
1579 		write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1580 
1581 		/* enable all fifos */
1582 		if (i == HFCUSB_D_TX)
1583 			write_reg(hw, HFCUSB_CON_HDLC,
1584 				  (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1585 		else
1586 			write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1587 		write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1588 	}
1589 
1590 	write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1591 	handle_led(hw, LED_POWER_ON);
1592 }
1593 
1594 /* start USB data pipes dependand on device's endpoint configuration */
1595 static void
1596 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1597 {
1598 	/* quick check if endpoint already running */
1599 	if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1600 		return;
1601 	if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1602 		return;
1603 	if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1604 		return;
1605 	if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1606 		return;
1607 
1608 	/* start rx endpoints using USB INT IN method */
1609 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1610 		start_int_fifo(hw->fifos + channel * 2 + 1);
1611 
1612 	/* start rx endpoints using USB ISO IN method */
1613 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1614 		switch (channel) {
1615 		case HFC_CHAN_D:
1616 			start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1617 					 ISOC_PACKETS_D,
1618 					 (usb_complete_t)rx_iso_complete,
1619 					 16);
1620 			break;
1621 		case HFC_CHAN_E:
1622 			start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1623 					 ISOC_PACKETS_D,
1624 					 (usb_complete_t)rx_iso_complete,
1625 					 16);
1626 			break;
1627 		case HFC_CHAN_B1:
1628 			start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1629 					 ISOC_PACKETS_B,
1630 					 (usb_complete_t)rx_iso_complete,
1631 					 16);
1632 			break;
1633 		case HFC_CHAN_B2:
1634 			start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1635 					 ISOC_PACKETS_B,
1636 					 (usb_complete_t)rx_iso_complete,
1637 					 16);
1638 			break;
1639 		}
1640 	}
1641 
1642 	/* start tx endpoints using USB ISO OUT method */
1643 	switch (channel) {
1644 	case HFC_CHAN_D:
1645 		start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1646 				 ISOC_PACKETS_B,
1647 				 (usb_complete_t)tx_iso_complete, 1);
1648 		break;
1649 	case HFC_CHAN_B1:
1650 		start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1651 				 ISOC_PACKETS_D,
1652 				 (usb_complete_t)tx_iso_complete, 1);
1653 		break;
1654 	case HFC_CHAN_B2:
1655 		start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1656 				 ISOC_PACKETS_B,
1657 				 (usb_complete_t)tx_iso_complete, 1);
1658 		break;
1659 	}
1660 }
1661 
1662 /* stop USB data pipes dependand on device's endpoint configuration */
1663 static void
1664 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1665 {
1666 	/* quick check if endpoint currently running */
1667 	if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1668 		return;
1669 	if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1670 		return;
1671 	if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1672 		return;
1673 	if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1674 		return;
1675 
1676 	/* rx endpoints using USB INT IN method */
1677 	if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1678 		stop_int_gracefull(hw->fifos + channel * 2 + 1);
1679 
1680 	/* rx endpoints using USB ISO IN method */
1681 	if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1682 		stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1683 
1684 	/* tx endpoints using USB ISO OUT method */
1685 	if (channel != HFC_CHAN_E)
1686 		stop_iso_gracefull(hw->fifos + channel * 2);
1687 }
1688 
1689 
1690 /* Hardware Initialization */
1691 static int
1692 setup_hfcsusb(struct hfcsusb *hw)
1693 {
1694 	void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1695 	u_char b;
1696 	int ret;
1697 
1698 	if (debug & DBG_HFC_CALL_TRACE)
1699 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1700 
1701 	if (!dmabuf)
1702 		return -ENOMEM;
1703 
1704 	ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1705 
1706 	memcpy(&b, dmabuf, sizeof(u_char));
1707 	kfree(dmabuf);
1708 
1709 	/* check the chip id */
1710 	if (ret != 1) {
1711 		printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1712 		       hw->name, __func__);
1713 		return 1;
1714 	}
1715 	if (b != HFCUSB_CHIPID) {
1716 		printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1717 		       hw->name, __func__, b);
1718 		return 1;
1719 	}
1720 
1721 	/* first set the needed config, interface and alternate */
1722 	(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1723 
1724 	hw->led_state = 0;
1725 
1726 	/* init the background machinery for control requests */
1727 	hw->ctrl_read.bRequestType = 0xc0;
1728 	hw->ctrl_read.bRequest = 1;
1729 	hw->ctrl_read.wLength = cpu_to_le16(1);
1730 	hw->ctrl_write.bRequestType = 0x40;
1731 	hw->ctrl_write.bRequest = 0;
1732 	hw->ctrl_write.wLength = 0;
1733 	usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1734 			     (u_char *)&hw->ctrl_write, NULL, 0,
1735 			     (usb_complete_t)ctrl_complete, hw);
1736 
1737 	reset_hfcsusb(hw);
1738 	return 0;
1739 }
1740 
1741 static void
1742 release_hw(struct hfcsusb *hw)
1743 {
1744 	if (debug & DBG_HFC_CALL_TRACE)
1745 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1746 
1747 	/*
1748 	 * stop all endpoints gracefully
1749 	 * TODO: mISDN_core should generate CLOSE_CHANNEL
1750 	 *       signals after calling mISDN_unregister_device()
1751 	 */
1752 	hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1753 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1754 	hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1755 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1756 		hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1757 	if (hw->protocol == ISDN_P_TE_S0)
1758 		l1_event(hw->dch.l1, CLOSE_CHANNEL);
1759 
1760 	mISDN_unregister_device(&hw->dch.dev);
1761 	mISDN_freebchannel(&hw->bch[1]);
1762 	mISDN_freebchannel(&hw->bch[0]);
1763 	mISDN_freedchannel(&hw->dch);
1764 
1765 	if (hw->ctrl_urb) {
1766 		usb_kill_urb(hw->ctrl_urb);
1767 		usb_free_urb(hw->ctrl_urb);
1768 		hw->ctrl_urb = NULL;
1769 	}
1770 
1771 	if (hw->intf)
1772 		usb_set_intfdata(hw->intf, NULL);
1773 	list_del(&hw->list);
1774 	kfree(hw);
1775 	hw = NULL;
1776 }
1777 
1778 static void
1779 deactivate_bchannel(struct bchannel *bch)
1780 {
1781 	struct hfcsusb *hw = bch->hw;
1782 	u_long flags;
1783 
1784 	if (bch->debug & DEBUG_HW)
1785 		printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1786 		       hw->name, __func__, bch->nr);
1787 
1788 	spin_lock_irqsave(&hw->lock, flags);
1789 	mISDN_clear_bchannel(bch);
1790 	spin_unlock_irqrestore(&hw->lock, flags);
1791 	hfcsusb_setup_bch(bch, ISDN_P_NONE);
1792 	hfcsusb_stop_endpoint(hw, bch->nr - 1);
1793 }
1794 
1795 /*
1796  * Layer 1 B-channel hardware access
1797  */
1798 static int
1799 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1800 {
1801 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1802 	int		ret = -EINVAL;
1803 
1804 	if (bch->debug & DEBUG_HW)
1805 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1806 
1807 	switch (cmd) {
1808 	case HW_TESTRX_RAW:
1809 	case HW_TESTRX_HDLC:
1810 	case HW_TESTRX_OFF:
1811 		ret = -EINVAL;
1812 		break;
1813 
1814 	case CLOSE_CHANNEL:
1815 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1816 		deactivate_bchannel(bch);
1817 		ch->protocol = ISDN_P_NONE;
1818 		ch->peer = NULL;
1819 		module_put(THIS_MODULE);
1820 		ret = 0;
1821 		break;
1822 	case CONTROL_CHANNEL:
1823 		ret = channel_bctrl(bch, arg);
1824 		break;
1825 	default:
1826 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1827 		       __func__, cmd);
1828 	}
1829 	return ret;
1830 }
1831 
1832 static int
1833 setup_instance(struct hfcsusb *hw, struct device *parent)
1834 {
1835 	u_long	flags;
1836 	int	err, i;
1837 
1838 	if (debug & DBG_HFC_CALL_TRACE)
1839 		printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1840 
1841 	spin_lock_init(&hw->ctrl_lock);
1842 	spin_lock_init(&hw->lock);
1843 
1844 	mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1845 	hw->dch.debug = debug & 0xFFFF;
1846 	hw->dch.hw = hw;
1847 	hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1848 	hw->dch.dev.D.send = hfcusb_l2l1D;
1849 	hw->dch.dev.D.ctrl = hfc_dctrl;
1850 
1851 	/* enable E-Channel logging */
1852 	if (hw->fifos[HFCUSB_PCM_RX].pipe)
1853 		mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1854 
1855 	hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1856 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1857 	hw->dch.dev.nrbchan = 2;
1858 	for (i = 0; i < 2; i++) {
1859 		hw->bch[i].nr = i + 1;
1860 		set_channelmap(i + 1, hw->dch.dev.channelmap);
1861 		hw->bch[i].debug = debug;
1862 		mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1863 		hw->bch[i].hw = hw;
1864 		hw->bch[i].ch.send = hfcusb_l2l1B;
1865 		hw->bch[i].ch.ctrl = hfc_bctrl;
1866 		hw->bch[i].ch.nr = i + 1;
1867 		list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1868 	}
1869 
1870 	hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1871 	hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1872 	hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1873 	hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1874 	hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1875 	hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1876 	hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1877 	hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1878 
1879 	err = setup_hfcsusb(hw);
1880 	if (err)
1881 		goto out;
1882 
1883 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1884 		 hfcsusb_cnt + 1);
1885 	printk(KERN_INFO "%s: registered as '%s'\n",
1886 	       DRIVER_NAME, hw->name);
1887 
1888 	err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1889 	if (err)
1890 		goto out;
1891 
1892 	hfcsusb_cnt++;
1893 	write_lock_irqsave(&HFClock, flags);
1894 	list_add_tail(&hw->list, &HFClist);
1895 	write_unlock_irqrestore(&HFClock, flags);
1896 	return 0;
1897 
1898 out:
1899 	mISDN_freebchannel(&hw->bch[1]);
1900 	mISDN_freebchannel(&hw->bch[0]);
1901 	mISDN_freedchannel(&hw->dch);
1902 	kfree(hw);
1903 	return err;
1904 }
1905 
1906 static int
1907 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1908 {
1909 	struct hfcsusb			*hw;
1910 	struct usb_device		*dev = interface_to_usbdev(intf);
1911 	struct usb_host_interface	*iface = intf->cur_altsetting;
1912 	struct usb_host_interface	*iface_used = NULL;
1913 	struct usb_host_endpoint	*ep;
1914 	struct hfcsusb_vdata		*driver_info;
1915 	int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1916 		probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1917 		ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1918 		alt_used = 0;
1919 
1920 	vend_idx = 0xffff;
1921 	for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1922 		if ((le16_to_cpu(dev->descriptor.idVendor)
1923 		     == hfcsusb_idtab[i].idVendor) &&
1924 		    (le16_to_cpu(dev->descriptor.idProduct)
1925 		     == hfcsusb_idtab[i].idProduct)) {
1926 			vend_idx = i;
1927 			continue;
1928 		}
1929 	}
1930 
1931 	printk(KERN_DEBUG
1932 	       "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1933 	       __func__, ifnum, iface->desc.bAlternateSetting,
1934 	       intf->minor, vend_idx);
1935 
1936 	if (vend_idx == 0xffff) {
1937 		printk(KERN_WARNING
1938 		       "%s: no valid vendor found in USB descriptor\n",
1939 		       __func__);
1940 		return -EIO;
1941 	}
1942 	/* if vendor and product ID is OK, start probing alternate settings */
1943 	alt_idx = 0;
1944 	small_match = -1;
1945 
1946 	/* default settings */
1947 	iso_packet_size = 16;
1948 	packet_size = 64;
1949 
1950 	while (alt_idx < intf->num_altsetting) {
1951 		iface = intf->altsetting + alt_idx;
1952 		probe_alt_setting = iface->desc.bAlternateSetting;
1953 		cfg_used = 0;
1954 
1955 		while (validconf[cfg_used][0]) {
1956 			cfg_found = 1;
1957 			vcf = validconf[cfg_used];
1958 			ep = iface->endpoint;
1959 			memcpy(cmptbl, vcf, 16 * sizeof(int));
1960 
1961 			/* check for all endpoints in this alternate setting */
1962 			for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1963 				ep_addr = ep->desc.bEndpointAddress;
1964 
1965 				/* get endpoint base */
1966 				idx = ((ep_addr & 0x7f) - 1) * 2;
1967 				if (idx > 15)
1968 					return -EIO;
1969 
1970 				if (ep_addr & 0x80)
1971 					idx++;
1972 				attr = ep->desc.bmAttributes;
1973 
1974 				if (cmptbl[idx] != EP_NOP) {
1975 					if (cmptbl[idx] == EP_NUL)
1976 						cfg_found = 0;
1977 					if (attr == USB_ENDPOINT_XFER_INT
1978 					    && cmptbl[idx] == EP_INT)
1979 						cmptbl[idx] = EP_NUL;
1980 					if (attr == USB_ENDPOINT_XFER_BULK
1981 					    && cmptbl[idx] == EP_BLK)
1982 						cmptbl[idx] = EP_NUL;
1983 					if (attr == USB_ENDPOINT_XFER_ISOC
1984 					    && cmptbl[idx] == EP_ISO)
1985 						cmptbl[idx] = EP_NUL;
1986 
1987 					if (attr == USB_ENDPOINT_XFER_INT &&
1988 					    ep->desc.bInterval < vcf[17]) {
1989 						cfg_found = 0;
1990 					}
1991 				}
1992 				ep++;
1993 			}
1994 
1995 			for (i = 0; i < 16; i++)
1996 				if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1997 					cfg_found = 0;
1998 
1999 			if (cfg_found) {
2000 				if (small_match < cfg_used) {
2001 					small_match = cfg_used;
2002 					alt_used = probe_alt_setting;
2003 					iface_used = iface;
2004 				}
2005 			}
2006 			cfg_used++;
2007 		}
2008 		alt_idx++;
2009 	}	/* (alt_idx < intf->num_altsetting) */
2010 
2011 	/* not found a valid USB Ta Endpoint config */
2012 	if (small_match == -1)
2013 		return -EIO;
2014 
2015 	iface = iface_used;
2016 	hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2017 	if (!hw)
2018 		return -ENOMEM;	/* got no mem */
2019 	snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2020 
2021 	ep = iface->endpoint;
2022 	vcf = validconf[small_match];
2023 
2024 	for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2025 		struct usb_fifo *f;
2026 
2027 		ep_addr = ep->desc.bEndpointAddress;
2028 		/* get endpoint base */
2029 		idx = ((ep_addr & 0x7f) - 1) * 2;
2030 		if (ep_addr & 0x80)
2031 			idx++;
2032 		f = &hw->fifos[idx & 7];
2033 
2034 		/* init Endpoints */
2035 		if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2036 			ep++;
2037 			continue;
2038 		}
2039 		switch (ep->desc.bmAttributes) {
2040 		case USB_ENDPOINT_XFER_INT:
2041 			f->pipe = usb_rcvintpipe(dev,
2042 						 ep->desc.bEndpointAddress);
2043 			f->usb_transfer_mode = USB_INT;
2044 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2045 			break;
2046 		case USB_ENDPOINT_XFER_BULK:
2047 			if (ep_addr & 0x80)
2048 				f->pipe = usb_rcvbulkpipe(dev,
2049 							  ep->desc.bEndpointAddress);
2050 			else
2051 				f->pipe = usb_sndbulkpipe(dev,
2052 							  ep->desc.bEndpointAddress);
2053 			f->usb_transfer_mode = USB_BULK;
2054 			packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2055 			break;
2056 		case USB_ENDPOINT_XFER_ISOC:
2057 			if (ep_addr & 0x80)
2058 				f->pipe = usb_rcvisocpipe(dev,
2059 							  ep->desc.bEndpointAddress);
2060 			else
2061 				f->pipe = usb_sndisocpipe(dev,
2062 							  ep->desc.bEndpointAddress);
2063 			f->usb_transfer_mode = USB_ISOC;
2064 			iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2065 			break;
2066 		default:
2067 			f->pipe = 0;
2068 		}
2069 
2070 		if (f->pipe) {
2071 			f->fifonum = idx & 7;
2072 			f->hw = hw;
2073 			f->usb_packet_maxlen =
2074 				le16_to_cpu(ep->desc.wMaxPacketSize);
2075 			f->intervall = ep->desc.bInterval;
2076 		}
2077 		ep++;
2078 	}
2079 	hw->dev = dev; /* save device */
2080 	hw->if_used = ifnum; /* save used interface */
2081 	hw->alt_used = alt_used; /* and alternate config */
2082 	hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2083 	hw->cfg_used = vcf[16];	/* store used config */
2084 	hw->vend_idx = vend_idx; /* store found vendor */
2085 	hw->packet_size = packet_size;
2086 	hw->iso_packet_size = iso_packet_size;
2087 
2088 	/* create the control pipes needed for register access */
2089 	hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2090 	hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2091 
2092 	driver_info = (struct hfcsusb_vdata *)
2093 		      hfcsusb_idtab[vend_idx].driver_info;
2094 
2095 	hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2096 	if (!hw->ctrl_urb) {
2097 		pr_warn("%s: No memory for control urb\n",
2098 			driver_info->vend_name);
2099 		kfree(hw);
2100 		return -ENOMEM;
2101 	}
2102 
2103 	pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2104 		hw->name, __func__, driver_info->vend_name,
2105 		conf_str[small_match], ifnum, alt_used);
2106 
2107 	if (setup_instance(hw, dev->dev.parent))
2108 		return -EIO;
2109 
2110 	hw->intf = intf;
2111 	usb_set_intfdata(hw->intf, hw);
2112 	return 0;
2113 }
2114 
2115 /* function called when an active device is removed */
2116 static void
2117 hfcsusb_disconnect(struct usb_interface *intf)
2118 {
2119 	struct hfcsusb *hw = usb_get_intfdata(intf);
2120 	struct hfcsusb *next;
2121 	int cnt = 0;
2122 
2123 	printk(KERN_INFO "%s: device disconnected\n", hw->name);
2124 
2125 	handle_led(hw, LED_POWER_OFF);
2126 	release_hw(hw);
2127 
2128 	list_for_each_entry_safe(hw, next, &HFClist, list)
2129 		cnt++;
2130 	if (!cnt)
2131 		hfcsusb_cnt = 0;
2132 
2133 	usb_set_intfdata(intf, NULL);
2134 }
2135 
2136 static struct usb_driver hfcsusb_drv = {
2137 	.name = DRIVER_NAME,
2138 	.id_table = hfcsusb_idtab,
2139 	.probe = hfcsusb_probe,
2140 	.disconnect = hfcsusb_disconnect,
2141 	.disable_hub_initiated_lpm = 1,
2142 };
2143 
2144 module_usb_driver(hfcsusb_drv);
2145