1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* hfcsusb.c 3 * mISDN driver for Colognechip HFC-S USB chip 4 * 5 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de) 6 * Copyright 2008 by Martin Bachem (info@bachem-it.com) 7 * 8 * module params 9 * debug=<n>, default=0, with n=0xHHHHGGGG 10 * H - l1 driver flags described in hfcsusb.h 11 * G - common mISDN debug flags described at mISDNhw.h 12 * 13 * poll=<n>, default 128 14 * n : burst size of PH_DATA_IND at transparent rx data 15 * 16 * Revision: 0.3.3 (socket), 2008-11-05 17 */ 18 19 #include <linux/module.h> 20 #include <linux/delay.h> 21 #include <linux/usb.h> 22 #include <linux/mISDNhw.h> 23 #include <linux/slab.h> 24 #include "hfcsusb.h" 25 26 static unsigned int debug; 27 static int poll = DEFAULT_TRANSP_BURST_SZ; 28 29 static LIST_HEAD(HFClist); 30 static DEFINE_RWLOCK(HFClock); 31 32 33 MODULE_AUTHOR("Martin Bachem"); 34 MODULE_LICENSE("GPL"); 35 module_param(debug, uint, S_IRUGO | S_IWUSR); 36 module_param(poll, int, 0); 37 38 static int hfcsusb_cnt; 39 40 /* some function prototypes */ 41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command); 42 static void release_hw(struct hfcsusb *hw); 43 static void reset_hfcsusb(struct hfcsusb *hw); 44 static void setPortMode(struct hfcsusb *hw); 45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel); 46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel); 47 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol); 48 static void deactivate_bchannel(struct bchannel *bch); 49 static void hfcsusb_ph_info(struct hfcsusb *hw); 50 51 /* start next background transfer for control channel */ 52 static void 53 ctrl_start_transfer(struct hfcsusb *hw) 54 { 55 if (debug & DBG_HFC_CALL_TRACE) 56 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 57 58 if (hw->ctrl_cnt) { 59 hw->ctrl_urb->pipe = hw->ctrl_out_pipe; 60 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write; 61 hw->ctrl_urb->transfer_buffer = NULL; 62 hw->ctrl_urb->transfer_buffer_length = 0; 63 hw->ctrl_write.wIndex = 64 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg); 65 hw->ctrl_write.wValue = 66 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val); 67 68 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC); 69 } 70 } 71 72 /* 73 * queue a control transfer request to write HFC-S USB 74 * chip register using CTRL resuest queue 75 */ 76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val) 77 { 78 struct ctrl_buf *buf; 79 80 if (debug & DBG_HFC_CALL_TRACE) 81 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n", 82 hw->name, __func__, reg, val); 83 84 spin_lock(&hw->ctrl_lock); 85 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) { 86 spin_unlock(&hw->ctrl_lock); 87 return 1; 88 } 89 buf = &hw->ctrl_buff[hw->ctrl_in_idx]; 90 buf->hfcs_reg = reg; 91 buf->reg_val = val; 92 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE) 93 hw->ctrl_in_idx = 0; 94 if (++hw->ctrl_cnt == 1) 95 ctrl_start_transfer(hw); 96 spin_unlock(&hw->ctrl_lock); 97 98 return 0; 99 } 100 101 /* control completion routine handling background control cmds */ 102 static void 103 ctrl_complete(struct urb *urb) 104 { 105 struct hfcsusb *hw = (struct hfcsusb *) urb->context; 106 107 if (debug & DBG_HFC_CALL_TRACE) 108 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 109 110 urb->dev = hw->dev; 111 if (hw->ctrl_cnt) { 112 hw->ctrl_cnt--; /* decrement actual count */ 113 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE) 114 hw->ctrl_out_idx = 0; /* pointer wrap */ 115 116 ctrl_start_transfer(hw); /* start next transfer */ 117 } 118 } 119 120 /* handle LED bits */ 121 static void 122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on) 123 { 124 if (set_on) { 125 if (led_bits < 0) 126 hw->led_state &= ~abs(led_bits); 127 else 128 hw->led_state |= led_bits; 129 } else { 130 if (led_bits < 0) 131 hw->led_state |= abs(led_bits); 132 else 133 hw->led_state &= ~led_bits; 134 } 135 } 136 137 /* handle LED requests */ 138 static void 139 handle_led(struct hfcsusb *hw, int event) 140 { 141 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *) 142 hfcsusb_idtab[hw->vend_idx].driver_info; 143 __u8 tmpled; 144 145 if (driver_info->led_scheme == LED_OFF) 146 return; 147 tmpled = hw->led_state; 148 149 switch (event) { 150 case LED_POWER_ON: 151 set_led_bit(hw, driver_info->led_bits[0], 1); 152 set_led_bit(hw, driver_info->led_bits[1], 0); 153 set_led_bit(hw, driver_info->led_bits[2], 0); 154 set_led_bit(hw, driver_info->led_bits[3], 0); 155 break; 156 case LED_POWER_OFF: 157 set_led_bit(hw, driver_info->led_bits[0], 0); 158 set_led_bit(hw, driver_info->led_bits[1], 0); 159 set_led_bit(hw, driver_info->led_bits[2], 0); 160 set_led_bit(hw, driver_info->led_bits[3], 0); 161 break; 162 case LED_S0_ON: 163 set_led_bit(hw, driver_info->led_bits[1], 1); 164 break; 165 case LED_S0_OFF: 166 set_led_bit(hw, driver_info->led_bits[1], 0); 167 break; 168 case LED_B1_ON: 169 set_led_bit(hw, driver_info->led_bits[2], 1); 170 break; 171 case LED_B1_OFF: 172 set_led_bit(hw, driver_info->led_bits[2], 0); 173 break; 174 case LED_B2_ON: 175 set_led_bit(hw, driver_info->led_bits[3], 1); 176 break; 177 case LED_B2_OFF: 178 set_led_bit(hw, driver_info->led_bits[3], 0); 179 break; 180 } 181 182 if (hw->led_state != tmpled) { 183 if (debug & DBG_HFC_CALL_TRACE) 184 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n", 185 hw->name, __func__, 186 HFCUSB_P_DATA, hw->led_state); 187 188 write_reg(hw, HFCUSB_P_DATA, hw->led_state); 189 } 190 } 191 192 /* 193 * Layer2 -> Layer 1 Bchannel data 194 */ 195 static int 196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) 197 { 198 struct bchannel *bch = container_of(ch, struct bchannel, ch); 199 struct hfcsusb *hw = bch->hw; 200 int ret = -EINVAL; 201 struct mISDNhead *hh = mISDN_HEAD_P(skb); 202 u_long flags; 203 204 if (debug & DBG_HFC_CALL_TRACE) 205 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 206 207 switch (hh->prim) { 208 case PH_DATA_REQ: 209 spin_lock_irqsave(&hw->lock, flags); 210 ret = bchannel_senddata(bch, skb); 211 spin_unlock_irqrestore(&hw->lock, flags); 212 if (debug & DBG_HFC_CALL_TRACE) 213 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n", 214 hw->name, __func__, ret); 215 if (ret > 0) 216 ret = 0; 217 return ret; 218 case PH_ACTIVATE_REQ: 219 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) { 220 hfcsusb_start_endpoint(hw, bch->nr - 1); 221 ret = hfcsusb_setup_bch(bch, ch->protocol); 222 } else 223 ret = 0; 224 if (!ret) 225 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 226 0, NULL, GFP_KERNEL); 227 break; 228 case PH_DEACTIVATE_REQ: 229 deactivate_bchannel(bch); 230 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 231 0, NULL, GFP_KERNEL); 232 ret = 0; 233 break; 234 } 235 if (!ret) 236 dev_kfree_skb(skb); 237 return ret; 238 } 239 240 /* 241 * send full D/B channel status information 242 * as MPH_INFORMATION_IND 243 */ 244 static void 245 hfcsusb_ph_info(struct hfcsusb *hw) 246 { 247 struct ph_info *phi; 248 struct dchannel *dch = &hw->dch; 249 int i; 250 251 phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC); 252 if (!phi) 253 return; 254 255 phi->dch.ch.protocol = hw->protocol; 256 phi->dch.ch.Flags = dch->Flags; 257 phi->dch.state = dch->state; 258 phi->dch.num_bch = dch->dev.nrbchan; 259 for (i = 0; i < dch->dev.nrbchan; i++) { 260 phi->bch[i].protocol = hw->bch[i].ch.protocol; 261 phi->bch[i].Flags = hw->bch[i].Flags; 262 } 263 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY, 264 struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC); 265 kfree(phi); 266 } 267 268 /* 269 * Layer2 -> Layer 1 Dchannel data 270 */ 271 static int 272 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) 273 { 274 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 275 struct dchannel *dch = container_of(dev, struct dchannel, dev); 276 struct mISDNhead *hh = mISDN_HEAD_P(skb); 277 struct hfcsusb *hw = dch->hw; 278 int ret = -EINVAL; 279 u_long flags; 280 281 switch (hh->prim) { 282 case PH_DATA_REQ: 283 if (debug & DBG_HFC_CALL_TRACE) 284 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n", 285 hw->name, __func__); 286 287 spin_lock_irqsave(&hw->lock, flags); 288 ret = dchannel_senddata(dch, skb); 289 spin_unlock_irqrestore(&hw->lock, flags); 290 if (ret > 0) { 291 ret = 0; 292 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL); 293 } 294 break; 295 296 case PH_ACTIVATE_REQ: 297 if (debug & DBG_HFC_CALL_TRACE) 298 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n", 299 hw->name, __func__, 300 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE"); 301 302 if (hw->protocol == ISDN_P_NT_S0) { 303 ret = 0; 304 if (test_bit(FLG_ACTIVE, &dch->Flags)) { 305 _queue_data(&dch->dev.D, 306 PH_ACTIVATE_IND, MISDN_ID_ANY, 0, 307 NULL, GFP_ATOMIC); 308 } else { 309 hfcsusb_ph_command(hw, 310 HFC_L1_ACTIVATE_NT); 311 test_and_set_bit(FLG_L2_ACTIVATED, 312 &dch->Flags); 313 } 314 } else { 315 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE); 316 ret = l1_event(dch->l1, hh->prim); 317 } 318 break; 319 320 case PH_DEACTIVATE_REQ: 321 if (debug & DBG_HFC_CALL_TRACE) 322 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n", 323 hw->name, __func__); 324 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 325 326 if (hw->protocol == ISDN_P_NT_S0) { 327 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT); 328 spin_lock_irqsave(&hw->lock, flags); 329 skb_queue_purge(&dch->squeue); 330 if (dch->tx_skb) { 331 dev_kfree_skb(dch->tx_skb); 332 dch->tx_skb = NULL; 333 } 334 dch->tx_idx = 0; 335 if (dch->rx_skb) { 336 dev_kfree_skb(dch->rx_skb); 337 dch->rx_skb = NULL; 338 } 339 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 340 spin_unlock_irqrestore(&hw->lock, flags); 341 #ifdef FIXME 342 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) 343 dchannel_sched_event(&hc->dch, D_CLEARBUSY); 344 #endif 345 ret = 0; 346 } else 347 ret = l1_event(dch->l1, hh->prim); 348 break; 349 case MPH_INFORMATION_REQ: 350 hfcsusb_ph_info(hw); 351 ret = 0; 352 break; 353 } 354 355 return ret; 356 } 357 358 /* 359 * Layer 1 callback function 360 */ 361 static int 362 hfc_l1callback(struct dchannel *dch, u_int cmd) 363 { 364 struct hfcsusb *hw = dch->hw; 365 366 if (debug & DBG_HFC_CALL_TRACE) 367 printk(KERN_DEBUG "%s: %s cmd 0x%x\n", 368 hw->name, __func__, cmd); 369 370 switch (cmd) { 371 case INFO3_P8: 372 case INFO3_P10: 373 case HW_RESET_REQ: 374 case HW_POWERUP_REQ: 375 break; 376 377 case HW_DEACT_REQ: 378 skb_queue_purge(&dch->squeue); 379 if (dch->tx_skb) { 380 dev_kfree_skb(dch->tx_skb); 381 dch->tx_skb = NULL; 382 } 383 dch->tx_idx = 0; 384 if (dch->rx_skb) { 385 dev_kfree_skb(dch->rx_skb); 386 dch->rx_skb = NULL; 387 } 388 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 389 break; 390 case PH_ACTIVATE_IND: 391 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 392 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 393 GFP_ATOMIC); 394 break; 395 case PH_DEACTIVATE_IND: 396 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 397 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 398 GFP_ATOMIC); 399 break; 400 default: 401 if (dch->debug & DEBUG_HW) 402 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n", 403 hw->name, __func__, cmd); 404 return -1; 405 } 406 hfcsusb_ph_info(hw); 407 return 0; 408 } 409 410 static int 411 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch, 412 struct channel_req *rq) 413 { 414 int err = 0; 415 416 if (debug & DEBUG_HW_OPEN) 417 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n", 418 hw->name, __func__, hw->dch.dev.id, rq->adr.channel, 419 __builtin_return_address(0)); 420 if (rq->protocol == ISDN_P_NONE) 421 return -EINVAL; 422 423 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags); 424 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags); 425 hfcsusb_start_endpoint(hw, HFC_CHAN_D); 426 427 /* E-Channel logging */ 428 if (rq->adr.channel == 1) { 429 if (hw->fifos[HFCUSB_PCM_RX].pipe) { 430 hfcsusb_start_endpoint(hw, HFC_CHAN_E); 431 set_bit(FLG_ACTIVE, &hw->ech.Flags); 432 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND, 433 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 434 } else 435 return -EINVAL; 436 } 437 438 if (!hw->initdone) { 439 hw->protocol = rq->protocol; 440 if (rq->protocol == ISDN_P_TE_S0) { 441 err = create_l1(&hw->dch, hfc_l1callback); 442 if (err) 443 return err; 444 } 445 setPortMode(hw); 446 ch->protocol = rq->protocol; 447 hw->initdone = 1; 448 } else { 449 if (rq->protocol != ch->protocol) 450 return -EPROTONOSUPPORT; 451 } 452 453 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) || 454 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7))) 455 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 456 0, NULL, GFP_KERNEL); 457 rq->ch = ch; 458 if (!try_module_get(THIS_MODULE)) 459 printk(KERN_WARNING "%s: %s: cannot get module\n", 460 hw->name, __func__); 461 return 0; 462 } 463 464 static int 465 open_bchannel(struct hfcsusb *hw, struct channel_req *rq) 466 { 467 struct bchannel *bch; 468 469 if (rq->adr.channel == 0 || rq->adr.channel > 2) 470 return -EINVAL; 471 if (rq->protocol == ISDN_P_NONE) 472 return -EINVAL; 473 474 if (debug & DBG_HFC_CALL_TRACE) 475 printk(KERN_DEBUG "%s: %s B%i\n", 476 hw->name, __func__, rq->adr.channel); 477 478 bch = &hw->bch[rq->adr.channel - 1]; 479 if (test_and_set_bit(FLG_OPEN, &bch->Flags)) 480 return -EBUSY; /* b-channel can be only open once */ 481 bch->ch.protocol = rq->protocol; 482 rq->ch = &bch->ch; 483 484 if (!try_module_get(THIS_MODULE)) 485 printk(KERN_WARNING "%s: %s:cannot get module\n", 486 hw->name, __func__); 487 return 0; 488 } 489 490 static int 491 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq) 492 { 493 int ret = 0; 494 495 if (debug & DBG_HFC_CALL_TRACE) 496 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n", 497 hw->name, __func__, (cq->op), (cq->channel)); 498 499 switch (cq->op) { 500 case MISDN_CTRL_GETOP: 501 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | 502 MISDN_CTRL_DISCONNECT; 503 break; 504 default: 505 printk(KERN_WARNING "%s: %s: unknown Op %x\n", 506 hw->name, __func__, cq->op); 507 ret = -EINVAL; 508 break; 509 } 510 return ret; 511 } 512 513 /* 514 * device control function 515 */ 516 static int 517 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 518 { 519 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 520 struct dchannel *dch = container_of(dev, struct dchannel, dev); 521 struct hfcsusb *hw = dch->hw; 522 struct channel_req *rq; 523 int err = 0; 524 525 if (dch->debug & DEBUG_HW) 526 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n", 527 hw->name, __func__, cmd, arg); 528 switch (cmd) { 529 case OPEN_CHANNEL: 530 rq = arg; 531 if ((rq->protocol == ISDN_P_TE_S0) || 532 (rq->protocol == ISDN_P_NT_S0)) 533 err = open_dchannel(hw, ch, rq); 534 else 535 err = open_bchannel(hw, rq); 536 if (!err) 537 hw->open++; 538 break; 539 case CLOSE_CHANNEL: 540 hw->open--; 541 if (debug & DEBUG_HW_OPEN) 542 printk(KERN_DEBUG 543 "%s: %s: dev(%d) close from %p (open %d)\n", 544 hw->name, __func__, hw->dch.dev.id, 545 __builtin_return_address(0), hw->open); 546 if (!hw->open) { 547 hfcsusb_stop_endpoint(hw, HFC_CHAN_D); 548 if (hw->fifos[HFCUSB_PCM_RX].pipe) 549 hfcsusb_stop_endpoint(hw, HFC_CHAN_E); 550 handle_led(hw, LED_POWER_ON); 551 } 552 module_put(THIS_MODULE); 553 break; 554 case CONTROL_CHANNEL: 555 err = channel_ctrl(hw, arg); 556 break; 557 default: 558 if (dch->debug & DEBUG_HW) 559 printk(KERN_DEBUG "%s: %s: unknown command %x\n", 560 hw->name, __func__, cmd); 561 return -EINVAL; 562 } 563 return err; 564 } 565 566 /* 567 * S0 TE state change event handler 568 */ 569 static void 570 ph_state_te(struct dchannel *dch) 571 { 572 struct hfcsusb *hw = dch->hw; 573 574 if (debug & DEBUG_HW) { 575 if (dch->state <= HFC_MAX_TE_LAYER1_STATE) 576 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__, 577 HFC_TE_LAYER1_STATES[dch->state]); 578 else 579 printk(KERN_DEBUG "%s: %s: TE F%d\n", 580 hw->name, __func__, dch->state); 581 } 582 583 switch (dch->state) { 584 case 0: 585 l1_event(dch->l1, HW_RESET_IND); 586 break; 587 case 3: 588 l1_event(dch->l1, HW_DEACT_IND); 589 break; 590 case 5: 591 case 8: 592 l1_event(dch->l1, ANYSIGNAL); 593 break; 594 case 6: 595 l1_event(dch->l1, INFO2); 596 break; 597 case 7: 598 l1_event(dch->l1, INFO4_P8); 599 break; 600 } 601 if (dch->state == 7) 602 handle_led(hw, LED_S0_ON); 603 else 604 handle_led(hw, LED_S0_OFF); 605 } 606 607 /* 608 * S0 NT state change event handler 609 */ 610 static void 611 ph_state_nt(struct dchannel *dch) 612 { 613 struct hfcsusb *hw = dch->hw; 614 615 if (debug & DEBUG_HW) { 616 if (dch->state <= HFC_MAX_NT_LAYER1_STATE) 617 printk(KERN_DEBUG "%s: %s: %s\n", 618 hw->name, __func__, 619 HFC_NT_LAYER1_STATES[dch->state]); 620 621 else 622 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n", 623 hw->name, __func__, dch->state); 624 } 625 626 switch (dch->state) { 627 case (1): 628 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 629 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 630 hw->nt_timer = 0; 631 hw->timers &= ~NT_ACTIVATION_TIMER; 632 handle_led(hw, LED_S0_OFF); 633 break; 634 635 case (2): 636 if (hw->nt_timer < 0) { 637 hw->nt_timer = 0; 638 hw->timers &= ~NT_ACTIVATION_TIMER; 639 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT); 640 } else { 641 hw->timers |= NT_ACTIVATION_TIMER; 642 hw->nt_timer = NT_T1_COUNT; 643 /* allow G2 -> G3 transition */ 644 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3); 645 } 646 break; 647 case (3): 648 hw->nt_timer = 0; 649 hw->timers &= ~NT_ACTIVATION_TIMER; 650 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 651 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 652 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 653 handle_led(hw, LED_S0_ON); 654 break; 655 case (4): 656 hw->nt_timer = 0; 657 hw->timers &= ~NT_ACTIVATION_TIMER; 658 break; 659 default: 660 break; 661 } 662 hfcsusb_ph_info(hw); 663 } 664 665 static void 666 ph_state(struct dchannel *dch) 667 { 668 struct hfcsusb *hw = dch->hw; 669 670 if (hw->protocol == ISDN_P_NT_S0) 671 ph_state_nt(dch); 672 else if (hw->protocol == ISDN_P_TE_S0) 673 ph_state_te(dch); 674 } 675 676 /* 677 * disable/enable BChannel for desired protocoll 678 */ 679 static int 680 hfcsusb_setup_bch(struct bchannel *bch, int protocol) 681 { 682 struct hfcsusb *hw = bch->hw; 683 __u8 conhdlc, sctrl, sctrl_r; 684 685 if (debug & DEBUG_HW) 686 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n", 687 hw->name, __func__, bch->state, protocol, 688 bch->nr); 689 690 /* setup val for CON_HDLC */ 691 conhdlc = 0; 692 if (protocol > ISDN_P_NONE) 693 conhdlc = 8; /* enable FIFO */ 694 695 switch (protocol) { 696 case (-1): /* used for init */ 697 bch->state = -1; 698 fallthrough; 699 case (ISDN_P_NONE): 700 if (bch->state == ISDN_P_NONE) 701 return 0; /* already in idle state */ 702 bch->state = ISDN_P_NONE; 703 clear_bit(FLG_HDLC, &bch->Flags); 704 clear_bit(FLG_TRANSPARENT, &bch->Flags); 705 break; 706 case (ISDN_P_B_RAW): 707 conhdlc |= 2; 708 bch->state = protocol; 709 set_bit(FLG_TRANSPARENT, &bch->Flags); 710 break; 711 case (ISDN_P_B_HDLC): 712 bch->state = protocol; 713 set_bit(FLG_HDLC, &bch->Flags); 714 break; 715 default: 716 if (debug & DEBUG_HW) 717 printk(KERN_DEBUG "%s: %s: prot not known %x\n", 718 hw->name, __func__, protocol); 719 return -ENOPROTOOPT; 720 } 721 722 if (protocol >= ISDN_P_NONE) { 723 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2); 724 write_reg(hw, HFCUSB_CON_HDLC, conhdlc); 725 write_reg(hw, HFCUSB_INC_RES_F, 2); 726 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3); 727 write_reg(hw, HFCUSB_CON_HDLC, conhdlc); 728 write_reg(hw, HFCUSB_INC_RES_F, 2); 729 730 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04); 731 sctrl_r = 0x0; 732 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) { 733 sctrl |= 1; 734 sctrl_r |= 1; 735 } 736 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) { 737 sctrl |= 2; 738 sctrl_r |= 2; 739 } 740 write_reg(hw, HFCUSB_SCTRL, sctrl); 741 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r); 742 743 if (protocol > ISDN_P_NONE) 744 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON); 745 else 746 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF : 747 LED_B2_OFF); 748 } 749 hfcsusb_ph_info(hw); 750 return 0; 751 } 752 753 static void 754 hfcsusb_ph_command(struct hfcsusb *hw, u_char command) 755 { 756 if (debug & DEBUG_HW) 757 printk(KERN_DEBUG "%s: %s: %x\n", 758 hw->name, __func__, command); 759 760 switch (command) { 761 case HFC_L1_ACTIVATE_TE: 762 /* force sending sending INFO1 */ 763 write_reg(hw, HFCUSB_STATES, 0x14); 764 /* start l1 activation */ 765 write_reg(hw, HFCUSB_STATES, 0x04); 766 break; 767 768 case HFC_L1_FORCE_DEACTIVATE_TE: 769 write_reg(hw, HFCUSB_STATES, 0x10); 770 write_reg(hw, HFCUSB_STATES, 0x03); 771 break; 772 773 case HFC_L1_ACTIVATE_NT: 774 if (hw->dch.state == 3) 775 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND, 776 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 777 else 778 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE | 779 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3); 780 break; 781 782 case HFC_L1_DEACTIVATE_NT: 783 write_reg(hw, HFCUSB_STATES, 784 HFCUSB_DO_ACTION); 785 break; 786 } 787 } 788 789 /* 790 * Layer 1 B-channel hardware access 791 */ 792 static int 793 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) 794 { 795 return mISDN_ctrl_bchannel(bch, cq); 796 } 797 798 /* collect data from incoming interrupt or isochron USB data */ 799 static void 800 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len, 801 int finish) 802 { 803 struct hfcsusb *hw = fifo->hw; 804 struct sk_buff *rx_skb = NULL; 805 int maxlen = 0; 806 int fifon = fifo->fifonum; 807 int i; 808 int hdlc = 0; 809 unsigned long flags; 810 811 if (debug & DBG_HFC_CALL_TRACE) 812 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) " 813 "dch(%p) bch(%p) ech(%p)\n", 814 hw->name, __func__, fifon, len, 815 fifo->dch, fifo->bch, fifo->ech); 816 817 if (!len) 818 return; 819 820 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) { 821 printk(KERN_DEBUG "%s: %s: undefined channel\n", 822 hw->name, __func__); 823 return; 824 } 825 826 spin_lock_irqsave(&hw->lock, flags); 827 if (fifo->dch) { 828 rx_skb = fifo->dch->rx_skb; 829 maxlen = fifo->dch->maxlen; 830 hdlc = 1; 831 } 832 if (fifo->bch) { 833 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) { 834 fifo->bch->dropcnt += len; 835 spin_unlock_irqrestore(&hw->lock, flags); 836 return; 837 } 838 maxlen = bchannel_get_rxbuf(fifo->bch, len); 839 rx_skb = fifo->bch->rx_skb; 840 if (maxlen < 0) { 841 if (rx_skb) 842 skb_trim(rx_skb, 0); 843 pr_warn("%s.B%d: No bufferspace for %d bytes\n", 844 hw->name, fifo->bch->nr, len); 845 spin_unlock_irqrestore(&hw->lock, flags); 846 return; 847 } 848 maxlen = fifo->bch->maxlen; 849 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); 850 } 851 if (fifo->ech) { 852 rx_skb = fifo->ech->rx_skb; 853 maxlen = fifo->ech->maxlen; 854 hdlc = 1; 855 } 856 857 if (fifo->dch || fifo->ech) { 858 if (!rx_skb) { 859 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC); 860 if (rx_skb) { 861 if (fifo->dch) 862 fifo->dch->rx_skb = rx_skb; 863 if (fifo->ech) 864 fifo->ech->rx_skb = rx_skb; 865 skb_trim(rx_skb, 0); 866 } else { 867 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n", 868 hw->name, __func__); 869 spin_unlock_irqrestore(&hw->lock, flags); 870 return; 871 } 872 } 873 /* D/E-Channel SKB range check */ 874 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) { 875 printk(KERN_DEBUG "%s: %s: sbk mem exceeded " 876 "for fifo(%d) HFCUSB_D_RX\n", 877 hw->name, __func__, fifon); 878 skb_trim(rx_skb, 0); 879 spin_unlock_irqrestore(&hw->lock, flags); 880 return; 881 } 882 } 883 884 skb_put_data(rx_skb, data, len); 885 886 if (hdlc) { 887 /* we have a complete hdlc packet */ 888 if (finish) { 889 if ((rx_skb->len > 3) && 890 (!(rx_skb->data[rx_skb->len - 1]))) { 891 if (debug & DBG_HFC_FIFO_VERBOSE) { 892 printk(KERN_DEBUG "%s: %s: fifon(%i)" 893 " new RX len(%i): ", 894 hw->name, __func__, fifon, 895 rx_skb->len); 896 i = 0; 897 while (i < rx_skb->len) 898 printk("%02x ", 899 rx_skb->data[i++]); 900 printk("\n"); 901 } 902 903 /* remove CRC & status */ 904 skb_trim(rx_skb, rx_skb->len - 3); 905 906 if (fifo->dch) 907 recv_Dchannel(fifo->dch); 908 if (fifo->bch) 909 recv_Bchannel(fifo->bch, MISDN_ID_ANY, 910 0); 911 if (fifo->ech) 912 recv_Echannel(fifo->ech, 913 &hw->dch); 914 } else { 915 if (debug & DBG_HFC_FIFO_VERBOSE) { 916 printk(KERN_DEBUG 917 "%s: CRC or minlen ERROR fifon(%i) " 918 "RX len(%i): ", 919 hw->name, fifon, rx_skb->len); 920 i = 0; 921 while (i < rx_skb->len) 922 printk("%02x ", 923 rx_skb->data[i++]); 924 printk("\n"); 925 } 926 skb_trim(rx_skb, 0); 927 } 928 } 929 } else { 930 /* deliver transparent data to layer2 */ 931 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false); 932 } 933 spin_unlock_irqrestore(&hw->lock, flags); 934 } 935 936 static void 937 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe, 938 void *buf, int num_packets, int packet_size, int interval, 939 usb_complete_t complete, void *context) 940 { 941 int k; 942 943 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets, 944 complete, context); 945 946 urb->number_of_packets = num_packets; 947 urb->transfer_flags = URB_ISO_ASAP; 948 urb->actual_length = 0; 949 urb->interval = interval; 950 951 for (k = 0; k < num_packets; k++) { 952 urb->iso_frame_desc[k].offset = packet_size * k; 953 urb->iso_frame_desc[k].length = packet_size; 954 urb->iso_frame_desc[k].actual_length = 0; 955 } 956 } 957 958 /* receive completion routine for all ISO tx fifos */ 959 static void 960 rx_iso_complete(struct urb *urb) 961 { 962 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context; 963 struct usb_fifo *fifo = context_iso_urb->owner_fifo; 964 struct hfcsusb *hw = fifo->hw; 965 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen, 966 status, iso_status, i; 967 __u8 *buf; 968 static __u8 eof[8]; 969 __u8 s0_state; 970 unsigned long flags; 971 972 fifon = fifo->fifonum; 973 status = urb->status; 974 975 spin_lock_irqsave(&hw->lock, flags); 976 if (fifo->stop_gracefull) { 977 fifo->stop_gracefull = 0; 978 fifo->active = 0; 979 spin_unlock_irqrestore(&hw->lock, flags); 980 return; 981 } 982 spin_unlock_irqrestore(&hw->lock, flags); 983 984 /* 985 * ISO transfer only partially completed, 986 * look at individual frame status for details 987 */ 988 if (status == -EXDEV) { 989 if (debug & DEBUG_HW) 990 printk(KERN_DEBUG "%s: %s: with -EXDEV " 991 "urb->status %d, fifonum %d\n", 992 hw->name, __func__, status, fifon); 993 994 /* clear status, so go on with ISO transfers */ 995 status = 0; 996 } 997 998 s0_state = 0; 999 if (fifo->active && !status) { 1000 num_isoc_packets = iso_packets[fifon]; 1001 maxlen = fifo->usb_packet_maxlen; 1002 1003 for (k = 0; k < num_isoc_packets; ++k) { 1004 len = urb->iso_frame_desc[k].actual_length; 1005 offset = urb->iso_frame_desc[k].offset; 1006 buf = context_iso_urb->buffer + offset; 1007 iso_status = urb->iso_frame_desc[k].status; 1008 1009 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) { 1010 printk(KERN_DEBUG "%s: %s: " 1011 "ISO packet %i, status: %i\n", 1012 hw->name, __func__, k, iso_status); 1013 } 1014 1015 /* USB data log for every D ISO in */ 1016 if ((fifon == HFCUSB_D_RX) && 1017 (debug & DBG_HFC_USB_VERBOSE)) { 1018 printk(KERN_DEBUG 1019 "%s: %s: %d (%d/%d) len(%d) ", 1020 hw->name, __func__, urb->start_frame, 1021 k, num_isoc_packets - 1, 1022 len); 1023 for (i = 0; i < len; i++) 1024 printk("%x ", buf[i]); 1025 printk("\n"); 1026 } 1027 1028 if (!iso_status) { 1029 if (fifo->last_urblen != maxlen) { 1030 /* 1031 * save fifo fill-level threshold bits 1032 * to use them later in TX ISO URB 1033 * completions 1034 */ 1035 hw->threshold_mask = buf[1]; 1036 1037 if (fifon == HFCUSB_D_RX) 1038 s0_state = (buf[0] >> 4); 1039 1040 eof[fifon] = buf[0] & 1; 1041 if (len > 2) 1042 hfcsusb_rx_frame(fifo, buf + 2, 1043 len - 2, (len < maxlen) 1044 ? eof[fifon] : 0); 1045 } else 1046 hfcsusb_rx_frame(fifo, buf, len, 1047 (len < maxlen) ? 1048 eof[fifon] : 0); 1049 fifo->last_urblen = len; 1050 } 1051 } 1052 1053 /* signal S0 layer1 state change */ 1054 if ((s0_state) && (hw->initdone) && 1055 (s0_state != hw->dch.state)) { 1056 hw->dch.state = s0_state; 1057 schedule_event(&hw->dch, FLG_PHCHANGE); 1058 } 1059 1060 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe, 1061 context_iso_urb->buffer, num_isoc_packets, 1062 fifo->usb_packet_maxlen, fifo->intervall, 1063 (usb_complete_t)rx_iso_complete, urb->context); 1064 errcode = usb_submit_urb(urb, GFP_ATOMIC); 1065 if (errcode < 0) { 1066 if (debug & DEBUG_HW) 1067 printk(KERN_DEBUG "%s: %s: error submitting " 1068 "ISO URB: %d\n", 1069 hw->name, __func__, errcode); 1070 } 1071 } else { 1072 if (status && (debug & DBG_HFC_URB_INFO)) 1073 printk(KERN_DEBUG "%s: %s: rx_iso_complete : " 1074 "urb->status %d, fifonum %d\n", 1075 hw->name, __func__, status, fifon); 1076 } 1077 } 1078 1079 /* receive completion routine for all interrupt rx fifos */ 1080 static void 1081 rx_int_complete(struct urb *urb) 1082 { 1083 int len, status, i; 1084 __u8 *buf, maxlen, fifon; 1085 struct usb_fifo *fifo = (struct usb_fifo *) urb->context; 1086 struct hfcsusb *hw = fifo->hw; 1087 static __u8 eof[8]; 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&hw->lock, flags); 1091 if (fifo->stop_gracefull) { 1092 fifo->stop_gracefull = 0; 1093 fifo->active = 0; 1094 spin_unlock_irqrestore(&hw->lock, flags); 1095 return; 1096 } 1097 spin_unlock_irqrestore(&hw->lock, flags); 1098 1099 fifon = fifo->fifonum; 1100 if ((!fifo->active) || (urb->status)) { 1101 if (debug & DBG_HFC_URB_ERROR) 1102 printk(KERN_DEBUG 1103 "%s: %s: RX-Fifo %i is going down (%i)\n", 1104 hw->name, __func__, fifon, urb->status); 1105 1106 fifo->urb->interval = 0; /* cancel automatic rescheduling */ 1107 return; 1108 } 1109 len = urb->actual_length; 1110 buf = fifo->buffer; 1111 maxlen = fifo->usb_packet_maxlen; 1112 1113 /* USB data log for every D INT in */ 1114 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) { 1115 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ", 1116 hw->name, __func__, len); 1117 for (i = 0; i < len; i++) 1118 printk("%02x ", buf[i]); 1119 printk("\n"); 1120 } 1121 1122 if (fifo->last_urblen != fifo->usb_packet_maxlen) { 1123 /* the threshold mask is in the 2nd status byte */ 1124 hw->threshold_mask = buf[1]; 1125 1126 /* signal S0 layer1 state change */ 1127 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) { 1128 hw->dch.state = (buf[0] >> 4); 1129 schedule_event(&hw->dch, FLG_PHCHANGE); 1130 } 1131 1132 eof[fifon] = buf[0] & 1; 1133 /* if we have more than the 2 status bytes -> collect data */ 1134 if (len > 2) 1135 hfcsusb_rx_frame(fifo, buf + 2, 1136 urb->actual_length - 2, 1137 (len < maxlen) ? eof[fifon] : 0); 1138 } else { 1139 hfcsusb_rx_frame(fifo, buf, urb->actual_length, 1140 (len < maxlen) ? eof[fifon] : 0); 1141 } 1142 fifo->last_urblen = urb->actual_length; 1143 1144 status = usb_submit_urb(urb, GFP_ATOMIC); 1145 if (status) { 1146 if (debug & DEBUG_HW) 1147 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n", 1148 hw->name, __func__); 1149 } 1150 } 1151 1152 /* transmit completion routine for all ISO tx fifos */ 1153 static void 1154 tx_iso_complete(struct urb *urb) 1155 { 1156 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context; 1157 struct usb_fifo *fifo = context_iso_urb->owner_fifo; 1158 struct hfcsusb *hw = fifo->hw; 1159 struct sk_buff *tx_skb; 1160 int k, tx_offset, num_isoc_packets, sink, remain, current_len, 1161 errcode, hdlc, i; 1162 int *tx_idx; 1163 int frame_complete, fifon, status, fillempty = 0; 1164 __u8 threshbit, *p; 1165 unsigned long flags; 1166 1167 spin_lock_irqsave(&hw->lock, flags); 1168 if (fifo->stop_gracefull) { 1169 fifo->stop_gracefull = 0; 1170 fifo->active = 0; 1171 spin_unlock_irqrestore(&hw->lock, flags); 1172 return; 1173 } 1174 1175 if (fifo->dch) { 1176 tx_skb = fifo->dch->tx_skb; 1177 tx_idx = &fifo->dch->tx_idx; 1178 hdlc = 1; 1179 } else if (fifo->bch) { 1180 tx_skb = fifo->bch->tx_skb; 1181 tx_idx = &fifo->bch->tx_idx; 1182 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags); 1183 if (!tx_skb && !hdlc && 1184 test_bit(FLG_FILLEMPTY, &fifo->bch->Flags)) 1185 fillempty = 1; 1186 } else { 1187 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n", 1188 hw->name, __func__); 1189 spin_unlock_irqrestore(&hw->lock, flags); 1190 return; 1191 } 1192 1193 fifon = fifo->fifonum; 1194 status = urb->status; 1195 1196 tx_offset = 0; 1197 1198 /* 1199 * ISO transfer only partially completed, 1200 * look at individual frame status for details 1201 */ 1202 if (status == -EXDEV) { 1203 if (debug & DBG_HFC_URB_ERROR) 1204 printk(KERN_DEBUG "%s: %s: " 1205 "-EXDEV (%i) fifon (%d)\n", 1206 hw->name, __func__, status, fifon); 1207 1208 /* clear status, so go on with ISO transfers */ 1209 status = 0; 1210 } 1211 1212 if (fifo->active && !status) { 1213 /* is FifoFull-threshold set for our channel? */ 1214 threshbit = (hw->threshold_mask & (1 << fifon)); 1215 num_isoc_packets = iso_packets[fifon]; 1216 1217 /* predict dataflow to avoid fifo overflow */ 1218 if (fifon >= HFCUSB_D_TX) 1219 sink = (threshbit) ? SINK_DMIN : SINK_DMAX; 1220 else 1221 sink = (threshbit) ? SINK_MIN : SINK_MAX; 1222 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe, 1223 context_iso_urb->buffer, num_isoc_packets, 1224 fifo->usb_packet_maxlen, fifo->intervall, 1225 (usb_complete_t)tx_iso_complete, urb->context); 1226 memset(context_iso_urb->buffer, 0, 1227 sizeof(context_iso_urb->buffer)); 1228 frame_complete = 0; 1229 1230 for (k = 0; k < num_isoc_packets; ++k) { 1231 /* analyze tx success of previous ISO packets */ 1232 if (debug & DBG_HFC_URB_ERROR) { 1233 errcode = urb->iso_frame_desc[k].status; 1234 if (errcode) { 1235 printk(KERN_DEBUG "%s: %s: " 1236 "ISO packet %i, status: %i\n", 1237 hw->name, __func__, k, errcode); 1238 } 1239 } 1240 1241 /* Generate next ISO Packets */ 1242 if (tx_skb) 1243 remain = tx_skb->len - *tx_idx; 1244 else if (fillempty) 1245 remain = 15; /* > not complete */ 1246 else 1247 remain = 0; 1248 1249 if (remain > 0) { 1250 fifo->bit_line -= sink; 1251 current_len = (0 - fifo->bit_line) / 8; 1252 if (current_len > 14) 1253 current_len = 14; 1254 if (current_len < 0) 1255 current_len = 0; 1256 if (remain < current_len) 1257 current_len = remain; 1258 1259 /* how much bit do we put on the line? */ 1260 fifo->bit_line += current_len * 8; 1261 1262 context_iso_urb->buffer[tx_offset] = 0; 1263 if (current_len == remain) { 1264 if (hdlc) { 1265 /* signal frame completion */ 1266 context_iso_urb-> 1267 buffer[tx_offset] = 1; 1268 /* add 2 byte flags and 16bit 1269 * CRC at end of ISDN frame */ 1270 fifo->bit_line += 32; 1271 } 1272 frame_complete = 1; 1273 } 1274 1275 /* copy tx data to iso-urb buffer */ 1276 p = context_iso_urb->buffer + tx_offset + 1; 1277 if (fillempty) { 1278 memset(p, fifo->bch->fill[0], 1279 current_len); 1280 } else { 1281 memcpy(p, (tx_skb->data + *tx_idx), 1282 current_len); 1283 *tx_idx += current_len; 1284 } 1285 urb->iso_frame_desc[k].offset = tx_offset; 1286 urb->iso_frame_desc[k].length = current_len + 1; 1287 1288 /* USB data log for every D ISO out */ 1289 if ((fifon == HFCUSB_D_RX) && !fillempty && 1290 (debug & DBG_HFC_USB_VERBOSE)) { 1291 printk(KERN_DEBUG 1292 "%s: %s (%d/%d) offs(%d) len(%d) ", 1293 hw->name, __func__, 1294 k, num_isoc_packets - 1, 1295 urb->iso_frame_desc[k].offset, 1296 urb->iso_frame_desc[k].length); 1297 1298 for (i = urb->iso_frame_desc[k].offset; 1299 i < (urb->iso_frame_desc[k].offset 1300 + urb->iso_frame_desc[k].length); 1301 i++) 1302 printk("%x ", 1303 context_iso_urb->buffer[i]); 1304 1305 printk(" skb->len(%i) tx-idx(%d)\n", 1306 tx_skb->len, *tx_idx); 1307 } 1308 1309 tx_offset += (current_len + 1); 1310 } else { 1311 urb->iso_frame_desc[k].offset = tx_offset++; 1312 urb->iso_frame_desc[k].length = 1; 1313 /* we lower data margin every msec */ 1314 fifo->bit_line -= sink; 1315 if (fifo->bit_line < BITLINE_INF) 1316 fifo->bit_line = BITLINE_INF; 1317 } 1318 1319 if (frame_complete) { 1320 frame_complete = 0; 1321 1322 if (debug & DBG_HFC_FIFO_VERBOSE) { 1323 printk(KERN_DEBUG "%s: %s: " 1324 "fifon(%i) new TX len(%i): ", 1325 hw->name, __func__, 1326 fifon, tx_skb->len); 1327 i = 0; 1328 while (i < tx_skb->len) 1329 printk("%02x ", 1330 tx_skb->data[i++]); 1331 printk("\n"); 1332 } 1333 1334 dev_kfree_skb(tx_skb); 1335 tx_skb = NULL; 1336 if (fifo->dch && get_next_dframe(fifo->dch)) 1337 tx_skb = fifo->dch->tx_skb; 1338 else if (fifo->bch && 1339 get_next_bframe(fifo->bch)) 1340 tx_skb = fifo->bch->tx_skb; 1341 } 1342 } 1343 errcode = usb_submit_urb(urb, GFP_ATOMIC); 1344 if (errcode < 0) { 1345 if (debug & DEBUG_HW) 1346 printk(KERN_DEBUG 1347 "%s: %s: error submitting ISO URB: %d \n", 1348 hw->name, __func__, errcode); 1349 } 1350 1351 /* 1352 * abuse DChannel tx iso completion to trigger NT mode state 1353 * changes tx_iso_complete is assumed to be called every 1354 * fifo->intervall (ms) 1355 */ 1356 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0) 1357 && (hw->timers & NT_ACTIVATION_TIMER)) { 1358 if ((--hw->nt_timer) < 0) 1359 schedule_event(&hw->dch, FLG_PHCHANGE); 1360 } 1361 1362 } else { 1363 if (status && (debug & DBG_HFC_URB_ERROR)) 1364 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)" 1365 "fifonum=%d\n", 1366 hw->name, __func__, 1367 symbolic(urb_errlist, status), status, fifon); 1368 } 1369 spin_unlock_irqrestore(&hw->lock, flags); 1370 } 1371 1372 /* 1373 * allocs urbs and start isoc transfer with two pending urbs to avoid 1374 * gaps in the transfer chain 1375 */ 1376 static int 1377 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb, 1378 usb_complete_t complete, int packet_size) 1379 { 1380 struct hfcsusb *hw = fifo->hw; 1381 int i, k, errcode; 1382 1383 if (debug) 1384 printk(KERN_DEBUG "%s: %s: fifo %i\n", 1385 hw->name, __func__, fifo->fifonum); 1386 1387 /* allocate Memory for Iso out Urbs */ 1388 for (i = 0; i < 2; i++) { 1389 if (!(fifo->iso[i].urb)) { 1390 fifo->iso[i].urb = 1391 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL); 1392 if (!(fifo->iso[i].urb)) { 1393 printk(KERN_DEBUG 1394 "%s: %s: alloc urb for fifo %i failed", 1395 hw->name, __func__, fifo->fifonum); 1396 continue; 1397 } 1398 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo; 1399 fifo->iso[i].indx = i; 1400 1401 /* Init the first iso */ 1402 if (ISO_BUFFER_SIZE >= 1403 (fifo->usb_packet_maxlen * 1404 num_packets_per_urb)) { 1405 fill_isoc_urb(fifo->iso[i].urb, 1406 fifo->hw->dev, fifo->pipe, 1407 fifo->iso[i].buffer, 1408 num_packets_per_urb, 1409 fifo->usb_packet_maxlen, 1410 fifo->intervall, complete, 1411 &fifo->iso[i]); 1412 memset(fifo->iso[i].buffer, 0, 1413 sizeof(fifo->iso[i].buffer)); 1414 1415 for (k = 0; k < num_packets_per_urb; k++) { 1416 fifo->iso[i].urb-> 1417 iso_frame_desc[k].offset = 1418 k * packet_size; 1419 fifo->iso[i].urb-> 1420 iso_frame_desc[k].length = 1421 packet_size; 1422 } 1423 } else { 1424 printk(KERN_DEBUG 1425 "%s: %s: ISO Buffer size to small!\n", 1426 hw->name, __func__); 1427 } 1428 } 1429 fifo->bit_line = BITLINE_INF; 1430 1431 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL); 1432 fifo->active = (errcode >= 0) ? 1 : 0; 1433 fifo->stop_gracefull = 0; 1434 if (errcode < 0) { 1435 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n", 1436 hw->name, __func__, 1437 symbolic(urb_errlist, errcode), i); 1438 } 1439 } 1440 return fifo->active; 1441 } 1442 1443 static void 1444 stop_iso_gracefull(struct usb_fifo *fifo) 1445 { 1446 struct hfcsusb *hw = fifo->hw; 1447 int i, timeout; 1448 u_long flags; 1449 1450 for (i = 0; i < 2; i++) { 1451 spin_lock_irqsave(&hw->lock, flags); 1452 if (debug) 1453 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n", 1454 hw->name, __func__, fifo->fifonum, i); 1455 fifo->stop_gracefull = 1; 1456 spin_unlock_irqrestore(&hw->lock, flags); 1457 } 1458 1459 for (i = 0; i < 2; i++) { 1460 timeout = 3; 1461 while (fifo->stop_gracefull && timeout--) 1462 schedule_timeout_interruptible((HZ / 1000) * 16); 1463 if (debug && fifo->stop_gracefull) 1464 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n", 1465 hw->name, __func__, fifo->fifonum, i); 1466 } 1467 } 1468 1469 static void 1470 stop_int_gracefull(struct usb_fifo *fifo) 1471 { 1472 struct hfcsusb *hw = fifo->hw; 1473 int timeout; 1474 u_long flags; 1475 1476 spin_lock_irqsave(&hw->lock, flags); 1477 if (debug) 1478 printk(KERN_DEBUG "%s: %s for fifo %i\n", 1479 hw->name, __func__, fifo->fifonum); 1480 fifo->stop_gracefull = 1; 1481 spin_unlock_irqrestore(&hw->lock, flags); 1482 1483 timeout = 3; 1484 while (fifo->stop_gracefull && timeout--) 1485 schedule_timeout_interruptible((HZ / 1000) * 3); 1486 if (debug && fifo->stop_gracefull) 1487 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n", 1488 hw->name, __func__, fifo->fifonum); 1489 } 1490 1491 /* start the interrupt transfer for the given fifo */ 1492 static void 1493 start_int_fifo(struct usb_fifo *fifo) 1494 { 1495 struct hfcsusb *hw = fifo->hw; 1496 int errcode; 1497 1498 if (debug) 1499 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n", 1500 hw->name, __func__, fifo->fifonum); 1501 1502 if (!fifo->urb) { 1503 fifo->urb = usb_alloc_urb(0, GFP_KERNEL); 1504 if (!fifo->urb) 1505 return; 1506 } 1507 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe, 1508 fifo->buffer, fifo->usb_packet_maxlen, 1509 (usb_complete_t)rx_int_complete, fifo, fifo->intervall); 1510 fifo->active = 1; 1511 fifo->stop_gracefull = 0; 1512 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL); 1513 if (errcode) { 1514 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n", 1515 hw->name, __func__, errcode); 1516 fifo->active = 0; 1517 } 1518 } 1519 1520 static void 1521 setPortMode(struct hfcsusb *hw) 1522 { 1523 if (debug & DEBUG_HW) 1524 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__, 1525 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT"); 1526 1527 if (hw->protocol == ISDN_P_TE_S0) { 1528 write_reg(hw, HFCUSB_SCTRL, 0x40); 1529 write_reg(hw, HFCUSB_SCTRL_E, 0x00); 1530 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE); 1531 write_reg(hw, HFCUSB_STATES, 3 | 0x10); 1532 write_reg(hw, HFCUSB_STATES, 3); 1533 } else { 1534 write_reg(hw, HFCUSB_SCTRL, 0x44); 1535 write_reg(hw, HFCUSB_SCTRL_E, 0x09); 1536 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT); 1537 write_reg(hw, HFCUSB_STATES, 1 | 0x10); 1538 write_reg(hw, HFCUSB_STATES, 1); 1539 } 1540 } 1541 1542 static void 1543 reset_hfcsusb(struct hfcsusb *hw) 1544 { 1545 struct usb_fifo *fifo; 1546 int i; 1547 1548 if (debug & DEBUG_HW) 1549 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 1550 1551 /* do Chip reset */ 1552 write_reg(hw, HFCUSB_CIRM, 8); 1553 1554 /* aux = output, reset off */ 1555 write_reg(hw, HFCUSB_CIRM, 0x10); 1556 1557 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */ 1558 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) | 1559 ((hw->packet_size / 8) << 4)); 1560 1561 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */ 1562 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size); 1563 1564 /* enable PCM/GCI master mode */ 1565 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */ 1566 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */ 1567 1568 /* init the fifos */ 1569 write_reg(hw, HFCUSB_F_THRES, 1570 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4)); 1571 1572 fifo = hw->fifos; 1573 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) { 1574 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */ 1575 fifo[i].max_size = 1576 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN; 1577 fifo[i].last_urblen = 0; 1578 1579 /* set 2 bit for D- & E-channel */ 1580 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2)); 1581 1582 /* enable all fifos */ 1583 if (i == HFCUSB_D_TX) 1584 write_reg(hw, HFCUSB_CON_HDLC, 1585 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09); 1586 else 1587 write_reg(hw, HFCUSB_CON_HDLC, 0x08); 1588 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */ 1589 } 1590 1591 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */ 1592 handle_led(hw, LED_POWER_ON); 1593 } 1594 1595 /* start USB data pipes dependand on device's endpoint configuration */ 1596 static void 1597 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel) 1598 { 1599 /* quick check if endpoint already running */ 1600 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active)) 1601 return; 1602 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active)) 1603 return; 1604 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active)) 1605 return; 1606 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active)) 1607 return; 1608 1609 /* start rx endpoints using USB INT IN method */ 1610 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO) 1611 start_int_fifo(hw->fifos + channel * 2 + 1); 1612 1613 /* start rx endpoints using USB ISO IN method */ 1614 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) { 1615 switch (channel) { 1616 case HFC_CHAN_D: 1617 start_isoc_chain(hw->fifos + HFCUSB_D_RX, 1618 ISOC_PACKETS_D, 1619 (usb_complete_t)rx_iso_complete, 1620 16); 1621 break; 1622 case HFC_CHAN_E: 1623 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX, 1624 ISOC_PACKETS_D, 1625 (usb_complete_t)rx_iso_complete, 1626 16); 1627 break; 1628 case HFC_CHAN_B1: 1629 start_isoc_chain(hw->fifos + HFCUSB_B1_RX, 1630 ISOC_PACKETS_B, 1631 (usb_complete_t)rx_iso_complete, 1632 16); 1633 break; 1634 case HFC_CHAN_B2: 1635 start_isoc_chain(hw->fifos + HFCUSB_B2_RX, 1636 ISOC_PACKETS_B, 1637 (usb_complete_t)rx_iso_complete, 1638 16); 1639 break; 1640 } 1641 } 1642 1643 /* start tx endpoints using USB ISO OUT method */ 1644 switch (channel) { 1645 case HFC_CHAN_D: 1646 start_isoc_chain(hw->fifos + HFCUSB_D_TX, 1647 ISOC_PACKETS_B, 1648 (usb_complete_t)tx_iso_complete, 1); 1649 break; 1650 case HFC_CHAN_B1: 1651 start_isoc_chain(hw->fifos + HFCUSB_B1_TX, 1652 ISOC_PACKETS_D, 1653 (usb_complete_t)tx_iso_complete, 1); 1654 break; 1655 case HFC_CHAN_B2: 1656 start_isoc_chain(hw->fifos + HFCUSB_B2_TX, 1657 ISOC_PACKETS_B, 1658 (usb_complete_t)tx_iso_complete, 1); 1659 break; 1660 } 1661 } 1662 1663 /* stop USB data pipes dependand on device's endpoint configuration */ 1664 static void 1665 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel) 1666 { 1667 /* quick check if endpoint currently running */ 1668 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active)) 1669 return; 1670 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active)) 1671 return; 1672 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active)) 1673 return; 1674 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active)) 1675 return; 1676 1677 /* rx endpoints using USB INT IN method */ 1678 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO) 1679 stop_int_gracefull(hw->fifos + channel * 2 + 1); 1680 1681 /* rx endpoints using USB ISO IN method */ 1682 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) 1683 stop_iso_gracefull(hw->fifos + channel * 2 + 1); 1684 1685 /* tx endpoints using USB ISO OUT method */ 1686 if (channel != HFC_CHAN_E) 1687 stop_iso_gracefull(hw->fifos + channel * 2); 1688 } 1689 1690 1691 /* Hardware Initialization */ 1692 static int 1693 setup_hfcsusb(struct hfcsusb *hw) 1694 { 1695 void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL); 1696 u_char b; 1697 int ret; 1698 1699 if (debug & DBG_HFC_CALL_TRACE) 1700 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 1701 1702 if (!dmabuf) 1703 return -ENOMEM; 1704 1705 ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf); 1706 1707 memcpy(&b, dmabuf, sizeof(u_char)); 1708 kfree(dmabuf); 1709 1710 /* check the chip id */ 1711 if (ret != 1) { 1712 printk(KERN_DEBUG "%s: %s: cannot read chip id\n", 1713 hw->name, __func__); 1714 return 1; 1715 } 1716 if (b != HFCUSB_CHIPID) { 1717 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n", 1718 hw->name, __func__, b); 1719 return 1; 1720 } 1721 1722 /* first set the needed config, interface and alternate */ 1723 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used); 1724 1725 hw->led_state = 0; 1726 1727 /* init the background machinery for control requests */ 1728 hw->ctrl_read.bRequestType = 0xc0; 1729 hw->ctrl_read.bRequest = 1; 1730 hw->ctrl_read.wLength = cpu_to_le16(1); 1731 hw->ctrl_write.bRequestType = 0x40; 1732 hw->ctrl_write.bRequest = 0; 1733 hw->ctrl_write.wLength = 0; 1734 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe, 1735 (u_char *)&hw->ctrl_write, NULL, 0, 1736 (usb_complete_t)ctrl_complete, hw); 1737 1738 reset_hfcsusb(hw); 1739 return 0; 1740 } 1741 1742 static void 1743 release_hw(struct hfcsusb *hw) 1744 { 1745 if (debug & DBG_HFC_CALL_TRACE) 1746 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 1747 1748 /* 1749 * stop all endpoints gracefully 1750 * TODO: mISDN_core should generate CLOSE_CHANNEL 1751 * signals after calling mISDN_unregister_device() 1752 */ 1753 hfcsusb_stop_endpoint(hw, HFC_CHAN_D); 1754 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1); 1755 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2); 1756 if (hw->fifos[HFCUSB_PCM_RX].pipe) 1757 hfcsusb_stop_endpoint(hw, HFC_CHAN_E); 1758 if (hw->protocol == ISDN_P_TE_S0) 1759 l1_event(hw->dch.l1, CLOSE_CHANNEL); 1760 1761 mISDN_unregister_device(&hw->dch.dev); 1762 mISDN_freebchannel(&hw->bch[1]); 1763 mISDN_freebchannel(&hw->bch[0]); 1764 mISDN_freedchannel(&hw->dch); 1765 1766 if (hw->ctrl_urb) { 1767 usb_kill_urb(hw->ctrl_urb); 1768 usb_free_urb(hw->ctrl_urb); 1769 hw->ctrl_urb = NULL; 1770 } 1771 1772 if (hw->intf) 1773 usb_set_intfdata(hw->intf, NULL); 1774 list_del(&hw->list); 1775 kfree(hw); 1776 hw = NULL; 1777 } 1778 1779 static void 1780 deactivate_bchannel(struct bchannel *bch) 1781 { 1782 struct hfcsusb *hw = bch->hw; 1783 u_long flags; 1784 1785 if (bch->debug & DEBUG_HW) 1786 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n", 1787 hw->name, __func__, bch->nr); 1788 1789 spin_lock_irqsave(&hw->lock, flags); 1790 mISDN_clear_bchannel(bch); 1791 spin_unlock_irqrestore(&hw->lock, flags); 1792 hfcsusb_setup_bch(bch, ISDN_P_NONE); 1793 hfcsusb_stop_endpoint(hw, bch->nr - 1); 1794 } 1795 1796 /* 1797 * Layer 1 B-channel hardware access 1798 */ 1799 static int 1800 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 1801 { 1802 struct bchannel *bch = container_of(ch, struct bchannel, ch); 1803 int ret = -EINVAL; 1804 1805 if (bch->debug & DEBUG_HW) 1806 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); 1807 1808 switch (cmd) { 1809 case HW_TESTRX_RAW: 1810 case HW_TESTRX_HDLC: 1811 case HW_TESTRX_OFF: 1812 ret = -EINVAL; 1813 break; 1814 1815 case CLOSE_CHANNEL: 1816 test_and_clear_bit(FLG_OPEN, &bch->Flags); 1817 deactivate_bchannel(bch); 1818 ch->protocol = ISDN_P_NONE; 1819 ch->peer = NULL; 1820 module_put(THIS_MODULE); 1821 ret = 0; 1822 break; 1823 case CONTROL_CHANNEL: 1824 ret = channel_bctrl(bch, arg); 1825 break; 1826 default: 1827 printk(KERN_WARNING "%s: unknown prim(%x)\n", 1828 __func__, cmd); 1829 } 1830 return ret; 1831 } 1832 1833 static int 1834 setup_instance(struct hfcsusb *hw, struct device *parent) 1835 { 1836 u_long flags; 1837 int err, i; 1838 1839 if (debug & DBG_HFC_CALL_TRACE) 1840 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__); 1841 1842 spin_lock_init(&hw->ctrl_lock); 1843 spin_lock_init(&hw->lock); 1844 1845 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state); 1846 hw->dch.debug = debug & 0xFFFF; 1847 hw->dch.hw = hw; 1848 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); 1849 hw->dch.dev.D.send = hfcusb_l2l1D; 1850 hw->dch.dev.D.ctrl = hfc_dctrl; 1851 1852 /* enable E-Channel logging */ 1853 if (hw->fifos[HFCUSB_PCM_RX].pipe) 1854 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL); 1855 1856 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 1857 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 1858 hw->dch.dev.nrbchan = 2; 1859 for (i = 0; i < 2; i++) { 1860 hw->bch[i].nr = i + 1; 1861 set_channelmap(i + 1, hw->dch.dev.channelmap); 1862 hw->bch[i].debug = debug; 1863 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1); 1864 hw->bch[i].hw = hw; 1865 hw->bch[i].ch.send = hfcusb_l2l1B; 1866 hw->bch[i].ch.ctrl = hfc_bctrl; 1867 hw->bch[i].ch.nr = i + 1; 1868 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels); 1869 } 1870 1871 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0]; 1872 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0]; 1873 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1]; 1874 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1]; 1875 hw->fifos[HFCUSB_D_TX].dch = &hw->dch; 1876 hw->fifos[HFCUSB_D_RX].dch = &hw->dch; 1877 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech; 1878 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech; 1879 1880 err = setup_hfcsusb(hw); 1881 if (err) 1882 goto out; 1883 1884 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME, 1885 hfcsusb_cnt + 1); 1886 printk(KERN_INFO "%s: registered as '%s'\n", 1887 DRIVER_NAME, hw->name); 1888 1889 err = mISDN_register_device(&hw->dch.dev, parent, hw->name); 1890 if (err) 1891 goto out; 1892 1893 hfcsusb_cnt++; 1894 write_lock_irqsave(&HFClock, flags); 1895 list_add_tail(&hw->list, &HFClist); 1896 write_unlock_irqrestore(&HFClock, flags); 1897 return 0; 1898 1899 out: 1900 mISDN_freebchannel(&hw->bch[1]); 1901 mISDN_freebchannel(&hw->bch[0]); 1902 mISDN_freedchannel(&hw->dch); 1903 kfree(hw); 1904 return err; 1905 } 1906 1907 static int 1908 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id) 1909 { 1910 struct hfcsusb *hw; 1911 struct usb_device *dev = interface_to_usbdev(intf); 1912 struct usb_host_interface *iface = intf->cur_altsetting; 1913 struct usb_host_interface *iface_used = NULL; 1914 struct usb_host_endpoint *ep; 1915 struct hfcsusb_vdata *driver_info; 1916 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx, 1917 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found, 1918 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size, 1919 alt_used = 0; 1920 1921 vend_idx = 0xffff; 1922 for (i = 0; hfcsusb_idtab[i].idVendor; i++) { 1923 if ((le16_to_cpu(dev->descriptor.idVendor) 1924 == hfcsusb_idtab[i].idVendor) && 1925 (le16_to_cpu(dev->descriptor.idProduct) 1926 == hfcsusb_idtab[i].idProduct)) { 1927 vend_idx = i; 1928 continue; 1929 } 1930 } 1931 1932 printk(KERN_DEBUG 1933 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n", 1934 __func__, ifnum, iface->desc.bAlternateSetting, 1935 intf->minor, vend_idx); 1936 1937 if (vend_idx == 0xffff) { 1938 printk(KERN_WARNING 1939 "%s: no valid vendor found in USB descriptor\n", 1940 __func__); 1941 return -EIO; 1942 } 1943 /* if vendor and product ID is OK, start probing alternate settings */ 1944 alt_idx = 0; 1945 small_match = -1; 1946 1947 /* default settings */ 1948 iso_packet_size = 16; 1949 packet_size = 64; 1950 1951 while (alt_idx < intf->num_altsetting) { 1952 iface = intf->altsetting + alt_idx; 1953 probe_alt_setting = iface->desc.bAlternateSetting; 1954 cfg_used = 0; 1955 1956 while (validconf[cfg_used][0]) { 1957 cfg_found = 1; 1958 vcf = validconf[cfg_used]; 1959 ep = iface->endpoint; 1960 memcpy(cmptbl, vcf, 16 * sizeof(int)); 1961 1962 /* check for all endpoints in this alternate setting */ 1963 for (i = 0; i < iface->desc.bNumEndpoints; i++) { 1964 ep_addr = ep->desc.bEndpointAddress; 1965 1966 /* get endpoint base */ 1967 idx = ((ep_addr & 0x7f) - 1) * 2; 1968 if (idx > 15) 1969 return -EIO; 1970 1971 if (ep_addr & 0x80) 1972 idx++; 1973 attr = ep->desc.bmAttributes; 1974 1975 if (cmptbl[idx] != EP_NOP) { 1976 if (cmptbl[idx] == EP_NUL) 1977 cfg_found = 0; 1978 if (attr == USB_ENDPOINT_XFER_INT 1979 && cmptbl[idx] == EP_INT) 1980 cmptbl[idx] = EP_NUL; 1981 if (attr == USB_ENDPOINT_XFER_BULK 1982 && cmptbl[idx] == EP_BLK) 1983 cmptbl[idx] = EP_NUL; 1984 if (attr == USB_ENDPOINT_XFER_ISOC 1985 && cmptbl[idx] == EP_ISO) 1986 cmptbl[idx] = EP_NUL; 1987 1988 if (attr == USB_ENDPOINT_XFER_INT && 1989 ep->desc.bInterval < vcf[17]) { 1990 cfg_found = 0; 1991 } 1992 } 1993 ep++; 1994 } 1995 1996 for (i = 0; i < 16; i++) 1997 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL) 1998 cfg_found = 0; 1999 2000 if (cfg_found) { 2001 if (small_match < cfg_used) { 2002 small_match = cfg_used; 2003 alt_used = probe_alt_setting; 2004 iface_used = iface; 2005 } 2006 } 2007 cfg_used++; 2008 } 2009 alt_idx++; 2010 } /* (alt_idx < intf->num_altsetting) */ 2011 2012 /* not found a valid USB Ta Endpoint config */ 2013 if (small_match == -1) 2014 return -EIO; 2015 2016 iface = iface_used; 2017 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL); 2018 if (!hw) 2019 return -ENOMEM; /* got no mem */ 2020 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME); 2021 2022 ep = iface->endpoint; 2023 vcf = validconf[small_match]; 2024 2025 for (i = 0; i < iface->desc.bNumEndpoints; i++) { 2026 struct usb_fifo *f; 2027 2028 ep_addr = ep->desc.bEndpointAddress; 2029 /* get endpoint base */ 2030 idx = ((ep_addr & 0x7f) - 1) * 2; 2031 if (ep_addr & 0x80) 2032 idx++; 2033 f = &hw->fifos[idx & 7]; 2034 2035 /* init Endpoints */ 2036 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) { 2037 ep++; 2038 continue; 2039 } 2040 switch (ep->desc.bmAttributes) { 2041 case USB_ENDPOINT_XFER_INT: 2042 f->pipe = usb_rcvintpipe(dev, 2043 ep->desc.bEndpointAddress); 2044 f->usb_transfer_mode = USB_INT; 2045 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); 2046 break; 2047 case USB_ENDPOINT_XFER_BULK: 2048 if (ep_addr & 0x80) 2049 f->pipe = usb_rcvbulkpipe(dev, 2050 ep->desc.bEndpointAddress); 2051 else 2052 f->pipe = usb_sndbulkpipe(dev, 2053 ep->desc.bEndpointAddress); 2054 f->usb_transfer_mode = USB_BULK; 2055 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); 2056 break; 2057 case USB_ENDPOINT_XFER_ISOC: 2058 if (ep_addr & 0x80) 2059 f->pipe = usb_rcvisocpipe(dev, 2060 ep->desc.bEndpointAddress); 2061 else 2062 f->pipe = usb_sndisocpipe(dev, 2063 ep->desc.bEndpointAddress); 2064 f->usb_transfer_mode = USB_ISOC; 2065 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize); 2066 break; 2067 default: 2068 f->pipe = 0; 2069 } 2070 2071 if (f->pipe) { 2072 f->fifonum = idx & 7; 2073 f->hw = hw; 2074 f->usb_packet_maxlen = 2075 le16_to_cpu(ep->desc.wMaxPacketSize); 2076 f->intervall = ep->desc.bInterval; 2077 } 2078 ep++; 2079 } 2080 hw->dev = dev; /* save device */ 2081 hw->if_used = ifnum; /* save used interface */ 2082 hw->alt_used = alt_used; /* and alternate config */ 2083 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */ 2084 hw->cfg_used = vcf[16]; /* store used config */ 2085 hw->vend_idx = vend_idx; /* store found vendor */ 2086 hw->packet_size = packet_size; 2087 hw->iso_packet_size = iso_packet_size; 2088 2089 /* create the control pipes needed for register access */ 2090 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0); 2091 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0); 2092 2093 driver_info = (struct hfcsusb_vdata *) 2094 hfcsusb_idtab[vend_idx].driver_info; 2095 2096 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL); 2097 if (!hw->ctrl_urb) { 2098 pr_warn("%s: No memory for control urb\n", 2099 driver_info->vend_name); 2100 kfree(hw); 2101 return -ENOMEM; 2102 } 2103 2104 pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n", 2105 hw->name, __func__, driver_info->vend_name, 2106 conf_str[small_match], ifnum, alt_used); 2107 2108 if (setup_instance(hw, dev->dev.parent)) 2109 return -EIO; 2110 2111 hw->intf = intf; 2112 usb_set_intfdata(hw->intf, hw); 2113 return 0; 2114 } 2115 2116 /* function called when an active device is removed */ 2117 static void 2118 hfcsusb_disconnect(struct usb_interface *intf) 2119 { 2120 struct hfcsusb *hw = usb_get_intfdata(intf); 2121 struct hfcsusb *next; 2122 int cnt = 0; 2123 2124 printk(KERN_INFO "%s: device disconnected\n", hw->name); 2125 2126 handle_led(hw, LED_POWER_OFF); 2127 release_hw(hw); 2128 2129 list_for_each_entry_safe(hw, next, &HFClist, list) 2130 cnt++; 2131 if (!cnt) 2132 hfcsusb_cnt = 0; 2133 2134 usb_set_intfdata(intf, NULL); 2135 } 2136 2137 static struct usb_driver hfcsusb_drv = { 2138 .name = DRIVER_NAME, 2139 .id_table = hfcsusb_idtab, 2140 .probe = hfcsusb_probe, 2141 .disconnect = hfcsusb_disconnect, 2142 .disable_hub_initiated_lpm = 1, 2143 }; 2144 2145 module_usb_driver(hfcsusb_drv); 2146