1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3 * mISDN driver for Colognechip HFC-S USB chip
4 *
5 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
7 *
8 * module params
9 * debug=<n>, default=0, with n=0xHHHHGGGG
10 * H - l1 driver flags described in hfcsusb.h
11 * G - common mISDN debug flags described at mISDNhw.h
12 *
13 * poll=<n>, default 128
14 * n : burst size of PH_DATA_IND at transparent rx data
15 *
16 * Revision: 0.3.3 (socket), 2008-11-05
17 */
18
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
25
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
28
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
31
32
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
37
38 static int hfcsusb_cnt;
39
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static int hfcsusb_ph_info(struct hfcsusb *hw);
50
51 /* start next background transfer for control channel */
52 static void
ctrl_start_transfer(struct hfcsusb * hw)53 ctrl_start_transfer(struct hfcsusb *hw)
54 {
55 if (debug & DBG_HFC_CALL_TRACE)
56 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
57
58 if (hw->ctrl_cnt) {
59 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61 hw->ctrl_urb->transfer_buffer = NULL;
62 hw->ctrl_urb->transfer_buffer_length = 0;
63 hw->ctrl_write.wIndex =
64 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65 hw->ctrl_write.wValue =
66 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
67
68 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
69 }
70 }
71
72 /*
73 * queue a control transfer request to write HFC-S USB
74 * chip register using CTRL resuest queue
75 */
write_reg(struct hfcsusb * hw,__u8 reg,__u8 val)76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
77 {
78 struct ctrl_buf *buf;
79
80 if (debug & DBG_HFC_CALL_TRACE)
81 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82 hw->name, __func__, reg, val);
83
84 spin_lock(&hw->ctrl_lock);
85 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86 spin_unlock(&hw->ctrl_lock);
87 return 1;
88 }
89 buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90 buf->hfcs_reg = reg;
91 buf->reg_val = val;
92 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93 hw->ctrl_in_idx = 0;
94 if (++hw->ctrl_cnt == 1)
95 ctrl_start_transfer(hw);
96 spin_unlock(&hw->ctrl_lock);
97
98 return 0;
99 }
100
101 /* control completion routine handling background control cmds */
102 static void
ctrl_complete(struct urb * urb)103 ctrl_complete(struct urb *urb)
104 {
105 struct hfcsusb *hw = (struct hfcsusb *) urb->context;
106
107 if (debug & DBG_HFC_CALL_TRACE)
108 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
109
110 urb->dev = hw->dev;
111 if (hw->ctrl_cnt) {
112 hw->ctrl_cnt--; /* decrement actual count */
113 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114 hw->ctrl_out_idx = 0; /* pointer wrap */
115
116 ctrl_start_transfer(hw); /* start next transfer */
117 }
118 }
119
120 /* handle LED bits */
121 static void
set_led_bit(struct hfcsusb * hw,signed short led_bits,int set_on)122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
123 {
124 if (set_on) {
125 if (led_bits < 0)
126 hw->led_state &= ~abs(led_bits);
127 else
128 hw->led_state |= led_bits;
129 } else {
130 if (led_bits < 0)
131 hw->led_state |= abs(led_bits);
132 else
133 hw->led_state &= ~led_bits;
134 }
135 }
136
137 /* handle LED requests */
138 static void
handle_led(struct hfcsusb * hw,int event)139 handle_led(struct hfcsusb *hw, int event)
140 {
141 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142 hfcsusb_idtab[hw->vend_idx].driver_info;
143 __u8 tmpled;
144
145 if (driver_info->led_scheme == LED_OFF)
146 return;
147 tmpled = hw->led_state;
148
149 switch (event) {
150 case LED_POWER_ON:
151 set_led_bit(hw, driver_info->led_bits[0], 1);
152 set_led_bit(hw, driver_info->led_bits[1], 0);
153 set_led_bit(hw, driver_info->led_bits[2], 0);
154 set_led_bit(hw, driver_info->led_bits[3], 0);
155 break;
156 case LED_POWER_OFF:
157 set_led_bit(hw, driver_info->led_bits[0], 0);
158 set_led_bit(hw, driver_info->led_bits[1], 0);
159 set_led_bit(hw, driver_info->led_bits[2], 0);
160 set_led_bit(hw, driver_info->led_bits[3], 0);
161 break;
162 case LED_S0_ON:
163 set_led_bit(hw, driver_info->led_bits[1], 1);
164 break;
165 case LED_S0_OFF:
166 set_led_bit(hw, driver_info->led_bits[1], 0);
167 break;
168 case LED_B1_ON:
169 set_led_bit(hw, driver_info->led_bits[2], 1);
170 break;
171 case LED_B1_OFF:
172 set_led_bit(hw, driver_info->led_bits[2], 0);
173 break;
174 case LED_B2_ON:
175 set_led_bit(hw, driver_info->led_bits[3], 1);
176 break;
177 case LED_B2_OFF:
178 set_led_bit(hw, driver_info->led_bits[3], 0);
179 break;
180 }
181
182 if (hw->led_state != tmpled) {
183 if (debug & DBG_HFC_CALL_TRACE)
184 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185 hw->name, __func__,
186 HFCUSB_P_DATA, hw->led_state);
187
188 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
189 }
190 }
191
192 /*
193 * Layer2 -> Layer 1 Bchannel data
194 */
195 static int
hfcusb_l2l1B(struct mISDNchannel * ch,struct sk_buff * skb)196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
197 {
198 struct bchannel *bch = container_of(ch, struct bchannel, ch);
199 struct hfcsusb *hw = bch->hw;
200 int ret = -EINVAL;
201 struct mISDNhead *hh = mISDN_HEAD_P(skb);
202 u_long flags;
203
204 if (debug & DBG_HFC_CALL_TRACE)
205 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
206
207 switch (hh->prim) {
208 case PH_DATA_REQ:
209 spin_lock_irqsave(&hw->lock, flags);
210 ret = bchannel_senddata(bch, skb);
211 spin_unlock_irqrestore(&hw->lock, flags);
212 if (debug & DBG_HFC_CALL_TRACE)
213 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214 hw->name, __func__, ret);
215 if (ret > 0)
216 ret = 0;
217 return ret;
218 case PH_ACTIVATE_REQ:
219 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220 hfcsusb_start_endpoint(hw, bch->nr - 1);
221 ret = hfcsusb_setup_bch(bch, ch->protocol);
222 } else
223 ret = 0;
224 if (!ret)
225 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226 0, NULL, GFP_KERNEL);
227 break;
228 case PH_DEACTIVATE_REQ:
229 deactivate_bchannel(bch);
230 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231 0, NULL, GFP_KERNEL);
232 ret = 0;
233 break;
234 }
235 if (!ret)
236 dev_kfree_skb(skb);
237 return ret;
238 }
239
240 /*
241 * send full D/B channel status information
242 * as MPH_INFORMATION_IND
243 */
244 static int
hfcsusb_ph_info(struct hfcsusb * hw)245 hfcsusb_ph_info(struct hfcsusb *hw)
246 {
247 struct ph_info *phi;
248 struct dchannel *dch = &hw->dch;
249 int i;
250
251 phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252 if (!phi)
253 return -ENOMEM;
254
255 phi->dch.ch.protocol = hw->protocol;
256 phi->dch.ch.Flags = dch->Flags;
257 phi->dch.state = dch->state;
258 phi->dch.num_bch = dch->dev.nrbchan;
259 for (i = 0; i < dch->dev.nrbchan; i++) {
260 phi->bch[i].protocol = hw->bch[i].ch.protocol;
261 phi->bch[i].Flags = hw->bch[i].Flags;
262 }
263 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264 struct_size(phi, bch, dch->dev.nrbchan), phi, GFP_ATOMIC);
265 kfree(phi);
266
267 return 0;
268 }
269
270 /*
271 * Layer2 -> Layer 1 Dchannel data
272 */
273 static int
hfcusb_l2l1D(struct mISDNchannel * ch,struct sk_buff * skb)274 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
275 {
276 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
277 struct dchannel *dch = container_of(dev, struct dchannel, dev);
278 struct mISDNhead *hh = mISDN_HEAD_P(skb);
279 struct hfcsusb *hw = dch->hw;
280 int ret = -EINVAL;
281 u_long flags;
282
283 switch (hh->prim) {
284 case PH_DATA_REQ:
285 if (debug & DBG_HFC_CALL_TRACE)
286 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
287 hw->name, __func__);
288
289 spin_lock_irqsave(&hw->lock, flags);
290 ret = dchannel_senddata(dch, skb);
291 spin_unlock_irqrestore(&hw->lock, flags);
292 if (ret > 0) {
293 ret = 0;
294 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
295 }
296 break;
297
298 case PH_ACTIVATE_REQ:
299 if (debug & DBG_HFC_CALL_TRACE)
300 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
301 hw->name, __func__,
302 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
303
304 if (hw->protocol == ISDN_P_NT_S0) {
305 ret = 0;
306 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
307 _queue_data(&dch->dev.D,
308 PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
309 NULL, GFP_ATOMIC);
310 } else {
311 hfcsusb_ph_command(hw,
312 HFC_L1_ACTIVATE_NT);
313 test_and_set_bit(FLG_L2_ACTIVATED,
314 &dch->Flags);
315 }
316 } else {
317 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
318 ret = l1_event(dch->l1, hh->prim);
319 }
320 break;
321
322 case PH_DEACTIVATE_REQ:
323 if (debug & DBG_HFC_CALL_TRACE)
324 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
325 hw->name, __func__);
326 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
327
328 if (hw->protocol == ISDN_P_NT_S0) {
329 struct sk_buff_head free_queue;
330
331 __skb_queue_head_init(&free_queue);
332 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
333 spin_lock_irqsave(&hw->lock, flags);
334 skb_queue_splice_init(&dch->squeue, &free_queue);
335 if (dch->tx_skb) {
336 __skb_queue_tail(&free_queue, dch->tx_skb);
337 dch->tx_skb = NULL;
338 }
339 dch->tx_idx = 0;
340 if (dch->rx_skb) {
341 __skb_queue_tail(&free_queue, dch->rx_skb);
342 dch->rx_skb = NULL;
343 }
344 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
345 spin_unlock_irqrestore(&hw->lock, flags);
346 __skb_queue_purge(&free_queue);
347 #ifdef FIXME
348 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
349 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
350 #endif
351 ret = 0;
352 } else
353 ret = l1_event(dch->l1, hh->prim);
354 break;
355 case MPH_INFORMATION_REQ:
356 ret = hfcsusb_ph_info(hw);
357 break;
358 }
359
360 return ret;
361 }
362
363 /*
364 * Layer 1 callback function
365 */
366 static int
hfc_l1callback(struct dchannel * dch,u_int cmd)367 hfc_l1callback(struct dchannel *dch, u_int cmd)
368 {
369 struct hfcsusb *hw = dch->hw;
370
371 if (debug & DBG_HFC_CALL_TRACE)
372 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
373 hw->name, __func__, cmd);
374
375 switch (cmd) {
376 case INFO3_P8:
377 case INFO3_P10:
378 case HW_RESET_REQ:
379 case HW_POWERUP_REQ:
380 break;
381
382 case HW_DEACT_REQ:
383 skb_queue_purge(&dch->squeue);
384 if (dch->tx_skb) {
385 dev_kfree_skb(dch->tx_skb);
386 dch->tx_skb = NULL;
387 }
388 dch->tx_idx = 0;
389 if (dch->rx_skb) {
390 dev_kfree_skb(dch->rx_skb);
391 dch->rx_skb = NULL;
392 }
393 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
394 break;
395 case PH_ACTIVATE_IND:
396 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
397 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
398 GFP_ATOMIC);
399 break;
400 case PH_DEACTIVATE_IND:
401 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
402 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
403 GFP_ATOMIC);
404 break;
405 default:
406 if (dch->debug & DEBUG_HW)
407 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
408 hw->name, __func__, cmd);
409 return -1;
410 }
411 return hfcsusb_ph_info(hw);
412 }
413
414 static int
open_dchannel(struct hfcsusb * hw,struct mISDNchannel * ch,struct channel_req * rq)415 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
416 struct channel_req *rq)
417 {
418 int err = 0;
419
420 if (debug & DEBUG_HW_OPEN)
421 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
422 hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
423 __builtin_return_address(0));
424 if (rq->protocol == ISDN_P_NONE)
425 return -EINVAL;
426
427 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
428 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
429 hfcsusb_start_endpoint(hw, HFC_CHAN_D);
430
431 /* E-Channel logging */
432 if (rq->adr.channel == 1) {
433 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
434 hfcsusb_start_endpoint(hw, HFC_CHAN_E);
435 set_bit(FLG_ACTIVE, &hw->ech.Flags);
436 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
437 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
438 } else
439 return -EINVAL;
440 }
441
442 if (!hw->initdone) {
443 hw->protocol = rq->protocol;
444 if (rq->protocol == ISDN_P_TE_S0) {
445 err = create_l1(&hw->dch, hfc_l1callback);
446 if (err)
447 return err;
448 }
449 setPortMode(hw);
450 ch->protocol = rq->protocol;
451 hw->initdone = 1;
452 } else {
453 if (rq->protocol != ch->protocol)
454 return -EPROTONOSUPPORT;
455 }
456
457 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
458 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
459 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
460 0, NULL, GFP_KERNEL);
461 rq->ch = ch;
462 if (!try_module_get(THIS_MODULE))
463 printk(KERN_WARNING "%s: %s: cannot get module\n",
464 hw->name, __func__);
465 return 0;
466 }
467
468 static int
open_bchannel(struct hfcsusb * hw,struct channel_req * rq)469 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
470 {
471 struct bchannel *bch;
472
473 if (rq->adr.channel == 0 || rq->adr.channel > 2)
474 return -EINVAL;
475 if (rq->protocol == ISDN_P_NONE)
476 return -EINVAL;
477
478 if (debug & DBG_HFC_CALL_TRACE)
479 printk(KERN_DEBUG "%s: %s B%i\n",
480 hw->name, __func__, rq->adr.channel);
481
482 bch = &hw->bch[rq->adr.channel - 1];
483 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
484 return -EBUSY; /* b-channel can be only open once */
485 bch->ch.protocol = rq->protocol;
486 rq->ch = &bch->ch;
487
488 if (!try_module_get(THIS_MODULE))
489 printk(KERN_WARNING "%s: %s:cannot get module\n",
490 hw->name, __func__);
491 return 0;
492 }
493
494 static int
channel_ctrl(struct hfcsusb * hw,struct mISDN_ctrl_req * cq)495 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
496 {
497 int ret = 0;
498
499 if (debug & DBG_HFC_CALL_TRACE)
500 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
501 hw->name, __func__, (cq->op), (cq->channel));
502
503 switch (cq->op) {
504 case MISDN_CTRL_GETOP:
505 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
506 MISDN_CTRL_DISCONNECT;
507 break;
508 default:
509 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
510 hw->name, __func__, cq->op);
511 ret = -EINVAL;
512 break;
513 }
514 return ret;
515 }
516
517 /*
518 * device control function
519 */
520 static int
hfc_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)521 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
522 {
523 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
524 struct dchannel *dch = container_of(dev, struct dchannel, dev);
525 struct hfcsusb *hw = dch->hw;
526 struct channel_req *rq;
527 int err = 0;
528
529 if (dch->debug & DEBUG_HW)
530 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
531 hw->name, __func__, cmd, arg);
532 switch (cmd) {
533 case OPEN_CHANNEL:
534 rq = arg;
535 if ((rq->protocol == ISDN_P_TE_S0) ||
536 (rq->protocol == ISDN_P_NT_S0))
537 err = open_dchannel(hw, ch, rq);
538 else
539 err = open_bchannel(hw, rq);
540 if (!err)
541 hw->open++;
542 break;
543 case CLOSE_CHANNEL:
544 hw->open--;
545 if (debug & DEBUG_HW_OPEN)
546 printk(KERN_DEBUG
547 "%s: %s: dev(%d) close from %p (open %d)\n",
548 hw->name, __func__, hw->dch.dev.id,
549 __builtin_return_address(0), hw->open);
550 if (!hw->open) {
551 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
552 if (hw->fifos[HFCUSB_PCM_RX].pipe)
553 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
554 handle_led(hw, LED_POWER_ON);
555 }
556 module_put(THIS_MODULE);
557 break;
558 case CONTROL_CHANNEL:
559 err = channel_ctrl(hw, arg);
560 break;
561 default:
562 if (dch->debug & DEBUG_HW)
563 printk(KERN_DEBUG "%s: %s: unknown command %x\n",
564 hw->name, __func__, cmd);
565 return -EINVAL;
566 }
567 return err;
568 }
569
570 /*
571 * S0 TE state change event handler
572 */
573 static void
ph_state_te(struct dchannel * dch)574 ph_state_te(struct dchannel *dch)
575 {
576 struct hfcsusb *hw = dch->hw;
577
578 if (debug & DEBUG_HW) {
579 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
580 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
581 HFC_TE_LAYER1_STATES[dch->state]);
582 else
583 printk(KERN_DEBUG "%s: %s: TE F%d\n",
584 hw->name, __func__, dch->state);
585 }
586
587 switch (dch->state) {
588 case 0:
589 l1_event(dch->l1, HW_RESET_IND);
590 break;
591 case 3:
592 l1_event(dch->l1, HW_DEACT_IND);
593 break;
594 case 5:
595 case 8:
596 l1_event(dch->l1, ANYSIGNAL);
597 break;
598 case 6:
599 l1_event(dch->l1, INFO2);
600 break;
601 case 7:
602 l1_event(dch->l1, INFO4_P8);
603 break;
604 }
605 if (dch->state == 7)
606 handle_led(hw, LED_S0_ON);
607 else
608 handle_led(hw, LED_S0_OFF);
609 }
610
611 /*
612 * S0 NT state change event handler
613 */
614 static void
ph_state_nt(struct dchannel * dch)615 ph_state_nt(struct dchannel *dch)
616 {
617 struct hfcsusb *hw = dch->hw;
618
619 if (debug & DEBUG_HW) {
620 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
621 printk(KERN_DEBUG "%s: %s: %s\n",
622 hw->name, __func__,
623 HFC_NT_LAYER1_STATES[dch->state]);
624
625 else
626 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
627 hw->name, __func__, dch->state);
628 }
629
630 switch (dch->state) {
631 case (1):
632 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
633 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
634 hw->nt_timer = 0;
635 hw->timers &= ~NT_ACTIVATION_TIMER;
636 handle_led(hw, LED_S0_OFF);
637 break;
638
639 case (2):
640 if (hw->nt_timer < 0) {
641 hw->nt_timer = 0;
642 hw->timers &= ~NT_ACTIVATION_TIMER;
643 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
644 } else {
645 hw->timers |= NT_ACTIVATION_TIMER;
646 hw->nt_timer = NT_T1_COUNT;
647 /* allow G2 -> G3 transition */
648 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
649 }
650 break;
651 case (3):
652 hw->nt_timer = 0;
653 hw->timers &= ~NT_ACTIVATION_TIMER;
654 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
655 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
656 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
657 handle_led(hw, LED_S0_ON);
658 break;
659 case (4):
660 hw->nt_timer = 0;
661 hw->timers &= ~NT_ACTIVATION_TIMER;
662 break;
663 default:
664 break;
665 }
666 hfcsusb_ph_info(hw);
667 }
668
669 static void
ph_state(struct dchannel * dch)670 ph_state(struct dchannel *dch)
671 {
672 struct hfcsusb *hw = dch->hw;
673
674 if (hw->protocol == ISDN_P_NT_S0)
675 ph_state_nt(dch);
676 else if (hw->protocol == ISDN_P_TE_S0)
677 ph_state_te(dch);
678 }
679
680 /*
681 * disable/enable BChannel for desired protocol
682 */
683 static int
hfcsusb_setup_bch(struct bchannel * bch,int protocol)684 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
685 {
686 struct hfcsusb *hw = bch->hw;
687 __u8 conhdlc, sctrl, sctrl_r;
688
689 if (debug & DEBUG_HW)
690 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
691 hw->name, __func__, bch->state, protocol,
692 bch->nr);
693
694 /* setup val for CON_HDLC */
695 conhdlc = 0;
696 if (protocol > ISDN_P_NONE)
697 conhdlc = 8; /* enable FIFO */
698
699 switch (protocol) {
700 case (-1): /* used for init */
701 bch->state = -1;
702 fallthrough;
703 case (ISDN_P_NONE):
704 if (bch->state == ISDN_P_NONE)
705 return 0; /* already in idle state */
706 bch->state = ISDN_P_NONE;
707 clear_bit(FLG_HDLC, &bch->Flags);
708 clear_bit(FLG_TRANSPARENT, &bch->Flags);
709 break;
710 case (ISDN_P_B_RAW):
711 conhdlc |= 2;
712 bch->state = protocol;
713 set_bit(FLG_TRANSPARENT, &bch->Flags);
714 break;
715 case (ISDN_P_B_HDLC):
716 bch->state = protocol;
717 set_bit(FLG_HDLC, &bch->Flags);
718 break;
719 default:
720 if (debug & DEBUG_HW)
721 printk(KERN_DEBUG "%s: %s: prot not known %x\n",
722 hw->name, __func__, protocol);
723 return -ENOPROTOOPT;
724 }
725
726 if (protocol >= ISDN_P_NONE) {
727 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
728 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729 write_reg(hw, HFCUSB_INC_RES_F, 2);
730 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
731 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
732 write_reg(hw, HFCUSB_INC_RES_F, 2);
733
734 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
735 sctrl_r = 0x0;
736 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
737 sctrl |= 1;
738 sctrl_r |= 1;
739 }
740 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
741 sctrl |= 2;
742 sctrl_r |= 2;
743 }
744 write_reg(hw, HFCUSB_SCTRL, sctrl);
745 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
746
747 if (protocol > ISDN_P_NONE)
748 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
749 else
750 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
751 LED_B2_OFF);
752 }
753 return hfcsusb_ph_info(hw);
754 }
755
756 static void
hfcsusb_ph_command(struct hfcsusb * hw,u_char command)757 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
758 {
759 if (debug & DEBUG_HW)
760 printk(KERN_DEBUG "%s: %s: %x\n",
761 hw->name, __func__, command);
762
763 switch (command) {
764 case HFC_L1_ACTIVATE_TE:
765 /* force sending sending INFO1 */
766 write_reg(hw, HFCUSB_STATES, 0x14);
767 /* start l1 activation */
768 write_reg(hw, HFCUSB_STATES, 0x04);
769 break;
770
771 case HFC_L1_FORCE_DEACTIVATE_TE:
772 write_reg(hw, HFCUSB_STATES, 0x10);
773 write_reg(hw, HFCUSB_STATES, 0x03);
774 break;
775
776 case HFC_L1_ACTIVATE_NT:
777 if (hw->dch.state == 3)
778 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
779 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
780 else
781 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
782 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
783 break;
784
785 case HFC_L1_DEACTIVATE_NT:
786 write_reg(hw, HFCUSB_STATES,
787 HFCUSB_DO_ACTION);
788 break;
789 }
790 }
791
792 /*
793 * Layer 1 B-channel hardware access
794 */
795 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)796 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
797 {
798 return mISDN_ctrl_bchannel(bch, cq);
799 }
800
801 /* collect data from incoming interrupt or isochron USB data */
802 static void
hfcsusb_rx_frame(struct usb_fifo * fifo,__u8 * data,unsigned int len,int finish)803 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
804 int finish)
805 {
806 struct hfcsusb *hw = fifo->hw;
807 struct sk_buff *rx_skb = NULL;
808 int maxlen = 0;
809 int fifon = fifo->fifonum;
810 int i;
811 int hdlc = 0;
812 unsigned long flags;
813
814 if (debug & DBG_HFC_CALL_TRACE)
815 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
816 "dch(%p) bch(%p) ech(%p)\n",
817 hw->name, __func__, fifon, len,
818 fifo->dch, fifo->bch, fifo->ech);
819
820 if (!len)
821 return;
822
823 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
824 printk(KERN_DEBUG "%s: %s: undefined channel\n",
825 hw->name, __func__);
826 return;
827 }
828
829 spin_lock_irqsave(&hw->lock, flags);
830 if (fifo->dch) {
831 rx_skb = fifo->dch->rx_skb;
832 maxlen = fifo->dch->maxlen;
833 hdlc = 1;
834 }
835 if (fifo->bch) {
836 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
837 fifo->bch->dropcnt += len;
838 spin_unlock_irqrestore(&hw->lock, flags);
839 return;
840 }
841 maxlen = bchannel_get_rxbuf(fifo->bch, len);
842 rx_skb = fifo->bch->rx_skb;
843 if (maxlen < 0) {
844 if (rx_skb)
845 skb_trim(rx_skb, 0);
846 pr_warn("%s.B%d: No bufferspace for %d bytes\n",
847 hw->name, fifo->bch->nr, len);
848 spin_unlock_irqrestore(&hw->lock, flags);
849 return;
850 }
851 maxlen = fifo->bch->maxlen;
852 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
853 }
854 if (fifo->ech) {
855 rx_skb = fifo->ech->rx_skb;
856 maxlen = fifo->ech->maxlen;
857 hdlc = 1;
858 }
859
860 if (fifo->dch || fifo->ech) {
861 if (!rx_skb) {
862 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
863 if (rx_skb) {
864 if (fifo->dch)
865 fifo->dch->rx_skb = rx_skb;
866 if (fifo->ech)
867 fifo->ech->rx_skb = rx_skb;
868 skb_trim(rx_skb, 0);
869 } else {
870 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
871 hw->name, __func__);
872 spin_unlock_irqrestore(&hw->lock, flags);
873 return;
874 }
875 }
876 /* D/E-Channel SKB range check */
877 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
878 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
879 "for fifo(%d) HFCUSB_D_RX\n",
880 hw->name, __func__, fifon);
881 skb_trim(rx_skb, 0);
882 spin_unlock_irqrestore(&hw->lock, flags);
883 return;
884 }
885 }
886
887 skb_put_data(rx_skb, data, len);
888
889 if (hdlc) {
890 /* we have a complete hdlc packet */
891 if (finish) {
892 if ((rx_skb->len > 3) &&
893 (!(rx_skb->data[rx_skb->len - 1]))) {
894 if (debug & DBG_HFC_FIFO_VERBOSE) {
895 printk(KERN_DEBUG "%s: %s: fifon(%i)"
896 " new RX len(%i): ",
897 hw->name, __func__, fifon,
898 rx_skb->len);
899 i = 0;
900 while (i < rx_skb->len)
901 printk("%02x ",
902 rx_skb->data[i++]);
903 printk("\n");
904 }
905
906 /* remove CRC & status */
907 skb_trim(rx_skb, rx_skb->len - 3);
908
909 if (fifo->dch)
910 recv_Dchannel(fifo->dch);
911 if (fifo->bch)
912 recv_Bchannel(fifo->bch, MISDN_ID_ANY,
913 0);
914 if (fifo->ech)
915 recv_Echannel(fifo->ech,
916 &hw->dch);
917 } else {
918 if (debug & DBG_HFC_FIFO_VERBOSE) {
919 printk(KERN_DEBUG
920 "%s: CRC or minlen ERROR fifon(%i) "
921 "RX len(%i): ",
922 hw->name, fifon, rx_skb->len);
923 i = 0;
924 while (i < rx_skb->len)
925 printk("%02x ",
926 rx_skb->data[i++]);
927 printk("\n");
928 }
929 skb_trim(rx_skb, 0);
930 }
931 }
932 } else {
933 /* deliver transparent data to layer2 */
934 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
935 }
936 spin_unlock_irqrestore(&hw->lock, flags);
937 }
938
939 static void
fill_isoc_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * buf,int num_packets,int packet_size,int interval,usb_complete_t complete,void * context)940 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
941 void *buf, int num_packets, int packet_size, int interval,
942 usb_complete_t complete, void *context)
943 {
944 int k;
945
946 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
947 complete, context);
948
949 urb->number_of_packets = num_packets;
950 urb->transfer_flags = URB_ISO_ASAP;
951 urb->actual_length = 0;
952 urb->interval = interval;
953
954 for (k = 0; k < num_packets; k++) {
955 urb->iso_frame_desc[k].offset = packet_size * k;
956 urb->iso_frame_desc[k].length = packet_size;
957 urb->iso_frame_desc[k].actual_length = 0;
958 }
959 }
960
961 /* receive completion routine for all ISO tx fifos */
962 static void
rx_iso_complete(struct urb * urb)963 rx_iso_complete(struct urb *urb)
964 {
965 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
966 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
967 struct hfcsusb *hw = fifo->hw;
968 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
969 status, iso_status, i;
970 __u8 *buf;
971 static __u8 eof[8];
972 __u8 s0_state;
973 unsigned long flags;
974
975 fifon = fifo->fifonum;
976 status = urb->status;
977
978 spin_lock_irqsave(&hw->lock, flags);
979 if (fifo->stop_gracefull) {
980 fifo->stop_gracefull = 0;
981 fifo->active = 0;
982 spin_unlock_irqrestore(&hw->lock, flags);
983 return;
984 }
985 spin_unlock_irqrestore(&hw->lock, flags);
986
987 /*
988 * ISO transfer only partially completed,
989 * look at individual frame status for details
990 */
991 if (status == -EXDEV) {
992 if (debug & DEBUG_HW)
993 printk(KERN_DEBUG "%s: %s: with -EXDEV "
994 "urb->status %d, fifonum %d\n",
995 hw->name, __func__, status, fifon);
996
997 /* clear status, so go on with ISO transfers */
998 status = 0;
999 }
1000
1001 s0_state = 0;
1002 if (fifo->active && !status) {
1003 num_isoc_packets = iso_packets[fifon];
1004 maxlen = fifo->usb_packet_maxlen;
1005
1006 for (k = 0; k < num_isoc_packets; ++k) {
1007 len = urb->iso_frame_desc[k].actual_length;
1008 offset = urb->iso_frame_desc[k].offset;
1009 buf = context_iso_urb->buffer + offset;
1010 iso_status = urb->iso_frame_desc[k].status;
1011
1012 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1013 printk(KERN_DEBUG "%s: %s: "
1014 "ISO packet %i, status: %i\n",
1015 hw->name, __func__, k, iso_status);
1016 }
1017
1018 /* USB data log for every D ISO in */
1019 if ((fifon == HFCUSB_D_RX) &&
1020 (debug & DBG_HFC_USB_VERBOSE)) {
1021 printk(KERN_DEBUG
1022 "%s: %s: %d (%d/%d) len(%d) ",
1023 hw->name, __func__, urb->start_frame,
1024 k, num_isoc_packets - 1,
1025 len);
1026 for (i = 0; i < len; i++)
1027 printk("%x ", buf[i]);
1028 printk("\n");
1029 }
1030
1031 if (!iso_status) {
1032 if (fifo->last_urblen != maxlen) {
1033 /*
1034 * save fifo fill-level threshold bits
1035 * to use them later in TX ISO URB
1036 * completions
1037 */
1038 hw->threshold_mask = buf[1];
1039
1040 if (fifon == HFCUSB_D_RX)
1041 s0_state = (buf[0] >> 4);
1042
1043 eof[fifon] = buf[0] & 1;
1044 if (len > 2)
1045 hfcsusb_rx_frame(fifo, buf + 2,
1046 len - 2, (len < maxlen)
1047 ? eof[fifon] : 0);
1048 } else
1049 hfcsusb_rx_frame(fifo, buf, len,
1050 (len < maxlen) ?
1051 eof[fifon] : 0);
1052 fifo->last_urblen = len;
1053 }
1054 }
1055
1056 /* signal S0 layer1 state change */
1057 if ((s0_state) && (hw->initdone) &&
1058 (s0_state != hw->dch.state)) {
1059 hw->dch.state = s0_state;
1060 schedule_event(&hw->dch, FLG_PHCHANGE);
1061 }
1062
1063 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1064 context_iso_urb->buffer, num_isoc_packets,
1065 fifo->usb_packet_maxlen, fifo->intervall,
1066 (usb_complete_t)rx_iso_complete, urb->context);
1067 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1068 if (errcode < 0) {
1069 if (debug & DEBUG_HW)
1070 printk(KERN_DEBUG "%s: %s: error submitting "
1071 "ISO URB: %d\n",
1072 hw->name, __func__, errcode);
1073 }
1074 } else {
1075 if (status && (debug & DBG_HFC_URB_INFO))
1076 printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1077 "urb->status %d, fifonum %d\n",
1078 hw->name, __func__, status, fifon);
1079 }
1080 }
1081
1082 /* receive completion routine for all interrupt rx fifos */
1083 static void
rx_int_complete(struct urb * urb)1084 rx_int_complete(struct urb *urb)
1085 {
1086 int len, status, i;
1087 __u8 *buf, maxlen, fifon;
1088 struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1089 struct hfcsusb *hw = fifo->hw;
1090 static __u8 eof[8];
1091 unsigned long flags;
1092
1093 spin_lock_irqsave(&hw->lock, flags);
1094 if (fifo->stop_gracefull) {
1095 fifo->stop_gracefull = 0;
1096 fifo->active = 0;
1097 spin_unlock_irqrestore(&hw->lock, flags);
1098 return;
1099 }
1100 spin_unlock_irqrestore(&hw->lock, flags);
1101
1102 fifon = fifo->fifonum;
1103 if ((!fifo->active) || (urb->status)) {
1104 if (debug & DBG_HFC_URB_ERROR)
1105 printk(KERN_DEBUG
1106 "%s: %s: RX-Fifo %i is going down (%i)\n",
1107 hw->name, __func__, fifon, urb->status);
1108
1109 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1110 return;
1111 }
1112 len = urb->actual_length;
1113 buf = fifo->buffer;
1114 maxlen = fifo->usb_packet_maxlen;
1115
1116 /* USB data log for every D INT in */
1117 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1118 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1119 hw->name, __func__, len);
1120 for (i = 0; i < len; i++)
1121 printk("%02x ", buf[i]);
1122 printk("\n");
1123 }
1124
1125 if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1126 /* the threshold mask is in the 2nd status byte */
1127 hw->threshold_mask = buf[1];
1128
1129 /* signal S0 layer1 state change */
1130 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1131 hw->dch.state = (buf[0] >> 4);
1132 schedule_event(&hw->dch, FLG_PHCHANGE);
1133 }
1134
1135 eof[fifon] = buf[0] & 1;
1136 /* if we have more than the 2 status bytes -> collect data */
1137 if (len > 2)
1138 hfcsusb_rx_frame(fifo, buf + 2,
1139 urb->actual_length - 2,
1140 (len < maxlen) ? eof[fifon] : 0);
1141 } else {
1142 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1143 (len < maxlen) ? eof[fifon] : 0);
1144 }
1145 fifo->last_urblen = urb->actual_length;
1146
1147 status = usb_submit_urb(urb, GFP_ATOMIC);
1148 if (status) {
1149 if (debug & DEBUG_HW)
1150 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1151 hw->name, __func__);
1152 }
1153 }
1154
1155 /* transmit completion routine for all ISO tx fifos */
1156 static void
tx_iso_complete(struct urb * urb)1157 tx_iso_complete(struct urb *urb)
1158 {
1159 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1160 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1161 struct hfcsusb *hw = fifo->hw;
1162 struct sk_buff *tx_skb;
1163 int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1164 errcode, hdlc, i;
1165 int *tx_idx;
1166 int frame_complete, fifon, status, fillempty = 0;
1167 __u8 threshbit, *p;
1168 unsigned long flags;
1169
1170 spin_lock_irqsave(&hw->lock, flags);
1171 if (fifo->stop_gracefull) {
1172 fifo->stop_gracefull = 0;
1173 fifo->active = 0;
1174 spin_unlock_irqrestore(&hw->lock, flags);
1175 return;
1176 }
1177
1178 if (fifo->dch) {
1179 tx_skb = fifo->dch->tx_skb;
1180 tx_idx = &fifo->dch->tx_idx;
1181 hdlc = 1;
1182 } else if (fifo->bch) {
1183 tx_skb = fifo->bch->tx_skb;
1184 tx_idx = &fifo->bch->tx_idx;
1185 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1186 if (!tx_skb && !hdlc &&
1187 test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1188 fillempty = 1;
1189 } else {
1190 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1191 hw->name, __func__);
1192 spin_unlock_irqrestore(&hw->lock, flags);
1193 return;
1194 }
1195
1196 fifon = fifo->fifonum;
1197 status = urb->status;
1198
1199 tx_offset = 0;
1200
1201 /*
1202 * ISO transfer only partially completed,
1203 * look at individual frame status for details
1204 */
1205 if (status == -EXDEV) {
1206 if (debug & DBG_HFC_URB_ERROR)
1207 printk(KERN_DEBUG "%s: %s: "
1208 "-EXDEV (%i) fifon (%d)\n",
1209 hw->name, __func__, status, fifon);
1210
1211 /* clear status, so go on with ISO transfers */
1212 status = 0;
1213 }
1214
1215 if (fifo->active && !status) {
1216 /* is FifoFull-threshold set for our channel? */
1217 threshbit = (hw->threshold_mask & (1 << fifon));
1218 num_isoc_packets = iso_packets[fifon];
1219
1220 /* predict dataflow to avoid fifo overflow */
1221 if (fifon >= HFCUSB_D_TX)
1222 sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1223 else
1224 sink = (threshbit) ? SINK_MIN : SINK_MAX;
1225 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1226 context_iso_urb->buffer, num_isoc_packets,
1227 fifo->usb_packet_maxlen, fifo->intervall,
1228 (usb_complete_t)tx_iso_complete, urb->context);
1229 memset(context_iso_urb->buffer, 0,
1230 sizeof(context_iso_urb->buffer));
1231 frame_complete = 0;
1232
1233 for (k = 0; k < num_isoc_packets; ++k) {
1234 /* analyze tx success of previous ISO packets */
1235 if (debug & DBG_HFC_URB_ERROR) {
1236 errcode = urb->iso_frame_desc[k].status;
1237 if (errcode) {
1238 printk(KERN_DEBUG "%s: %s: "
1239 "ISO packet %i, status: %i\n",
1240 hw->name, __func__, k, errcode);
1241 }
1242 }
1243
1244 /* Generate next ISO Packets */
1245 if (tx_skb)
1246 remain = tx_skb->len - *tx_idx;
1247 else if (fillempty)
1248 remain = 15; /* > not complete */
1249 else
1250 remain = 0;
1251
1252 if (remain > 0) {
1253 fifo->bit_line -= sink;
1254 current_len = (0 - fifo->bit_line) / 8;
1255 if (current_len > 14)
1256 current_len = 14;
1257 if (current_len < 0)
1258 current_len = 0;
1259 if (remain < current_len)
1260 current_len = remain;
1261
1262 /* how much bit do we put on the line? */
1263 fifo->bit_line += current_len * 8;
1264
1265 context_iso_urb->buffer[tx_offset] = 0;
1266 if (current_len == remain) {
1267 if (hdlc) {
1268 /* signal frame completion */
1269 context_iso_urb->
1270 buffer[tx_offset] = 1;
1271 /* add 2 byte flags and 16bit
1272 * CRC at end of ISDN frame */
1273 fifo->bit_line += 32;
1274 }
1275 frame_complete = 1;
1276 }
1277
1278 /* copy tx data to iso-urb buffer */
1279 p = context_iso_urb->buffer + tx_offset + 1;
1280 if (fillempty) {
1281 memset(p, fifo->bch->fill[0],
1282 current_len);
1283 } else {
1284 memcpy(p, (tx_skb->data + *tx_idx),
1285 current_len);
1286 *tx_idx += current_len;
1287 }
1288 urb->iso_frame_desc[k].offset = tx_offset;
1289 urb->iso_frame_desc[k].length = current_len + 1;
1290
1291 /* USB data log for every D ISO out */
1292 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1293 (debug & DBG_HFC_USB_VERBOSE)) {
1294 printk(KERN_DEBUG
1295 "%s: %s (%d/%d) offs(%d) len(%d) ",
1296 hw->name, __func__,
1297 k, num_isoc_packets - 1,
1298 urb->iso_frame_desc[k].offset,
1299 urb->iso_frame_desc[k].length);
1300
1301 for (i = urb->iso_frame_desc[k].offset;
1302 i < (urb->iso_frame_desc[k].offset
1303 + urb->iso_frame_desc[k].length);
1304 i++)
1305 printk("%x ",
1306 context_iso_urb->buffer[i]);
1307
1308 printk(" skb->len(%i) tx-idx(%d)\n",
1309 tx_skb->len, *tx_idx);
1310 }
1311
1312 tx_offset += (current_len + 1);
1313 } else {
1314 urb->iso_frame_desc[k].offset = tx_offset++;
1315 urb->iso_frame_desc[k].length = 1;
1316 /* we lower data margin every msec */
1317 fifo->bit_line -= sink;
1318 if (fifo->bit_line < BITLINE_INF)
1319 fifo->bit_line = BITLINE_INF;
1320 }
1321
1322 if (frame_complete) {
1323 frame_complete = 0;
1324
1325 if (debug & DBG_HFC_FIFO_VERBOSE) {
1326 printk(KERN_DEBUG "%s: %s: "
1327 "fifon(%i) new TX len(%i): ",
1328 hw->name, __func__,
1329 fifon, tx_skb->len);
1330 i = 0;
1331 while (i < tx_skb->len)
1332 printk("%02x ",
1333 tx_skb->data[i++]);
1334 printk("\n");
1335 }
1336
1337 dev_consume_skb_irq(tx_skb);
1338 tx_skb = NULL;
1339 if (fifo->dch && get_next_dframe(fifo->dch))
1340 tx_skb = fifo->dch->tx_skb;
1341 else if (fifo->bch &&
1342 get_next_bframe(fifo->bch))
1343 tx_skb = fifo->bch->tx_skb;
1344 }
1345 }
1346 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1347 if (errcode < 0) {
1348 if (debug & DEBUG_HW)
1349 printk(KERN_DEBUG
1350 "%s: %s: error submitting ISO URB: %d \n",
1351 hw->name, __func__, errcode);
1352 }
1353
1354 /*
1355 * abuse DChannel tx iso completion to trigger NT mode state
1356 * changes tx_iso_complete is assumed to be called every
1357 * fifo->intervall (ms)
1358 */
1359 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1360 && (hw->timers & NT_ACTIVATION_TIMER)) {
1361 if ((--hw->nt_timer) < 0)
1362 schedule_event(&hw->dch, FLG_PHCHANGE);
1363 }
1364
1365 } else {
1366 if (status && (debug & DBG_HFC_URB_ERROR))
1367 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1368 "fifonum=%d\n",
1369 hw->name, __func__,
1370 symbolic(urb_errlist, status), status, fifon);
1371 }
1372 spin_unlock_irqrestore(&hw->lock, flags);
1373 }
1374
1375 /*
1376 * allocs urbs and start isoc transfer with two pending urbs to avoid
1377 * gaps in the transfer chain
1378 */
1379 static int
start_isoc_chain(struct usb_fifo * fifo,int num_packets_per_urb,usb_complete_t complete,int packet_size)1380 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1381 usb_complete_t complete, int packet_size)
1382 {
1383 struct hfcsusb *hw = fifo->hw;
1384 int i, k, errcode;
1385
1386 if (debug)
1387 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1388 hw->name, __func__, fifo->fifonum);
1389
1390 /* allocate Memory for Iso out Urbs */
1391 for (i = 0; i < 2; i++) {
1392 if (!(fifo->iso[i].urb)) {
1393 fifo->iso[i].urb =
1394 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1395 if (!(fifo->iso[i].urb)) {
1396 printk(KERN_DEBUG
1397 "%s: %s: alloc urb for fifo %i failed",
1398 hw->name, __func__, fifo->fifonum);
1399 continue;
1400 }
1401 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1402 fifo->iso[i].indx = i;
1403
1404 /* Init the first iso */
1405 if (ISO_BUFFER_SIZE >=
1406 (fifo->usb_packet_maxlen *
1407 num_packets_per_urb)) {
1408 fill_isoc_urb(fifo->iso[i].urb,
1409 fifo->hw->dev, fifo->pipe,
1410 fifo->iso[i].buffer,
1411 num_packets_per_urb,
1412 fifo->usb_packet_maxlen,
1413 fifo->intervall, complete,
1414 &fifo->iso[i]);
1415 memset(fifo->iso[i].buffer, 0,
1416 sizeof(fifo->iso[i].buffer));
1417
1418 for (k = 0; k < num_packets_per_urb; k++) {
1419 fifo->iso[i].urb->
1420 iso_frame_desc[k].offset =
1421 k * packet_size;
1422 fifo->iso[i].urb->
1423 iso_frame_desc[k].length =
1424 packet_size;
1425 }
1426 } else {
1427 printk(KERN_DEBUG
1428 "%s: %s: ISO Buffer size to small!\n",
1429 hw->name, __func__);
1430 }
1431 }
1432 fifo->bit_line = BITLINE_INF;
1433
1434 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1435 fifo->active = (errcode >= 0) ? 1 : 0;
1436 fifo->stop_gracefull = 0;
1437 if (errcode < 0) {
1438 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1439 hw->name, __func__,
1440 symbolic(urb_errlist, errcode), i);
1441 }
1442 }
1443 return fifo->active;
1444 }
1445
1446 static void
stop_iso_gracefull(struct usb_fifo * fifo)1447 stop_iso_gracefull(struct usb_fifo *fifo)
1448 {
1449 struct hfcsusb *hw = fifo->hw;
1450 int i, timeout;
1451 u_long flags;
1452
1453 for (i = 0; i < 2; i++) {
1454 spin_lock_irqsave(&hw->lock, flags);
1455 if (debug)
1456 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1457 hw->name, __func__, fifo->fifonum, i);
1458 fifo->stop_gracefull = 1;
1459 spin_unlock_irqrestore(&hw->lock, flags);
1460 }
1461
1462 for (i = 0; i < 2; i++) {
1463 timeout = 3;
1464 while (fifo->stop_gracefull && timeout--)
1465 schedule_timeout_interruptible((HZ / 1000) * 16);
1466 if (debug && fifo->stop_gracefull)
1467 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1468 hw->name, __func__, fifo->fifonum, i);
1469 }
1470 }
1471
1472 static void
stop_int_gracefull(struct usb_fifo * fifo)1473 stop_int_gracefull(struct usb_fifo *fifo)
1474 {
1475 struct hfcsusb *hw = fifo->hw;
1476 int timeout;
1477 u_long flags;
1478
1479 spin_lock_irqsave(&hw->lock, flags);
1480 if (debug)
1481 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1482 hw->name, __func__, fifo->fifonum);
1483 fifo->stop_gracefull = 1;
1484 spin_unlock_irqrestore(&hw->lock, flags);
1485
1486 timeout = 3;
1487 while (fifo->stop_gracefull && timeout--)
1488 schedule_timeout_interruptible((HZ / 1000) * 3);
1489 if (debug && fifo->stop_gracefull)
1490 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1491 hw->name, __func__, fifo->fifonum);
1492 }
1493
1494 /* start the interrupt transfer for the given fifo */
1495 static void
start_int_fifo(struct usb_fifo * fifo)1496 start_int_fifo(struct usb_fifo *fifo)
1497 {
1498 struct hfcsusb *hw = fifo->hw;
1499 int errcode;
1500
1501 if (debug)
1502 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1503 hw->name, __func__, fifo->fifonum);
1504
1505 if (!fifo->urb) {
1506 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1507 if (!fifo->urb)
1508 return;
1509 }
1510 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1511 fifo->buffer, fifo->usb_packet_maxlen,
1512 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1513 fifo->active = 1;
1514 fifo->stop_gracefull = 0;
1515 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1516 if (errcode) {
1517 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1518 hw->name, __func__, errcode);
1519 fifo->active = 0;
1520 }
1521 }
1522
1523 static void
setPortMode(struct hfcsusb * hw)1524 setPortMode(struct hfcsusb *hw)
1525 {
1526 if (debug & DEBUG_HW)
1527 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1528 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1529
1530 if (hw->protocol == ISDN_P_TE_S0) {
1531 write_reg(hw, HFCUSB_SCTRL, 0x40);
1532 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1533 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1534 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1535 write_reg(hw, HFCUSB_STATES, 3);
1536 } else {
1537 write_reg(hw, HFCUSB_SCTRL, 0x44);
1538 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1539 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1540 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1541 write_reg(hw, HFCUSB_STATES, 1);
1542 }
1543 }
1544
1545 static void
reset_hfcsusb(struct hfcsusb * hw)1546 reset_hfcsusb(struct hfcsusb *hw)
1547 {
1548 struct usb_fifo *fifo;
1549 int i;
1550
1551 if (debug & DEBUG_HW)
1552 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1553
1554 /* do Chip reset */
1555 write_reg(hw, HFCUSB_CIRM, 8);
1556
1557 /* aux = output, reset off */
1558 write_reg(hw, HFCUSB_CIRM, 0x10);
1559
1560 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1561 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1562 ((hw->packet_size / 8) << 4));
1563
1564 /* set USB_SIZE_I to match the wMaxPacketSize for ISO transfers */
1565 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1566
1567 /* enable PCM/GCI master mode */
1568 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1569 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1570
1571 /* init the fifos */
1572 write_reg(hw, HFCUSB_F_THRES,
1573 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1574
1575 fifo = hw->fifos;
1576 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1577 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1578 fifo[i].max_size =
1579 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1580 fifo[i].last_urblen = 0;
1581
1582 /* set 2 bit for D- & E-channel */
1583 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1584
1585 /* enable all fifos */
1586 if (i == HFCUSB_D_TX)
1587 write_reg(hw, HFCUSB_CON_HDLC,
1588 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1589 else
1590 write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1591 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1592 }
1593
1594 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1595 handle_led(hw, LED_POWER_ON);
1596 }
1597
1598 /* start USB data pipes dependand on device's endpoint configuration */
1599 static void
hfcsusb_start_endpoint(struct hfcsusb * hw,int channel)1600 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1601 {
1602 /* quick check if endpoint already running */
1603 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1604 return;
1605 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1606 return;
1607 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1608 return;
1609 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1610 return;
1611
1612 /* start rx endpoints using USB INT IN method */
1613 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1614 start_int_fifo(hw->fifos + channel * 2 + 1);
1615
1616 /* start rx endpoints using USB ISO IN method */
1617 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1618 switch (channel) {
1619 case HFC_CHAN_D:
1620 start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1621 ISOC_PACKETS_D,
1622 (usb_complete_t)rx_iso_complete,
1623 16);
1624 break;
1625 case HFC_CHAN_E:
1626 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1627 ISOC_PACKETS_D,
1628 (usb_complete_t)rx_iso_complete,
1629 16);
1630 break;
1631 case HFC_CHAN_B1:
1632 start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1633 ISOC_PACKETS_B,
1634 (usb_complete_t)rx_iso_complete,
1635 16);
1636 break;
1637 case HFC_CHAN_B2:
1638 start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1639 ISOC_PACKETS_B,
1640 (usb_complete_t)rx_iso_complete,
1641 16);
1642 break;
1643 }
1644 }
1645
1646 /* start tx endpoints using USB ISO OUT method */
1647 switch (channel) {
1648 case HFC_CHAN_D:
1649 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1650 ISOC_PACKETS_B,
1651 (usb_complete_t)tx_iso_complete, 1);
1652 break;
1653 case HFC_CHAN_B1:
1654 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1655 ISOC_PACKETS_D,
1656 (usb_complete_t)tx_iso_complete, 1);
1657 break;
1658 case HFC_CHAN_B2:
1659 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1660 ISOC_PACKETS_B,
1661 (usb_complete_t)tx_iso_complete, 1);
1662 break;
1663 }
1664 }
1665
1666 /* stop USB data pipes dependand on device's endpoint configuration */
1667 static void
hfcsusb_stop_endpoint(struct hfcsusb * hw,int channel)1668 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1669 {
1670 /* quick check if endpoint currently running */
1671 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1672 return;
1673 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1674 return;
1675 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1676 return;
1677 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1678 return;
1679
1680 /* rx endpoints using USB INT IN method */
1681 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1682 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1683
1684 /* rx endpoints using USB ISO IN method */
1685 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1686 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1687
1688 /* tx endpoints using USB ISO OUT method */
1689 if (channel != HFC_CHAN_E)
1690 stop_iso_gracefull(hw->fifos + channel * 2);
1691 }
1692
1693
1694 /* Hardware Initialization */
1695 static int
setup_hfcsusb(struct hfcsusb * hw)1696 setup_hfcsusb(struct hfcsusb *hw)
1697 {
1698 void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1699 u_char b;
1700 int ret;
1701
1702 if (debug & DBG_HFC_CALL_TRACE)
1703 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1704
1705 if (!dmabuf)
1706 return -ENOMEM;
1707
1708 ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1709
1710 memcpy(&b, dmabuf, sizeof(u_char));
1711 kfree(dmabuf);
1712
1713 /* check the chip id */
1714 if (ret != 1) {
1715 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1716 hw->name, __func__);
1717 return 1;
1718 }
1719 if (b != HFCUSB_CHIPID) {
1720 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1721 hw->name, __func__, b);
1722 return 1;
1723 }
1724
1725 /* first set the needed config, interface and alternate */
1726 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1727
1728 hw->led_state = 0;
1729
1730 /* init the background machinery for control requests */
1731 hw->ctrl_read.bRequestType = 0xc0;
1732 hw->ctrl_read.bRequest = 1;
1733 hw->ctrl_read.wLength = cpu_to_le16(1);
1734 hw->ctrl_write.bRequestType = 0x40;
1735 hw->ctrl_write.bRequest = 0;
1736 hw->ctrl_write.wLength = 0;
1737 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1738 (u_char *)&hw->ctrl_write, NULL, 0,
1739 (usb_complete_t)ctrl_complete, hw);
1740
1741 reset_hfcsusb(hw);
1742 return 0;
1743 }
1744
1745 static void
release_hw(struct hfcsusb * hw)1746 release_hw(struct hfcsusb *hw)
1747 {
1748 if (debug & DBG_HFC_CALL_TRACE)
1749 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1750
1751 /*
1752 * stop all endpoints gracefully
1753 * TODO: mISDN_core should generate CLOSE_CHANNEL
1754 * signals after calling mISDN_unregister_device()
1755 */
1756 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1757 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1758 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1759 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1760 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1761 if (hw->protocol == ISDN_P_TE_S0)
1762 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1763
1764 mISDN_unregister_device(&hw->dch.dev);
1765 mISDN_freebchannel(&hw->bch[1]);
1766 mISDN_freebchannel(&hw->bch[0]);
1767 mISDN_freedchannel(&hw->dch);
1768
1769 if (hw->ctrl_urb) {
1770 usb_kill_urb(hw->ctrl_urb);
1771 usb_free_urb(hw->ctrl_urb);
1772 hw->ctrl_urb = NULL;
1773 }
1774
1775 if (hw->intf)
1776 usb_set_intfdata(hw->intf, NULL);
1777 list_del(&hw->list);
1778 kfree(hw);
1779 hw = NULL;
1780 }
1781
1782 static void
deactivate_bchannel(struct bchannel * bch)1783 deactivate_bchannel(struct bchannel *bch)
1784 {
1785 struct hfcsusb *hw = bch->hw;
1786 u_long flags;
1787
1788 if (bch->debug & DEBUG_HW)
1789 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1790 hw->name, __func__, bch->nr);
1791
1792 spin_lock_irqsave(&hw->lock, flags);
1793 mISDN_clear_bchannel(bch);
1794 spin_unlock_irqrestore(&hw->lock, flags);
1795 hfcsusb_setup_bch(bch, ISDN_P_NONE);
1796 hfcsusb_stop_endpoint(hw, bch->nr - 1);
1797 }
1798
1799 /*
1800 * Layer 1 B-channel hardware access
1801 */
1802 static int
hfc_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)1803 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1804 {
1805 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1806 int ret = -EINVAL;
1807
1808 if (bch->debug & DEBUG_HW)
1809 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1810
1811 switch (cmd) {
1812 case HW_TESTRX_RAW:
1813 case HW_TESTRX_HDLC:
1814 case HW_TESTRX_OFF:
1815 ret = -EINVAL;
1816 break;
1817
1818 case CLOSE_CHANNEL:
1819 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1820 deactivate_bchannel(bch);
1821 ch->protocol = ISDN_P_NONE;
1822 ch->peer = NULL;
1823 module_put(THIS_MODULE);
1824 ret = 0;
1825 break;
1826 case CONTROL_CHANNEL:
1827 ret = channel_bctrl(bch, arg);
1828 break;
1829 default:
1830 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1831 __func__, cmd);
1832 }
1833 return ret;
1834 }
1835
1836 static int
setup_instance(struct hfcsusb * hw,struct device * parent)1837 setup_instance(struct hfcsusb *hw, struct device *parent)
1838 {
1839 u_long flags;
1840 int err, i;
1841
1842 if (debug & DBG_HFC_CALL_TRACE)
1843 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1844
1845 spin_lock_init(&hw->ctrl_lock);
1846 spin_lock_init(&hw->lock);
1847
1848 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1849 hw->dch.debug = debug & 0xFFFF;
1850 hw->dch.hw = hw;
1851 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1852 hw->dch.dev.D.send = hfcusb_l2l1D;
1853 hw->dch.dev.D.ctrl = hfc_dctrl;
1854
1855 /* enable E-Channel logging */
1856 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1857 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1858
1859 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1860 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1861 hw->dch.dev.nrbchan = 2;
1862 for (i = 0; i < 2; i++) {
1863 hw->bch[i].nr = i + 1;
1864 set_channelmap(i + 1, hw->dch.dev.channelmap);
1865 hw->bch[i].debug = debug;
1866 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1867 hw->bch[i].hw = hw;
1868 hw->bch[i].ch.send = hfcusb_l2l1B;
1869 hw->bch[i].ch.ctrl = hfc_bctrl;
1870 hw->bch[i].ch.nr = i + 1;
1871 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1872 }
1873
1874 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1875 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1876 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1877 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1878 hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1879 hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1880 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1881 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1882
1883 err = setup_hfcsusb(hw);
1884 if (err)
1885 goto out;
1886
1887 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1888 hfcsusb_cnt + 1);
1889 printk(KERN_INFO "%s: registered as '%s'\n",
1890 DRIVER_NAME, hw->name);
1891
1892 err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1893 if (err)
1894 goto out;
1895
1896 hfcsusb_cnt++;
1897 write_lock_irqsave(&HFClock, flags);
1898 list_add_tail(&hw->list, &HFClist);
1899 write_unlock_irqrestore(&HFClock, flags);
1900 return 0;
1901
1902 out:
1903 mISDN_freebchannel(&hw->bch[1]);
1904 mISDN_freebchannel(&hw->bch[0]);
1905 mISDN_freedchannel(&hw->dch);
1906 kfree(hw);
1907 return err;
1908 }
1909
1910 static int
hfcsusb_probe(struct usb_interface * intf,const struct usb_device_id * id)1911 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1912 {
1913 struct hfcsusb *hw;
1914 struct usb_device *dev = interface_to_usbdev(intf);
1915 struct usb_host_interface *iface = intf->cur_altsetting;
1916 struct usb_host_interface *iface_used = NULL;
1917 struct usb_host_endpoint *ep;
1918 struct hfcsusb_vdata *driver_info;
1919 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1920 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1921 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1922 alt_used = 0;
1923
1924 vend_idx = 0xffff;
1925 for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1926 if ((le16_to_cpu(dev->descriptor.idVendor)
1927 == hfcsusb_idtab[i].idVendor) &&
1928 (le16_to_cpu(dev->descriptor.idProduct)
1929 == hfcsusb_idtab[i].idProduct)) {
1930 vend_idx = i;
1931 continue;
1932 }
1933 }
1934
1935 printk(KERN_DEBUG
1936 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1937 __func__, ifnum, iface->desc.bAlternateSetting,
1938 intf->minor, vend_idx);
1939
1940 if (vend_idx == 0xffff) {
1941 printk(KERN_WARNING
1942 "%s: no valid vendor found in USB descriptor\n",
1943 __func__);
1944 return -EIO;
1945 }
1946 /* if vendor and product ID is OK, start probing alternate settings */
1947 alt_idx = 0;
1948 small_match = -1;
1949
1950 /* default settings */
1951 iso_packet_size = 16;
1952 packet_size = 64;
1953
1954 while (alt_idx < intf->num_altsetting) {
1955 iface = intf->altsetting + alt_idx;
1956 probe_alt_setting = iface->desc.bAlternateSetting;
1957 cfg_used = 0;
1958
1959 while (validconf[cfg_used][0]) {
1960 cfg_found = 1;
1961 vcf = validconf[cfg_used];
1962 ep = iface->endpoint;
1963 memcpy(cmptbl, vcf, 16 * sizeof(int));
1964
1965 /* check for all endpoints in this alternate setting */
1966 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1967 ep_addr = ep->desc.bEndpointAddress;
1968
1969 /* get endpoint base */
1970 idx = ((ep_addr & 0x7f) - 1) * 2;
1971 if (idx > 15)
1972 return -EIO;
1973
1974 if (ep_addr & 0x80)
1975 idx++;
1976 attr = ep->desc.bmAttributes;
1977
1978 if (cmptbl[idx] != EP_NOP) {
1979 if (cmptbl[idx] == EP_NUL)
1980 cfg_found = 0;
1981 if (attr == USB_ENDPOINT_XFER_INT
1982 && cmptbl[idx] == EP_INT)
1983 cmptbl[idx] = EP_NUL;
1984 if (attr == USB_ENDPOINT_XFER_BULK
1985 && cmptbl[idx] == EP_BLK)
1986 cmptbl[idx] = EP_NUL;
1987 if (attr == USB_ENDPOINT_XFER_ISOC
1988 && cmptbl[idx] == EP_ISO)
1989 cmptbl[idx] = EP_NUL;
1990
1991 if (attr == USB_ENDPOINT_XFER_INT &&
1992 ep->desc.bInterval < vcf[17]) {
1993 cfg_found = 0;
1994 }
1995 }
1996 ep++;
1997 }
1998
1999 for (i = 0; i < 16; i++)
2000 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
2001 cfg_found = 0;
2002
2003 if (cfg_found) {
2004 if (small_match < cfg_used) {
2005 small_match = cfg_used;
2006 alt_used = probe_alt_setting;
2007 iface_used = iface;
2008 }
2009 }
2010 cfg_used++;
2011 }
2012 alt_idx++;
2013 } /* (alt_idx < intf->num_altsetting) */
2014
2015 /* not found a valid USB Ta Endpoint config */
2016 if (small_match == -1)
2017 return -EIO;
2018
2019 iface = iface_used;
2020 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2021 if (!hw)
2022 return -ENOMEM; /* got no mem */
2023 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2024
2025 ep = iface->endpoint;
2026 vcf = validconf[small_match];
2027
2028 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2029 struct usb_fifo *f;
2030
2031 ep_addr = ep->desc.bEndpointAddress;
2032 /* get endpoint base */
2033 idx = ((ep_addr & 0x7f) - 1) * 2;
2034 if (ep_addr & 0x80)
2035 idx++;
2036 f = &hw->fifos[idx & 7];
2037
2038 /* init Endpoints */
2039 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2040 ep++;
2041 continue;
2042 }
2043 switch (ep->desc.bmAttributes) {
2044 case USB_ENDPOINT_XFER_INT:
2045 f->pipe = usb_rcvintpipe(dev,
2046 ep->desc.bEndpointAddress);
2047 f->usb_transfer_mode = USB_INT;
2048 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2049 break;
2050 case USB_ENDPOINT_XFER_BULK:
2051 if (ep_addr & 0x80)
2052 f->pipe = usb_rcvbulkpipe(dev,
2053 ep->desc.bEndpointAddress);
2054 else
2055 f->pipe = usb_sndbulkpipe(dev,
2056 ep->desc.bEndpointAddress);
2057 f->usb_transfer_mode = USB_BULK;
2058 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2059 break;
2060 case USB_ENDPOINT_XFER_ISOC:
2061 if (ep_addr & 0x80)
2062 f->pipe = usb_rcvisocpipe(dev,
2063 ep->desc.bEndpointAddress);
2064 else
2065 f->pipe = usb_sndisocpipe(dev,
2066 ep->desc.bEndpointAddress);
2067 f->usb_transfer_mode = USB_ISOC;
2068 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2069 break;
2070 default:
2071 f->pipe = 0;
2072 }
2073
2074 if (f->pipe) {
2075 f->fifonum = idx & 7;
2076 f->hw = hw;
2077 f->usb_packet_maxlen =
2078 le16_to_cpu(ep->desc.wMaxPacketSize);
2079 f->intervall = ep->desc.bInterval;
2080 }
2081 ep++;
2082 }
2083 hw->dev = dev; /* save device */
2084 hw->if_used = ifnum; /* save used interface */
2085 hw->alt_used = alt_used; /* and alternate config */
2086 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2087 hw->cfg_used = vcf[16]; /* store used config */
2088 hw->vend_idx = vend_idx; /* store found vendor */
2089 hw->packet_size = packet_size;
2090 hw->iso_packet_size = iso_packet_size;
2091
2092 /* create the control pipes needed for register access */
2093 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2094 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2095
2096 driver_info = (struct hfcsusb_vdata *)
2097 hfcsusb_idtab[vend_idx].driver_info;
2098
2099 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2100 if (!hw->ctrl_urb) {
2101 pr_warn("%s: No memory for control urb\n",
2102 driver_info->vend_name);
2103 kfree(hw);
2104 return -ENOMEM;
2105 }
2106
2107 pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2108 hw->name, __func__, driver_info->vend_name,
2109 conf_str[small_match], ifnum, alt_used);
2110
2111 if (setup_instance(hw, dev->dev.parent))
2112 return -EIO;
2113
2114 hw->intf = intf;
2115 usb_set_intfdata(hw->intf, hw);
2116 return 0;
2117 }
2118
2119 /* function called when an active device is removed */
2120 static void
hfcsusb_disconnect(struct usb_interface * intf)2121 hfcsusb_disconnect(struct usb_interface *intf)
2122 {
2123 struct hfcsusb *hw = usb_get_intfdata(intf);
2124 struct hfcsusb *next;
2125 int cnt = 0;
2126
2127 printk(KERN_INFO "%s: device disconnected\n", hw->name);
2128
2129 handle_led(hw, LED_POWER_OFF);
2130 release_hw(hw);
2131
2132 list_for_each_entry_safe(hw, next, &HFClist, list)
2133 cnt++;
2134 if (!cnt)
2135 hfcsusb_cnt = 0;
2136
2137 usb_set_intfdata(intf, NULL);
2138 }
2139
2140 static struct usb_driver hfcsusb_drv = {
2141 .name = DRIVER_NAME,
2142 .id_table = hfcsusb_idtab,
2143 .probe = hfcsusb_probe,
2144 .disconnect = hfcsusb_disconnect,
2145 .disable_hub_initiated_lpm = 1,
2146 };
2147
2148 module_usb_driver(hfcsusb_drv);
2149