1 /*
2  *
3  * hfcpci.c     low level driver for CCD's hfc-pci based cards
4  *
5  * Author     Werner Cornelius (werner@isdn4linux.de)
6  *            based on existing driver for CCD hfc ISA cards
7  *            type approval valid for HFC-S PCI A based card
8  *
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module options:
27  *
28  * debug:
29  *	NOTE: only one poll value must be given for all cards
30  *	See hfc_pci.h for debug flags.
31  *
32  * poll:
33  *	NOTE: only one poll value must be given for all cards
34  *	Give the number of samples for each fifo process.
35  *	By default 128 is used. Decrease to reduce delay, increase to
36  *	reduce cpu load. If unsure, don't mess with it!
37  *	A value of 128 will use controller's interrupt. Other values will
38  *	use kernel timer, because the controller will not allow lower values
39  *	than 128.
40  *	Also note that the value depends on the kernel timer frequency.
41  *	If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42  *	If the kernel uses 100 Hz, steps of 80 samples are possible.
43  *	If the kernel uses 300 Hz, steps of about 26 samples are possible.
44  *
45  */
46 
47 #include <linux/interrupt.h>
48 #include <linux/module.h>
49 #include <linux/pci.h>
50 #include <linux/delay.h>
51 #include <linux/mISDNhw.h>
52 #include <linux/slab.h>
53 
54 #include "hfc_pci.h"
55 
56 static const char *hfcpci_revision = "2.0";
57 
58 static int HFC_cnt;
59 static uint debug;
60 static uint poll, tics;
61 static struct timer_list hfc_tl;
62 static unsigned long hfc_jiffies;
63 
64 MODULE_AUTHOR("Karsten Keil");
65 MODULE_LICENSE("GPL");
66 module_param(debug, uint, S_IRUGO | S_IWUSR);
67 module_param(poll, uint, S_IRUGO | S_IWUSR);
68 
69 enum {
70 	HFC_CCD_2BD0,
71 	HFC_CCD_B000,
72 	HFC_CCD_B006,
73 	HFC_CCD_B007,
74 	HFC_CCD_B008,
75 	HFC_CCD_B009,
76 	HFC_CCD_B00A,
77 	HFC_CCD_B00B,
78 	HFC_CCD_B00C,
79 	HFC_CCD_B100,
80 	HFC_CCD_B700,
81 	HFC_CCD_B701,
82 	HFC_ASUS_0675,
83 	HFC_BERKOM_A1T,
84 	HFC_BERKOM_TCONCEPT,
85 	HFC_ANIGMA_MC145575,
86 	HFC_ZOLTRIX_2BD0,
87 	HFC_DIGI_DF_M_IOM2_E,
88 	HFC_DIGI_DF_M_E,
89 	HFC_DIGI_DF_M_IOM2_A,
90 	HFC_DIGI_DF_M_A,
91 	HFC_ABOCOM_2BD1,
92 	HFC_SITECOM_DC105V2,
93 };
94 
95 struct hfcPCI_hw {
96 	unsigned char		cirm;
97 	unsigned char		ctmt;
98 	unsigned char		clkdel;
99 	unsigned char		states;
100 	unsigned char		conn;
101 	unsigned char		mst_m;
102 	unsigned char		int_m1;
103 	unsigned char		int_m2;
104 	unsigned char		sctrl;
105 	unsigned char		sctrl_r;
106 	unsigned char		sctrl_e;
107 	unsigned char		trm;
108 	unsigned char		fifo_en;
109 	unsigned char		bswapped;
110 	unsigned char		protocol;
111 	int			nt_timer;
112 	unsigned char __iomem	*pci_io; /* start of PCI IO memory */
113 	dma_addr_t		dmahandle;
114 	void			*fifos; /* FIFO memory */
115 	int			last_bfifo_cnt[2];
116 	/* marker saving last b-fifo frame count */
117 	struct timer_list	timer;
118 };
119 
120 #define	HFC_CFG_MASTER		1
121 #define HFC_CFG_SLAVE		2
122 #define	HFC_CFG_PCM		3
123 #define HFC_CFG_2HFC		4
124 #define HFC_CFG_SLAVEHFC	5
125 #define HFC_CFG_NEG_F0		6
126 #define HFC_CFG_SW_DD_DU	7
127 
128 #define FLG_HFC_TIMER_T1	16
129 #define FLG_HFC_TIMER_T3	17
130 
131 #define NT_T1_COUNT	1120	/* number of 3.125ms interrupts (3.5s) */
132 #define NT_T3_COUNT	31	/* number of 3.125ms interrupts (97 ms) */
133 #define CLKDEL_TE	0x0e	/* CLKDEL in TE mode */
134 #define CLKDEL_NT	0x6c	/* CLKDEL in NT mode */
135 
136 
137 struct hfc_pci {
138 	u_char			subtype;
139 	u_char			chanlimit;
140 	u_char			initdone;
141 	u_long			cfg;
142 	u_int			irq;
143 	u_int			irqcnt;
144 	struct pci_dev		*pdev;
145 	struct hfcPCI_hw	hw;
146 	spinlock_t		lock;	/* card lock */
147 	struct dchannel		dch;
148 	struct bchannel		bch[2];
149 };
150 
151 /* Interface functions */
152 static void
153 enable_hwirq(struct hfc_pci *hc)
154 {
155 	hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
156 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
157 }
158 
159 static void
160 disable_hwirq(struct hfc_pci *hc)
161 {
162 	hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
163 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
164 }
165 
166 /*
167  * free hardware resources used by driver
168  */
169 static void
170 release_io_hfcpci(struct hfc_pci *hc)
171 {
172 	/* disable memory mapped ports + busmaster */
173 	pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
174 	del_timer(&hc->hw.timer);
175 	pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
176 	iounmap(hc->hw.pci_io);
177 }
178 
179 /*
180  * set mode (NT or TE)
181  */
182 static void
183 hfcpci_setmode(struct hfc_pci *hc)
184 {
185 	if (hc->hw.protocol == ISDN_P_NT_S0) {
186 		hc->hw.clkdel = CLKDEL_NT;	/* ST-Bit delay for NT-Mode */
187 		hc->hw.sctrl |= SCTRL_MODE_NT;	/* NT-MODE */
188 		hc->hw.states = 1;		/* G1 */
189 	} else {
190 		hc->hw.clkdel = CLKDEL_TE;	/* ST-Bit delay for TE-Mode */
191 		hc->hw.sctrl &= ~SCTRL_MODE_NT;	/* TE-MODE */
192 		hc->hw.states = 2;		/* F2 */
193 	}
194 	Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
195 	Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
196 	udelay(10);
197 	Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
198 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
199 }
200 
201 /*
202  * function called to reset the HFC PCI chip. A complete software reset of chip
203  * and fifos is done.
204  */
205 static void
206 reset_hfcpci(struct hfc_pci *hc)
207 {
208 	u_char	val;
209 	int	cnt = 0;
210 
211 	printk(KERN_DEBUG "reset_hfcpci: entered\n");
212 	val = Read_hfc(hc, HFCPCI_CHIP_ID);
213 	printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
214 	/* enable memory mapped ports, disable busmaster */
215 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
216 	disable_hwirq(hc);
217 	/* enable memory ports + busmaster */
218 	pci_write_config_word(hc->pdev, PCI_COMMAND,
219 			      PCI_ENA_MEMIO + PCI_ENA_MASTER);
220 	val = Read_hfc(hc, HFCPCI_STATUS);
221 	printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
222 	hc->hw.cirm = HFCPCI_RESET;	/* Reset On */
223 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
224 	set_current_state(TASK_UNINTERRUPTIBLE);
225 	mdelay(10);			/* Timeout 10ms */
226 	hc->hw.cirm = 0;		/* Reset Off */
227 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
228 	val = Read_hfc(hc, HFCPCI_STATUS);
229 	printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
230 	while (cnt < 50000) { /* max 50000 us */
231 		udelay(5);
232 		cnt += 5;
233 		val = Read_hfc(hc, HFCPCI_STATUS);
234 		if (!(val & 2))
235 			break;
236 	}
237 	printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
238 
239 	hc->hw.fifo_en = 0x30;	/* only D fifos enabled */
240 
241 	hc->hw.bswapped = 0;	/* no exchange */
242 	hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
243 	hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
244 	hc->hw.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
245 	hc->hw.sctrl_r = 0;
246 	hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;	/* S/T Auto awake */
247 	hc->hw.mst_m = 0;
248 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
249 		hc->hw.mst_m |= HFCPCI_MASTER;	/* HFC Master Mode */
250 	if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
251 		hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
252 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
253 	Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
254 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
255 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
256 
257 	hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
258 		HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
259 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
260 
261 	/* Clear already pending ints */
262 	val = Read_hfc(hc, HFCPCI_INT_S1);
263 
264 	/* set NT/TE mode */
265 	hfcpci_setmode(hc);
266 
267 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
268 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
269 
270 	/*
271 	 * Init GCI/IOM2 in master mode
272 	 * Slots 0 and 1 are set for B-chan 1 and 2
273 	 * D- and monitor/CI channel are not enabled
274 	 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
275 	 * STIO2 is used as data input, B1+B2 from IOM->ST
276 	 * ST B-channel send disabled -> continuous 1s
277 	 * The IOM slots are always enabled
278 	 */
279 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
280 		/* set data flow directions: connect B1,B2: HFC to/from PCM */
281 		hc->hw.conn = 0x09;
282 	} else {
283 		hc->hw.conn = 0x36;	/* set data flow directions */
284 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
285 			Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
286 			Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
287 			Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
288 			Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
289 		} else {
290 			Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
291 			Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
292 			Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
293 			Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
294 		}
295 	}
296 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
297 	val = Read_hfc(hc, HFCPCI_INT_S2);
298 }
299 
300 /*
301  * Timer function called when kernel timer expires
302  */
303 static void
304 hfcpci_Timer(struct hfc_pci *hc)
305 {
306 	hc->hw.timer.expires = jiffies + 75;
307 	/* WD RESET */
308 /*
309  *	WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
310  *	add_timer(&hc->hw.timer);
311  */
312 }
313 
314 
315 /*
316  * select a b-channel entry matching and active
317  */
318 static struct bchannel *
319 Sel_BCS(struct hfc_pci *hc, int channel)
320 {
321 	if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
322 	    (hc->bch[0].nr & channel))
323 		return &hc->bch[0];
324 	else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
325 		 (hc->bch[1].nr & channel))
326 		return &hc->bch[1];
327 	else
328 		return NULL;
329 }
330 
331 /*
332  * clear the desired B-channel rx fifo
333  */
334 static void
335 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
336 {
337 	u_char		fifo_state;
338 	struct bzfifo	*bzr;
339 
340 	if (fifo) {
341 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
342 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
343 	} else {
344 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
345 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
346 	}
347 	if (fifo_state)
348 		hc->hw.fifo_en ^= fifo_state;
349 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
350 	hc->hw.last_bfifo_cnt[fifo] = 0;
351 	bzr->f1 = MAX_B_FRAMES;
352 	bzr->f2 = bzr->f1;	/* init F pointers to remain constant */
353 	bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
354 	bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
355 		le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
356 	if (fifo_state)
357 		hc->hw.fifo_en |= fifo_state;
358 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
359 }
360 
361 /*
362  * clear the desired B-channel tx fifo
363  */
364 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
365 {
366 	u_char		fifo_state;
367 	struct bzfifo	*bzt;
368 
369 	if (fifo) {
370 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
371 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
372 	} else {
373 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
374 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
375 	}
376 	if (fifo_state)
377 		hc->hw.fifo_en ^= fifo_state;
378 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
379 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
380 		printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
381 		       "z1(%x) z2(%x) state(%x)\n",
382 		       fifo, bzt->f1, bzt->f2,
383 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
384 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
385 		       fifo_state);
386 	bzt->f2 = MAX_B_FRAMES;
387 	bzt->f1 = bzt->f2;	/* init F pointers to remain constant */
388 	bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
389 	bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
390 	if (fifo_state)
391 		hc->hw.fifo_en |= fifo_state;
392 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
393 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
394 		printk(KERN_DEBUG
395 		       "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
396 		       fifo, bzt->f1, bzt->f2,
397 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
398 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
399 }
400 
401 /*
402  * read a complete B-frame out of the buffer
403  */
404 static void
405 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
406 		   u_char *bdata, int count)
407 {
408 	u_char		*ptr, *ptr1, new_f2;
409 	int		maxlen, new_z2;
410 	struct zt	*zp;
411 
412 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
413 		printk(KERN_DEBUG "hfcpci_empty_fifo\n");
414 	zp = &bz->za[bz->f2];	/* point to Z-Regs */
415 	new_z2 = le16_to_cpu(zp->z2) + count;	/* new position in fifo */
416 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
417 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
418 	new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
419 	if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
420 	    (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
421 		if (bch->debug & DEBUG_HW)
422 			printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
423 			       "invalid length %d or crc\n", count);
424 #ifdef ERROR_STATISTIC
425 		bch->err_inv++;
426 #endif
427 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
428 		bz->f2 = new_f2;	/* next buffer */
429 	} else {
430 		bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
431 		if (!bch->rx_skb) {
432 			printk(KERN_WARNING "HFCPCI: receive out of memory\n");
433 			return;
434 		}
435 		count -= 3;
436 		ptr = skb_put(bch->rx_skb, count);
437 
438 		if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
439 			maxlen = count;		/* complete transfer */
440 		else
441 			maxlen = B_FIFO_SIZE + B_SUB_VAL -
442 				le16_to_cpu(zp->z2);	/* maximum */
443 
444 		ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
445 		/* start of data */
446 		memcpy(ptr, ptr1, maxlen);	/* copy data */
447 		count -= maxlen;
448 
449 		if (count) {	/* rest remaining */
450 			ptr += maxlen;
451 			ptr1 = bdata;	/* start of buffer */
452 			memcpy(ptr, ptr1, count);	/* rest */
453 		}
454 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
455 		bz->f2 = new_f2;	/* next buffer */
456 		recv_Bchannel(bch, MISDN_ID_ANY, false);
457 	}
458 }
459 
460 /*
461  * D-channel receive procedure
462  */
463 static int
464 receive_dmsg(struct hfc_pci *hc)
465 {
466 	struct dchannel	*dch = &hc->dch;
467 	int		maxlen;
468 	int		rcnt, total;
469 	int		count = 5;
470 	u_char		*ptr, *ptr1;
471 	struct dfifo	*df;
472 	struct zt	*zp;
473 
474 	df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
475 	while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
476 		zp = &df->za[df->f2 & D_FREG_MASK];
477 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
478 		if (rcnt < 0)
479 			rcnt += D_FIFO_SIZE;
480 		rcnt++;
481 		if (dch->debug & DEBUG_HW_DCHANNEL)
482 			printk(KERN_DEBUG
483 			       "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
484 			       df->f1, df->f2,
485 			       le16_to_cpu(zp->z1),
486 			       le16_to_cpu(zp->z2),
487 			       rcnt);
488 
489 		if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
490 		    (df->data[le16_to_cpu(zp->z1)])) {
491 			if (dch->debug & DEBUG_HW)
492 				printk(KERN_DEBUG
493 				       "empty_fifo hfcpci packet inv. len "
494 				       "%d or crc %d\n",
495 				       rcnt,
496 				       df->data[le16_to_cpu(zp->z1)]);
497 #ifdef ERROR_STATISTIC
498 			cs->err_rx++;
499 #endif
500 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
501 				(MAX_D_FRAMES + 1);	/* next buffer */
502 			df->za[df->f2 & D_FREG_MASK].z2 =
503 				cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
504 					    (D_FIFO_SIZE - 1));
505 		} else {
506 			dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
507 			if (!dch->rx_skb) {
508 				printk(KERN_WARNING
509 				       "HFC-PCI: D receive out of memory\n");
510 				break;
511 			}
512 			total = rcnt;
513 			rcnt -= 3;
514 			ptr = skb_put(dch->rx_skb, rcnt);
515 
516 			if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
517 				maxlen = rcnt;	/* complete transfer */
518 			else
519 				maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
520 			/* maximum */
521 
522 			ptr1 = df->data + le16_to_cpu(zp->z2);
523 			/* start of data */
524 			memcpy(ptr, ptr1, maxlen);	/* copy data */
525 			rcnt -= maxlen;
526 
527 			if (rcnt) {	/* rest remaining */
528 				ptr += maxlen;
529 				ptr1 = df->data;	/* start of buffer */
530 				memcpy(ptr, ptr1, rcnt);	/* rest */
531 			}
532 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
533 				(MAX_D_FRAMES + 1);	/* next buffer */
534 			df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
535 									      le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
536 			recv_Dchannel(dch);
537 		}
538 	}
539 	return 1;
540 }
541 
542 /*
543  * check for transparent receive data and read max one 'poll' size if avail
544  */
545 static void
546 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
547 			struct bzfifo *txbz, u_char *bdata)
548 {
549 	__le16	*z1r, *z2r, *z1t, *z2t;
550 	int	new_z2, fcnt_rx, fcnt_tx, maxlen;
551 	u_char	*ptr, *ptr1;
552 
553 	z1r = &rxbz->za[MAX_B_FRAMES].z1;	/* pointer to z reg */
554 	z2r = z1r + 1;
555 	z1t = &txbz->za[MAX_B_FRAMES].z1;
556 	z2t = z1t + 1;
557 
558 	fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
559 	if (!fcnt_rx)
560 		return;	/* no data avail */
561 
562 	if (fcnt_rx <= 0)
563 		fcnt_rx += B_FIFO_SIZE;	/* bytes actually buffered */
564 	new_z2 = le16_to_cpu(*z2r) + fcnt_rx;	/* new position in fifo */
565 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
566 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
567 
568 	fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
569 	if (fcnt_tx <= 0)
570 		fcnt_tx += B_FIFO_SIZE;
571 	/* fcnt_tx contains available bytes in tx-fifo */
572 	fcnt_tx = B_FIFO_SIZE - fcnt_tx;
573 	/* remaining bytes to send (bytes in tx-fifo) */
574 
575 	if (test_bit(FLG_RX_OFF, &bch->Flags)) {
576 		bch->dropcnt += fcnt_rx;
577 		*z2r = cpu_to_le16(new_z2);
578 		return;
579 	}
580 	maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
581 	if (maxlen < 0) {
582 		pr_warning("B%d: No bufferspace for %d bytes\n",
583 			   bch->nr, fcnt_rx);
584 	} else {
585 		ptr = skb_put(bch->rx_skb, fcnt_rx);
586 		if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
587 			maxlen = fcnt_rx;	/* complete transfer */
588 		else
589 			maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
590 		/* maximum */
591 
592 		ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
593 		/* start of data */
594 		memcpy(ptr, ptr1, maxlen);	/* copy data */
595 		fcnt_rx -= maxlen;
596 
597 		if (fcnt_rx) {	/* rest remaining */
598 			ptr += maxlen;
599 			ptr1 = bdata;	/* start of buffer */
600 			memcpy(ptr, ptr1, fcnt_rx);	/* rest */
601 		}
602 		recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
603 	}
604 	*z2r = cpu_to_le16(new_z2);		/* new position */
605 }
606 
607 /*
608  * B-channel main receive routine
609  */
610 static void
611 main_rec_hfcpci(struct bchannel *bch)
612 {
613 	struct hfc_pci	*hc = bch->hw;
614 	int		rcnt, real_fifo;
615 	int		receive = 0, count = 5;
616 	struct bzfifo	*txbz, *rxbz;
617 	u_char		*bdata;
618 	struct zt	*zp;
619 
620 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
621 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
622 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
623 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
624 		real_fifo = 1;
625 	} else {
626 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
627 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
628 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
629 		real_fifo = 0;
630 	}
631 Begin:
632 	count--;
633 	if (rxbz->f1 != rxbz->f2) {
634 		if (bch->debug & DEBUG_HW_BCHANNEL)
635 			printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
636 			       bch->nr, rxbz->f1, rxbz->f2);
637 		zp = &rxbz->za[rxbz->f2];
638 
639 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
640 		if (rcnt < 0)
641 			rcnt += B_FIFO_SIZE;
642 		rcnt++;
643 		if (bch->debug & DEBUG_HW_BCHANNEL)
644 			printk(KERN_DEBUG
645 			       "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
646 			       bch->nr, le16_to_cpu(zp->z1),
647 			       le16_to_cpu(zp->z2), rcnt);
648 		hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
649 		rcnt = rxbz->f1 - rxbz->f2;
650 		if (rcnt < 0)
651 			rcnt += MAX_B_FRAMES + 1;
652 		if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
653 			rcnt = 0;
654 			hfcpci_clear_fifo_rx(hc, real_fifo);
655 		}
656 		hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
657 		if (rcnt > 1)
658 			receive = 1;
659 		else
660 			receive = 0;
661 	} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
662 		hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
663 		return;
664 	} else
665 		receive = 0;
666 	if (count && receive)
667 		goto Begin;
668 
669 }
670 
671 /*
672  * D-channel send routine
673  */
674 static void
675 hfcpci_fill_dfifo(struct hfc_pci *hc)
676 {
677 	struct dchannel	*dch = &hc->dch;
678 	int		fcnt;
679 	int		count, new_z1, maxlen;
680 	struct dfifo	*df;
681 	u_char		*src, *dst, new_f1;
682 
683 	if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
684 		printk(KERN_DEBUG "%s\n", __func__);
685 
686 	if (!dch->tx_skb)
687 		return;
688 	count = dch->tx_skb->len - dch->tx_idx;
689 	if (count <= 0)
690 		return;
691 	df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
692 
693 	if (dch->debug & DEBUG_HW_DFIFO)
694 		printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
695 		       df->f1, df->f2,
696 		       le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
697 	fcnt = df->f1 - df->f2;	/* frame count actually buffered */
698 	if (fcnt < 0)
699 		fcnt += (MAX_D_FRAMES + 1);	/* if wrap around */
700 	if (fcnt > (MAX_D_FRAMES - 1)) {
701 		if (dch->debug & DEBUG_HW_DCHANNEL)
702 			printk(KERN_DEBUG
703 			       "hfcpci_fill_Dfifo more as 14 frames\n");
704 #ifdef ERROR_STATISTIC
705 		cs->err_tx++;
706 #endif
707 		return;
708 	}
709 	/* now determine free bytes in FIFO buffer */
710 	maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
711 		le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
712 	if (maxlen <= 0)
713 		maxlen += D_FIFO_SIZE;	/* count now contains available bytes */
714 
715 	if (dch->debug & DEBUG_HW_DCHANNEL)
716 		printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
717 		       count, maxlen);
718 	if (count > maxlen) {
719 		if (dch->debug & DEBUG_HW_DCHANNEL)
720 			printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
721 		return;
722 	}
723 	new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
724 		(D_FIFO_SIZE - 1);
725 	new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
726 	src = dch->tx_skb->data + dch->tx_idx;	/* source pointer */
727 	dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
728 	maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
729 	/* end fifo */
730 	if (maxlen > count)
731 		maxlen = count;	/* limit size */
732 	memcpy(dst, src, maxlen);	/* first copy */
733 
734 	count -= maxlen;	/* remaining bytes */
735 	if (count) {
736 		dst = df->data;	/* start of buffer */
737 		src += maxlen;	/* new position */
738 		memcpy(dst, src, count);
739 	}
740 	df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
741 	/* for next buffer */
742 	df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
743 	/* new pos actual buffer */
744 	df->f1 = new_f1;	/* next frame */
745 	dch->tx_idx = dch->tx_skb->len;
746 }
747 
748 /*
749  * B-channel send routine
750  */
751 static void
752 hfcpci_fill_fifo(struct bchannel *bch)
753 {
754 	struct hfc_pci	*hc = bch->hw;
755 	int		maxlen, fcnt;
756 	int		count, new_z1;
757 	struct bzfifo	*bz;
758 	u_char		*bdata;
759 	u_char		new_f1, *src, *dst;
760 	__le16 *z1t, *z2t;
761 
762 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
763 		printk(KERN_DEBUG "%s\n", __func__);
764 	if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
765 		if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
766 		    !test_bit(FLG_TRANSPARENT, &bch->Flags))
767 			return;
768 		count = HFCPCI_FILLEMPTY;
769 	} else {
770 		count = bch->tx_skb->len - bch->tx_idx;
771 	}
772 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
773 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
774 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
775 	} else {
776 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
777 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
778 	}
779 
780 	if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
781 		z1t = &bz->za[MAX_B_FRAMES].z1;
782 		z2t = z1t + 1;
783 		if (bch->debug & DEBUG_HW_BCHANNEL)
784 			printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
785 			       "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
786 			       le16_to_cpu(*z1t), le16_to_cpu(*z2t));
787 		fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
788 		if (fcnt <= 0)
789 			fcnt += B_FIFO_SIZE;
790 		if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
791 			/* fcnt contains available bytes in fifo */
792 			if (count > fcnt)
793 				count = fcnt;
794 			new_z1 = le16_to_cpu(*z1t) + count;
795 			/* new buffer Position */
796 			if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
797 				new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
798 			dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
799 			maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
800 			/* end of fifo */
801 			if (bch->debug & DEBUG_HW_BFIFO)
802 				printk(KERN_DEBUG "hfcpci_FFt fillempty "
803 				       "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
804 				       fcnt, maxlen, new_z1, dst);
805 			if (maxlen > count)
806 				maxlen = count;		/* limit size */
807 			memset(dst, bch->fill[0], maxlen); /* first copy */
808 			count -= maxlen;		/* remaining bytes */
809 			if (count) {
810 				dst = bdata;		/* start of buffer */
811 				memset(dst, bch->fill[0], count);
812 			}
813 			*z1t = cpu_to_le16(new_z1);	/* now send data */
814 			return;
815 		}
816 		/* fcnt contains available bytes in fifo */
817 		fcnt = B_FIFO_SIZE - fcnt;
818 		/* remaining bytes to send (bytes in fifo) */
819 
820 	next_t_frame:
821 		count = bch->tx_skb->len - bch->tx_idx;
822 		/* maximum fill shall be poll*2 */
823 		if (count > (poll << 1) - fcnt)
824 			count = (poll << 1) - fcnt;
825 		if (count <= 0)
826 			return;
827 		/* data is suitable for fifo */
828 		new_z1 = le16_to_cpu(*z1t) + count;
829 		/* new buffer Position */
830 		if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
831 			new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
832 		src = bch->tx_skb->data + bch->tx_idx;
833 		/* source pointer */
834 		dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
835 		maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
836 		/* end of fifo */
837 		if (bch->debug & DEBUG_HW_BFIFO)
838 			printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
839 			       "maxl(%d) nz1(%x) dst(%p)\n",
840 			       fcnt, maxlen, new_z1, dst);
841 		fcnt += count;
842 		bch->tx_idx += count;
843 		if (maxlen > count)
844 			maxlen = count;		/* limit size */
845 		memcpy(dst, src, maxlen);	/* first copy */
846 		count -= maxlen;	/* remaining bytes */
847 		if (count) {
848 			dst = bdata;	/* start of buffer */
849 			src += maxlen;	/* new position */
850 			memcpy(dst, src, count);
851 		}
852 		*z1t = cpu_to_le16(new_z1);	/* now send data */
853 		if (bch->tx_idx < bch->tx_skb->len)
854 			return;
855 		dev_kfree_skb(bch->tx_skb);
856 		if (get_next_bframe(bch))
857 			goto next_t_frame;
858 		return;
859 	}
860 	if (bch->debug & DEBUG_HW_BCHANNEL)
861 		printk(KERN_DEBUG
862 		       "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
863 		       __func__, bch->nr, bz->f1, bz->f2,
864 		       bz->za[bz->f1].z1);
865 	fcnt = bz->f1 - bz->f2;	/* frame count actually buffered */
866 	if (fcnt < 0)
867 		fcnt += (MAX_B_FRAMES + 1);	/* if wrap around */
868 	if (fcnt > (MAX_B_FRAMES - 1)) {
869 		if (bch->debug & DEBUG_HW_BCHANNEL)
870 			printk(KERN_DEBUG
871 			       "hfcpci_fill_Bfifo more as 14 frames\n");
872 		return;
873 	}
874 	/* now determine free bytes in FIFO buffer */
875 	maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
876 		le16_to_cpu(bz->za[bz->f1].z1) - 1;
877 	if (maxlen <= 0)
878 		maxlen += B_FIFO_SIZE;	/* count now contains available bytes */
879 
880 	if (bch->debug & DEBUG_HW_BCHANNEL)
881 		printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
882 		       bch->nr, count, maxlen);
883 
884 	if (maxlen < count) {
885 		if (bch->debug & DEBUG_HW_BCHANNEL)
886 			printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
887 		return;
888 	}
889 	new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
890 	/* new buffer Position */
891 	if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
892 		new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
893 
894 	new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
895 	src = bch->tx_skb->data + bch->tx_idx;	/* source pointer */
896 	dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
897 	maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
898 	/* end fifo */
899 	if (maxlen > count)
900 		maxlen = count;	/* limit size */
901 	memcpy(dst, src, maxlen);	/* first copy */
902 
903 	count -= maxlen;	/* remaining bytes */
904 	if (count) {
905 		dst = bdata;	/* start of buffer */
906 		src += maxlen;	/* new position */
907 		memcpy(dst, src, count);
908 	}
909 	bz->za[new_f1].z1 = cpu_to_le16(new_z1);	/* for next buffer */
910 	bz->f1 = new_f1;	/* next frame */
911 	dev_kfree_skb(bch->tx_skb);
912 	get_next_bframe(bch);
913 }
914 
915 
916 
917 /*
918  * handle L1 state changes TE
919  */
920 
921 static void
922 ph_state_te(struct dchannel *dch)
923 {
924 	if (dch->debug)
925 		printk(KERN_DEBUG "%s: TE newstate %x\n",
926 		       __func__, dch->state);
927 	switch (dch->state) {
928 	case 0:
929 		l1_event(dch->l1, HW_RESET_IND);
930 		break;
931 	case 3:
932 		l1_event(dch->l1, HW_DEACT_IND);
933 		break;
934 	case 5:
935 	case 8:
936 		l1_event(dch->l1, ANYSIGNAL);
937 		break;
938 	case 6:
939 		l1_event(dch->l1, INFO2);
940 		break;
941 	case 7:
942 		l1_event(dch->l1, INFO4_P8);
943 		break;
944 	}
945 }
946 
947 /*
948  * handle L1 state changes NT
949  */
950 
951 static void
952 handle_nt_timer3(struct dchannel *dch) {
953 	struct hfc_pci	*hc = dch->hw;
954 
955 	test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
956 	hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
957 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
958 	hc->hw.nt_timer = 0;
959 	test_and_set_bit(FLG_ACTIVE, &dch->Flags);
960 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
961 		hc->hw.mst_m |= HFCPCI_MASTER;
962 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
963 	_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
964 		    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
965 }
966 
967 static void
968 ph_state_nt(struct dchannel *dch)
969 {
970 	struct hfc_pci	*hc = dch->hw;
971 
972 	if (dch->debug)
973 		printk(KERN_DEBUG "%s: NT newstate %x\n",
974 		       __func__, dch->state);
975 	switch (dch->state) {
976 	case 2:
977 		if (hc->hw.nt_timer < 0) {
978 			hc->hw.nt_timer = 0;
979 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
980 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
981 			hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
982 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
983 			/* Clear already pending ints */
984 			(void) Read_hfc(hc, HFCPCI_INT_S1);
985 			Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
986 			udelay(10);
987 			Write_hfc(hc, HFCPCI_STATES, 4);
988 			dch->state = 4;
989 		} else if (hc->hw.nt_timer == 0) {
990 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
991 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
992 			hc->hw.nt_timer = NT_T1_COUNT;
993 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
994 			hc->hw.ctmt |= HFCPCI_TIM3_125;
995 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
996 				  HFCPCI_CLTIMER);
997 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
998 			test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
999 			/* allow G2 -> G3 transition */
1000 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1001 		} else {
1002 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1003 		}
1004 		break;
1005 	case 1:
1006 		hc->hw.nt_timer = 0;
1007 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1008 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1009 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1011 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1012 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1013 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1014 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1015 		_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1016 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1017 		break;
1018 	case 4:
1019 		hc->hw.nt_timer = 0;
1020 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1021 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1022 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1023 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1024 		break;
1025 	case 3:
1026 		if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1027 			if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1028 						&dch->Flags)) {
1029 				handle_nt_timer3(dch);
1030 				break;
1031 			}
1032 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1033 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1034 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1035 			hc->hw.nt_timer = NT_T3_COUNT;
1036 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1037 			hc->hw.ctmt |= HFCPCI_TIM3_125;
1038 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1039 				  HFCPCI_CLTIMER);
1040 		}
1041 		break;
1042 	}
1043 }
1044 
1045 static void
1046 ph_state(struct dchannel *dch)
1047 {
1048 	struct hfc_pci	*hc = dch->hw;
1049 
1050 	if (hc->hw.protocol == ISDN_P_NT_S0) {
1051 		if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1052 		    hc->hw.nt_timer < 0)
1053 			handle_nt_timer3(dch);
1054 		else
1055 			ph_state_nt(dch);
1056 	} else
1057 		ph_state_te(dch);
1058 }
1059 
1060 /*
1061  * Layer 1 callback function
1062  */
1063 static int
1064 hfc_l1callback(struct dchannel *dch, u_int cmd)
1065 {
1066 	struct hfc_pci		*hc = dch->hw;
1067 
1068 	switch (cmd) {
1069 	case INFO3_P8:
1070 	case INFO3_P10:
1071 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1072 			hc->hw.mst_m |= HFCPCI_MASTER;
1073 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1074 		break;
1075 	case HW_RESET_REQ:
1076 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1077 		/* HFC ST 3 */
1078 		udelay(6);
1079 		Write_hfc(hc, HFCPCI_STATES, 3);	/* HFC ST 2 */
1080 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1081 			hc->hw.mst_m |= HFCPCI_MASTER;
1082 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1083 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1084 			  HFCPCI_DO_ACTION);
1085 		l1_event(dch->l1, HW_POWERUP_IND);
1086 		break;
1087 	case HW_DEACT_REQ:
1088 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1089 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1090 		skb_queue_purge(&dch->squeue);
1091 		if (dch->tx_skb) {
1092 			dev_kfree_skb(dch->tx_skb);
1093 			dch->tx_skb = NULL;
1094 		}
1095 		dch->tx_idx = 0;
1096 		if (dch->rx_skb) {
1097 			dev_kfree_skb(dch->rx_skb);
1098 			dch->rx_skb = NULL;
1099 		}
1100 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1101 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1102 			del_timer(&dch->timer);
1103 		break;
1104 	case HW_POWERUP_REQ:
1105 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1106 		break;
1107 	case PH_ACTIVATE_IND:
1108 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1109 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1110 			    GFP_ATOMIC);
1111 		break;
1112 	case PH_DEACTIVATE_IND:
1113 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1114 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1115 			    GFP_ATOMIC);
1116 		break;
1117 	default:
1118 		if (dch->debug & DEBUG_HW)
1119 			printk(KERN_DEBUG "%s: unknown command %x\n",
1120 			       __func__, cmd);
1121 		return -1;
1122 	}
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Interrupt handler
1128  */
1129 static inline void
1130 tx_birq(struct bchannel *bch)
1131 {
1132 	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1133 		hfcpci_fill_fifo(bch);
1134 	else {
1135 		if (bch->tx_skb)
1136 			dev_kfree_skb(bch->tx_skb);
1137 		if (get_next_bframe(bch))
1138 			hfcpci_fill_fifo(bch);
1139 	}
1140 }
1141 
1142 static inline void
1143 tx_dirq(struct dchannel *dch)
1144 {
1145 	if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1146 		hfcpci_fill_dfifo(dch->hw);
1147 	else {
1148 		if (dch->tx_skb)
1149 			dev_kfree_skb(dch->tx_skb);
1150 		if (get_next_dframe(dch))
1151 			hfcpci_fill_dfifo(dch->hw);
1152 	}
1153 }
1154 
1155 static irqreturn_t
1156 hfcpci_int(int intno, void *dev_id)
1157 {
1158 	struct hfc_pci	*hc = dev_id;
1159 	u_char		exval;
1160 	struct bchannel	*bch;
1161 	u_char		val, stat;
1162 
1163 	spin_lock(&hc->lock);
1164 	if (!(hc->hw.int_m2 & 0x08)) {
1165 		spin_unlock(&hc->lock);
1166 		return IRQ_NONE; /* not initialised */
1167 	}
1168 	stat = Read_hfc(hc, HFCPCI_STATUS);
1169 	if (HFCPCI_ANYINT & stat) {
1170 		val = Read_hfc(hc, HFCPCI_INT_S1);
1171 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1172 			printk(KERN_DEBUG
1173 			       "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1174 	} else {
1175 		/* shared */
1176 		spin_unlock(&hc->lock);
1177 		return IRQ_NONE;
1178 	}
1179 	hc->irqcnt++;
1180 
1181 	if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1182 		printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1183 	val &= hc->hw.int_m1;
1184 	if (val & 0x40) {	/* state machine irq */
1185 		exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1186 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1187 			printk(KERN_DEBUG "ph_state chg %d->%d\n",
1188 			       hc->dch.state, exval);
1189 		hc->dch.state = exval;
1190 		schedule_event(&hc->dch, FLG_PHCHANGE);
1191 		val &= ~0x40;
1192 	}
1193 	if (val & 0x80) {	/* timer irq */
1194 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1195 			if ((--hc->hw.nt_timer) < 0)
1196 				schedule_event(&hc->dch, FLG_PHCHANGE);
1197 		}
1198 		val &= ~0x80;
1199 		Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1200 	}
1201 	if (val & 0x08) {	/* B1 rx */
1202 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203 		if (bch)
1204 			main_rec_hfcpci(bch);
1205 		else if (hc->dch.debug)
1206 			printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1207 	}
1208 	if (val & 0x10) {	/* B2 rx */
1209 		bch = Sel_BCS(hc, 2);
1210 		if (bch)
1211 			main_rec_hfcpci(bch);
1212 		else if (hc->dch.debug)
1213 			printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1214 	}
1215 	if (val & 0x01) {	/* B1 tx */
1216 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1217 		if (bch)
1218 			tx_birq(bch);
1219 		else if (hc->dch.debug)
1220 			printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1221 	}
1222 	if (val & 0x02) {	/* B2 tx */
1223 		bch = Sel_BCS(hc, 2);
1224 		if (bch)
1225 			tx_birq(bch);
1226 		else if (hc->dch.debug)
1227 			printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1228 	}
1229 	if (val & 0x20)		/* D rx */
1230 		receive_dmsg(hc);
1231 	if (val & 0x04) {	/* D tx */
1232 		if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1233 			del_timer(&hc->dch.timer);
1234 		tx_dirq(&hc->dch);
1235 	}
1236 	spin_unlock(&hc->lock);
1237 	return IRQ_HANDLED;
1238 }
1239 
1240 /*
1241  * timer callback for D-chan busy resolution. Currently no function
1242  */
1243 static void
1244 hfcpci_dbusy_timer(struct hfc_pci *hc)
1245 {
1246 }
1247 
1248 /*
1249  * activate/deactivate hardware for selected channels and mode
1250  */
1251 static int
1252 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1253 {
1254 	struct hfc_pci	*hc = bch->hw;
1255 	int		fifo2;
1256 	u_char		rx_slot = 0, tx_slot = 0, pcm_mode;
1257 
1258 	if (bch->debug & DEBUG_HW_BCHANNEL)
1259 		printk(KERN_DEBUG
1260 		       "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1261 		       bch->state, protocol, bch->nr, bc);
1262 
1263 	fifo2 = bc;
1264 	pcm_mode = (bc >> 24) & 0xff;
1265 	if (pcm_mode) { /* PCM SLOT USE */
1266 		if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1267 			printk(KERN_WARNING
1268 			       "%s: pcm channel id without HFC_CFG_PCM\n",
1269 			       __func__);
1270 		rx_slot = (bc >> 8) & 0xff;
1271 		tx_slot = (bc >> 16) & 0xff;
1272 		bc = bc & 0xff;
1273 	} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1274 		printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1275 		       __func__);
1276 	if (hc->chanlimit > 1) {
1277 		hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1278 		hc->hw.sctrl_e &= ~0x80;
1279 	} else {
1280 		if (bc & 2) {
1281 			if (protocol != ISDN_P_NONE) {
1282 				hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1283 				hc->hw.sctrl_e |= 0x80;
1284 			} else {
1285 				hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1286 				hc->hw.sctrl_e &= ~0x80;
1287 			}
1288 			fifo2 = 1;
1289 		} else {
1290 			hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1291 			hc->hw.sctrl_e &= ~0x80;
1292 		}
1293 	}
1294 	switch (protocol) {
1295 	case (-1): /* used for init */
1296 		bch->state = -1;
1297 		bch->nr = bc;
1298 	case (ISDN_P_NONE):
1299 		if (bch->state == ISDN_P_NONE)
1300 			return 0;
1301 		if (bc & 2) {
1302 			hc->hw.sctrl &= ~SCTRL_B2_ENA;
1303 			hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1304 		} else {
1305 			hc->hw.sctrl &= ~SCTRL_B1_ENA;
1306 			hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1307 		}
1308 		if (fifo2 & 2) {
1309 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1310 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1311 					   HFCPCI_INTS_B2REC);
1312 		} else {
1313 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1314 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1315 					   HFCPCI_INTS_B1REC);
1316 		}
1317 #ifdef REVERSE_BITORDER
1318 		if (bch->nr & 2)
1319 			hc->hw.cirm &= 0x7f;
1320 		else
1321 			hc->hw.cirm &= 0xbf;
1322 #endif
1323 		bch->state = ISDN_P_NONE;
1324 		bch->nr = bc;
1325 		test_and_clear_bit(FLG_HDLC, &bch->Flags);
1326 		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1327 		break;
1328 	case (ISDN_P_B_RAW):
1329 		bch->state = protocol;
1330 		bch->nr = bc;
1331 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1332 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1333 		if (bc & 2) {
1334 			hc->hw.sctrl |= SCTRL_B2_ENA;
1335 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1336 #ifdef REVERSE_BITORDER
1337 			hc->hw.cirm |= 0x80;
1338 #endif
1339 		} else {
1340 			hc->hw.sctrl |= SCTRL_B1_ENA;
1341 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1342 #ifdef REVERSE_BITORDER
1343 			hc->hw.cirm |= 0x40;
1344 #endif
1345 		}
1346 		if (fifo2 & 2) {
1347 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1348 			if (!tics)
1349 				hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1350 						  HFCPCI_INTS_B2REC);
1351 			hc->hw.ctmt |= 2;
1352 			hc->hw.conn &= ~0x18;
1353 		} else {
1354 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1355 			if (!tics)
1356 				hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1357 						  HFCPCI_INTS_B1REC);
1358 			hc->hw.ctmt |= 1;
1359 			hc->hw.conn &= ~0x03;
1360 		}
1361 		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1362 		break;
1363 	case (ISDN_P_B_HDLC):
1364 		bch->state = protocol;
1365 		bch->nr = bc;
1366 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1367 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1368 		if (bc & 2) {
1369 			hc->hw.sctrl |= SCTRL_B2_ENA;
1370 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1371 		} else {
1372 			hc->hw.sctrl |= SCTRL_B1_ENA;
1373 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1374 		}
1375 		if (fifo2 & 2) {
1376 			hc->hw.last_bfifo_cnt[1] = 0;
1377 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1378 			hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1379 					  HFCPCI_INTS_B2REC);
1380 			hc->hw.ctmt &= ~2;
1381 			hc->hw.conn &= ~0x18;
1382 		} else {
1383 			hc->hw.last_bfifo_cnt[0] = 0;
1384 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1385 			hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1386 					  HFCPCI_INTS_B1REC);
1387 			hc->hw.ctmt &= ~1;
1388 			hc->hw.conn &= ~0x03;
1389 		}
1390 		test_and_set_bit(FLG_HDLC, &bch->Flags);
1391 		break;
1392 	default:
1393 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1394 		return -ENOPROTOOPT;
1395 	}
1396 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1397 		if ((protocol == ISDN_P_NONE) ||
1398 		    (protocol == -1)) {	/* init case */
1399 			rx_slot = 0;
1400 			tx_slot = 0;
1401 		} else {
1402 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1403 				rx_slot |= 0xC0;
1404 				tx_slot |= 0xC0;
1405 			} else {
1406 				rx_slot |= 0x80;
1407 				tx_slot |= 0x80;
1408 			}
1409 		}
1410 		if (bc & 2) {
1411 			hc->hw.conn &= 0xc7;
1412 			hc->hw.conn |= 0x08;
1413 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1414 			       __func__, tx_slot);
1415 			printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1416 			       __func__, rx_slot);
1417 			Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1418 			Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1419 		} else {
1420 			hc->hw.conn &= 0xf8;
1421 			hc->hw.conn |= 0x01;
1422 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1423 			       __func__, tx_slot);
1424 			printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1425 			       __func__, rx_slot);
1426 			Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1427 			Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1428 		}
1429 	}
1430 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1431 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1432 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1433 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1434 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1435 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1436 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1437 #ifdef REVERSE_BITORDER
1438 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1439 #endif
1440 	return 0;
1441 }
1442 
1443 static int
1444 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1445 {
1446 	struct hfc_pci	*hc = bch->hw;
1447 
1448 	if (bch->debug & DEBUG_HW_BCHANNEL)
1449 		printk(KERN_DEBUG
1450 		       "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1451 		       bch->state, protocol, bch->nr, chan);
1452 	if (bch->nr != chan) {
1453 		printk(KERN_DEBUG
1454 		       "HFCPCI rxtest wrong channel parameter %x/%x\n",
1455 		       bch->nr, chan);
1456 		return -EINVAL;
1457 	}
1458 	switch (protocol) {
1459 	case (ISDN_P_B_RAW):
1460 		bch->state = protocol;
1461 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1462 		if (chan & 2) {
1463 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1464 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1465 			if (!tics)
1466 				hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1467 			hc->hw.ctmt |= 2;
1468 			hc->hw.conn &= ~0x18;
1469 #ifdef REVERSE_BITORDER
1470 			hc->hw.cirm |= 0x80;
1471 #endif
1472 		} else {
1473 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1474 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1475 			if (!tics)
1476 				hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1477 			hc->hw.ctmt |= 1;
1478 			hc->hw.conn &= ~0x03;
1479 #ifdef REVERSE_BITORDER
1480 			hc->hw.cirm |= 0x40;
1481 #endif
1482 		}
1483 		break;
1484 	case (ISDN_P_B_HDLC):
1485 		bch->state = protocol;
1486 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1487 		if (chan & 2) {
1488 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1489 			hc->hw.last_bfifo_cnt[1] = 0;
1490 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1491 			hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1492 			hc->hw.ctmt &= ~2;
1493 			hc->hw.conn &= ~0x18;
1494 		} else {
1495 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1496 			hc->hw.last_bfifo_cnt[0] = 0;
1497 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1498 			hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1499 			hc->hw.ctmt &= ~1;
1500 			hc->hw.conn &= ~0x03;
1501 		}
1502 		break;
1503 	default:
1504 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1505 		return -ENOPROTOOPT;
1506 	}
1507 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1508 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1509 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1510 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1511 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1512 #ifdef REVERSE_BITORDER
1513 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1514 #endif
1515 	return 0;
1516 }
1517 
1518 static void
1519 deactivate_bchannel(struct bchannel *bch)
1520 {
1521 	struct hfc_pci	*hc = bch->hw;
1522 	u_long		flags;
1523 
1524 	spin_lock_irqsave(&hc->lock, flags);
1525 	mISDN_clear_bchannel(bch);
1526 	mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1527 	spin_unlock_irqrestore(&hc->lock, flags);
1528 }
1529 
1530 /*
1531  * Layer 1 B-channel hardware access
1532  */
1533 static int
1534 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1535 {
1536 	return mISDN_ctrl_bchannel(bch, cq);
1537 }
1538 static int
1539 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1540 {
1541 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1542 	struct hfc_pci	*hc = bch->hw;
1543 	int		ret = -EINVAL;
1544 	u_long		flags;
1545 
1546 	if (bch->debug & DEBUG_HW)
1547 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1548 	switch (cmd) {
1549 	case HW_TESTRX_RAW:
1550 		spin_lock_irqsave(&hc->lock, flags);
1551 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1552 		spin_unlock_irqrestore(&hc->lock, flags);
1553 		break;
1554 	case HW_TESTRX_HDLC:
1555 		spin_lock_irqsave(&hc->lock, flags);
1556 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1557 		spin_unlock_irqrestore(&hc->lock, flags);
1558 		break;
1559 	case HW_TESTRX_OFF:
1560 		spin_lock_irqsave(&hc->lock, flags);
1561 		mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1562 		spin_unlock_irqrestore(&hc->lock, flags);
1563 		ret = 0;
1564 		break;
1565 	case CLOSE_CHANNEL:
1566 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1567 		deactivate_bchannel(bch);
1568 		ch->protocol = ISDN_P_NONE;
1569 		ch->peer = NULL;
1570 		module_put(THIS_MODULE);
1571 		ret = 0;
1572 		break;
1573 	case CONTROL_CHANNEL:
1574 		ret = channel_bctrl(bch, arg);
1575 		break;
1576 	default:
1577 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1578 		       __func__, cmd);
1579 	}
1580 	return ret;
1581 }
1582 
1583 /*
1584  * Layer2 -> Layer 1 Dchannel data
1585  */
1586 static int
1587 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1588 {
1589 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1590 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1591 	struct hfc_pci		*hc = dch->hw;
1592 	int			ret = -EINVAL;
1593 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1594 	unsigned int		id;
1595 	u_long			flags;
1596 
1597 	switch (hh->prim) {
1598 	case PH_DATA_REQ:
1599 		spin_lock_irqsave(&hc->lock, flags);
1600 		ret = dchannel_senddata(dch, skb);
1601 		if (ret > 0) { /* direct TX */
1602 			id = hh->id; /* skb can be freed */
1603 			hfcpci_fill_dfifo(dch->hw);
1604 			ret = 0;
1605 			spin_unlock_irqrestore(&hc->lock, flags);
1606 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1607 		} else
1608 			spin_unlock_irqrestore(&hc->lock, flags);
1609 		return ret;
1610 	case PH_ACTIVATE_REQ:
1611 		spin_lock_irqsave(&hc->lock, flags);
1612 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1613 			ret = 0;
1614 			if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1615 				hc->hw.mst_m |= HFCPCI_MASTER;
1616 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1617 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1618 				spin_unlock_irqrestore(&hc->lock, flags);
1619 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1620 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1621 				break;
1622 			}
1623 			test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1624 			Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1625 				  HFCPCI_DO_ACTION | 1);
1626 		} else
1627 			ret = l1_event(dch->l1, hh->prim);
1628 		spin_unlock_irqrestore(&hc->lock, flags);
1629 		break;
1630 	case PH_DEACTIVATE_REQ:
1631 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1632 		spin_lock_irqsave(&hc->lock, flags);
1633 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1634 			/* prepare deactivation */
1635 			Write_hfc(hc, HFCPCI_STATES, 0x40);
1636 			skb_queue_purge(&dch->squeue);
1637 			if (dch->tx_skb) {
1638 				dev_kfree_skb(dch->tx_skb);
1639 				dch->tx_skb = NULL;
1640 			}
1641 			dch->tx_idx = 0;
1642 			if (dch->rx_skb) {
1643 				dev_kfree_skb(dch->rx_skb);
1644 				dch->rx_skb = NULL;
1645 			}
1646 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1647 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1648 				del_timer(&dch->timer);
1649 #ifdef FIXME
1650 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1651 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1652 #endif
1653 			hc->hw.mst_m &= ~HFCPCI_MASTER;
1654 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1655 			ret = 0;
1656 		} else {
1657 			ret = l1_event(dch->l1, hh->prim);
1658 		}
1659 		spin_unlock_irqrestore(&hc->lock, flags);
1660 		break;
1661 	}
1662 	if (!ret)
1663 		dev_kfree_skb(skb);
1664 	return ret;
1665 }
1666 
1667 /*
1668  * Layer2 -> Layer 1 Bchannel data
1669  */
1670 static int
1671 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1672 {
1673 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
1674 	struct hfc_pci		*hc = bch->hw;
1675 	int			ret = -EINVAL;
1676 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1677 	unsigned long		flags;
1678 
1679 	switch (hh->prim) {
1680 	case PH_DATA_REQ:
1681 		spin_lock_irqsave(&hc->lock, flags);
1682 		ret = bchannel_senddata(bch, skb);
1683 		if (ret > 0) { /* direct TX */
1684 			hfcpci_fill_fifo(bch);
1685 			ret = 0;
1686 		}
1687 		spin_unlock_irqrestore(&hc->lock, flags);
1688 		return ret;
1689 	case PH_ACTIVATE_REQ:
1690 		spin_lock_irqsave(&hc->lock, flags);
1691 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1692 			ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1693 		else
1694 			ret = 0;
1695 		spin_unlock_irqrestore(&hc->lock, flags);
1696 		if (!ret)
1697 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1698 				    NULL, GFP_KERNEL);
1699 		break;
1700 	case PH_DEACTIVATE_REQ:
1701 		deactivate_bchannel(bch);
1702 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1703 			    NULL, GFP_KERNEL);
1704 		ret = 0;
1705 		break;
1706 	}
1707 	if (!ret)
1708 		dev_kfree_skb(skb);
1709 	return ret;
1710 }
1711 
1712 /*
1713  * called for card init message
1714  */
1715 
1716 static void
1717 inithfcpci(struct hfc_pci *hc)
1718 {
1719 	printk(KERN_DEBUG "inithfcpci: entered\n");
1720 	hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1721 	hc->dch.timer.data = (long) &hc->dch;
1722 	init_timer(&hc->dch.timer);
1723 	hc->chanlimit = 2;
1724 	mode_hfcpci(&hc->bch[0], 1, -1);
1725 	mode_hfcpci(&hc->bch[1], 2, -1);
1726 }
1727 
1728 
1729 static int
1730 init_card(struct hfc_pci *hc)
1731 {
1732 	int	cnt = 3;
1733 	u_long	flags;
1734 
1735 	printk(KERN_DEBUG "init_card: entered\n");
1736 
1737 
1738 	spin_lock_irqsave(&hc->lock, flags);
1739 	disable_hwirq(hc);
1740 	spin_unlock_irqrestore(&hc->lock, flags);
1741 	if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1742 		printk(KERN_WARNING
1743 		       "mISDN: couldn't get interrupt %d\n", hc->irq);
1744 		return -EIO;
1745 	}
1746 	spin_lock_irqsave(&hc->lock, flags);
1747 	reset_hfcpci(hc);
1748 	while (cnt) {
1749 		inithfcpci(hc);
1750 		/*
1751 		 * Finally enable IRQ output
1752 		 * this is only allowed, if an IRQ routine is already
1753 		 * established for this HFC, so don't do that earlier
1754 		 */
1755 		enable_hwirq(hc);
1756 		spin_unlock_irqrestore(&hc->lock, flags);
1757 		/* Timeout 80ms */
1758 		current->state = TASK_UNINTERRUPTIBLE;
1759 		schedule_timeout((80 * HZ) / 1000);
1760 		printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1761 		       hc->irq, hc->irqcnt);
1762 		/* now switch timer interrupt off */
1763 		spin_lock_irqsave(&hc->lock, flags);
1764 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1765 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1766 		/* reinit mode reg */
1767 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1768 		if (!hc->irqcnt) {
1769 			printk(KERN_WARNING
1770 			       "HFC PCI: IRQ(%d) getting no interrupts "
1771 			       "during init %d\n", hc->irq, 4 - cnt);
1772 			if (cnt == 1)
1773 				break;
1774 			else {
1775 				reset_hfcpci(hc);
1776 				cnt--;
1777 			}
1778 		} else {
1779 			spin_unlock_irqrestore(&hc->lock, flags);
1780 			hc->initdone = 1;
1781 			return 0;
1782 		}
1783 	}
1784 	disable_hwirq(hc);
1785 	spin_unlock_irqrestore(&hc->lock, flags);
1786 	free_irq(hc->irq, hc);
1787 	return -EIO;
1788 }
1789 
1790 static int
1791 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1792 {
1793 	int	ret = 0;
1794 	u_char	slot;
1795 
1796 	switch (cq->op) {
1797 	case MISDN_CTRL_GETOP:
1798 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1799 			 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1800 		break;
1801 	case MISDN_CTRL_LOOP:
1802 		/* channel 0 disabled loop */
1803 		if (cq->channel < 0 || cq->channel > 2) {
1804 			ret = -EINVAL;
1805 			break;
1806 		}
1807 		if (cq->channel & 1) {
1808 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1809 				slot = 0xC0;
1810 			else
1811 				slot = 0x80;
1812 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1813 			       __func__, slot);
1814 			Write_hfc(hc, HFCPCI_B1_SSL, slot);
1815 			Write_hfc(hc, HFCPCI_B1_RSL, slot);
1816 			hc->hw.conn = (hc->hw.conn & ~7) | 6;
1817 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1818 		}
1819 		if (cq->channel & 2) {
1820 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1821 				slot = 0xC1;
1822 			else
1823 				slot = 0x81;
1824 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1825 			       __func__, slot);
1826 			Write_hfc(hc, HFCPCI_B2_SSL, slot);
1827 			Write_hfc(hc, HFCPCI_B2_RSL, slot);
1828 			hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1829 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1830 		}
1831 		if (cq->channel & 3)
1832 			hc->hw.trm |= 0x80;	/* enable IOM-loop */
1833 		else {
1834 			hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1835 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1836 			hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1837 		}
1838 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1839 		break;
1840 	case MISDN_CTRL_CONNECT:
1841 		if (cq->channel == cq->p1) {
1842 			ret = -EINVAL;
1843 			break;
1844 		}
1845 		if (cq->channel < 1 || cq->channel > 2 ||
1846 		    cq->p1 < 1 || cq->p1 > 2) {
1847 			ret = -EINVAL;
1848 			break;
1849 		}
1850 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1851 			slot = 0xC0;
1852 		else
1853 			slot = 0x80;
1854 		printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1855 		       __func__, slot);
1856 		Write_hfc(hc, HFCPCI_B1_SSL, slot);
1857 		Write_hfc(hc, HFCPCI_B2_RSL, slot);
1858 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1859 			slot = 0xC1;
1860 		else
1861 			slot = 0x81;
1862 		printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1863 		       __func__, slot);
1864 		Write_hfc(hc, HFCPCI_B2_SSL, slot);
1865 		Write_hfc(hc, HFCPCI_B1_RSL, slot);
1866 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1867 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1868 		hc->hw.trm |= 0x80;
1869 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1870 		break;
1871 	case MISDN_CTRL_DISCONNECT:
1872 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1873 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1874 		hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1875 		break;
1876 	case MISDN_CTRL_L1_TIMER3:
1877 		ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1878 		break;
1879 	default:
1880 		printk(KERN_WARNING "%s: unknown Op %x\n",
1881 		       __func__, cq->op);
1882 		ret = -EINVAL;
1883 		break;
1884 	}
1885 	return ret;
1886 }
1887 
1888 static int
1889 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1890 	      struct channel_req *rq)
1891 {
1892 	int err = 0;
1893 
1894 	if (debug & DEBUG_HW_OPEN)
1895 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1896 		       hc->dch.dev.id, __builtin_return_address(0));
1897 	if (rq->protocol == ISDN_P_NONE)
1898 		return -EINVAL;
1899 	if (rq->adr.channel == 1) {
1900 		/* TODO: E-Channel */
1901 		return -EINVAL;
1902 	}
1903 	if (!hc->initdone) {
1904 		if (rq->protocol == ISDN_P_TE_S0) {
1905 			err = create_l1(&hc->dch, hfc_l1callback);
1906 			if (err)
1907 				return err;
1908 		}
1909 		hc->hw.protocol = rq->protocol;
1910 		ch->protocol = rq->protocol;
1911 		err = init_card(hc);
1912 		if (err)
1913 			return err;
1914 	} else {
1915 		if (rq->protocol != ch->protocol) {
1916 			if (hc->hw.protocol == ISDN_P_TE_S0)
1917 				l1_event(hc->dch.l1, CLOSE_CHANNEL);
1918 			if (rq->protocol == ISDN_P_TE_S0) {
1919 				err = create_l1(&hc->dch, hfc_l1callback);
1920 				if (err)
1921 					return err;
1922 			}
1923 			hc->hw.protocol = rq->protocol;
1924 			ch->protocol = rq->protocol;
1925 			hfcpci_setmode(hc);
1926 		}
1927 	}
1928 
1929 	if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1930 	    ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1931 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1932 			    0, NULL, GFP_KERNEL);
1933 	}
1934 	rq->ch = ch;
1935 	if (!try_module_get(THIS_MODULE))
1936 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1937 	return 0;
1938 }
1939 
1940 static int
1941 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1942 {
1943 	struct bchannel		*bch;
1944 
1945 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
1946 		return -EINVAL;
1947 	if (rq->protocol == ISDN_P_NONE)
1948 		return -EINVAL;
1949 	bch = &hc->bch[rq->adr.channel - 1];
1950 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1951 		return -EBUSY; /* b-channel can be only open once */
1952 	bch->ch.protocol = rq->protocol;
1953 	rq->ch = &bch->ch; /* TODO: E-channel */
1954 	if (!try_module_get(THIS_MODULE))
1955 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1956 	return 0;
1957 }
1958 
1959 /*
1960  * device control function
1961  */
1962 static int
1963 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1964 {
1965 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1966 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1967 	struct hfc_pci		*hc = dch->hw;
1968 	struct channel_req	*rq;
1969 	int			err = 0;
1970 
1971 	if (dch->debug & DEBUG_HW)
1972 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
1973 		       __func__, cmd, arg);
1974 	switch (cmd) {
1975 	case OPEN_CHANNEL:
1976 		rq = arg;
1977 		if ((rq->protocol == ISDN_P_TE_S0) ||
1978 		    (rq->protocol == ISDN_P_NT_S0))
1979 			err = open_dchannel(hc, ch, rq);
1980 		else
1981 			err = open_bchannel(hc, rq);
1982 		break;
1983 	case CLOSE_CHANNEL:
1984 		if (debug & DEBUG_HW_OPEN)
1985 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1986 			       __func__, hc->dch.dev.id,
1987 			       __builtin_return_address(0));
1988 		module_put(THIS_MODULE);
1989 		break;
1990 	case CONTROL_CHANNEL:
1991 		err = channel_ctrl(hc, arg);
1992 		break;
1993 	default:
1994 		if (dch->debug & DEBUG_HW)
1995 			printk(KERN_DEBUG "%s: unknown command %x\n",
1996 			       __func__, cmd);
1997 		return -EINVAL;
1998 	}
1999 	return err;
2000 }
2001 
2002 static int
2003 setup_hw(struct hfc_pci *hc)
2004 {
2005 	void	*buffer;
2006 
2007 	printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2008 	hc->hw.cirm = 0;
2009 	hc->dch.state = 0;
2010 	pci_set_master(hc->pdev);
2011 	if (!hc->irq) {
2012 		printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2013 		return 1;
2014 	}
2015 	hc->hw.pci_io =
2016 		(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2017 
2018 	if (!hc->hw.pci_io) {
2019 		printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2020 		return 1;
2021 	}
2022 	/* Allocate memory for FIFOS */
2023 	/* the memory needs to be on a 32k boundary within the first 4G */
2024 	pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2025 	buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2026 	/* We silently assume the address is okay if nonzero */
2027 	if (!buffer) {
2028 		printk(KERN_WARNING
2029 		       "HFC-PCI: Error allocating memory for FIFO!\n");
2030 		return 1;
2031 	}
2032 	hc->hw.fifos = buffer;
2033 	pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2034 	hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2035 	printk(KERN_INFO
2036 	       "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2037 	       (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2038 	       (u_long) hc->hw.dmahandle, hc->irq, HZ);
2039 	/* enable memory mapped ports, disable busmaster */
2040 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2041 	hc->hw.int_m2 = 0;
2042 	disable_hwirq(hc);
2043 	hc->hw.int_m1 = 0;
2044 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2045 	/* At this point the needed PCI config is done */
2046 	/* fifos are still not enabled */
2047 	hc->hw.timer.function = (void *) hfcpci_Timer;
2048 	hc->hw.timer.data = (long) hc;
2049 	init_timer(&hc->hw.timer);
2050 	/* default PCM master */
2051 	test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2052 	return 0;
2053 }
2054 
2055 static void
2056 release_card(struct hfc_pci *hc) {
2057 	u_long	flags;
2058 
2059 	spin_lock_irqsave(&hc->lock, flags);
2060 	hc->hw.int_m2 = 0; /* interrupt output off ! */
2061 	disable_hwirq(hc);
2062 	mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2063 	mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2064 	if (hc->dch.timer.function != NULL) {
2065 		del_timer(&hc->dch.timer);
2066 		hc->dch.timer.function = NULL;
2067 	}
2068 	spin_unlock_irqrestore(&hc->lock, flags);
2069 	if (hc->hw.protocol == ISDN_P_TE_S0)
2070 		l1_event(hc->dch.l1, CLOSE_CHANNEL);
2071 	if (hc->initdone)
2072 		free_irq(hc->irq, hc);
2073 	release_io_hfcpci(hc); /* must release after free_irq! */
2074 	mISDN_unregister_device(&hc->dch.dev);
2075 	mISDN_freebchannel(&hc->bch[1]);
2076 	mISDN_freebchannel(&hc->bch[0]);
2077 	mISDN_freedchannel(&hc->dch);
2078 	pci_set_drvdata(hc->pdev, NULL);
2079 	kfree(hc);
2080 }
2081 
2082 static int
2083 setup_card(struct hfc_pci *card)
2084 {
2085 	int		err = -EINVAL;
2086 	u_int		i;
2087 	char		name[MISDN_MAX_IDLEN];
2088 
2089 	card->dch.debug = debug;
2090 	spin_lock_init(&card->lock);
2091 	mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2092 	card->dch.hw = card;
2093 	card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2094 	card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2095 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2096 	card->dch.dev.D.send = hfcpci_l2l1D;
2097 	card->dch.dev.D.ctrl = hfc_dctrl;
2098 	card->dch.dev.nrbchan = 2;
2099 	for (i = 0; i < 2; i++) {
2100 		card->bch[i].nr = i + 1;
2101 		set_channelmap(i + 1, card->dch.dev.channelmap);
2102 		card->bch[i].debug = debug;
2103 		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2104 		card->bch[i].hw = card;
2105 		card->bch[i].ch.send = hfcpci_l2l1B;
2106 		card->bch[i].ch.ctrl = hfc_bctrl;
2107 		card->bch[i].ch.nr = i + 1;
2108 		list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2109 	}
2110 	err = setup_hw(card);
2111 	if (err)
2112 		goto error;
2113 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2114 	err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2115 	if (err)
2116 		goto error;
2117 	HFC_cnt++;
2118 	printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2119 	return 0;
2120 error:
2121 	mISDN_freebchannel(&card->bch[1]);
2122 	mISDN_freebchannel(&card->bch[0]);
2123 	mISDN_freedchannel(&card->dch);
2124 	kfree(card);
2125 	return err;
2126 }
2127 
2128 /* private data in the PCI devices list */
2129 struct _hfc_map {
2130 	u_int	subtype;
2131 	u_int	flag;
2132 	char	*name;
2133 };
2134 
2135 static const struct _hfc_map hfc_map[] =
2136 {
2137 	{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2138 	{HFC_CCD_B000, 0, "Billion B000"},
2139 	{HFC_CCD_B006, 0, "Billion B006"},
2140 	{HFC_CCD_B007, 0, "Billion B007"},
2141 	{HFC_CCD_B008, 0, "Billion B008"},
2142 	{HFC_CCD_B009, 0, "Billion B009"},
2143 	{HFC_CCD_B00A, 0, "Billion B00A"},
2144 	{HFC_CCD_B00B, 0, "Billion B00B"},
2145 	{HFC_CCD_B00C, 0, "Billion B00C"},
2146 	{HFC_CCD_B100, 0, "Seyeon B100"},
2147 	{HFC_CCD_B700, 0, "Primux II S0 B700"},
2148 	{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2149 	{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2150 	{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2151 	{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2152 	{HFC_BERKOM_A1T, 0, "German telekom A1T"},
2153 	{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2154 	{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2155 	{HFC_DIGI_DF_M_IOM2_E, 0,
2156 	 "Digi International DataFire Micro V IOM2 (Europe)"},
2157 	{HFC_DIGI_DF_M_E, 0,
2158 	 "Digi International DataFire Micro V (Europe)"},
2159 	{HFC_DIGI_DF_M_IOM2_A, 0,
2160 	 "Digi International DataFire Micro V IOM2 (North America)"},
2161 	{HFC_DIGI_DF_M_A, 0,
2162 	 "Digi International DataFire Micro V (North America)"},
2163 	{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2164 	{},
2165 };
2166 
2167 static struct pci_device_id hfc_ids[] =
2168 {
2169 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2170 	  (unsigned long) &hfc_map[0] },
2171 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2172 	  (unsigned long) &hfc_map[1] },
2173 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2174 	  (unsigned long) &hfc_map[2] },
2175 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2176 	  (unsigned long) &hfc_map[3] },
2177 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2178 	  (unsigned long) &hfc_map[4] },
2179 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2180 	  (unsigned long) &hfc_map[5] },
2181 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2182 	  (unsigned long) &hfc_map[6] },
2183 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2184 	  (unsigned long) &hfc_map[7] },
2185 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2186 	  (unsigned long) &hfc_map[8] },
2187 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2188 	  (unsigned long) &hfc_map[9] },
2189 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2190 	  (unsigned long) &hfc_map[10] },
2191 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2192 	  (unsigned long) &hfc_map[11] },
2193 	{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2194 	  (unsigned long) &hfc_map[12] },
2195 	{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2196 	  (unsigned long) &hfc_map[13] },
2197 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2198 	  (unsigned long) &hfc_map[14] },
2199 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2200 	  (unsigned long) &hfc_map[15] },
2201 	{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2202 	  (unsigned long) &hfc_map[16] },
2203 	{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2204 	  (unsigned long) &hfc_map[17] },
2205 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2206 	  (unsigned long) &hfc_map[18] },
2207 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2208 	  (unsigned long) &hfc_map[19] },
2209 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2210 	  (unsigned long) &hfc_map[20] },
2211 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2212 	  (unsigned long) &hfc_map[21] },
2213 	{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2214 	  (unsigned long) &hfc_map[22] },
2215 	{},
2216 };
2217 
2218 static int
2219 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2220 {
2221 	int		err = -ENOMEM;
2222 	struct hfc_pci	*card;
2223 	struct _hfc_map	*m = (struct _hfc_map *)ent->driver_data;
2224 
2225 	card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2226 	if (!card) {
2227 		printk(KERN_ERR "No kmem for HFC card\n");
2228 		return err;
2229 	}
2230 	card->pdev = pdev;
2231 	card->subtype = m->subtype;
2232 	err = pci_enable_device(pdev);
2233 	if (err) {
2234 		kfree(card);
2235 		return err;
2236 	}
2237 
2238 	printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2239 	       m->name, pci_name(pdev));
2240 
2241 	card->irq = pdev->irq;
2242 	pci_set_drvdata(pdev, card);
2243 	err = setup_card(card);
2244 	if (err)
2245 		pci_set_drvdata(pdev, NULL);
2246 	return err;
2247 }
2248 
2249 static void
2250 hfc_remove_pci(struct pci_dev *pdev)
2251 {
2252 	struct hfc_pci	*card = pci_get_drvdata(pdev);
2253 
2254 	if (card)
2255 		release_card(card);
2256 	else
2257 		if (debug)
2258 			printk(KERN_DEBUG "%s: drvdata already removed\n",
2259 			       __func__);
2260 }
2261 
2262 
2263 static struct pci_driver hfc_driver = {
2264 	.name = "hfcpci",
2265 	.probe = hfc_probe,
2266 	.remove = hfc_remove_pci,
2267 	.id_table = hfc_ids,
2268 };
2269 
2270 static int
2271 _hfcpci_softirq(struct device *dev, void *arg)
2272 {
2273 	struct hfc_pci  *hc = dev_get_drvdata(dev);
2274 	struct bchannel *bch;
2275 	if (hc == NULL)
2276 		return 0;
2277 
2278 	if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2279 		spin_lock(&hc->lock);
2280 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2281 		if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2282 			main_rec_hfcpci(bch);
2283 			tx_birq(bch);
2284 		}
2285 		bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2286 		if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2287 			main_rec_hfcpci(bch);
2288 			tx_birq(bch);
2289 		}
2290 		spin_unlock(&hc->lock);
2291 	}
2292 	return 0;
2293 }
2294 
2295 static void
2296 hfcpci_softirq(void *arg)
2297 {
2298 	(void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2299 				      _hfcpci_softirq);
2300 
2301 	/* if next event would be in the past ... */
2302 	if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2303 		hfc_jiffies = jiffies + 1;
2304 	else
2305 		hfc_jiffies += tics;
2306 	hfc_tl.expires = hfc_jiffies;
2307 	add_timer(&hfc_tl);
2308 }
2309 
2310 static int __init
2311 HFC_init(void)
2312 {
2313 	int		err;
2314 
2315 	if (!poll)
2316 		poll = HFCPCI_BTRANS_THRESHOLD;
2317 
2318 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2319 		tics = (poll * HZ) / 8000;
2320 		if (tics < 1)
2321 			tics = 1;
2322 		poll = (tics * 8000) / HZ;
2323 		if (poll > 256 || poll < 8) {
2324 			printk(KERN_ERR "%s: Wrong poll value %d not in range "
2325 			       "of 8..256.\n", __func__, poll);
2326 			err = -EINVAL;
2327 			return err;
2328 		}
2329 	}
2330 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2331 		printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2332 		       __func__, poll);
2333 		hfc_tl.function = (void *)hfcpci_softirq;
2334 		hfc_tl.data = 0;
2335 		init_timer(&hfc_tl);
2336 		hfc_tl.expires = jiffies + tics;
2337 		hfc_jiffies = hfc_tl.expires;
2338 		add_timer(&hfc_tl);
2339 	} else
2340 		tics = 0; /* indicate the use of controller's timer */
2341 
2342 	err = pci_register_driver(&hfc_driver);
2343 	if (err) {
2344 		if (timer_pending(&hfc_tl))
2345 			del_timer(&hfc_tl);
2346 	}
2347 
2348 	return err;
2349 }
2350 
2351 static void __exit
2352 HFC_cleanup(void)
2353 {
2354 	if (timer_pending(&hfc_tl))
2355 		del_timer(&hfc_tl);
2356 
2357 	pci_unregister_driver(&hfc_driver);
2358 }
2359 
2360 module_init(HFC_init);
2361 module_exit(HFC_cleanup);
2362 
2363 MODULE_DEVICE_TABLE(pci, hfc_ids);
2364