xref: /openbmc/linux/drivers/isdn/hardware/mISDN/hfcpci.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *
3  * hfcpci.c     low level driver for CCD's hfc-pci based cards
4  *
5  * Author     Werner Cornelius (werner@isdn4linux.de)
6  *            based on existing driver for CCD hfc ISA cards
7  *            type approval valid for HFC-S PCI A based card
8  *
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module options:
27  *
28  * debug:
29  *	NOTE: only one poll value must be given for all cards
30  *	See hfc_pci.h for debug flags.
31  *
32  * poll:
33  *	NOTE: only one poll value must be given for all cards
34  *	Give the number of samples for each fifo process.
35  *	By default 128 is used. Decrease to reduce delay, increase to
36  *	reduce cpu load. If unsure, don't mess with it!
37  *	A value of 128 will use controller's interrupt. Other values will
38  *	use kernel timer, because the controller will not allow lower values
39  *	than 128.
40  *	Also note that the value depends on the kernel timer frequency.
41  *	If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42  *	If the kernel uses 100 Hz, steps of 80 samples are possible.
43  *	If the kernel uses 300 Hz, steps of about 26 samples are possible.
44  *
45  */
46 
47 #include <linux/module.h>
48 #include <linux/pci.h>
49 #include <linux/delay.h>
50 #include <linux/mISDNhw.h>
51 #include <linux/slab.h>
52 
53 #include "hfc_pci.h"
54 
55 static const char *hfcpci_revision = "2.0";
56 
57 static int HFC_cnt;
58 static uint debug;
59 static uint poll, tics;
60 static struct timer_list hfc_tl;
61 static unsigned long hfc_jiffies;
62 
63 MODULE_AUTHOR("Karsten Keil");
64 MODULE_LICENSE("GPL");
65 module_param(debug, uint, S_IRUGO | S_IWUSR);
66 module_param(poll, uint, S_IRUGO | S_IWUSR);
67 
68 enum {
69 	HFC_CCD_2BD0,
70 	HFC_CCD_B000,
71 	HFC_CCD_B006,
72 	HFC_CCD_B007,
73 	HFC_CCD_B008,
74 	HFC_CCD_B009,
75 	HFC_CCD_B00A,
76 	HFC_CCD_B00B,
77 	HFC_CCD_B00C,
78 	HFC_CCD_B100,
79 	HFC_CCD_B700,
80 	HFC_CCD_B701,
81 	HFC_ASUS_0675,
82 	HFC_BERKOM_A1T,
83 	HFC_BERKOM_TCONCEPT,
84 	HFC_ANIGMA_MC145575,
85 	HFC_ZOLTRIX_2BD0,
86 	HFC_DIGI_DF_M_IOM2_E,
87 	HFC_DIGI_DF_M_E,
88 	HFC_DIGI_DF_M_IOM2_A,
89 	HFC_DIGI_DF_M_A,
90 	HFC_ABOCOM_2BD1,
91 	HFC_SITECOM_DC105V2,
92 };
93 
94 struct hfcPCI_hw {
95 	unsigned char		cirm;
96 	unsigned char		ctmt;
97 	unsigned char		clkdel;
98 	unsigned char		states;
99 	unsigned char		conn;
100 	unsigned char		mst_m;
101 	unsigned char		int_m1;
102 	unsigned char		int_m2;
103 	unsigned char		sctrl;
104 	unsigned char		sctrl_r;
105 	unsigned char		sctrl_e;
106 	unsigned char		trm;
107 	unsigned char		fifo_en;
108 	unsigned char		bswapped;
109 	unsigned char		protocol;
110 	int			nt_timer;
111 	unsigned char __iomem 	*pci_io; /* start of PCI IO memory */
112 	dma_addr_t		dmahandle;
113 	void			*fifos; /* FIFO memory */
114 	int			last_bfifo_cnt[2];
115 	    /* marker saving last b-fifo frame count */
116 	struct timer_list	timer;
117 };
118 
119 #define	HFC_CFG_MASTER		1
120 #define HFC_CFG_SLAVE		2
121 #define	HFC_CFG_PCM		3
122 #define HFC_CFG_2HFC		4
123 #define HFC_CFG_SLAVEHFC	5
124 #define HFC_CFG_NEG_F0		6
125 #define HFC_CFG_SW_DD_DU	7
126 
127 #define FLG_HFC_TIMER_T1	16
128 #define FLG_HFC_TIMER_T3	17
129 
130 #define NT_T1_COUNT	1120	/* number of 3.125ms interrupts (3.5s) */
131 #define NT_T3_COUNT	31	/* number of 3.125ms interrupts (97 ms) */
132 #define CLKDEL_TE	0x0e	/* CLKDEL in TE mode */
133 #define CLKDEL_NT	0x6c	/* CLKDEL in NT mode */
134 
135 
136 struct hfc_pci {
137 	u_char			subtype;
138 	u_char			chanlimit;
139 	u_char			initdone;
140 	u_long			cfg;
141 	u_int			irq;
142 	u_int			irqcnt;
143 	struct pci_dev		*pdev;
144 	struct hfcPCI_hw	hw;
145 	spinlock_t		lock;	/* card lock */
146 	struct dchannel		dch;
147 	struct bchannel		bch[2];
148 };
149 
150 /* Interface functions */
151 static void
152 enable_hwirq(struct hfc_pci *hc)
153 {
154 	hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
155 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
156 }
157 
158 static void
159 disable_hwirq(struct hfc_pci *hc)
160 {
161 	hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
162 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
163 }
164 
165 /*
166  * free hardware resources used by driver
167  */
168 static void
169 release_io_hfcpci(struct hfc_pci *hc)
170 {
171 	/* disable memory mapped ports + busmaster */
172 	pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
173 	del_timer(&hc->hw.timer);
174 	pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
175 	iounmap(hc->hw.pci_io);
176 }
177 
178 /*
179  * set mode (NT or TE)
180  */
181 static void
182 hfcpci_setmode(struct hfc_pci *hc)
183 {
184 	if (hc->hw.protocol == ISDN_P_NT_S0) {
185 		hc->hw.clkdel = CLKDEL_NT;	/* ST-Bit delay for NT-Mode */
186 		hc->hw.sctrl |= SCTRL_MODE_NT;	/* NT-MODE */
187 		hc->hw.states = 1;		/* G1 */
188 	} else {
189 		hc->hw.clkdel = CLKDEL_TE;	/* ST-Bit delay for TE-Mode */
190 		hc->hw.sctrl &= ~SCTRL_MODE_NT;	/* TE-MODE */
191 		hc->hw.states = 2;		/* F2 */
192 	}
193 	Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
194 	Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
195 	udelay(10);
196 	Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
197 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
198 }
199 
200 /*
201  * function called to reset the HFC PCI chip. A complete software reset of chip
202  * and fifos is done.
203  */
204 static void
205 reset_hfcpci(struct hfc_pci *hc)
206 {
207 	u_char	val;
208 	int	cnt = 0;
209 
210 	printk(KERN_DEBUG "reset_hfcpci: entered\n");
211 	val = Read_hfc(hc, HFCPCI_CHIP_ID);
212 	printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
213 	/* enable memory mapped ports, disable busmaster */
214 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
215 	disable_hwirq(hc);
216 	/* enable memory ports + busmaster */
217 	pci_write_config_word(hc->pdev, PCI_COMMAND,
218 	    PCI_ENA_MEMIO + PCI_ENA_MASTER);
219 	val = Read_hfc(hc, HFCPCI_STATUS);
220 	printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
221 	hc->hw.cirm = HFCPCI_RESET;	/* Reset On */
222 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
223 	set_current_state(TASK_UNINTERRUPTIBLE);
224 	mdelay(10);			/* Timeout 10ms */
225 	hc->hw.cirm = 0;		/* Reset Off */
226 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
227 	val = Read_hfc(hc, HFCPCI_STATUS);
228 	printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
229 	while (cnt < 50000) { /* max 50000 us */
230 		udelay(5);
231 		cnt += 5;
232 		val = Read_hfc(hc, HFCPCI_STATUS);
233 		if (!(val & 2))
234 			break;
235 	}
236 	printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
237 
238 	hc->hw.fifo_en = 0x30;	/* only D fifos enabled */
239 
240 	hc->hw.bswapped = 0;	/* no exchange */
241 	hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
242 	hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
243 	hc->hw.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
244 	hc->hw.sctrl_r = 0;
245 	hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;	/* S/T Auto awake */
246 	hc->hw.mst_m = 0;
247 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
248 		hc->hw.mst_m |= HFCPCI_MASTER;	/* HFC Master Mode */
249 	if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
250 		hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
251 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
252 	Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
253 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
254 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
255 
256 	hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
257 	    HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
258 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
259 
260 	/* Clear already pending ints */
261 	val = Read_hfc(hc, HFCPCI_INT_S1);
262 
263 	/* set NT/TE mode */
264 	hfcpci_setmode(hc);
265 
266 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
267 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
268 
269 	/*
270 	 * Init GCI/IOM2 in master mode
271 	 * Slots 0 and 1 are set for B-chan 1 and 2
272 	 * D- and monitor/CI channel are not enabled
273 	 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
274 	 * STIO2 is used as data input, B1+B2 from IOM->ST
275 	 * ST B-channel send disabled -> continous 1s
276 	 * The IOM slots are always enabled
277 	 */
278 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
279 		/* set data flow directions: connect B1,B2: HFC to/from PCM */
280 		hc->hw.conn = 0x09;
281 	} else {
282 		hc->hw.conn = 0x36;	/* set data flow directions */
283 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
284 			Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
285 			Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
286 			Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
287 			Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
288 		} else {
289 			Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
290 			Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
291 			Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
292 			Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
293 		}
294 	}
295 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
296 	val = Read_hfc(hc, HFCPCI_INT_S2);
297 }
298 
299 /*
300  * Timer function called when kernel timer expires
301  */
302 static void
303 hfcpci_Timer(struct hfc_pci *hc)
304 {
305 	hc->hw.timer.expires = jiffies + 75;
306 	/* WD RESET */
307 /*
308  *	WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
309  *	add_timer(&hc->hw.timer);
310  */
311 }
312 
313 
314 /*
315  * select a b-channel entry matching and active
316  */
317 static struct bchannel *
318 Sel_BCS(struct hfc_pci *hc, int channel)
319 {
320 	if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
321 		(hc->bch[0].nr & channel))
322 		return &hc->bch[0];
323 	else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
324 		(hc->bch[1].nr & channel))
325 		return &hc->bch[1];
326 	else
327 		return NULL;
328 }
329 
330 /*
331  * clear the desired B-channel rx fifo
332  */
333 static void
334 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
335 {
336 	u_char		fifo_state;
337 	struct bzfifo	*bzr;
338 
339 	if (fifo) {
340 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
341 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
342 	} else {
343 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
344 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
345 	}
346 	if (fifo_state)
347 		hc->hw.fifo_en ^= fifo_state;
348 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
349 	hc->hw.last_bfifo_cnt[fifo] = 0;
350 	bzr->f1 = MAX_B_FRAMES;
351 	bzr->f2 = bzr->f1;	/* init F pointers to remain constant */
352 	bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
353 	bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
354 	    le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
355 	if (fifo_state)
356 		hc->hw.fifo_en |= fifo_state;
357 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
358 }
359 
360 /*
361  * clear the desired B-channel tx fifo
362  */
363 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
364 {
365 	u_char		fifo_state;
366 	struct bzfifo	*bzt;
367 
368 	if (fifo) {
369 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
370 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
371 	} else {
372 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
373 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
374 	}
375 	if (fifo_state)
376 		hc->hw.fifo_en ^= fifo_state;
377 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
378 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
379 		printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
380 		    "z1(%x) z2(%x) state(%x)\n",
381 		    fifo, bzt->f1, bzt->f2,
382 		    le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
383 		    le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
384 		    fifo_state);
385 	bzt->f2 = MAX_B_FRAMES;
386 	bzt->f1 = bzt->f2;	/* init F pointers to remain constant */
387 	bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
388 	bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
389 	if (fifo_state)
390 		hc->hw.fifo_en |= fifo_state;
391 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
392 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
393 		printk(KERN_DEBUG
394 		    "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
395 		    fifo, bzt->f1, bzt->f2,
396 		    le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
397 		    le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
398 }
399 
400 /*
401  * read a complete B-frame out of the buffer
402  */
403 static void
404 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
405     u_char *bdata, int count)
406 {
407 	u_char		*ptr, *ptr1, new_f2;
408 	int		total, maxlen, new_z2;
409 	struct zt	*zp;
410 
411 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
412 		printk(KERN_DEBUG "hfcpci_empty_fifo\n");
413 	zp = &bz->za[bz->f2];	/* point to Z-Regs */
414 	new_z2 = le16_to_cpu(zp->z2) + count;	/* new position in fifo */
415 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
416 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
417 	new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
418 	if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
419 	    (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
420 		if (bch->debug & DEBUG_HW)
421 			printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
422 			    "invalid length %d or crc\n", count);
423 #ifdef ERROR_STATISTIC
424 		bch->err_inv++;
425 #endif
426 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
427 		bz->f2 = new_f2;	/* next buffer */
428 	} else {
429 		bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
430 		if (!bch->rx_skb) {
431 			printk(KERN_WARNING "HFCPCI: receive out of memory\n");
432 			return;
433 		}
434 		total = count;
435 		count -= 3;
436 		ptr = skb_put(bch->rx_skb, count);
437 
438 		if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
439 			maxlen = count;		/* complete transfer */
440 		else
441 			maxlen = B_FIFO_SIZE + B_SUB_VAL -
442 			    le16_to_cpu(zp->z2);	/* maximum */
443 
444 		ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
445 		    /* start of data */
446 		memcpy(ptr, ptr1, maxlen);	/* copy data */
447 		count -= maxlen;
448 
449 		if (count) {	/* rest remaining */
450 			ptr += maxlen;
451 			ptr1 = bdata;	/* start of buffer */
452 			memcpy(ptr, ptr1, count);	/* rest */
453 		}
454 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
455 		bz->f2 = new_f2;	/* next buffer */
456 		recv_Bchannel(bch, MISDN_ID_ANY);
457 	}
458 }
459 
460 /*
461  * D-channel receive procedure
462  */
463 static int
464 receive_dmsg(struct hfc_pci *hc)
465 {
466 	struct dchannel	*dch = &hc->dch;
467 	int		maxlen;
468 	int		rcnt, total;
469 	int		count = 5;
470 	u_char		*ptr, *ptr1;
471 	struct dfifo	*df;
472 	struct zt	*zp;
473 
474 	df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
475 	while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
476 		zp = &df->za[df->f2 & D_FREG_MASK];
477 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
478 		if (rcnt < 0)
479 			rcnt += D_FIFO_SIZE;
480 		rcnt++;
481 		if (dch->debug & DEBUG_HW_DCHANNEL)
482 			printk(KERN_DEBUG
483 			    "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
484 				df->f1, df->f2,
485 				le16_to_cpu(zp->z1),
486 				le16_to_cpu(zp->z2),
487 				rcnt);
488 
489 		if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
490 		    (df->data[le16_to_cpu(zp->z1)])) {
491 			if (dch->debug & DEBUG_HW)
492 				printk(KERN_DEBUG
493 				    "empty_fifo hfcpci paket inv. len "
494 				    "%d or crc %d\n",
495 				    rcnt,
496 				    df->data[le16_to_cpu(zp->z1)]);
497 #ifdef ERROR_STATISTIC
498 			cs->err_rx++;
499 #endif
500 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
501 			    (MAX_D_FRAMES + 1);	/* next buffer */
502 			df->za[df->f2 & D_FREG_MASK].z2 =
503 			    cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
504 			    (D_FIFO_SIZE - 1));
505 		} else {
506 			dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
507 			if (!dch->rx_skb) {
508 				printk(KERN_WARNING
509 				    "HFC-PCI: D receive out of memory\n");
510 				break;
511 			}
512 			total = rcnt;
513 			rcnt -= 3;
514 			ptr = skb_put(dch->rx_skb, rcnt);
515 
516 			if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
517 				maxlen = rcnt;	/* complete transfer */
518 			else
519 				maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
520 				    /* maximum */
521 
522 			ptr1 = df->data + le16_to_cpu(zp->z2);
523 			    /* start of data */
524 			memcpy(ptr, ptr1, maxlen);	/* copy data */
525 			rcnt -= maxlen;
526 
527 			if (rcnt) {	/* rest remaining */
528 				ptr += maxlen;
529 				ptr1 = df->data;	/* start of buffer */
530 				memcpy(ptr, ptr1, rcnt);	/* rest */
531 			}
532 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
533 			    (MAX_D_FRAMES + 1);	/* next buffer */
534 			df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
535 			    le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
536 			recv_Dchannel(dch);
537 		}
538 	}
539 	return 1;
540 }
541 
542 /*
543  * check for transparent receive data and read max one 'poll' size if avail
544  */
545 static void
546 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
547 	struct bzfifo *txbz, u_char *bdata)
548 {
549 	 __le16	*z1r, *z2r, *z1t, *z2t;
550 	int	new_z2, fcnt_rx, fcnt_tx, maxlen;
551 	u_char	*ptr, *ptr1;
552 
553 	z1r = &rxbz->za[MAX_B_FRAMES].z1;	/* pointer to z reg */
554 	z2r = z1r + 1;
555 	z1t = &txbz->za[MAX_B_FRAMES].z1;
556 	z2t = z1t + 1;
557 
558 	fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
559 	if (!fcnt_rx)
560 		return;	/* no data avail */
561 
562 	if (fcnt_rx <= 0)
563 		fcnt_rx += B_FIFO_SIZE;	/* bytes actually buffered */
564 	new_z2 = le16_to_cpu(*z2r) + fcnt_rx;	/* new position in fifo */
565 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
566 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
567 
568 	if (fcnt_rx > MAX_DATA_SIZE) {	/* flush, if oversized */
569 		*z2r = cpu_to_le16(new_z2);		/* new position */
570 		return;
571 	}
572 
573 	fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
574 	if (fcnt_tx <= 0)
575 		fcnt_tx += B_FIFO_SIZE;
576 		    /* fcnt_tx contains available bytes in tx-fifo */
577 	fcnt_tx = B_FIFO_SIZE - fcnt_tx;
578 		    /* remaining bytes to send (bytes in tx-fifo) */
579 
580 	bch->rx_skb = mI_alloc_skb(fcnt_rx, GFP_ATOMIC);
581 	if (bch->rx_skb) {
582 		ptr = skb_put(bch->rx_skb, fcnt_rx);
583 		if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
584 			maxlen = fcnt_rx;	/* complete transfer */
585 		else
586 			maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
587 			    /* maximum */
588 
589 		ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
590 		    /* start of data */
591 		memcpy(ptr, ptr1, maxlen);	/* copy data */
592 		fcnt_rx -= maxlen;
593 
594 		if (fcnt_rx) {	/* rest remaining */
595 			ptr += maxlen;
596 			ptr1 = bdata;	/* start of buffer */
597 			memcpy(ptr, ptr1, fcnt_rx);	/* rest */
598 		}
599 		recv_Bchannel(bch, fcnt_tx); /* bch, id */
600 	} else
601 		printk(KERN_WARNING "HFCPCI: receive out of memory\n");
602 
603 	*z2r = cpu_to_le16(new_z2);		/* new position */
604 }
605 
606 /*
607  * B-channel main receive routine
608  */
609 static void
610 main_rec_hfcpci(struct bchannel *bch)
611 {
612 	struct hfc_pci	*hc = bch->hw;
613 	int		rcnt, real_fifo;
614 	int		receive = 0, count = 5;
615 	struct bzfifo	*txbz, *rxbz;
616 	u_char		*bdata;
617 	struct zt	*zp;
618 
619 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
620 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
621 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
622 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
623 		real_fifo = 1;
624 	} else {
625 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
626 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
627 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
628 		real_fifo = 0;
629 	}
630 Begin:
631 	count--;
632 	if (rxbz->f1 != rxbz->f2) {
633 		if (bch->debug & DEBUG_HW_BCHANNEL)
634 			printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
635 			    bch->nr, rxbz->f1, rxbz->f2);
636 		zp = &rxbz->za[rxbz->f2];
637 
638 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
639 		if (rcnt < 0)
640 			rcnt += B_FIFO_SIZE;
641 		rcnt++;
642 		if (bch->debug & DEBUG_HW_BCHANNEL)
643 			printk(KERN_DEBUG
644 			    "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
645 			    bch->nr, le16_to_cpu(zp->z1),
646 			    le16_to_cpu(zp->z2), rcnt);
647 		hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
648 		rcnt = rxbz->f1 - rxbz->f2;
649 		if (rcnt < 0)
650 			rcnt += MAX_B_FRAMES + 1;
651 		if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
652 			rcnt = 0;
653 			hfcpci_clear_fifo_rx(hc, real_fifo);
654 		}
655 		hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
656 		if (rcnt > 1)
657 			receive = 1;
658 		else
659 			receive = 0;
660 	} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
661 		hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
662 		return;
663 	} else
664 		receive = 0;
665 	if (count && receive)
666 		goto Begin;
667 
668 }
669 
670 /*
671  * D-channel send routine
672  */
673 static void
674 hfcpci_fill_dfifo(struct hfc_pci *hc)
675 {
676 	struct dchannel	*dch = &hc->dch;
677 	int		fcnt;
678 	int		count, new_z1, maxlen;
679 	struct dfifo	*df;
680 	u_char		*src, *dst, new_f1;
681 
682 	if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
683 		printk(KERN_DEBUG "%s\n", __func__);
684 
685 	if (!dch->tx_skb)
686 		return;
687 	count = dch->tx_skb->len - dch->tx_idx;
688 	if (count <= 0)
689 		return;
690 	df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
691 
692 	if (dch->debug & DEBUG_HW_DFIFO)
693 		printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
694 		    df->f1, df->f2,
695 		    le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
696 	fcnt = df->f1 - df->f2;	/* frame count actually buffered */
697 	if (fcnt < 0)
698 		fcnt += (MAX_D_FRAMES + 1);	/* if wrap around */
699 	if (fcnt > (MAX_D_FRAMES - 1)) {
700 		if (dch->debug & DEBUG_HW_DCHANNEL)
701 			printk(KERN_DEBUG
702 			    "hfcpci_fill_Dfifo more as 14 frames\n");
703 #ifdef ERROR_STATISTIC
704 		cs->err_tx++;
705 #endif
706 		return;
707 	}
708 	/* now determine free bytes in FIFO buffer */
709 	maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
710 	    le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
711 	if (maxlen <= 0)
712 		maxlen += D_FIFO_SIZE;	/* count now contains available bytes */
713 
714 	if (dch->debug & DEBUG_HW_DCHANNEL)
715 		printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
716 			count, maxlen);
717 	if (count > maxlen) {
718 		if (dch->debug & DEBUG_HW_DCHANNEL)
719 			printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
720 		return;
721 	}
722 	new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
723 	    (D_FIFO_SIZE - 1);
724 	new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
725 	src = dch->tx_skb->data + dch->tx_idx;	/* source pointer */
726 	dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
727 	maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
728 	    /* end fifo */
729 	if (maxlen > count)
730 		maxlen = count;	/* limit size */
731 	memcpy(dst, src, maxlen);	/* first copy */
732 
733 	count -= maxlen;	/* remaining bytes */
734 	if (count) {
735 		dst = df->data;	/* start of buffer */
736 		src += maxlen;	/* new position */
737 		memcpy(dst, src, count);
738 	}
739 	df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
740 	    /* for next buffer */
741 	df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
742 	    /* new pos actual buffer */
743 	df->f1 = new_f1;	/* next frame */
744 	dch->tx_idx = dch->tx_skb->len;
745 }
746 
747 /*
748  * B-channel send routine
749  */
750 static void
751 hfcpci_fill_fifo(struct bchannel *bch)
752 {
753 	struct hfc_pci 	*hc = bch->hw;
754 	int		maxlen, fcnt;
755 	int		count, new_z1;
756 	struct bzfifo	*bz;
757 	u_char		*bdata;
758 	u_char		new_f1, *src, *dst;
759 	__le16 *z1t, *z2t;
760 
761 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
762 		printk(KERN_DEBUG "%s\n", __func__);
763 	if ((!bch->tx_skb) || bch->tx_skb->len <= 0)
764 		return;
765 	count = bch->tx_skb->len - bch->tx_idx;
766 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
767 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
768 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
769 	} else {
770 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
771 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
772 	}
773 
774 	if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
775 		z1t = &bz->za[MAX_B_FRAMES].z1;
776 		z2t = z1t + 1;
777 		if (bch->debug & DEBUG_HW_BCHANNEL)
778 			printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
779 			    "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
780 			    le16_to_cpu(*z1t), le16_to_cpu(*z2t));
781 		fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
782 		if (fcnt <= 0)
783 			fcnt += B_FIFO_SIZE;
784 			    /* fcnt contains available bytes in fifo */
785 		fcnt = B_FIFO_SIZE - fcnt;
786 		    /* remaining bytes to send (bytes in fifo) */
787 
788 		/* "fill fifo if empty" feature */
789 		if (test_bit(FLG_FILLEMPTY, &bch->Flags) && !fcnt) {
790 			/* printk(KERN_DEBUG "%s: buffer empty, so we have "
791 				"underrun\n", __func__); */
792 			/* fill buffer, to prevent future underrun */
793 			count = HFCPCI_FILLEMPTY;
794 			new_z1 = le16_to_cpu(*z1t) + count;
795 			   /* new buffer Position */
796 			if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
797 				new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
798 			dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
799 			maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
800 			    /* end of fifo */
801 			if (bch->debug & DEBUG_HW_BFIFO)
802 				printk(KERN_DEBUG "hfcpci_FFt fillempty "
803 				    "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
804 				    fcnt, maxlen, new_z1, dst);
805 			fcnt += count;
806 			if (maxlen > count)
807 				maxlen = count; 	/* limit size */
808 			memset(dst, 0x2a, maxlen);	/* first copy */
809 			count -= maxlen;		/* remaining bytes */
810 			if (count) {
811 				dst = bdata;		/* start of buffer */
812 				memset(dst, 0x2a, count);
813 			}
814 			*z1t = cpu_to_le16(new_z1);	/* now send data */
815 		}
816 
817 next_t_frame:
818 		count = bch->tx_skb->len - bch->tx_idx;
819 		/* maximum fill shall be poll*2 */
820 		if (count > (poll << 1) - fcnt)
821 			count = (poll << 1) - fcnt;
822 		if (count <= 0)
823 			return;
824 		/* data is suitable for fifo */
825 		new_z1 = le16_to_cpu(*z1t) + count;
826 		    /* new buffer Position */
827 		if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
828 			new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
829 		src = bch->tx_skb->data + bch->tx_idx;
830 		    /* source pointer */
831 		dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
832 		maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
833 		    /* end of fifo */
834 		if (bch->debug & DEBUG_HW_BFIFO)
835 			printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
836 			    "maxl(%d) nz1(%x) dst(%p)\n",
837 			    fcnt, maxlen, new_z1, dst);
838 		fcnt += count;
839 		bch->tx_idx += count;
840 		if (maxlen > count)
841 			maxlen = count;		/* limit size */
842 		memcpy(dst, src, maxlen);	/* first copy */
843 		count -= maxlen;	/* remaining bytes */
844 		if (count) {
845 			dst = bdata;	/* start of buffer */
846 			src += maxlen;	/* new position */
847 			memcpy(dst, src, count);
848 		}
849 		*z1t = cpu_to_le16(new_z1);	/* now send data */
850 		if (bch->tx_idx < bch->tx_skb->len)
851 			return;
852 		/* send confirm, on trans, free on hdlc. */
853 		if (test_bit(FLG_TRANSPARENT, &bch->Flags))
854 			confirm_Bsend(bch);
855 		dev_kfree_skb(bch->tx_skb);
856 		if (get_next_bframe(bch))
857 			goto next_t_frame;
858 		return;
859 	}
860 	if (bch->debug & DEBUG_HW_BCHANNEL)
861 		printk(KERN_DEBUG
862 		    "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
863 		    __func__, bch->nr, bz->f1, bz->f2,
864 		    bz->za[bz->f1].z1);
865 	fcnt = bz->f1 - bz->f2;	/* frame count actually buffered */
866 	if (fcnt < 0)
867 		fcnt += (MAX_B_FRAMES + 1);	/* if wrap around */
868 	if (fcnt > (MAX_B_FRAMES - 1)) {
869 		if (bch->debug & DEBUG_HW_BCHANNEL)
870 			printk(KERN_DEBUG
871 			    "hfcpci_fill_Bfifo more as 14 frames\n");
872 		return;
873 	}
874 	/* now determine free bytes in FIFO buffer */
875 	maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
876 	    le16_to_cpu(bz->za[bz->f1].z1) - 1;
877 	if (maxlen <= 0)
878 		maxlen += B_FIFO_SIZE;	/* count now contains available bytes */
879 
880 	if (bch->debug & DEBUG_HW_BCHANNEL)
881 		printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
882 			bch->nr, count, maxlen);
883 
884 	if (maxlen < count) {
885 		if (bch->debug & DEBUG_HW_BCHANNEL)
886 			printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
887 		return;
888 	}
889 	new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
890 	    /* new buffer Position */
891 	if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
892 		new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
893 
894 	new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
895 	src = bch->tx_skb->data + bch->tx_idx;	/* source pointer */
896 	dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
897 	maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
898 	    /* end fifo */
899 	if (maxlen > count)
900 		maxlen = count;	/* limit size */
901 	memcpy(dst, src, maxlen);	/* first copy */
902 
903 	count -= maxlen;	/* remaining bytes */
904 	if (count) {
905 		dst = bdata;	/* start of buffer */
906 		src += maxlen;	/* new position */
907 		memcpy(dst, src, count);
908 	}
909 	bz->za[new_f1].z1 = cpu_to_le16(new_z1);	/* for next buffer */
910 	bz->f1 = new_f1;	/* next frame */
911 	dev_kfree_skb(bch->tx_skb);
912 	get_next_bframe(bch);
913 }
914 
915 
916 
917 /*
918  * handle L1 state changes TE
919  */
920 
921 static void
922 ph_state_te(struct dchannel *dch)
923 {
924 	if (dch->debug)
925 		printk(KERN_DEBUG "%s: TE newstate %x\n",
926 			__func__, dch->state);
927 	switch (dch->state) {
928 	case 0:
929 		l1_event(dch->l1, HW_RESET_IND);
930 		break;
931 	case 3:
932 		l1_event(dch->l1, HW_DEACT_IND);
933 		break;
934 	case 5:
935 	case 8:
936 		l1_event(dch->l1, ANYSIGNAL);
937 		break;
938 	case 6:
939 		l1_event(dch->l1, INFO2);
940 		break;
941 	case 7:
942 		l1_event(dch->l1, INFO4_P8);
943 		break;
944 	}
945 }
946 
947 /*
948  * handle L1 state changes NT
949  */
950 
951 static void
952 handle_nt_timer3(struct dchannel *dch) {
953 	struct hfc_pci	*hc = dch->hw;
954 
955 	test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
956 	hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
957 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
958 	hc->hw.nt_timer = 0;
959 	test_and_set_bit(FLG_ACTIVE, &dch->Flags);
960 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
961 		hc->hw.mst_m |= HFCPCI_MASTER;
962 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
963 	_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
964 	    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
965 }
966 
967 static void
968 ph_state_nt(struct dchannel *dch)
969 {
970 	struct hfc_pci	*hc = dch->hw;
971 	u_char	val;
972 
973 	if (dch->debug)
974 		printk(KERN_DEBUG "%s: NT newstate %x\n",
975 			__func__, dch->state);
976 	switch (dch->state) {
977 	case 2:
978 		if (hc->hw.nt_timer < 0) {
979 			hc->hw.nt_timer = 0;
980 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
981 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
982 			hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
983 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
984 			/* Clear already pending ints */
985 			val = Read_hfc(hc, HFCPCI_INT_S1);
986 			Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
987 			udelay(10);
988 			Write_hfc(hc, HFCPCI_STATES, 4);
989 			dch->state = 4;
990 		} else if (hc->hw.nt_timer == 0) {
991 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
992 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
993 			hc->hw.nt_timer = NT_T1_COUNT;
994 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
995 			hc->hw.ctmt |= HFCPCI_TIM3_125;
996 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
997 				HFCPCI_CLTIMER);
998 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
999 			test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1000 			/* allow G2 -> G3 transition */
1001 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1002 		} else {
1003 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1004 		}
1005 		break;
1006 	case 1:
1007 		hc->hw.nt_timer = 0;
1008 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1009 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1010 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1011 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1012 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1013 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1014 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1015 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1016 		_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1017 		    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1018 		break;
1019 	case 4:
1020 		hc->hw.nt_timer = 0;
1021 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1022 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1023 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1024 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1025 		break;
1026 	case 3:
1027 		if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1028 			if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1029 			    &dch->Flags)) {
1030 				handle_nt_timer3(dch);
1031 				break;
1032 			}
1033 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1034 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1035 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1036 			hc->hw.nt_timer = NT_T3_COUNT;
1037 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1038 			hc->hw.ctmt |= HFCPCI_TIM3_125;
1039 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1040 				HFCPCI_CLTIMER);
1041 		}
1042 		break;
1043 	}
1044 }
1045 
1046 static void
1047 ph_state(struct dchannel *dch)
1048 {
1049 	struct hfc_pci	*hc = dch->hw;
1050 
1051 	if (hc->hw.protocol == ISDN_P_NT_S0) {
1052 		if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1053 		    hc->hw.nt_timer < 0)
1054 			handle_nt_timer3(dch);
1055 		else
1056 			ph_state_nt(dch);
1057 	} else
1058 		ph_state_te(dch);
1059 }
1060 
1061 /*
1062  * Layer 1 callback function
1063  */
1064 static int
1065 hfc_l1callback(struct dchannel *dch, u_int cmd)
1066 {
1067 	struct hfc_pci		*hc = dch->hw;
1068 
1069 	switch (cmd) {
1070 	case INFO3_P8:
1071 	case INFO3_P10:
1072 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1073 			hc->hw.mst_m |= HFCPCI_MASTER;
1074 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1075 		break;
1076 	case HW_RESET_REQ:
1077 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1078 		/* HFC ST 3 */
1079 		udelay(6);
1080 		Write_hfc(hc, HFCPCI_STATES, 3);	/* HFC ST 2 */
1081 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1082 			hc->hw.mst_m |= HFCPCI_MASTER;
1083 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1084 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1085 		   HFCPCI_DO_ACTION);
1086 		l1_event(dch->l1, HW_POWERUP_IND);
1087 		break;
1088 	case HW_DEACT_REQ:
1089 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1090 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1091 		skb_queue_purge(&dch->squeue);
1092 		if (dch->tx_skb) {
1093 			dev_kfree_skb(dch->tx_skb);
1094 			dch->tx_skb = NULL;
1095 		}
1096 		dch->tx_idx = 0;
1097 		if (dch->rx_skb) {
1098 			dev_kfree_skb(dch->rx_skb);
1099 			dch->rx_skb = NULL;
1100 		}
1101 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1102 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1103 			del_timer(&dch->timer);
1104 		break;
1105 	case HW_POWERUP_REQ:
1106 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1107 		break;
1108 	case PH_ACTIVATE_IND:
1109 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1110 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1111 			GFP_ATOMIC);
1112 		break;
1113 	case PH_DEACTIVATE_IND:
1114 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1115 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1116 			GFP_ATOMIC);
1117 		break;
1118 	default:
1119 		if (dch->debug & DEBUG_HW)
1120 			printk(KERN_DEBUG "%s: unknown command %x\n",
1121 			    __func__, cmd);
1122 		return -1;
1123 	}
1124 	return 0;
1125 }
1126 
1127 /*
1128  * Interrupt handler
1129  */
1130 static inline void
1131 tx_birq(struct bchannel *bch)
1132 {
1133 	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1134 		hfcpci_fill_fifo(bch);
1135 	else {
1136 		if (bch->tx_skb)
1137 			dev_kfree_skb(bch->tx_skb);
1138 		if (get_next_bframe(bch))
1139 			hfcpci_fill_fifo(bch);
1140 	}
1141 }
1142 
1143 static inline void
1144 tx_dirq(struct dchannel *dch)
1145 {
1146 	if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1147 		hfcpci_fill_dfifo(dch->hw);
1148 	else {
1149 		if (dch->tx_skb)
1150 			dev_kfree_skb(dch->tx_skb);
1151 		if (get_next_dframe(dch))
1152 			hfcpci_fill_dfifo(dch->hw);
1153 	}
1154 }
1155 
1156 static irqreturn_t
1157 hfcpci_int(int intno, void *dev_id)
1158 {
1159 	struct hfc_pci	*hc = dev_id;
1160 	u_char		exval;
1161 	struct bchannel	*bch;
1162 	u_char		val, stat;
1163 
1164 	spin_lock(&hc->lock);
1165 	if (!(hc->hw.int_m2 & 0x08)) {
1166 		spin_unlock(&hc->lock);
1167 		return IRQ_NONE; /* not initialised */
1168 	}
1169 	stat = Read_hfc(hc, HFCPCI_STATUS);
1170 	if (HFCPCI_ANYINT & stat) {
1171 		val = Read_hfc(hc, HFCPCI_INT_S1);
1172 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1173 			printk(KERN_DEBUG
1174 			    "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1175 	} else {
1176 		/* shared */
1177 		spin_unlock(&hc->lock);
1178 		return IRQ_NONE;
1179 	}
1180 	hc->irqcnt++;
1181 
1182 	if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1183 		printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1184 	val &= hc->hw.int_m1;
1185 	if (val & 0x40) {	/* state machine irq */
1186 		exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1187 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1188 			printk(KERN_DEBUG "ph_state chg %d->%d\n",
1189 				hc->dch.state, exval);
1190 		hc->dch.state = exval;
1191 		schedule_event(&hc->dch, FLG_PHCHANGE);
1192 		val &= ~0x40;
1193 	}
1194 	if (val & 0x80) {	/* timer irq */
1195 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1196 			if ((--hc->hw.nt_timer) < 0)
1197 				schedule_event(&hc->dch, FLG_PHCHANGE);
1198 		}
1199 		val &= ~0x80;
1200 		Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1201 	}
1202 	if (val & 0x08) { 	/* B1 rx */
1203 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1204 		if (bch)
1205 			main_rec_hfcpci(bch);
1206 		else if (hc->dch.debug)
1207 			printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1208 	}
1209 	if (val & 0x10) {	/* B2 rx */
1210 		bch = Sel_BCS(hc, 2);
1211 		if (bch)
1212 			main_rec_hfcpci(bch);
1213 		else if (hc->dch.debug)
1214 			printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1215 	}
1216 	if (val & 0x01) {	/* B1 tx */
1217 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1218 		if (bch)
1219 			tx_birq(bch);
1220 		else if (hc->dch.debug)
1221 			printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1222 	}
1223 	if (val & 0x02) {	/* B2 tx */
1224 		bch = Sel_BCS(hc, 2);
1225 		if (bch)
1226 			tx_birq(bch);
1227 		else if (hc->dch.debug)
1228 			printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1229 	}
1230 	if (val & 0x20)		/* D rx */
1231 		receive_dmsg(hc);
1232 	if (val & 0x04) {	/* D tx */
1233 		if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1234 			del_timer(&hc->dch.timer);
1235 		tx_dirq(&hc->dch);
1236 	}
1237 	spin_unlock(&hc->lock);
1238 	return IRQ_HANDLED;
1239 }
1240 
1241 /*
1242  * timer callback for D-chan busy resolution. Currently no function
1243  */
1244 static void
1245 hfcpci_dbusy_timer(struct hfc_pci *hc)
1246 {
1247 }
1248 
1249 /*
1250  * activate/deactivate hardware for selected channels and mode
1251  */
1252 static int
1253 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1254 {
1255 	struct hfc_pci	*hc = bch->hw;
1256 	int		fifo2;
1257 	u_char		rx_slot = 0, tx_slot = 0, pcm_mode;
1258 
1259 	if (bch->debug & DEBUG_HW_BCHANNEL)
1260 		printk(KERN_DEBUG
1261 		    "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1262 		    bch->state, protocol, bch->nr, bc);
1263 
1264 	fifo2 = bc;
1265 	pcm_mode = (bc>>24) & 0xff;
1266 	if (pcm_mode) { /* PCM SLOT USE */
1267 		if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1268 			printk(KERN_WARNING
1269 			    "%s: pcm channel id without HFC_CFG_PCM\n",
1270 			    __func__);
1271 		rx_slot = (bc>>8) & 0xff;
1272 		tx_slot = (bc>>16) & 0xff;
1273 		bc = bc & 0xff;
1274 	} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1275 		printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1276 		    __func__);
1277 	if (hc->chanlimit > 1) {
1278 		hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1279 		hc->hw.sctrl_e &= ~0x80;
1280 	} else {
1281 		if (bc & 2) {
1282 			if (protocol != ISDN_P_NONE) {
1283 				hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1284 				hc->hw.sctrl_e |= 0x80;
1285 			} else {
1286 				hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1287 				hc->hw.sctrl_e &= ~0x80;
1288 			}
1289 			fifo2 = 1;
1290 		} else {
1291 			hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1292 			hc->hw.sctrl_e &= ~0x80;
1293 		}
1294 	}
1295 	switch (protocol) {
1296 	case (-1): /* used for init */
1297 		bch->state = -1;
1298 		bch->nr = bc;
1299 	case (ISDN_P_NONE):
1300 		if (bch->state == ISDN_P_NONE)
1301 			return 0;
1302 		if (bc & 2) {
1303 			hc->hw.sctrl &= ~SCTRL_B2_ENA;
1304 			hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1305 		} else {
1306 			hc->hw.sctrl &= ~SCTRL_B1_ENA;
1307 			hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1308 		}
1309 		if (fifo2 & 2) {
1310 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1311 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1312 				HFCPCI_INTS_B2REC);
1313 		} else {
1314 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1315 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1316 				HFCPCI_INTS_B1REC);
1317 		}
1318 #ifdef REVERSE_BITORDER
1319 		if (bch->nr & 2)
1320 			hc->hw.cirm &= 0x7f;
1321 		else
1322 			hc->hw.cirm &= 0xbf;
1323 #endif
1324 		bch->state = ISDN_P_NONE;
1325 		bch->nr = bc;
1326 		test_and_clear_bit(FLG_HDLC, &bch->Flags);
1327 		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1328 		break;
1329 	case (ISDN_P_B_RAW):
1330 		bch->state = protocol;
1331 		bch->nr = bc;
1332 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1333 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1334 		if (bc & 2) {
1335 			hc->hw.sctrl |= SCTRL_B2_ENA;
1336 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1337 #ifdef REVERSE_BITORDER
1338 			hc->hw.cirm |= 0x80;
1339 #endif
1340 		} else {
1341 			hc->hw.sctrl |= SCTRL_B1_ENA;
1342 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1343 #ifdef REVERSE_BITORDER
1344 			hc->hw.cirm |= 0x40;
1345 #endif
1346 		}
1347 		if (fifo2 & 2) {
1348 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1349 			if (!tics)
1350 				hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1351 				    HFCPCI_INTS_B2REC);
1352 			hc->hw.ctmt |= 2;
1353 			hc->hw.conn &= ~0x18;
1354 		} else {
1355 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1356 			if (!tics)
1357 				hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1358 				    HFCPCI_INTS_B1REC);
1359 			hc->hw.ctmt |= 1;
1360 			hc->hw.conn &= ~0x03;
1361 		}
1362 		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1363 		break;
1364 	case (ISDN_P_B_HDLC):
1365 		bch->state = protocol;
1366 		bch->nr = bc;
1367 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1368 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1369 		if (bc & 2) {
1370 			hc->hw.sctrl |= SCTRL_B2_ENA;
1371 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1372 		} else {
1373 			hc->hw.sctrl |= SCTRL_B1_ENA;
1374 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1375 		}
1376 		if (fifo2 & 2) {
1377 			hc->hw.last_bfifo_cnt[1] = 0;
1378 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1379 			hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1380 			    HFCPCI_INTS_B2REC);
1381 			hc->hw.ctmt &= ~2;
1382 			hc->hw.conn &= ~0x18;
1383 		} else {
1384 			hc->hw.last_bfifo_cnt[0] = 0;
1385 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1386 			hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1387 			    HFCPCI_INTS_B1REC);
1388 			hc->hw.ctmt &= ~1;
1389 			hc->hw.conn &= ~0x03;
1390 		}
1391 		test_and_set_bit(FLG_HDLC, &bch->Flags);
1392 		break;
1393 	default:
1394 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1395 		return -ENOPROTOOPT;
1396 	}
1397 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1398 		if ((protocol == ISDN_P_NONE) ||
1399 			(protocol == -1)) {	/* init case */
1400 			rx_slot = 0;
1401 			tx_slot = 0;
1402 		} else {
1403 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1404 				rx_slot |= 0xC0;
1405 				tx_slot |= 0xC0;
1406 			} else {
1407 				rx_slot |= 0x80;
1408 				tx_slot |= 0x80;
1409 			}
1410 		}
1411 		if (bc & 2) {
1412 			hc->hw.conn &= 0xc7;
1413 			hc->hw.conn |= 0x08;
1414 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1415 				__func__, tx_slot);
1416 			printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1417 				__func__, rx_slot);
1418 			Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1419 			Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1420 		} else {
1421 			hc->hw.conn &= 0xf8;
1422 			hc->hw.conn |= 0x01;
1423 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1424 				__func__, tx_slot);
1425 			printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1426 				__func__, rx_slot);
1427 			Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1428 			Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1429 		}
1430 	}
1431 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1432 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1433 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1434 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1435 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1436 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1437 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1438 #ifdef REVERSE_BITORDER
1439 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1440 #endif
1441 	return 0;
1442 }
1443 
1444 static int
1445 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1446 {
1447 	struct hfc_pci	*hc = bch->hw;
1448 
1449 	if (bch->debug & DEBUG_HW_BCHANNEL)
1450 		printk(KERN_DEBUG
1451 		    "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1452 		    bch->state, protocol, bch->nr, chan);
1453 	if (bch->nr != chan) {
1454 		printk(KERN_DEBUG
1455 		    "HFCPCI rxtest wrong channel parameter %x/%x\n",
1456 		    bch->nr, chan);
1457 		return -EINVAL;
1458 	}
1459 	switch (protocol) {
1460 	case (ISDN_P_B_RAW):
1461 		bch->state = protocol;
1462 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1463 		if (chan & 2) {
1464 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1465 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1466 			if (!tics)
1467 				hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1468 			hc->hw.ctmt |= 2;
1469 			hc->hw.conn &= ~0x18;
1470 #ifdef REVERSE_BITORDER
1471 			hc->hw.cirm |= 0x80;
1472 #endif
1473 		} else {
1474 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1475 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1476 			if (!tics)
1477 				hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1478 			hc->hw.ctmt |= 1;
1479 			hc->hw.conn &= ~0x03;
1480 #ifdef REVERSE_BITORDER
1481 			hc->hw.cirm |= 0x40;
1482 #endif
1483 		}
1484 		break;
1485 	case (ISDN_P_B_HDLC):
1486 		bch->state = protocol;
1487 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1488 		if (chan & 2) {
1489 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1490 			hc->hw.last_bfifo_cnt[1] = 0;
1491 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1492 			hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1493 			hc->hw.ctmt &= ~2;
1494 			hc->hw.conn &= ~0x18;
1495 		} else {
1496 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1497 			hc->hw.last_bfifo_cnt[0] = 0;
1498 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1499 			hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1500 			hc->hw.ctmt &= ~1;
1501 			hc->hw.conn &= ~0x03;
1502 		}
1503 		break;
1504 	default:
1505 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1506 		return -ENOPROTOOPT;
1507 	}
1508 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1509 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1510 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1511 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1512 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1513 #ifdef REVERSE_BITORDER
1514 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1515 #endif
1516 	return 0;
1517 }
1518 
1519 static void
1520 deactivate_bchannel(struct bchannel *bch)
1521 {
1522 	struct hfc_pci	*hc = bch->hw;
1523 	u_long		flags;
1524 
1525 	spin_lock_irqsave(&hc->lock, flags);
1526 	mISDN_clear_bchannel(bch);
1527 	mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1528 	spin_unlock_irqrestore(&hc->lock, flags);
1529 }
1530 
1531 /*
1532  * Layer 1 B-channel hardware access
1533  */
1534 static int
1535 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1536 {
1537 	int	ret = 0;
1538 
1539 	switch (cq->op) {
1540 	case MISDN_CTRL_GETOP:
1541 		cq->op = MISDN_CTRL_FILL_EMPTY;
1542 		break;
1543 	case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
1544 		test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
1545 		if (debug & DEBUG_HW_OPEN)
1546 			printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
1547 				"off=%d)\n", __func__, bch->nr, !!cq->p1);
1548 		break;
1549 	default:
1550 		printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
1551 		ret = -EINVAL;
1552 		break;
1553 	}
1554 	return ret;
1555 }
1556 static int
1557 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1558 {
1559 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1560 	struct hfc_pci	*hc = bch->hw;
1561 	int		ret = -EINVAL;
1562 	u_long		flags;
1563 
1564 	if (bch->debug & DEBUG_HW)
1565 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1566 	switch (cmd) {
1567 	case HW_TESTRX_RAW:
1568 		spin_lock_irqsave(&hc->lock, flags);
1569 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1570 		spin_unlock_irqrestore(&hc->lock, flags);
1571 		break;
1572 	case HW_TESTRX_HDLC:
1573 		spin_lock_irqsave(&hc->lock, flags);
1574 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1575 		spin_unlock_irqrestore(&hc->lock, flags);
1576 		break;
1577 	case HW_TESTRX_OFF:
1578 		spin_lock_irqsave(&hc->lock, flags);
1579 		mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1580 		spin_unlock_irqrestore(&hc->lock, flags);
1581 		ret = 0;
1582 		break;
1583 	case CLOSE_CHANNEL:
1584 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1585 		if (test_bit(FLG_ACTIVE, &bch->Flags))
1586 			deactivate_bchannel(bch);
1587 		ch->protocol = ISDN_P_NONE;
1588 		ch->peer = NULL;
1589 		module_put(THIS_MODULE);
1590 		ret = 0;
1591 		break;
1592 	case CONTROL_CHANNEL:
1593 		ret = channel_bctrl(bch, arg);
1594 		break;
1595 	default:
1596 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1597 			__func__, cmd);
1598 	}
1599 	return ret;
1600 }
1601 
1602 /*
1603  * Layer2 -> Layer 1 Dchannel data
1604  */
1605 static int
1606 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1607 {
1608 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1609 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1610 	struct hfc_pci		*hc = dch->hw;
1611 	int			ret = -EINVAL;
1612 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1613 	unsigned int		id;
1614 	u_long			flags;
1615 
1616 	switch (hh->prim) {
1617 	case PH_DATA_REQ:
1618 		spin_lock_irqsave(&hc->lock, flags);
1619 		ret = dchannel_senddata(dch, skb);
1620 		if (ret > 0) { /* direct TX */
1621 			id = hh->id; /* skb can be freed */
1622 			hfcpci_fill_dfifo(dch->hw);
1623 			ret = 0;
1624 			spin_unlock_irqrestore(&hc->lock, flags);
1625 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1626 		} else
1627 			spin_unlock_irqrestore(&hc->lock, flags);
1628 		return ret;
1629 	case PH_ACTIVATE_REQ:
1630 		spin_lock_irqsave(&hc->lock, flags);
1631 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1632 			ret = 0;
1633 			if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1634 				hc->hw.mst_m |= HFCPCI_MASTER;
1635 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1636 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1637 				spin_unlock_irqrestore(&hc->lock, flags);
1638 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1639 				    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1640 				break;
1641 			}
1642 			test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1643 			Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1644 			    HFCPCI_DO_ACTION | 1);
1645 		} else
1646 			ret = l1_event(dch->l1, hh->prim);
1647 		spin_unlock_irqrestore(&hc->lock, flags);
1648 		break;
1649 	case PH_DEACTIVATE_REQ:
1650 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1651 		spin_lock_irqsave(&hc->lock, flags);
1652 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1653 			/* prepare deactivation */
1654 			Write_hfc(hc, HFCPCI_STATES, 0x40);
1655 			skb_queue_purge(&dch->squeue);
1656 			if (dch->tx_skb) {
1657 				dev_kfree_skb(dch->tx_skb);
1658 				dch->tx_skb = NULL;
1659 			}
1660 			dch->tx_idx = 0;
1661 			if (dch->rx_skb) {
1662 				dev_kfree_skb(dch->rx_skb);
1663 				dch->rx_skb = NULL;
1664 			}
1665 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1666 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1667 				del_timer(&dch->timer);
1668 #ifdef FIXME
1669 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1670 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1671 #endif
1672 			hc->hw.mst_m &= ~HFCPCI_MASTER;
1673 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1674 			ret = 0;
1675 		} else {
1676 			ret = l1_event(dch->l1, hh->prim);
1677 		}
1678 		spin_unlock_irqrestore(&hc->lock, flags);
1679 		break;
1680 	}
1681 	if (!ret)
1682 		dev_kfree_skb(skb);
1683 	return ret;
1684 }
1685 
1686 /*
1687  * Layer2 -> Layer 1 Bchannel data
1688  */
1689 static int
1690 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1691 {
1692 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
1693 	struct hfc_pci		*hc = bch->hw;
1694 	int			ret = -EINVAL;
1695 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1696 	unsigned int		id;
1697 	u_long			flags;
1698 
1699 	switch (hh->prim) {
1700 	case PH_DATA_REQ:
1701 		spin_lock_irqsave(&hc->lock, flags);
1702 		ret = bchannel_senddata(bch, skb);
1703 		if (ret > 0) { /* direct TX */
1704 			id = hh->id; /* skb can be freed */
1705 			hfcpci_fill_fifo(bch);
1706 			ret = 0;
1707 			spin_unlock_irqrestore(&hc->lock, flags);
1708 			if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1709 				queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1710 		} else
1711 			spin_unlock_irqrestore(&hc->lock, flags);
1712 		return ret;
1713 	case PH_ACTIVATE_REQ:
1714 		spin_lock_irqsave(&hc->lock, flags);
1715 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1716 			ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1717 		else
1718 			ret = 0;
1719 		spin_unlock_irqrestore(&hc->lock, flags);
1720 		if (!ret)
1721 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1722 				NULL, GFP_KERNEL);
1723 		break;
1724 	case PH_DEACTIVATE_REQ:
1725 		deactivate_bchannel(bch);
1726 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1727 			NULL, GFP_KERNEL);
1728 		ret = 0;
1729 		break;
1730 	}
1731 	if (!ret)
1732 		dev_kfree_skb(skb);
1733 	return ret;
1734 }
1735 
1736 /*
1737  * called for card init message
1738  */
1739 
1740 static void
1741 inithfcpci(struct hfc_pci *hc)
1742 {
1743 	printk(KERN_DEBUG "inithfcpci: entered\n");
1744 	hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1745 	hc->dch.timer.data = (long) &hc->dch;
1746 	init_timer(&hc->dch.timer);
1747 	hc->chanlimit = 2;
1748 	mode_hfcpci(&hc->bch[0], 1, -1);
1749 	mode_hfcpci(&hc->bch[1], 2, -1);
1750 }
1751 
1752 
1753 static int
1754 init_card(struct hfc_pci *hc)
1755 {
1756 	int	cnt = 3;
1757 	u_long	flags;
1758 
1759 	printk(KERN_DEBUG "init_card: entered\n");
1760 
1761 
1762 	spin_lock_irqsave(&hc->lock, flags);
1763 	disable_hwirq(hc);
1764 	spin_unlock_irqrestore(&hc->lock, flags);
1765 	if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1766 		printk(KERN_WARNING
1767 		    "mISDN: couldn't get interrupt %d\n", hc->irq);
1768 		return -EIO;
1769 	}
1770 	spin_lock_irqsave(&hc->lock, flags);
1771 	reset_hfcpci(hc);
1772 	while (cnt) {
1773 		inithfcpci(hc);
1774 		/*
1775 		 * Finally enable IRQ output
1776 		 * this is only allowed, if an IRQ routine is already
1777 		 * established for this HFC, so don't do that earlier
1778 		 */
1779 		enable_hwirq(hc);
1780 		spin_unlock_irqrestore(&hc->lock, flags);
1781 		/* Timeout 80ms */
1782 		current->state = TASK_UNINTERRUPTIBLE;
1783 		schedule_timeout((80*HZ)/1000);
1784 		printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1785 			hc->irq, hc->irqcnt);
1786 		/* now switch timer interrupt off */
1787 		spin_lock_irqsave(&hc->lock, flags);
1788 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1789 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1790 		/* reinit mode reg */
1791 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1792 		if (!hc->irqcnt) {
1793 			printk(KERN_WARNING
1794 			    "HFC PCI: IRQ(%d) getting no interrupts "
1795 			    "during init %d\n", hc->irq, 4 - cnt);
1796 			if (cnt == 1)
1797 				break;
1798 			else {
1799 				reset_hfcpci(hc);
1800 				cnt--;
1801 			}
1802 		} else {
1803 			spin_unlock_irqrestore(&hc->lock, flags);
1804 			hc->initdone = 1;
1805 			return 0;
1806 		}
1807 	}
1808 	disable_hwirq(hc);
1809 	spin_unlock_irqrestore(&hc->lock, flags);
1810 	free_irq(hc->irq, hc);
1811 	return -EIO;
1812 }
1813 
1814 static int
1815 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1816 {
1817 	int	ret = 0;
1818 	u_char	slot;
1819 
1820 	switch (cq->op) {
1821 	case MISDN_CTRL_GETOP:
1822 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1823 		    MISDN_CTRL_DISCONNECT;
1824 		break;
1825 	case MISDN_CTRL_LOOP:
1826 		/* channel 0 disabled loop */
1827 		if (cq->channel < 0 || cq->channel > 2) {
1828 			ret = -EINVAL;
1829 			break;
1830 		}
1831 		if (cq->channel & 1) {
1832 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1833 				slot = 0xC0;
1834 			else
1835 				slot = 0x80;
1836 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1837 			    __func__, slot);
1838 			Write_hfc(hc, HFCPCI_B1_SSL, slot);
1839 			Write_hfc(hc, HFCPCI_B1_RSL, slot);
1840 			hc->hw.conn = (hc->hw.conn & ~7) | 6;
1841 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1842 		}
1843 		if (cq->channel & 2) {
1844 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1845 				slot = 0xC1;
1846 			else
1847 				slot = 0x81;
1848 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1849 			    __func__, slot);
1850 			Write_hfc(hc, HFCPCI_B2_SSL, slot);
1851 			Write_hfc(hc, HFCPCI_B2_RSL, slot);
1852 			hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1853 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1854 		}
1855 		if (cq->channel & 3)
1856 			hc->hw.trm |= 0x80;	/* enable IOM-loop */
1857 		else {
1858 			hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1859 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1860 			hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1861 		}
1862 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1863 		break;
1864 	case MISDN_CTRL_CONNECT:
1865 		if (cq->channel == cq->p1) {
1866 			ret = -EINVAL;
1867 			break;
1868 		}
1869 		if (cq->channel < 1 || cq->channel > 2 ||
1870 		    cq->p1 < 1 || cq->p1 > 2) {
1871 			ret = -EINVAL;
1872 			break;
1873 		}
1874 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1875 			slot = 0xC0;
1876 		else
1877 			slot = 0x80;
1878 		printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1879 		    __func__, slot);
1880 		Write_hfc(hc, HFCPCI_B1_SSL, slot);
1881 		Write_hfc(hc, HFCPCI_B2_RSL, slot);
1882 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1883 			slot = 0xC1;
1884 		else
1885 			slot = 0x81;
1886 		printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1887 		    __func__, slot);
1888 		Write_hfc(hc, HFCPCI_B2_SSL, slot);
1889 		Write_hfc(hc, HFCPCI_B1_RSL, slot);
1890 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1891 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1892 		hc->hw.trm |= 0x80;
1893 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1894 		break;
1895 	case MISDN_CTRL_DISCONNECT:
1896 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1897 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1898 		hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1899 		break;
1900 	default:
1901 		printk(KERN_WARNING "%s: unknown Op %x\n",
1902 		    __func__, cq->op);
1903 		ret = -EINVAL;
1904 		break;
1905 	}
1906 	return ret;
1907 }
1908 
1909 static int
1910 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1911     struct channel_req *rq)
1912 {
1913 	int err = 0;
1914 
1915 	if (debug & DEBUG_HW_OPEN)
1916 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1917 		    hc->dch.dev.id, __builtin_return_address(0));
1918 	if (rq->protocol == ISDN_P_NONE)
1919 		return -EINVAL;
1920 	if (rq->adr.channel == 1) {
1921 		/* TODO: E-Channel */
1922 		return -EINVAL;
1923 	}
1924 	if (!hc->initdone) {
1925 		if (rq->protocol == ISDN_P_TE_S0) {
1926 			err = create_l1(&hc->dch, hfc_l1callback);
1927 			if (err)
1928 				return err;
1929 		}
1930 		hc->hw.protocol = rq->protocol;
1931 		ch->protocol = rq->protocol;
1932 		err = init_card(hc);
1933 		if (err)
1934 			return err;
1935 	} else {
1936 		if (rq->protocol != ch->protocol) {
1937 			if (hc->hw.protocol == ISDN_P_TE_S0)
1938 				l1_event(hc->dch.l1, CLOSE_CHANNEL);
1939 			if (rq->protocol == ISDN_P_TE_S0) {
1940 				err = create_l1(&hc->dch, hfc_l1callback);
1941 				if (err)
1942 					return err;
1943 			}
1944 			hc->hw.protocol = rq->protocol;
1945 			ch->protocol = rq->protocol;
1946 			hfcpci_setmode(hc);
1947 		}
1948 	}
1949 
1950 	if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1951 	    ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1952 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1953 		    0, NULL, GFP_KERNEL);
1954 	}
1955 	rq->ch = ch;
1956 	if (!try_module_get(THIS_MODULE))
1957 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1958 	return 0;
1959 }
1960 
1961 static int
1962 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1963 {
1964 	struct bchannel		*bch;
1965 
1966 	if (rq->adr.channel > 2)
1967 		return -EINVAL;
1968 	if (rq->protocol == ISDN_P_NONE)
1969 		return -EINVAL;
1970 	bch = &hc->bch[rq->adr.channel - 1];
1971 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1972 		return -EBUSY; /* b-channel can be only open once */
1973 	test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
1974 	bch->ch.protocol = rq->protocol;
1975 	rq->ch = &bch->ch; /* TODO: E-channel */
1976 	if (!try_module_get(THIS_MODULE))
1977 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1978 	return 0;
1979 }
1980 
1981 /*
1982  * device control function
1983  */
1984 static int
1985 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1986 {
1987 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1988 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1989 	struct hfc_pci		*hc = dch->hw;
1990 	struct channel_req	*rq;
1991 	int			err = 0;
1992 
1993 	if (dch->debug & DEBUG_HW)
1994 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
1995 		    __func__, cmd, arg);
1996 	switch (cmd) {
1997 	case OPEN_CHANNEL:
1998 		rq = arg;
1999 		if ((rq->protocol == ISDN_P_TE_S0) ||
2000 		    (rq->protocol == ISDN_P_NT_S0))
2001 			err = open_dchannel(hc, ch, rq);
2002 		else
2003 			err = open_bchannel(hc, rq);
2004 		break;
2005 	case CLOSE_CHANNEL:
2006 		if (debug & DEBUG_HW_OPEN)
2007 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
2008 			    __func__, hc->dch.dev.id,
2009 			    __builtin_return_address(0));
2010 		module_put(THIS_MODULE);
2011 		break;
2012 	case CONTROL_CHANNEL:
2013 		err = channel_ctrl(hc, arg);
2014 		break;
2015 	default:
2016 		if (dch->debug & DEBUG_HW)
2017 			printk(KERN_DEBUG "%s: unknown command %x\n",
2018 			    __func__, cmd);
2019 		return -EINVAL;
2020 	}
2021 	return err;
2022 }
2023 
2024 static int
2025 setup_hw(struct hfc_pci *hc)
2026 {
2027 	void	*buffer;
2028 
2029 	printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2030 	hc->hw.cirm = 0;
2031 	hc->dch.state = 0;
2032 	pci_set_master(hc->pdev);
2033 	if (!hc->irq) {
2034 		printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2035 		return 1;
2036 	}
2037 	hc->hw.pci_io =
2038 		(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2039 
2040 	if (!hc->hw.pci_io) {
2041 		printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2042 		return 1;
2043 	}
2044 	/* Allocate memory for FIFOS */
2045 	/* the memory needs to be on a 32k boundary within the first 4G */
2046 	pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2047 	buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2048 	/* We silently assume the address is okay if nonzero */
2049 	if (!buffer) {
2050 		printk(KERN_WARNING
2051 		    "HFC-PCI: Error allocating memory for FIFO!\n");
2052 		return 1;
2053 	}
2054 	hc->hw.fifos = buffer;
2055 	pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2056 	hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2057 	printk(KERN_INFO
2058 		"HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2059 		(u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2060 		(u_long) hc->hw.dmahandle, hc->irq, HZ);
2061 	/* enable memory mapped ports, disable busmaster */
2062 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2063 	hc->hw.int_m2 = 0;
2064 	disable_hwirq(hc);
2065 	hc->hw.int_m1 = 0;
2066 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2067 	/* At this point the needed PCI config is done */
2068 	/* fifos are still not enabled */
2069 	hc->hw.timer.function = (void *) hfcpci_Timer;
2070 	hc->hw.timer.data = (long) hc;
2071 	init_timer(&hc->hw.timer);
2072 	/* default PCM master */
2073 	test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2074 	return 0;
2075 }
2076 
2077 static void
2078 release_card(struct hfc_pci *hc) {
2079 	u_long	flags;
2080 
2081 	spin_lock_irqsave(&hc->lock, flags);
2082 	hc->hw.int_m2 = 0; /* interrupt output off ! */
2083 	disable_hwirq(hc);
2084 	mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2085 	mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2086 	if (hc->dch.timer.function != NULL) {
2087 		del_timer(&hc->dch.timer);
2088 		hc->dch.timer.function = NULL;
2089 	}
2090 	spin_unlock_irqrestore(&hc->lock, flags);
2091 	if (hc->hw.protocol == ISDN_P_TE_S0)
2092 		l1_event(hc->dch.l1, CLOSE_CHANNEL);
2093 	if (hc->initdone)
2094 		free_irq(hc->irq, hc);
2095 	release_io_hfcpci(hc); /* must release after free_irq! */
2096 	mISDN_unregister_device(&hc->dch.dev);
2097 	mISDN_freebchannel(&hc->bch[1]);
2098 	mISDN_freebchannel(&hc->bch[0]);
2099 	mISDN_freedchannel(&hc->dch);
2100 	pci_set_drvdata(hc->pdev, NULL);
2101 	kfree(hc);
2102 }
2103 
2104 static int
2105 setup_card(struct hfc_pci *card)
2106 {
2107 	int		err = -EINVAL;
2108 	u_int		i;
2109 	char		name[MISDN_MAX_IDLEN];
2110 
2111 	card->dch.debug = debug;
2112 	spin_lock_init(&card->lock);
2113 	mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2114 	card->dch.hw = card;
2115 	card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2116 	card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2117 	    (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2118 	card->dch.dev.D.send = hfcpci_l2l1D;
2119 	card->dch.dev.D.ctrl = hfc_dctrl;
2120 	card->dch.dev.nrbchan = 2;
2121 	for (i = 0; i < 2; i++) {
2122 		card->bch[i].nr = i + 1;
2123 		set_channelmap(i + 1, card->dch.dev.channelmap);
2124 		card->bch[i].debug = debug;
2125 		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM);
2126 		card->bch[i].hw = card;
2127 		card->bch[i].ch.send = hfcpci_l2l1B;
2128 		card->bch[i].ch.ctrl = hfc_bctrl;
2129 		card->bch[i].ch.nr = i + 1;
2130 		list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2131 	}
2132 	err = setup_hw(card);
2133 	if (err)
2134 		goto error;
2135 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2136 	err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2137 	if (err)
2138 		goto error;
2139 	HFC_cnt++;
2140 	printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2141 	return 0;
2142 error:
2143 	mISDN_freebchannel(&card->bch[1]);
2144 	mISDN_freebchannel(&card->bch[0]);
2145 	mISDN_freedchannel(&card->dch);
2146 	kfree(card);
2147 	return err;
2148 }
2149 
2150 /* private data in the PCI devices list */
2151 struct _hfc_map {
2152 	u_int	subtype;
2153 	u_int	flag;
2154 	char	*name;
2155 };
2156 
2157 static const struct _hfc_map hfc_map[] =
2158 {
2159 	{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2160 	{HFC_CCD_B000, 0, "Billion B000"},
2161 	{HFC_CCD_B006, 0, "Billion B006"},
2162 	{HFC_CCD_B007, 0, "Billion B007"},
2163 	{HFC_CCD_B008, 0, "Billion B008"},
2164 	{HFC_CCD_B009, 0, "Billion B009"},
2165 	{HFC_CCD_B00A, 0, "Billion B00A"},
2166 	{HFC_CCD_B00B, 0, "Billion B00B"},
2167 	{HFC_CCD_B00C, 0, "Billion B00C"},
2168 	{HFC_CCD_B100, 0, "Seyeon B100"},
2169 	{HFC_CCD_B700, 0, "Primux II S0 B700"},
2170 	{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2171 	{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2172 	{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2173 	{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2174 	{HFC_BERKOM_A1T, 0, "German telekom A1T"},
2175 	{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2176 	{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2177 	{HFC_DIGI_DF_M_IOM2_E, 0,
2178 	    "Digi International DataFire Micro V IOM2 (Europe)"},
2179 	{HFC_DIGI_DF_M_E, 0,
2180 	    "Digi International DataFire Micro V (Europe)"},
2181 	{HFC_DIGI_DF_M_IOM2_A, 0,
2182 	    "Digi International DataFire Micro V IOM2 (North America)"},
2183 	{HFC_DIGI_DF_M_A, 0,
2184 	    "Digi International DataFire Micro V (North America)"},
2185 	{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2186 	{},
2187 };
2188 
2189 static struct pci_device_id hfc_ids[] =
2190 {
2191 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2192 		(unsigned long) &hfc_map[0] },
2193 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2194 		(unsigned long) &hfc_map[1] },
2195 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2196 		(unsigned long) &hfc_map[2] },
2197 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2198 		(unsigned long) &hfc_map[3] },
2199 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2200 		(unsigned long) &hfc_map[4] },
2201 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2202 		(unsigned long) &hfc_map[5] },
2203 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2204 		(unsigned long) &hfc_map[6] },
2205 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2206 		(unsigned long) &hfc_map[7] },
2207 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2208 		(unsigned long) &hfc_map[8] },
2209 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2210 		(unsigned long) &hfc_map[9] },
2211 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2212 		(unsigned long) &hfc_map[10] },
2213 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2214 		(unsigned long) &hfc_map[11] },
2215 	{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2216 		(unsigned long) &hfc_map[12] },
2217 	{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2218 		(unsigned long) &hfc_map[13] },
2219 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2220 		(unsigned long) &hfc_map[14] },
2221 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2222 		(unsigned long) &hfc_map[15] },
2223 	{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2224 		(unsigned long) &hfc_map[16] },
2225 	{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2226 		(unsigned long) &hfc_map[17] },
2227 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2228 		(unsigned long) &hfc_map[18] },
2229 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2230 		(unsigned long) &hfc_map[19] },
2231 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2232 		(unsigned long) &hfc_map[20] },
2233 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2234 		(unsigned long) &hfc_map[21] },
2235 	{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2236 		(unsigned long) &hfc_map[22] },
2237 	{},
2238 };
2239 
2240 static int __devinit
2241 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2242 {
2243 	int		err = -ENOMEM;
2244 	struct hfc_pci	*card;
2245 	struct _hfc_map	*m = (struct _hfc_map *)ent->driver_data;
2246 
2247 	card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2248 	if (!card) {
2249 		printk(KERN_ERR "No kmem for HFC card\n");
2250 		return err;
2251 	}
2252 	card->pdev = pdev;
2253 	card->subtype = m->subtype;
2254 	err = pci_enable_device(pdev);
2255 	if (err) {
2256 		kfree(card);
2257 		return err;
2258 	}
2259 
2260 	printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2261 	       m->name, pci_name(pdev));
2262 
2263 	card->irq = pdev->irq;
2264 	pci_set_drvdata(pdev, card);
2265 	err = setup_card(card);
2266 	if (err)
2267 		pci_set_drvdata(pdev, NULL);
2268 	return err;
2269 }
2270 
2271 static void __devexit
2272 hfc_remove_pci(struct pci_dev *pdev)
2273 {
2274 	struct hfc_pci	*card = pci_get_drvdata(pdev);
2275 
2276 	if (card)
2277 		release_card(card);
2278 	else
2279 		if (debug)
2280 			printk(KERN_DEBUG "%s: drvdata already removed\n",
2281 			    __func__);
2282 }
2283 
2284 
2285 static struct pci_driver hfc_driver = {
2286 	.name = "hfcpci",
2287 	.probe = hfc_probe,
2288 	.remove = __devexit_p(hfc_remove_pci),
2289 	.id_table = hfc_ids,
2290 };
2291 
2292 static int
2293 _hfcpci_softirq(struct device *dev, void *arg)
2294 {
2295 	struct hfc_pci  *hc = dev_get_drvdata(dev);
2296 	struct bchannel *bch;
2297 	if (hc == NULL)
2298 		return 0;
2299 
2300 	if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2301 		spin_lock(&hc->lock);
2302 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2303 		if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2304 			main_rec_hfcpci(bch);
2305 			tx_birq(bch);
2306 		}
2307 		bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2308 		if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2309 			main_rec_hfcpci(bch);
2310 			tx_birq(bch);
2311 		}
2312 		spin_unlock(&hc->lock);
2313 	}
2314 	return 0;
2315 }
2316 
2317 static void
2318 hfcpci_softirq(void *arg)
2319 {
2320 	(void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2321 					_hfcpci_softirq);
2322 
2323 	/* if next event would be in the past ... */
2324 	if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2325 		hfc_jiffies = jiffies + 1;
2326 	else
2327 		hfc_jiffies += tics;
2328 	hfc_tl.expires = hfc_jiffies;
2329 	add_timer(&hfc_tl);
2330 }
2331 
2332 static int __init
2333 HFC_init(void)
2334 {
2335 	int		err;
2336 
2337 	if (!poll)
2338 		poll = HFCPCI_BTRANS_THRESHOLD;
2339 
2340 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2341 		tics = (poll * HZ) / 8000;
2342 		if (tics < 1)
2343 			tics = 1;
2344 		poll = (tics * 8000) / HZ;
2345 		if (poll > 256 || poll < 8) {
2346 			printk(KERN_ERR "%s: Wrong poll value %d not in range "
2347 				"of 8..256.\n", __func__, poll);
2348 			err = -EINVAL;
2349 			return err;
2350 		}
2351 	}
2352 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2353 		printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2354 			__func__, poll);
2355 		hfc_tl.function = (void *)hfcpci_softirq;
2356 		hfc_tl.data = 0;
2357 		init_timer(&hfc_tl);
2358 		hfc_tl.expires = jiffies + tics;
2359 		hfc_jiffies = hfc_tl.expires;
2360 		add_timer(&hfc_tl);
2361 	} else
2362 		tics = 0; /* indicate the use of controller's timer */
2363 
2364 	err = pci_register_driver(&hfc_driver);
2365 	if (err) {
2366 		if (timer_pending(&hfc_tl))
2367 			del_timer(&hfc_tl);
2368 	}
2369 
2370 	return err;
2371 }
2372 
2373 static void __exit
2374 HFC_cleanup(void)
2375 {
2376 	if (timer_pending(&hfc_tl))
2377 		del_timer(&hfc_tl);
2378 
2379 	pci_unregister_driver(&hfc_driver);
2380 }
2381 
2382 module_init(HFC_init);
2383 module_exit(HFC_cleanup);
2384 
2385 MODULE_DEVICE_TABLE(pci, hfc_ids);
2386