1 /* 2 * 3 * hfcpci.c low level driver for CCD's hfc-pci based cards 4 * 5 * Author Werner Cornelius (werner@isdn4linux.de) 6 * based on existing driver for CCD hfc ISA cards 7 * type approval valid for HFC-S PCI A based card 8 * 9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de) 10 * Copyright 2008 by Karsten Keil <kkeil@novell.com> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module options: 27 * 28 * debug: 29 * NOTE: only one poll value must be given for all cards 30 * See hfc_pci.h for debug flags. 31 * 32 * poll: 33 * NOTE: only one poll value must be given for all cards 34 * Give the number of samples for each fifo process. 35 * By default 128 is used. Decrease to reduce delay, increase to 36 * reduce cpu load. If unsure, don't mess with it! 37 * A value of 128 will use controller's interrupt. Other values will 38 * use kernel timer, because the controller will not allow lower values 39 * than 128. 40 * Also note that the value depends on the kernel timer frequency. 41 * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible. 42 * If the kernel uses 100 Hz, steps of 80 samples are possible. 43 * If the kernel uses 300 Hz, steps of about 26 samples are possible. 44 * 45 */ 46 47 #include <linux/interrupt.h> 48 #include <linux/module.h> 49 #include <linux/pci.h> 50 #include <linux/delay.h> 51 #include <linux/mISDNhw.h> 52 #include <linux/slab.h> 53 54 #include "hfc_pci.h" 55 56 static const char *hfcpci_revision = "2.0"; 57 58 static int HFC_cnt; 59 static uint debug; 60 static uint poll, tics; 61 static struct timer_list hfc_tl; 62 static unsigned long hfc_jiffies; 63 64 MODULE_AUTHOR("Karsten Keil"); 65 MODULE_LICENSE("GPL"); 66 module_param(debug, uint, S_IRUGO | S_IWUSR); 67 module_param(poll, uint, S_IRUGO | S_IWUSR); 68 69 enum { 70 HFC_CCD_2BD0, 71 HFC_CCD_B000, 72 HFC_CCD_B006, 73 HFC_CCD_B007, 74 HFC_CCD_B008, 75 HFC_CCD_B009, 76 HFC_CCD_B00A, 77 HFC_CCD_B00B, 78 HFC_CCD_B00C, 79 HFC_CCD_B100, 80 HFC_CCD_B700, 81 HFC_CCD_B701, 82 HFC_ASUS_0675, 83 HFC_BERKOM_A1T, 84 HFC_BERKOM_TCONCEPT, 85 HFC_ANIGMA_MC145575, 86 HFC_ZOLTRIX_2BD0, 87 HFC_DIGI_DF_M_IOM2_E, 88 HFC_DIGI_DF_M_E, 89 HFC_DIGI_DF_M_IOM2_A, 90 HFC_DIGI_DF_M_A, 91 HFC_ABOCOM_2BD1, 92 HFC_SITECOM_DC105V2, 93 }; 94 95 struct hfcPCI_hw { 96 unsigned char cirm; 97 unsigned char ctmt; 98 unsigned char clkdel; 99 unsigned char states; 100 unsigned char conn; 101 unsigned char mst_m; 102 unsigned char int_m1; 103 unsigned char int_m2; 104 unsigned char sctrl; 105 unsigned char sctrl_r; 106 unsigned char sctrl_e; 107 unsigned char trm; 108 unsigned char fifo_en; 109 unsigned char bswapped; 110 unsigned char protocol; 111 int nt_timer; 112 unsigned char __iomem *pci_io; /* start of PCI IO memory */ 113 dma_addr_t dmahandle; 114 void *fifos; /* FIFO memory */ 115 int last_bfifo_cnt[2]; 116 /* marker saving last b-fifo frame count */ 117 struct timer_list timer; 118 }; 119 120 #define HFC_CFG_MASTER 1 121 #define HFC_CFG_SLAVE 2 122 #define HFC_CFG_PCM 3 123 #define HFC_CFG_2HFC 4 124 #define HFC_CFG_SLAVEHFC 5 125 #define HFC_CFG_NEG_F0 6 126 #define HFC_CFG_SW_DD_DU 7 127 128 #define FLG_HFC_TIMER_T1 16 129 #define FLG_HFC_TIMER_T3 17 130 131 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */ 132 #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */ 133 #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */ 134 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */ 135 136 137 struct hfc_pci { 138 u_char subtype; 139 u_char chanlimit; 140 u_char initdone; 141 u_long cfg; 142 u_int irq; 143 u_int irqcnt; 144 struct pci_dev *pdev; 145 struct hfcPCI_hw hw; 146 spinlock_t lock; /* card lock */ 147 struct dchannel dch; 148 struct bchannel bch[2]; 149 }; 150 151 /* Interface functions */ 152 static void 153 enable_hwirq(struct hfc_pci *hc) 154 { 155 hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE; 156 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2); 157 } 158 159 static void 160 disable_hwirq(struct hfc_pci *hc) 161 { 162 hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE); 163 Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2); 164 } 165 166 /* 167 * free hardware resources used by driver 168 */ 169 static void 170 release_io_hfcpci(struct hfc_pci *hc) 171 { 172 /* disable memory mapped ports + busmaster */ 173 pci_write_config_word(hc->pdev, PCI_COMMAND, 0); 174 del_timer(&hc->hw.timer); 175 pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle); 176 iounmap(hc->hw.pci_io); 177 } 178 179 /* 180 * set mode (NT or TE) 181 */ 182 static void 183 hfcpci_setmode(struct hfc_pci *hc) 184 { 185 if (hc->hw.protocol == ISDN_P_NT_S0) { 186 hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */ 187 hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */ 188 hc->hw.states = 1; /* G1 */ 189 } else { 190 hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */ 191 hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */ 192 hc->hw.states = 2; /* F2 */ 193 } 194 Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel); 195 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states); 196 udelay(10); 197 Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */ 198 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl); 199 } 200 201 /* 202 * function called to reset the HFC PCI chip. A complete software reset of chip 203 * and fifos is done. 204 */ 205 static void 206 reset_hfcpci(struct hfc_pci *hc) 207 { 208 u_char val; 209 int cnt = 0; 210 211 printk(KERN_DEBUG "reset_hfcpci: entered\n"); 212 val = Read_hfc(hc, HFCPCI_CHIP_ID); 213 printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val); 214 /* enable memory mapped ports, disable busmaster */ 215 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO); 216 disable_hwirq(hc); 217 /* enable memory ports + busmaster */ 218 pci_write_config_word(hc->pdev, PCI_COMMAND, 219 PCI_ENA_MEMIO + PCI_ENA_MASTER); 220 val = Read_hfc(hc, HFCPCI_STATUS); 221 printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val); 222 hc->hw.cirm = HFCPCI_RESET; /* Reset On */ 223 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 224 set_current_state(TASK_UNINTERRUPTIBLE); 225 mdelay(10); /* Timeout 10ms */ 226 hc->hw.cirm = 0; /* Reset Off */ 227 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 228 val = Read_hfc(hc, HFCPCI_STATUS); 229 printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val); 230 while (cnt < 50000) { /* max 50000 us */ 231 udelay(5); 232 cnt += 5; 233 val = Read_hfc(hc, HFCPCI_STATUS); 234 if (!(val & 2)) 235 break; 236 } 237 printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt); 238 239 hc->hw.fifo_en = 0x30; /* only D fifos enabled */ 240 241 hc->hw.bswapped = 0; /* no exchange */ 242 hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER; 243 hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */ 244 hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */ 245 hc->hw.sctrl_r = 0; 246 hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */ 247 hc->hw.mst_m = 0; 248 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 249 hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */ 250 if (test_bit(HFC_CFG_NEG_F0, &hc->cfg)) 251 hc->hw.mst_m |= HFCPCI_F0_NEGATIV; 252 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 253 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 254 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e); 255 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 256 257 hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC | 258 HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER; 259 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 260 261 /* Clear already pending ints */ 262 val = Read_hfc(hc, HFCPCI_INT_S1); 263 264 /* set NT/TE mode */ 265 hfcpci_setmode(hc); 266 267 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 268 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 269 270 /* 271 * Init GCI/IOM2 in master mode 272 * Slots 0 and 1 are set for B-chan 1 and 2 273 * D- and monitor/CI channel are not enabled 274 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC 275 * STIO2 is used as data input, B1+B2 from IOM->ST 276 * ST B-channel send disabled -> continuous 1s 277 * The IOM slots are always enabled 278 */ 279 if (test_bit(HFC_CFG_PCM, &hc->cfg)) { 280 /* set data flow directions: connect B1,B2: HFC to/from PCM */ 281 hc->hw.conn = 0x09; 282 } else { 283 hc->hw.conn = 0x36; /* set data flow directions */ 284 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) { 285 Write_hfc(hc, HFCPCI_B1_SSL, 0xC0); 286 Write_hfc(hc, HFCPCI_B2_SSL, 0xC1); 287 Write_hfc(hc, HFCPCI_B1_RSL, 0xC0); 288 Write_hfc(hc, HFCPCI_B2_RSL, 0xC1); 289 } else { 290 Write_hfc(hc, HFCPCI_B1_SSL, 0x80); 291 Write_hfc(hc, HFCPCI_B2_SSL, 0x81); 292 Write_hfc(hc, HFCPCI_B1_RSL, 0x80); 293 Write_hfc(hc, HFCPCI_B2_RSL, 0x81); 294 } 295 } 296 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 297 val = Read_hfc(hc, HFCPCI_INT_S2); 298 } 299 300 /* 301 * Timer function called when kernel timer expires 302 */ 303 static void 304 hfcpci_Timer(struct timer_list *t) 305 { 306 struct hfc_pci *hc = from_timer(hc, t, hw.timer); 307 hc->hw.timer.expires = jiffies + 75; 308 /* WD RESET */ 309 /* 310 * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80); 311 * add_timer(&hc->hw.timer); 312 */ 313 } 314 315 316 /* 317 * select a b-channel entry matching and active 318 */ 319 static struct bchannel * 320 Sel_BCS(struct hfc_pci *hc, int channel) 321 { 322 if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) && 323 (hc->bch[0].nr & channel)) 324 return &hc->bch[0]; 325 else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) && 326 (hc->bch[1].nr & channel)) 327 return &hc->bch[1]; 328 else 329 return NULL; 330 } 331 332 /* 333 * clear the desired B-channel rx fifo 334 */ 335 static void 336 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo) 337 { 338 u_char fifo_state; 339 struct bzfifo *bzr; 340 341 if (fifo) { 342 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; 343 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX; 344 } else { 345 bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1; 346 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX; 347 } 348 if (fifo_state) 349 hc->hw.fifo_en ^= fifo_state; 350 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 351 hc->hw.last_bfifo_cnt[fifo] = 0; 352 bzr->f1 = MAX_B_FRAMES; 353 bzr->f2 = bzr->f1; /* init F pointers to remain constant */ 354 bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1); 355 bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16( 356 le16_to_cpu(bzr->za[MAX_B_FRAMES].z1)); 357 if (fifo_state) 358 hc->hw.fifo_en |= fifo_state; 359 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 360 } 361 362 /* 363 * clear the desired B-channel tx fifo 364 */ 365 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo) 366 { 367 u_char fifo_state; 368 struct bzfifo *bzt; 369 370 if (fifo) { 371 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 372 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX; 373 } else { 374 bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 375 fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX; 376 } 377 if (fifo_state) 378 hc->hw.fifo_en ^= fifo_state; 379 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 380 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL) 381 printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) " 382 "z1(%x) z2(%x) state(%x)\n", 383 fifo, bzt->f1, bzt->f2, 384 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1), 385 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2), 386 fifo_state); 387 bzt->f2 = MAX_B_FRAMES; 388 bzt->f1 = bzt->f2; /* init F pointers to remain constant */ 389 bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1); 390 bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2); 391 if (fifo_state) 392 hc->hw.fifo_en |= fifo_state; 393 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 394 if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL) 395 printk(KERN_DEBUG 396 "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n", 397 fifo, bzt->f1, bzt->f2, 398 le16_to_cpu(bzt->za[MAX_B_FRAMES].z1), 399 le16_to_cpu(bzt->za[MAX_B_FRAMES].z2)); 400 } 401 402 /* 403 * read a complete B-frame out of the buffer 404 */ 405 static void 406 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz, 407 u_char *bdata, int count) 408 { 409 u_char *ptr, *ptr1, new_f2; 410 int maxlen, new_z2; 411 struct zt *zp; 412 413 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO)) 414 printk(KERN_DEBUG "hfcpci_empty_fifo\n"); 415 zp = &bz->za[bz->f2]; /* point to Z-Regs */ 416 new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */ 417 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) 418 new_z2 -= B_FIFO_SIZE; /* buffer wrap */ 419 new_f2 = (bz->f2 + 1) & MAX_B_FRAMES; 420 if ((count > MAX_DATA_SIZE + 3) || (count < 4) || 421 (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) { 422 if (bch->debug & DEBUG_HW) 423 printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet " 424 "invalid length %d or crc\n", count); 425 #ifdef ERROR_STATISTIC 426 bch->err_inv++; 427 #endif 428 bz->za[new_f2].z2 = cpu_to_le16(new_z2); 429 bz->f2 = new_f2; /* next buffer */ 430 } else { 431 bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC); 432 if (!bch->rx_skb) { 433 printk(KERN_WARNING "HFCPCI: receive out of memory\n"); 434 return; 435 } 436 count -= 3; 437 ptr = skb_put(bch->rx_skb, count); 438 439 if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL) 440 maxlen = count; /* complete transfer */ 441 else 442 maxlen = B_FIFO_SIZE + B_SUB_VAL - 443 le16_to_cpu(zp->z2); /* maximum */ 444 445 ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL); 446 /* start of data */ 447 memcpy(ptr, ptr1, maxlen); /* copy data */ 448 count -= maxlen; 449 450 if (count) { /* rest remaining */ 451 ptr += maxlen; 452 ptr1 = bdata; /* start of buffer */ 453 memcpy(ptr, ptr1, count); /* rest */ 454 } 455 bz->za[new_f2].z2 = cpu_to_le16(new_z2); 456 bz->f2 = new_f2; /* next buffer */ 457 recv_Bchannel(bch, MISDN_ID_ANY, false); 458 } 459 } 460 461 /* 462 * D-channel receive procedure 463 */ 464 static int 465 receive_dmsg(struct hfc_pci *hc) 466 { 467 struct dchannel *dch = &hc->dch; 468 int maxlen; 469 int rcnt, total; 470 int count = 5; 471 u_char *ptr, *ptr1; 472 struct dfifo *df; 473 struct zt *zp; 474 475 df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx; 476 while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) { 477 zp = &df->za[df->f2 & D_FREG_MASK]; 478 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2); 479 if (rcnt < 0) 480 rcnt += D_FIFO_SIZE; 481 rcnt++; 482 if (dch->debug & DEBUG_HW_DCHANNEL) 483 printk(KERN_DEBUG 484 "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n", 485 df->f1, df->f2, 486 le16_to_cpu(zp->z1), 487 le16_to_cpu(zp->z2), 488 rcnt); 489 490 if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) || 491 (df->data[le16_to_cpu(zp->z1)])) { 492 if (dch->debug & DEBUG_HW) 493 printk(KERN_DEBUG 494 "empty_fifo hfcpci packet inv. len " 495 "%d or crc %d\n", 496 rcnt, 497 df->data[le16_to_cpu(zp->z1)]); 498 #ifdef ERROR_STATISTIC 499 cs->err_rx++; 500 #endif 501 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | 502 (MAX_D_FRAMES + 1); /* next buffer */ 503 df->za[df->f2 & D_FREG_MASK].z2 = 504 cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) & 505 (D_FIFO_SIZE - 1)); 506 } else { 507 dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC); 508 if (!dch->rx_skb) { 509 printk(KERN_WARNING 510 "HFC-PCI: D receive out of memory\n"); 511 break; 512 } 513 total = rcnt; 514 rcnt -= 3; 515 ptr = skb_put(dch->rx_skb, rcnt); 516 517 if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE) 518 maxlen = rcnt; /* complete transfer */ 519 else 520 maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2); 521 /* maximum */ 522 523 ptr1 = df->data + le16_to_cpu(zp->z2); 524 /* start of data */ 525 memcpy(ptr, ptr1, maxlen); /* copy data */ 526 rcnt -= maxlen; 527 528 if (rcnt) { /* rest remaining */ 529 ptr += maxlen; 530 ptr1 = df->data; /* start of buffer */ 531 memcpy(ptr, ptr1, rcnt); /* rest */ 532 } 533 df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | 534 (MAX_D_FRAMES + 1); /* next buffer */ 535 df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16(( 536 le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1)); 537 recv_Dchannel(dch); 538 } 539 } 540 return 1; 541 } 542 543 /* 544 * check for transparent receive data and read max one 'poll' size if avail 545 */ 546 static void 547 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz, 548 struct bzfifo *txbz, u_char *bdata) 549 { 550 __le16 *z1r, *z2r, *z1t, *z2t; 551 int new_z2, fcnt_rx, fcnt_tx, maxlen; 552 u_char *ptr, *ptr1; 553 554 z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */ 555 z2r = z1r + 1; 556 z1t = &txbz->za[MAX_B_FRAMES].z1; 557 z2t = z1t + 1; 558 559 fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r); 560 if (!fcnt_rx) 561 return; /* no data avail */ 562 563 if (fcnt_rx <= 0) 564 fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */ 565 new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */ 566 if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL)) 567 new_z2 -= B_FIFO_SIZE; /* buffer wrap */ 568 569 fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t); 570 if (fcnt_tx <= 0) 571 fcnt_tx += B_FIFO_SIZE; 572 /* fcnt_tx contains available bytes in tx-fifo */ 573 fcnt_tx = B_FIFO_SIZE - fcnt_tx; 574 /* remaining bytes to send (bytes in tx-fifo) */ 575 576 if (test_bit(FLG_RX_OFF, &bch->Flags)) { 577 bch->dropcnt += fcnt_rx; 578 *z2r = cpu_to_le16(new_z2); 579 return; 580 } 581 maxlen = bchannel_get_rxbuf(bch, fcnt_rx); 582 if (maxlen < 0) { 583 pr_warning("B%d: No bufferspace for %d bytes\n", 584 bch->nr, fcnt_rx); 585 } else { 586 ptr = skb_put(bch->rx_skb, fcnt_rx); 587 if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL) 588 maxlen = fcnt_rx; /* complete transfer */ 589 else 590 maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r); 591 /* maximum */ 592 593 ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL); 594 /* start of data */ 595 memcpy(ptr, ptr1, maxlen); /* copy data */ 596 fcnt_rx -= maxlen; 597 598 if (fcnt_rx) { /* rest remaining */ 599 ptr += maxlen; 600 ptr1 = bdata; /* start of buffer */ 601 memcpy(ptr, ptr1, fcnt_rx); /* rest */ 602 } 603 recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */ 604 } 605 *z2r = cpu_to_le16(new_z2); /* new position */ 606 } 607 608 /* 609 * B-channel main receive routine 610 */ 611 static void 612 main_rec_hfcpci(struct bchannel *bch) 613 { 614 struct hfc_pci *hc = bch->hw; 615 int rcnt, real_fifo; 616 int receive = 0, count = 5; 617 struct bzfifo *txbz, *rxbz; 618 u_char *bdata; 619 struct zt *zp; 620 621 if ((bch->nr & 2) && (!hc->hw.bswapped)) { 622 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2; 623 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 624 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2; 625 real_fifo = 1; 626 } else { 627 rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1; 628 txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 629 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1; 630 real_fifo = 0; 631 } 632 Begin: 633 count--; 634 if (rxbz->f1 != rxbz->f2) { 635 if (bch->debug & DEBUG_HW_BCHANNEL) 636 printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n", 637 bch->nr, rxbz->f1, rxbz->f2); 638 zp = &rxbz->za[rxbz->f2]; 639 640 rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2); 641 if (rcnt < 0) 642 rcnt += B_FIFO_SIZE; 643 rcnt++; 644 if (bch->debug & DEBUG_HW_BCHANNEL) 645 printk(KERN_DEBUG 646 "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n", 647 bch->nr, le16_to_cpu(zp->z1), 648 le16_to_cpu(zp->z2), rcnt); 649 hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt); 650 rcnt = rxbz->f1 - rxbz->f2; 651 if (rcnt < 0) 652 rcnt += MAX_B_FRAMES + 1; 653 if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) { 654 rcnt = 0; 655 hfcpci_clear_fifo_rx(hc, real_fifo); 656 } 657 hc->hw.last_bfifo_cnt[real_fifo] = rcnt; 658 if (rcnt > 1) 659 receive = 1; 660 else 661 receive = 0; 662 } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) { 663 hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata); 664 return; 665 } else 666 receive = 0; 667 if (count && receive) 668 goto Begin; 669 670 } 671 672 /* 673 * D-channel send routine 674 */ 675 static void 676 hfcpci_fill_dfifo(struct hfc_pci *hc) 677 { 678 struct dchannel *dch = &hc->dch; 679 int fcnt; 680 int count, new_z1, maxlen; 681 struct dfifo *df; 682 u_char *src, *dst, new_f1; 683 684 if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO)) 685 printk(KERN_DEBUG "%s\n", __func__); 686 687 if (!dch->tx_skb) 688 return; 689 count = dch->tx_skb->len - dch->tx_idx; 690 if (count <= 0) 691 return; 692 df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx; 693 694 if (dch->debug & DEBUG_HW_DFIFO) 695 printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__, 696 df->f1, df->f2, 697 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1)); 698 fcnt = df->f1 - df->f2; /* frame count actually buffered */ 699 if (fcnt < 0) 700 fcnt += (MAX_D_FRAMES + 1); /* if wrap around */ 701 if (fcnt > (MAX_D_FRAMES - 1)) { 702 if (dch->debug & DEBUG_HW_DCHANNEL) 703 printk(KERN_DEBUG 704 "hfcpci_fill_Dfifo more as 14 frames\n"); 705 #ifdef ERROR_STATISTIC 706 cs->err_tx++; 707 #endif 708 return; 709 } 710 /* now determine free bytes in FIFO buffer */ 711 maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) - 712 le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1; 713 if (maxlen <= 0) 714 maxlen += D_FIFO_SIZE; /* count now contains available bytes */ 715 716 if (dch->debug & DEBUG_HW_DCHANNEL) 717 printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n", 718 count, maxlen); 719 if (count > maxlen) { 720 if (dch->debug & DEBUG_HW_DCHANNEL) 721 printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n"); 722 return; 723 } 724 new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) & 725 (D_FIFO_SIZE - 1); 726 new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1); 727 src = dch->tx_skb->data + dch->tx_idx; /* source pointer */ 728 dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1); 729 maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1); 730 /* end fifo */ 731 if (maxlen > count) 732 maxlen = count; /* limit size */ 733 memcpy(dst, src, maxlen); /* first copy */ 734 735 count -= maxlen; /* remaining bytes */ 736 if (count) { 737 dst = df->data; /* start of buffer */ 738 src += maxlen; /* new position */ 739 memcpy(dst, src, count); 740 } 741 df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1); 742 /* for next buffer */ 743 df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1); 744 /* new pos actual buffer */ 745 df->f1 = new_f1; /* next frame */ 746 dch->tx_idx = dch->tx_skb->len; 747 } 748 749 /* 750 * B-channel send routine 751 */ 752 static void 753 hfcpci_fill_fifo(struct bchannel *bch) 754 { 755 struct hfc_pci *hc = bch->hw; 756 int maxlen, fcnt; 757 int count, new_z1; 758 struct bzfifo *bz; 759 u_char *bdata; 760 u_char new_f1, *src, *dst; 761 __le16 *z1t, *z2t; 762 763 if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO)) 764 printk(KERN_DEBUG "%s\n", __func__); 765 if ((!bch->tx_skb) || bch->tx_skb->len == 0) { 766 if (!test_bit(FLG_FILLEMPTY, &bch->Flags) && 767 !test_bit(FLG_TRANSPARENT, &bch->Flags)) 768 return; 769 count = HFCPCI_FILLEMPTY; 770 } else { 771 count = bch->tx_skb->len - bch->tx_idx; 772 } 773 if ((bch->nr & 2) && (!hc->hw.bswapped)) { 774 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2; 775 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2; 776 } else { 777 bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1; 778 bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1; 779 } 780 781 if (test_bit(FLG_TRANSPARENT, &bch->Flags)) { 782 z1t = &bz->za[MAX_B_FRAMES].z1; 783 z2t = z1t + 1; 784 if (bch->debug & DEBUG_HW_BCHANNEL) 785 printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) " 786 "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count, 787 le16_to_cpu(*z1t), le16_to_cpu(*z2t)); 788 fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t); 789 if (fcnt <= 0) 790 fcnt += B_FIFO_SIZE; 791 if (test_bit(FLG_FILLEMPTY, &bch->Flags)) { 792 /* fcnt contains available bytes in fifo */ 793 if (count > fcnt) 794 count = fcnt; 795 new_z1 = le16_to_cpu(*z1t) + count; 796 /* new buffer Position */ 797 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 798 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 799 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL); 800 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t); 801 /* end of fifo */ 802 if (bch->debug & DEBUG_HW_BFIFO) 803 printk(KERN_DEBUG "hfcpci_FFt fillempty " 804 "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n", 805 fcnt, maxlen, new_z1, dst); 806 if (maxlen > count) 807 maxlen = count; /* limit size */ 808 memset(dst, bch->fill[0], maxlen); /* first copy */ 809 count -= maxlen; /* remaining bytes */ 810 if (count) { 811 dst = bdata; /* start of buffer */ 812 memset(dst, bch->fill[0], count); 813 } 814 *z1t = cpu_to_le16(new_z1); /* now send data */ 815 return; 816 } 817 /* fcnt contains available bytes in fifo */ 818 fcnt = B_FIFO_SIZE - fcnt; 819 /* remaining bytes to send (bytes in fifo) */ 820 821 next_t_frame: 822 count = bch->tx_skb->len - bch->tx_idx; 823 /* maximum fill shall be poll*2 */ 824 if (count > (poll << 1) - fcnt) 825 count = (poll << 1) - fcnt; 826 if (count <= 0) 827 return; 828 /* data is suitable for fifo */ 829 new_z1 = le16_to_cpu(*z1t) + count; 830 /* new buffer Position */ 831 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 832 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 833 src = bch->tx_skb->data + bch->tx_idx; 834 /* source pointer */ 835 dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL); 836 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t); 837 /* end of fifo */ 838 if (bch->debug & DEBUG_HW_BFIFO) 839 printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) " 840 "maxl(%d) nz1(%x) dst(%p)\n", 841 fcnt, maxlen, new_z1, dst); 842 fcnt += count; 843 bch->tx_idx += count; 844 if (maxlen > count) 845 maxlen = count; /* limit size */ 846 memcpy(dst, src, maxlen); /* first copy */ 847 count -= maxlen; /* remaining bytes */ 848 if (count) { 849 dst = bdata; /* start of buffer */ 850 src += maxlen; /* new position */ 851 memcpy(dst, src, count); 852 } 853 *z1t = cpu_to_le16(new_z1); /* now send data */ 854 if (bch->tx_idx < bch->tx_skb->len) 855 return; 856 dev_kfree_skb(bch->tx_skb); 857 if (get_next_bframe(bch)) 858 goto next_t_frame; 859 return; 860 } 861 if (bch->debug & DEBUG_HW_BCHANNEL) 862 printk(KERN_DEBUG 863 "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n", 864 __func__, bch->nr, bz->f1, bz->f2, 865 bz->za[bz->f1].z1); 866 fcnt = bz->f1 - bz->f2; /* frame count actually buffered */ 867 if (fcnt < 0) 868 fcnt += (MAX_B_FRAMES + 1); /* if wrap around */ 869 if (fcnt > (MAX_B_FRAMES - 1)) { 870 if (bch->debug & DEBUG_HW_BCHANNEL) 871 printk(KERN_DEBUG 872 "hfcpci_fill_Bfifo more as 14 frames\n"); 873 return; 874 } 875 /* now determine free bytes in FIFO buffer */ 876 maxlen = le16_to_cpu(bz->za[bz->f2].z2) - 877 le16_to_cpu(bz->za[bz->f1].z1) - 1; 878 if (maxlen <= 0) 879 maxlen += B_FIFO_SIZE; /* count now contains available bytes */ 880 881 if (bch->debug & DEBUG_HW_BCHANNEL) 882 printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n", 883 bch->nr, count, maxlen); 884 885 if (maxlen < count) { 886 if (bch->debug & DEBUG_HW_BCHANNEL) 887 printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n"); 888 return; 889 } 890 new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count; 891 /* new buffer Position */ 892 if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL)) 893 new_z1 -= B_FIFO_SIZE; /* buffer wrap */ 894 895 new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES); 896 src = bch->tx_skb->data + bch->tx_idx; /* source pointer */ 897 dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL); 898 maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1); 899 /* end fifo */ 900 if (maxlen > count) 901 maxlen = count; /* limit size */ 902 memcpy(dst, src, maxlen); /* first copy */ 903 904 count -= maxlen; /* remaining bytes */ 905 if (count) { 906 dst = bdata; /* start of buffer */ 907 src += maxlen; /* new position */ 908 memcpy(dst, src, count); 909 } 910 bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */ 911 bz->f1 = new_f1; /* next frame */ 912 dev_kfree_skb(bch->tx_skb); 913 get_next_bframe(bch); 914 } 915 916 917 918 /* 919 * handle L1 state changes TE 920 */ 921 922 static void 923 ph_state_te(struct dchannel *dch) 924 { 925 if (dch->debug) 926 printk(KERN_DEBUG "%s: TE newstate %x\n", 927 __func__, dch->state); 928 switch (dch->state) { 929 case 0: 930 l1_event(dch->l1, HW_RESET_IND); 931 break; 932 case 3: 933 l1_event(dch->l1, HW_DEACT_IND); 934 break; 935 case 5: 936 case 8: 937 l1_event(dch->l1, ANYSIGNAL); 938 break; 939 case 6: 940 l1_event(dch->l1, INFO2); 941 break; 942 case 7: 943 l1_event(dch->l1, INFO4_P8); 944 break; 945 } 946 } 947 948 /* 949 * handle L1 state changes NT 950 */ 951 952 static void 953 handle_nt_timer3(struct dchannel *dch) { 954 struct hfc_pci *hc = dch->hw; 955 956 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 957 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 958 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 959 hc->hw.nt_timer = 0; 960 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 961 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 962 hc->hw.mst_m |= HFCPCI_MASTER; 963 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 964 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 965 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 966 } 967 968 static void 969 ph_state_nt(struct dchannel *dch) 970 { 971 struct hfc_pci *hc = dch->hw; 972 973 if (dch->debug) 974 printk(KERN_DEBUG "%s: NT newstate %x\n", 975 __func__, dch->state); 976 switch (dch->state) { 977 case 2: 978 if (hc->hw.nt_timer < 0) { 979 hc->hw.nt_timer = 0; 980 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 981 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 982 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 983 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 984 /* Clear already pending ints */ 985 (void) Read_hfc(hc, HFCPCI_INT_S1); 986 Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE); 987 udelay(10); 988 Write_hfc(hc, HFCPCI_STATES, 4); 989 dch->state = 4; 990 } else if (hc->hw.nt_timer == 0) { 991 hc->hw.int_m1 |= HFCPCI_INTS_TIMER; 992 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 993 hc->hw.nt_timer = NT_T1_COUNT; 994 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER; 995 hc->hw.ctmt |= HFCPCI_TIM3_125; 996 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | 997 HFCPCI_CLTIMER); 998 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 999 test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1000 /* allow G2 -> G3 transition */ 1001 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); 1002 } else { 1003 Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); 1004 } 1005 break; 1006 case 1: 1007 hc->hw.nt_timer = 0; 1008 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 1009 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1010 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1011 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1012 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 1013 hc->hw.mst_m &= ~HFCPCI_MASTER; 1014 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1015 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 1016 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND, 1017 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 1018 break; 1019 case 4: 1020 hc->hw.nt_timer = 0; 1021 test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags); 1022 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1023 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1024 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1025 break; 1026 case 3: 1027 if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) { 1028 if (!test_and_clear_bit(FLG_L2_ACTIVATED, 1029 &dch->Flags)) { 1030 handle_nt_timer3(dch); 1031 break; 1032 } 1033 test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags); 1034 hc->hw.int_m1 |= HFCPCI_INTS_TIMER; 1035 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1036 hc->hw.nt_timer = NT_T3_COUNT; 1037 hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER; 1038 hc->hw.ctmt |= HFCPCI_TIM3_125; 1039 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | 1040 HFCPCI_CLTIMER); 1041 } 1042 break; 1043 } 1044 } 1045 1046 static void 1047 ph_state(struct dchannel *dch) 1048 { 1049 struct hfc_pci *hc = dch->hw; 1050 1051 if (hc->hw.protocol == ISDN_P_NT_S0) { 1052 if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) && 1053 hc->hw.nt_timer < 0) 1054 handle_nt_timer3(dch); 1055 else 1056 ph_state_nt(dch); 1057 } else 1058 ph_state_te(dch); 1059 } 1060 1061 /* 1062 * Layer 1 callback function 1063 */ 1064 static int 1065 hfc_l1callback(struct dchannel *dch, u_int cmd) 1066 { 1067 struct hfc_pci *hc = dch->hw; 1068 1069 switch (cmd) { 1070 case INFO3_P8: 1071 case INFO3_P10: 1072 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1073 hc->hw.mst_m |= HFCPCI_MASTER; 1074 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1075 break; 1076 case HW_RESET_REQ: 1077 Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); 1078 /* HFC ST 3 */ 1079 udelay(6); 1080 Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */ 1081 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1082 hc->hw.mst_m |= HFCPCI_MASTER; 1083 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1084 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE | 1085 HFCPCI_DO_ACTION); 1086 l1_event(dch->l1, HW_POWERUP_IND); 1087 break; 1088 case HW_DEACT_REQ: 1089 hc->hw.mst_m &= ~HFCPCI_MASTER; 1090 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1091 skb_queue_purge(&dch->squeue); 1092 if (dch->tx_skb) { 1093 dev_kfree_skb(dch->tx_skb); 1094 dch->tx_skb = NULL; 1095 } 1096 dch->tx_idx = 0; 1097 if (dch->rx_skb) { 1098 dev_kfree_skb(dch->rx_skb); 1099 dch->rx_skb = NULL; 1100 } 1101 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 1102 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 1103 del_timer(&dch->timer); 1104 break; 1105 case HW_POWERUP_REQ: 1106 Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION); 1107 break; 1108 case PH_ACTIVATE_IND: 1109 test_and_set_bit(FLG_ACTIVE, &dch->Flags); 1110 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 1111 GFP_ATOMIC); 1112 break; 1113 case PH_DEACTIVATE_IND: 1114 test_and_clear_bit(FLG_ACTIVE, &dch->Flags); 1115 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL, 1116 GFP_ATOMIC); 1117 break; 1118 default: 1119 if (dch->debug & DEBUG_HW) 1120 printk(KERN_DEBUG "%s: unknown command %x\n", 1121 __func__, cmd); 1122 return -1; 1123 } 1124 return 0; 1125 } 1126 1127 /* 1128 * Interrupt handler 1129 */ 1130 static inline void 1131 tx_birq(struct bchannel *bch) 1132 { 1133 if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len) 1134 hfcpci_fill_fifo(bch); 1135 else { 1136 if (bch->tx_skb) 1137 dev_kfree_skb(bch->tx_skb); 1138 if (get_next_bframe(bch)) 1139 hfcpci_fill_fifo(bch); 1140 } 1141 } 1142 1143 static inline void 1144 tx_dirq(struct dchannel *dch) 1145 { 1146 if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len) 1147 hfcpci_fill_dfifo(dch->hw); 1148 else { 1149 if (dch->tx_skb) 1150 dev_kfree_skb(dch->tx_skb); 1151 if (get_next_dframe(dch)) 1152 hfcpci_fill_dfifo(dch->hw); 1153 } 1154 } 1155 1156 static irqreturn_t 1157 hfcpci_int(int intno, void *dev_id) 1158 { 1159 struct hfc_pci *hc = dev_id; 1160 u_char exval; 1161 struct bchannel *bch; 1162 u_char val, stat; 1163 1164 spin_lock(&hc->lock); 1165 if (!(hc->hw.int_m2 & 0x08)) { 1166 spin_unlock(&hc->lock); 1167 return IRQ_NONE; /* not initialised */ 1168 } 1169 stat = Read_hfc(hc, HFCPCI_STATUS); 1170 if (HFCPCI_ANYINT & stat) { 1171 val = Read_hfc(hc, HFCPCI_INT_S1); 1172 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1173 printk(KERN_DEBUG 1174 "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val); 1175 } else { 1176 /* shared */ 1177 spin_unlock(&hc->lock); 1178 return IRQ_NONE; 1179 } 1180 hc->irqcnt++; 1181 1182 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1183 printk(KERN_DEBUG "HFC-PCI irq %x\n", val); 1184 val &= hc->hw.int_m1; 1185 if (val & 0x40) { /* state machine irq */ 1186 exval = Read_hfc(hc, HFCPCI_STATES) & 0xf; 1187 if (hc->dch.debug & DEBUG_HW_DCHANNEL) 1188 printk(KERN_DEBUG "ph_state chg %d->%d\n", 1189 hc->dch.state, exval); 1190 hc->dch.state = exval; 1191 schedule_event(&hc->dch, FLG_PHCHANGE); 1192 val &= ~0x40; 1193 } 1194 if (val & 0x80) { /* timer irq */ 1195 if (hc->hw.protocol == ISDN_P_NT_S0) { 1196 if ((--hc->hw.nt_timer) < 0) 1197 schedule_event(&hc->dch, FLG_PHCHANGE); 1198 } 1199 val &= ~0x80; 1200 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER); 1201 } 1202 if (val & 0x08) { /* B1 rx */ 1203 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 1204 if (bch) 1205 main_rec_hfcpci(bch); 1206 else if (hc->dch.debug) 1207 printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n"); 1208 } 1209 if (val & 0x10) { /* B2 rx */ 1210 bch = Sel_BCS(hc, 2); 1211 if (bch) 1212 main_rec_hfcpci(bch); 1213 else if (hc->dch.debug) 1214 printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n"); 1215 } 1216 if (val & 0x01) { /* B1 tx */ 1217 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 1218 if (bch) 1219 tx_birq(bch); 1220 else if (hc->dch.debug) 1221 printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n"); 1222 } 1223 if (val & 0x02) { /* B2 tx */ 1224 bch = Sel_BCS(hc, 2); 1225 if (bch) 1226 tx_birq(bch); 1227 else if (hc->dch.debug) 1228 printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n"); 1229 } 1230 if (val & 0x20) /* D rx */ 1231 receive_dmsg(hc); 1232 if (val & 0x04) { /* D tx */ 1233 if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags)) 1234 del_timer(&hc->dch.timer); 1235 tx_dirq(&hc->dch); 1236 } 1237 spin_unlock(&hc->lock); 1238 return IRQ_HANDLED; 1239 } 1240 1241 /* 1242 * timer callback for D-chan busy resolution. Currently no function 1243 */ 1244 static void 1245 hfcpci_dbusy_timer(struct timer_list *t) 1246 { 1247 } 1248 1249 /* 1250 * activate/deactivate hardware for selected channels and mode 1251 */ 1252 static int 1253 mode_hfcpci(struct bchannel *bch, int bc, int protocol) 1254 { 1255 struct hfc_pci *hc = bch->hw; 1256 int fifo2; 1257 u_char rx_slot = 0, tx_slot = 0, pcm_mode; 1258 1259 if (bch->debug & DEBUG_HW_BCHANNEL) 1260 printk(KERN_DEBUG 1261 "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n", 1262 bch->state, protocol, bch->nr, bc); 1263 1264 fifo2 = bc; 1265 pcm_mode = (bc >> 24) & 0xff; 1266 if (pcm_mode) { /* PCM SLOT USE */ 1267 if (!test_bit(HFC_CFG_PCM, &hc->cfg)) 1268 printk(KERN_WARNING 1269 "%s: pcm channel id without HFC_CFG_PCM\n", 1270 __func__); 1271 rx_slot = (bc >> 8) & 0xff; 1272 tx_slot = (bc >> 16) & 0xff; 1273 bc = bc & 0xff; 1274 } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE)) 1275 printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n", 1276 __func__); 1277 if (hc->chanlimit > 1) { 1278 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1279 hc->hw.sctrl_e &= ~0x80; 1280 } else { 1281 if (bc & 2) { 1282 if (protocol != ISDN_P_NONE) { 1283 hc->hw.bswapped = 1; /* B1 and B2 exchanged */ 1284 hc->hw.sctrl_e |= 0x80; 1285 } else { 1286 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1287 hc->hw.sctrl_e &= ~0x80; 1288 } 1289 fifo2 = 1; 1290 } else { 1291 hc->hw.bswapped = 0; /* B1 and B2 normal mode */ 1292 hc->hw.sctrl_e &= ~0x80; 1293 } 1294 } 1295 switch (protocol) { 1296 case (-1): /* used for init */ 1297 bch->state = -1; 1298 bch->nr = bc; 1299 case (ISDN_P_NONE): 1300 if (bch->state == ISDN_P_NONE) 1301 return 0; 1302 if (bc & 2) { 1303 hc->hw.sctrl &= ~SCTRL_B2_ENA; 1304 hc->hw.sctrl_r &= ~SCTRL_B2_ENA; 1305 } else { 1306 hc->hw.sctrl &= ~SCTRL_B1_ENA; 1307 hc->hw.sctrl_r &= ~SCTRL_B1_ENA; 1308 } 1309 if (fifo2 & 2) { 1310 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2; 1311 hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS | 1312 HFCPCI_INTS_B2REC); 1313 } else { 1314 hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1; 1315 hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS | 1316 HFCPCI_INTS_B1REC); 1317 } 1318 #ifdef REVERSE_BITORDER 1319 if (bch->nr & 2) 1320 hc->hw.cirm &= 0x7f; 1321 else 1322 hc->hw.cirm &= 0xbf; 1323 #endif 1324 bch->state = ISDN_P_NONE; 1325 bch->nr = bc; 1326 test_and_clear_bit(FLG_HDLC, &bch->Flags); 1327 test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags); 1328 break; 1329 case (ISDN_P_B_RAW): 1330 bch->state = protocol; 1331 bch->nr = bc; 1332 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0); 1333 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0); 1334 if (bc & 2) { 1335 hc->hw.sctrl |= SCTRL_B2_ENA; 1336 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1337 #ifdef REVERSE_BITORDER 1338 hc->hw.cirm |= 0x80; 1339 #endif 1340 } else { 1341 hc->hw.sctrl |= SCTRL_B1_ENA; 1342 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1343 #ifdef REVERSE_BITORDER 1344 hc->hw.cirm |= 0x40; 1345 #endif 1346 } 1347 if (fifo2 & 2) { 1348 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; 1349 if (!tics) 1350 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS | 1351 HFCPCI_INTS_B2REC); 1352 hc->hw.ctmt |= 2; 1353 hc->hw.conn &= ~0x18; 1354 } else { 1355 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; 1356 if (!tics) 1357 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS | 1358 HFCPCI_INTS_B1REC); 1359 hc->hw.ctmt |= 1; 1360 hc->hw.conn &= ~0x03; 1361 } 1362 test_and_set_bit(FLG_TRANSPARENT, &bch->Flags); 1363 break; 1364 case (ISDN_P_B_HDLC): 1365 bch->state = protocol; 1366 bch->nr = bc; 1367 hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0); 1368 hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0); 1369 if (bc & 2) { 1370 hc->hw.sctrl |= SCTRL_B2_ENA; 1371 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1372 } else { 1373 hc->hw.sctrl |= SCTRL_B1_ENA; 1374 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1375 } 1376 if (fifo2 & 2) { 1377 hc->hw.last_bfifo_cnt[1] = 0; 1378 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2; 1379 hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS | 1380 HFCPCI_INTS_B2REC); 1381 hc->hw.ctmt &= ~2; 1382 hc->hw.conn &= ~0x18; 1383 } else { 1384 hc->hw.last_bfifo_cnt[0] = 0; 1385 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1; 1386 hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS | 1387 HFCPCI_INTS_B1REC); 1388 hc->hw.ctmt &= ~1; 1389 hc->hw.conn &= ~0x03; 1390 } 1391 test_and_set_bit(FLG_HDLC, &bch->Flags); 1392 break; 1393 default: 1394 printk(KERN_DEBUG "prot not known %x\n", protocol); 1395 return -ENOPROTOOPT; 1396 } 1397 if (test_bit(HFC_CFG_PCM, &hc->cfg)) { 1398 if ((protocol == ISDN_P_NONE) || 1399 (protocol == -1)) { /* init case */ 1400 rx_slot = 0; 1401 tx_slot = 0; 1402 } else { 1403 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) { 1404 rx_slot |= 0xC0; 1405 tx_slot |= 0xC0; 1406 } else { 1407 rx_slot |= 0x80; 1408 tx_slot |= 0x80; 1409 } 1410 } 1411 if (bc & 2) { 1412 hc->hw.conn &= 0xc7; 1413 hc->hw.conn |= 0x08; 1414 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n", 1415 __func__, tx_slot); 1416 printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n", 1417 __func__, rx_slot); 1418 Write_hfc(hc, HFCPCI_B2_SSL, tx_slot); 1419 Write_hfc(hc, HFCPCI_B2_RSL, rx_slot); 1420 } else { 1421 hc->hw.conn &= 0xf8; 1422 hc->hw.conn |= 0x01; 1423 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n", 1424 __func__, tx_slot); 1425 printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n", 1426 __func__, rx_slot); 1427 Write_hfc(hc, HFCPCI_B1_SSL, tx_slot); 1428 Write_hfc(hc, HFCPCI_B1_RSL, rx_slot); 1429 } 1430 } 1431 Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e); 1432 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1433 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 1434 Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl); 1435 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 1436 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 1437 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1438 #ifdef REVERSE_BITORDER 1439 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 1440 #endif 1441 return 0; 1442 } 1443 1444 static int 1445 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan) 1446 { 1447 struct hfc_pci *hc = bch->hw; 1448 1449 if (bch->debug & DEBUG_HW_BCHANNEL) 1450 printk(KERN_DEBUG 1451 "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n", 1452 bch->state, protocol, bch->nr, chan); 1453 if (bch->nr != chan) { 1454 printk(KERN_DEBUG 1455 "HFCPCI rxtest wrong channel parameter %x/%x\n", 1456 bch->nr, chan); 1457 return -EINVAL; 1458 } 1459 switch (protocol) { 1460 case (ISDN_P_B_RAW): 1461 bch->state = protocol; 1462 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0); 1463 if (chan & 2) { 1464 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1465 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; 1466 if (!tics) 1467 hc->hw.int_m1 |= HFCPCI_INTS_B2REC; 1468 hc->hw.ctmt |= 2; 1469 hc->hw.conn &= ~0x18; 1470 #ifdef REVERSE_BITORDER 1471 hc->hw.cirm |= 0x80; 1472 #endif 1473 } else { 1474 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1475 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; 1476 if (!tics) 1477 hc->hw.int_m1 |= HFCPCI_INTS_B1REC; 1478 hc->hw.ctmt |= 1; 1479 hc->hw.conn &= ~0x03; 1480 #ifdef REVERSE_BITORDER 1481 hc->hw.cirm |= 0x40; 1482 #endif 1483 } 1484 break; 1485 case (ISDN_P_B_HDLC): 1486 bch->state = protocol; 1487 hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0); 1488 if (chan & 2) { 1489 hc->hw.sctrl_r |= SCTRL_B2_ENA; 1490 hc->hw.last_bfifo_cnt[1] = 0; 1491 hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX; 1492 hc->hw.int_m1 |= HFCPCI_INTS_B2REC; 1493 hc->hw.ctmt &= ~2; 1494 hc->hw.conn &= ~0x18; 1495 } else { 1496 hc->hw.sctrl_r |= SCTRL_B1_ENA; 1497 hc->hw.last_bfifo_cnt[0] = 0; 1498 hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX; 1499 hc->hw.int_m1 |= HFCPCI_INTS_B1REC; 1500 hc->hw.ctmt &= ~1; 1501 hc->hw.conn &= ~0x03; 1502 } 1503 break; 1504 default: 1505 printk(KERN_DEBUG "prot not known %x\n", protocol); 1506 return -ENOPROTOOPT; 1507 } 1508 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1509 Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en); 1510 Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r); 1511 Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt); 1512 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1513 #ifdef REVERSE_BITORDER 1514 Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm); 1515 #endif 1516 return 0; 1517 } 1518 1519 static void 1520 deactivate_bchannel(struct bchannel *bch) 1521 { 1522 struct hfc_pci *hc = bch->hw; 1523 u_long flags; 1524 1525 spin_lock_irqsave(&hc->lock, flags); 1526 mISDN_clear_bchannel(bch); 1527 mode_hfcpci(bch, bch->nr, ISDN_P_NONE); 1528 spin_unlock_irqrestore(&hc->lock, flags); 1529 } 1530 1531 /* 1532 * Layer 1 B-channel hardware access 1533 */ 1534 static int 1535 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq) 1536 { 1537 return mISDN_ctrl_bchannel(bch, cq); 1538 } 1539 static int 1540 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 1541 { 1542 struct bchannel *bch = container_of(ch, struct bchannel, ch); 1543 struct hfc_pci *hc = bch->hw; 1544 int ret = -EINVAL; 1545 u_long flags; 1546 1547 if (bch->debug & DEBUG_HW) 1548 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg); 1549 switch (cmd) { 1550 case HW_TESTRX_RAW: 1551 spin_lock_irqsave(&hc->lock, flags); 1552 ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg); 1553 spin_unlock_irqrestore(&hc->lock, flags); 1554 break; 1555 case HW_TESTRX_HDLC: 1556 spin_lock_irqsave(&hc->lock, flags); 1557 ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg); 1558 spin_unlock_irqrestore(&hc->lock, flags); 1559 break; 1560 case HW_TESTRX_OFF: 1561 spin_lock_irqsave(&hc->lock, flags); 1562 mode_hfcpci(bch, bch->nr, ISDN_P_NONE); 1563 spin_unlock_irqrestore(&hc->lock, flags); 1564 ret = 0; 1565 break; 1566 case CLOSE_CHANNEL: 1567 test_and_clear_bit(FLG_OPEN, &bch->Flags); 1568 deactivate_bchannel(bch); 1569 ch->protocol = ISDN_P_NONE; 1570 ch->peer = NULL; 1571 module_put(THIS_MODULE); 1572 ret = 0; 1573 break; 1574 case CONTROL_CHANNEL: 1575 ret = channel_bctrl(bch, arg); 1576 break; 1577 default: 1578 printk(KERN_WARNING "%s: unknown prim(%x)\n", 1579 __func__, cmd); 1580 } 1581 return ret; 1582 } 1583 1584 /* 1585 * Layer2 -> Layer 1 Dchannel data 1586 */ 1587 static int 1588 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb) 1589 { 1590 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 1591 struct dchannel *dch = container_of(dev, struct dchannel, dev); 1592 struct hfc_pci *hc = dch->hw; 1593 int ret = -EINVAL; 1594 struct mISDNhead *hh = mISDN_HEAD_P(skb); 1595 unsigned int id; 1596 u_long flags; 1597 1598 switch (hh->prim) { 1599 case PH_DATA_REQ: 1600 spin_lock_irqsave(&hc->lock, flags); 1601 ret = dchannel_senddata(dch, skb); 1602 if (ret > 0) { /* direct TX */ 1603 id = hh->id; /* skb can be freed */ 1604 hfcpci_fill_dfifo(dch->hw); 1605 ret = 0; 1606 spin_unlock_irqrestore(&hc->lock, flags); 1607 queue_ch_frame(ch, PH_DATA_CNF, id, NULL); 1608 } else 1609 spin_unlock_irqrestore(&hc->lock, flags); 1610 return ret; 1611 case PH_ACTIVATE_REQ: 1612 spin_lock_irqsave(&hc->lock, flags); 1613 if (hc->hw.protocol == ISDN_P_NT_S0) { 1614 ret = 0; 1615 if (test_bit(HFC_CFG_MASTER, &hc->cfg)) 1616 hc->hw.mst_m |= HFCPCI_MASTER; 1617 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1618 if (test_bit(FLG_ACTIVE, &dch->Flags)) { 1619 spin_unlock_irqrestore(&hc->lock, flags); 1620 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, 1621 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC); 1622 break; 1623 } 1624 test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags); 1625 Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE | 1626 HFCPCI_DO_ACTION | 1); 1627 } else 1628 ret = l1_event(dch->l1, hh->prim); 1629 spin_unlock_irqrestore(&hc->lock, flags); 1630 break; 1631 case PH_DEACTIVATE_REQ: 1632 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags); 1633 spin_lock_irqsave(&hc->lock, flags); 1634 if (hc->hw.protocol == ISDN_P_NT_S0) { 1635 /* prepare deactivation */ 1636 Write_hfc(hc, HFCPCI_STATES, 0x40); 1637 skb_queue_purge(&dch->squeue); 1638 if (dch->tx_skb) { 1639 dev_kfree_skb(dch->tx_skb); 1640 dch->tx_skb = NULL; 1641 } 1642 dch->tx_idx = 0; 1643 if (dch->rx_skb) { 1644 dev_kfree_skb(dch->rx_skb); 1645 dch->rx_skb = NULL; 1646 } 1647 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags); 1648 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags)) 1649 del_timer(&dch->timer); 1650 #ifdef FIXME 1651 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags)) 1652 dchannel_sched_event(&hc->dch, D_CLEARBUSY); 1653 #endif 1654 hc->hw.mst_m &= ~HFCPCI_MASTER; 1655 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1656 ret = 0; 1657 } else { 1658 ret = l1_event(dch->l1, hh->prim); 1659 } 1660 spin_unlock_irqrestore(&hc->lock, flags); 1661 break; 1662 } 1663 if (!ret) 1664 dev_kfree_skb(skb); 1665 return ret; 1666 } 1667 1668 /* 1669 * Layer2 -> Layer 1 Bchannel data 1670 */ 1671 static int 1672 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb) 1673 { 1674 struct bchannel *bch = container_of(ch, struct bchannel, ch); 1675 struct hfc_pci *hc = bch->hw; 1676 int ret = -EINVAL; 1677 struct mISDNhead *hh = mISDN_HEAD_P(skb); 1678 unsigned long flags; 1679 1680 switch (hh->prim) { 1681 case PH_DATA_REQ: 1682 spin_lock_irqsave(&hc->lock, flags); 1683 ret = bchannel_senddata(bch, skb); 1684 if (ret > 0) { /* direct TX */ 1685 hfcpci_fill_fifo(bch); 1686 ret = 0; 1687 } 1688 spin_unlock_irqrestore(&hc->lock, flags); 1689 return ret; 1690 case PH_ACTIVATE_REQ: 1691 spin_lock_irqsave(&hc->lock, flags); 1692 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) 1693 ret = mode_hfcpci(bch, bch->nr, ch->protocol); 1694 else 1695 ret = 0; 1696 spin_unlock_irqrestore(&hc->lock, flags); 1697 if (!ret) 1698 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, 1699 NULL, GFP_KERNEL); 1700 break; 1701 case PH_DEACTIVATE_REQ: 1702 deactivate_bchannel(bch); 1703 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, 1704 NULL, GFP_KERNEL); 1705 ret = 0; 1706 break; 1707 } 1708 if (!ret) 1709 dev_kfree_skb(skb); 1710 return ret; 1711 } 1712 1713 /* 1714 * called for card init message 1715 */ 1716 1717 static void 1718 inithfcpci(struct hfc_pci *hc) 1719 { 1720 printk(KERN_DEBUG "inithfcpci: entered\n"); 1721 timer_setup(&hc->dch.timer, hfcpci_dbusy_timer, 0); 1722 hc->chanlimit = 2; 1723 mode_hfcpci(&hc->bch[0], 1, -1); 1724 mode_hfcpci(&hc->bch[1], 2, -1); 1725 } 1726 1727 1728 static int 1729 init_card(struct hfc_pci *hc) 1730 { 1731 int cnt = 3; 1732 u_long flags; 1733 1734 printk(KERN_DEBUG "init_card: entered\n"); 1735 1736 1737 spin_lock_irqsave(&hc->lock, flags); 1738 disable_hwirq(hc); 1739 spin_unlock_irqrestore(&hc->lock, flags); 1740 if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) { 1741 printk(KERN_WARNING 1742 "mISDN: couldn't get interrupt %d\n", hc->irq); 1743 return -EIO; 1744 } 1745 spin_lock_irqsave(&hc->lock, flags); 1746 reset_hfcpci(hc); 1747 while (cnt) { 1748 inithfcpci(hc); 1749 /* 1750 * Finally enable IRQ output 1751 * this is only allowed, if an IRQ routine is already 1752 * established for this HFC, so don't do that earlier 1753 */ 1754 enable_hwirq(hc); 1755 spin_unlock_irqrestore(&hc->lock, flags); 1756 /* Timeout 80ms */ 1757 set_current_state(TASK_UNINTERRUPTIBLE); 1758 schedule_timeout((80 * HZ) / 1000); 1759 printk(KERN_INFO "HFC PCI: IRQ %d count %d\n", 1760 hc->irq, hc->irqcnt); 1761 /* now switch timer interrupt off */ 1762 spin_lock_irqsave(&hc->lock, flags); 1763 hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER; 1764 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 1765 /* reinit mode reg */ 1766 Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m); 1767 if (!hc->irqcnt) { 1768 printk(KERN_WARNING 1769 "HFC PCI: IRQ(%d) getting no interrupts " 1770 "during init %d\n", hc->irq, 4 - cnt); 1771 if (cnt == 1) 1772 break; 1773 else { 1774 reset_hfcpci(hc); 1775 cnt--; 1776 } 1777 } else { 1778 spin_unlock_irqrestore(&hc->lock, flags); 1779 hc->initdone = 1; 1780 return 0; 1781 } 1782 } 1783 disable_hwirq(hc); 1784 spin_unlock_irqrestore(&hc->lock, flags); 1785 free_irq(hc->irq, hc); 1786 return -EIO; 1787 } 1788 1789 static int 1790 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq) 1791 { 1792 int ret = 0; 1793 u_char slot; 1794 1795 switch (cq->op) { 1796 case MISDN_CTRL_GETOP: 1797 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT | 1798 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3; 1799 break; 1800 case MISDN_CTRL_LOOP: 1801 /* channel 0 disabled loop */ 1802 if (cq->channel < 0 || cq->channel > 2) { 1803 ret = -EINVAL; 1804 break; 1805 } 1806 if (cq->channel & 1) { 1807 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1808 slot = 0xC0; 1809 else 1810 slot = 0x80; 1811 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n", 1812 __func__, slot); 1813 Write_hfc(hc, HFCPCI_B1_SSL, slot); 1814 Write_hfc(hc, HFCPCI_B1_RSL, slot); 1815 hc->hw.conn = (hc->hw.conn & ~7) | 6; 1816 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1817 } 1818 if (cq->channel & 2) { 1819 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1820 slot = 0xC1; 1821 else 1822 slot = 0x81; 1823 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n", 1824 __func__, slot); 1825 Write_hfc(hc, HFCPCI_B2_SSL, slot); 1826 Write_hfc(hc, HFCPCI_B2_RSL, slot); 1827 hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30; 1828 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1829 } 1830 if (cq->channel & 3) 1831 hc->hw.trm |= 0x80; /* enable IOM-loop */ 1832 else { 1833 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09; 1834 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1835 hc->hw.trm &= 0x7f; /* disable IOM-loop */ 1836 } 1837 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 1838 break; 1839 case MISDN_CTRL_CONNECT: 1840 if (cq->channel == cq->p1) { 1841 ret = -EINVAL; 1842 break; 1843 } 1844 if (cq->channel < 1 || cq->channel > 2 || 1845 cq->p1 < 1 || cq->p1 > 2) { 1846 ret = -EINVAL; 1847 break; 1848 } 1849 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1850 slot = 0xC0; 1851 else 1852 slot = 0x80; 1853 printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n", 1854 __func__, slot); 1855 Write_hfc(hc, HFCPCI_B1_SSL, slot); 1856 Write_hfc(hc, HFCPCI_B2_RSL, slot); 1857 if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) 1858 slot = 0xC1; 1859 else 1860 slot = 0x81; 1861 printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n", 1862 __func__, slot); 1863 Write_hfc(hc, HFCPCI_B2_SSL, slot); 1864 Write_hfc(hc, HFCPCI_B1_RSL, slot); 1865 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36; 1866 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1867 hc->hw.trm |= 0x80; 1868 Write_hfc(hc, HFCPCI_TRM, hc->hw.trm); 1869 break; 1870 case MISDN_CTRL_DISCONNECT: 1871 hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09; 1872 Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn); 1873 hc->hw.trm &= 0x7f; /* disable IOM-loop */ 1874 break; 1875 case MISDN_CTRL_L1_TIMER3: 1876 ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff)); 1877 break; 1878 default: 1879 printk(KERN_WARNING "%s: unknown Op %x\n", 1880 __func__, cq->op); 1881 ret = -EINVAL; 1882 break; 1883 } 1884 return ret; 1885 } 1886 1887 static int 1888 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch, 1889 struct channel_req *rq) 1890 { 1891 int err = 0; 1892 1893 if (debug & DEBUG_HW_OPEN) 1894 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__, 1895 hc->dch.dev.id, __builtin_return_address(0)); 1896 if (rq->protocol == ISDN_P_NONE) 1897 return -EINVAL; 1898 if (rq->adr.channel == 1) { 1899 /* TODO: E-Channel */ 1900 return -EINVAL; 1901 } 1902 if (!hc->initdone) { 1903 if (rq->protocol == ISDN_P_TE_S0) { 1904 err = create_l1(&hc->dch, hfc_l1callback); 1905 if (err) 1906 return err; 1907 } 1908 hc->hw.protocol = rq->protocol; 1909 ch->protocol = rq->protocol; 1910 err = init_card(hc); 1911 if (err) 1912 return err; 1913 } else { 1914 if (rq->protocol != ch->protocol) { 1915 if (hc->hw.protocol == ISDN_P_TE_S0) 1916 l1_event(hc->dch.l1, CLOSE_CHANNEL); 1917 if (rq->protocol == ISDN_P_TE_S0) { 1918 err = create_l1(&hc->dch, hfc_l1callback); 1919 if (err) 1920 return err; 1921 } 1922 hc->hw.protocol = rq->protocol; 1923 ch->protocol = rq->protocol; 1924 hfcpci_setmode(hc); 1925 } 1926 } 1927 1928 if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) || 1929 ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) { 1930 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 1931 0, NULL, GFP_KERNEL); 1932 } 1933 rq->ch = ch; 1934 if (!try_module_get(THIS_MODULE)) 1935 printk(KERN_WARNING "%s:cannot get module\n", __func__); 1936 return 0; 1937 } 1938 1939 static int 1940 open_bchannel(struct hfc_pci *hc, struct channel_req *rq) 1941 { 1942 struct bchannel *bch; 1943 1944 if (rq->adr.channel == 0 || rq->adr.channel > 2) 1945 return -EINVAL; 1946 if (rq->protocol == ISDN_P_NONE) 1947 return -EINVAL; 1948 bch = &hc->bch[rq->adr.channel - 1]; 1949 if (test_and_set_bit(FLG_OPEN, &bch->Flags)) 1950 return -EBUSY; /* b-channel can be only open once */ 1951 bch->ch.protocol = rq->protocol; 1952 rq->ch = &bch->ch; /* TODO: E-channel */ 1953 if (!try_module_get(THIS_MODULE)) 1954 printk(KERN_WARNING "%s:cannot get module\n", __func__); 1955 return 0; 1956 } 1957 1958 /* 1959 * device control function 1960 */ 1961 static int 1962 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg) 1963 { 1964 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D); 1965 struct dchannel *dch = container_of(dev, struct dchannel, dev); 1966 struct hfc_pci *hc = dch->hw; 1967 struct channel_req *rq; 1968 int err = 0; 1969 1970 if (dch->debug & DEBUG_HW) 1971 printk(KERN_DEBUG "%s: cmd:%x %p\n", 1972 __func__, cmd, arg); 1973 switch (cmd) { 1974 case OPEN_CHANNEL: 1975 rq = arg; 1976 if ((rq->protocol == ISDN_P_TE_S0) || 1977 (rq->protocol == ISDN_P_NT_S0)) 1978 err = open_dchannel(hc, ch, rq); 1979 else 1980 err = open_bchannel(hc, rq); 1981 break; 1982 case CLOSE_CHANNEL: 1983 if (debug & DEBUG_HW_OPEN) 1984 printk(KERN_DEBUG "%s: dev(%d) close from %p\n", 1985 __func__, hc->dch.dev.id, 1986 __builtin_return_address(0)); 1987 module_put(THIS_MODULE); 1988 break; 1989 case CONTROL_CHANNEL: 1990 err = channel_ctrl(hc, arg); 1991 break; 1992 default: 1993 if (dch->debug & DEBUG_HW) 1994 printk(KERN_DEBUG "%s: unknown command %x\n", 1995 __func__, cmd); 1996 return -EINVAL; 1997 } 1998 return err; 1999 } 2000 2001 static int 2002 setup_hw(struct hfc_pci *hc) 2003 { 2004 void *buffer; 2005 2006 printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision); 2007 hc->hw.cirm = 0; 2008 hc->dch.state = 0; 2009 pci_set_master(hc->pdev); 2010 if (!hc->irq) { 2011 printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n"); 2012 return 1; 2013 } 2014 hc->hw.pci_io = 2015 (char __iomem *)(unsigned long)hc->pdev->resource[1].start; 2016 2017 if (!hc->hw.pci_io) { 2018 printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n"); 2019 return 1; 2020 } 2021 /* Allocate memory for FIFOS */ 2022 /* the memory needs to be on a 32k boundary within the first 4G */ 2023 pci_set_dma_mask(hc->pdev, 0xFFFF8000); 2024 buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle); 2025 /* We silently assume the address is okay if nonzero */ 2026 if (!buffer) { 2027 printk(KERN_WARNING 2028 "HFC-PCI: Error allocating memory for FIFO!\n"); 2029 return 1; 2030 } 2031 hc->hw.fifos = buffer; 2032 pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle); 2033 hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256); 2034 printk(KERN_INFO 2035 "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n", 2036 (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos, 2037 (u_long) hc->hw.dmahandle, hc->irq, HZ); 2038 /* enable memory mapped ports, disable busmaster */ 2039 pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO); 2040 hc->hw.int_m2 = 0; 2041 disable_hwirq(hc); 2042 hc->hw.int_m1 = 0; 2043 Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1); 2044 /* At this point the needed PCI config is done */ 2045 /* fifos are still not enabled */ 2046 timer_setup(&hc->hw.timer, hfcpci_Timer, 0); 2047 /* default PCM master */ 2048 test_and_set_bit(HFC_CFG_MASTER, &hc->cfg); 2049 return 0; 2050 } 2051 2052 static void 2053 release_card(struct hfc_pci *hc) { 2054 u_long flags; 2055 2056 spin_lock_irqsave(&hc->lock, flags); 2057 hc->hw.int_m2 = 0; /* interrupt output off ! */ 2058 disable_hwirq(hc); 2059 mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE); 2060 mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE); 2061 if (hc->dch.timer.function != NULL) { 2062 del_timer(&hc->dch.timer); 2063 hc->dch.timer.function = NULL; 2064 } 2065 spin_unlock_irqrestore(&hc->lock, flags); 2066 if (hc->hw.protocol == ISDN_P_TE_S0) 2067 l1_event(hc->dch.l1, CLOSE_CHANNEL); 2068 if (hc->initdone) 2069 free_irq(hc->irq, hc); 2070 release_io_hfcpci(hc); /* must release after free_irq! */ 2071 mISDN_unregister_device(&hc->dch.dev); 2072 mISDN_freebchannel(&hc->bch[1]); 2073 mISDN_freebchannel(&hc->bch[0]); 2074 mISDN_freedchannel(&hc->dch); 2075 pci_set_drvdata(hc->pdev, NULL); 2076 kfree(hc); 2077 } 2078 2079 static int 2080 setup_card(struct hfc_pci *card) 2081 { 2082 int err = -EINVAL; 2083 u_int i; 2084 char name[MISDN_MAX_IDLEN]; 2085 2086 card->dch.debug = debug; 2087 spin_lock_init(&card->lock); 2088 mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state); 2089 card->dch.hw = card; 2090 card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0); 2091 card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) | 2092 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK)); 2093 card->dch.dev.D.send = hfcpci_l2l1D; 2094 card->dch.dev.D.ctrl = hfc_dctrl; 2095 card->dch.dev.nrbchan = 2; 2096 for (i = 0; i < 2; i++) { 2097 card->bch[i].nr = i + 1; 2098 set_channelmap(i + 1, card->dch.dev.channelmap); 2099 card->bch[i].debug = debug; 2100 mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1); 2101 card->bch[i].hw = card; 2102 card->bch[i].ch.send = hfcpci_l2l1B; 2103 card->bch[i].ch.ctrl = hfc_bctrl; 2104 card->bch[i].ch.nr = i + 1; 2105 list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels); 2106 } 2107 err = setup_hw(card); 2108 if (err) 2109 goto error; 2110 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1); 2111 err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name); 2112 if (err) 2113 goto error; 2114 HFC_cnt++; 2115 printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt); 2116 return 0; 2117 error: 2118 mISDN_freebchannel(&card->bch[1]); 2119 mISDN_freebchannel(&card->bch[0]); 2120 mISDN_freedchannel(&card->dch); 2121 kfree(card); 2122 return err; 2123 } 2124 2125 /* private data in the PCI devices list */ 2126 struct _hfc_map { 2127 u_int subtype; 2128 u_int flag; 2129 char *name; 2130 }; 2131 2132 static const struct _hfc_map hfc_map[] = 2133 { 2134 {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"}, 2135 {HFC_CCD_B000, 0, "Billion B000"}, 2136 {HFC_CCD_B006, 0, "Billion B006"}, 2137 {HFC_CCD_B007, 0, "Billion B007"}, 2138 {HFC_CCD_B008, 0, "Billion B008"}, 2139 {HFC_CCD_B009, 0, "Billion B009"}, 2140 {HFC_CCD_B00A, 0, "Billion B00A"}, 2141 {HFC_CCD_B00B, 0, "Billion B00B"}, 2142 {HFC_CCD_B00C, 0, "Billion B00C"}, 2143 {HFC_CCD_B100, 0, "Seyeon B100"}, 2144 {HFC_CCD_B700, 0, "Primux II S0 B700"}, 2145 {HFC_CCD_B701, 0, "Primux II S0 NT B701"}, 2146 {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"}, 2147 {HFC_ASUS_0675, 0, "Asuscom/Askey 675"}, 2148 {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"}, 2149 {HFC_BERKOM_A1T, 0, "German telekom A1T"}, 2150 {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"}, 2151 {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"}, 2152 {HFC_DIGI_DF_M_IOM2_E, 0, 2153 "Digi International DataFire Micro V IOM2 (Europe)"}, 2154 {HFC_DIGI_DF_M_E, 0, 2155 "Digi International DataFire Micro V (Europe)"}, 2156 {HFC_DIGI_DF_M_IOM2_A, 0, 2157 "Digi International DataFire Micro V IOM2 (North America)"}, 2158 {HFC_DIGI_DF_M_A, 0, 2159 "Digi International DataFire Micro V (North America)"}, 2160 {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"}, 2161 {}, 2162 }; 2163 2164 static const struct pci_device_id hfc_ids[] = 2165 { 2166 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0), 2167 (unsigned long) &hfc_map[0] }, 2168 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000), 2169 (unsigned long) &hfc_map[1] }, 2170 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006), 2171 (unsigned long) &hfc_map[2] }, 2172 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007), 2173 (unsigned long) &hfc_map[3] }, 2174 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008), 2175 (unsigned long) &hfc_map[4] }, 2176 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009), 2177 (unsigned long) &hfc_map[5] }, 2178 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A), 2179 (unsigned long) &hfc_map[6] }, 2180 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B), 2181 (unsigned long) &hfc_map[7] }, 2182 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C), 2183 (unsigned long) &hfc_map[8] }, 2184 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100), 2185 (unsigned long) &hfc_map[9] }, 2186 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700), 2187 (unsigned long) &hfc_map[10] }, 2188 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701), 2189 (unsigned long) &hfc_map[11] }, 2190 { PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1), 2191 (unsigned long) &hfc_map[12] }, 2192 { PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675), 2193 (unsigned long) &hfc_map[13] }, 2194 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT), 2195 (unsigned long) &hfc_map[14] }, 2196 { PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T), 2197 (unsigned long) &hfc_map[15] }, 2198 { PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575), 2199 (unsigned long) &hfc_map[16] }, 2200 { PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0), 2201 (unsigned long) &hfc_map[17] }, 2202 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E), 2203 (unsigned long) &hfc_map[18] }, 2204 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E), 2205 (unsigned long) &hfc_map[19] }, 2206 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A), 2207 (unsigned long) &hfc_map[20] }, 2208 { PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A), 2209 (unsigned long) &hfc_map[21] }, 2210 { PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2), 2211 (unsigned long) &hfc_map[22] }, 2212 {}, 2213 }; 2214 2215 static int 2216 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2217 { 2218 int err = -ENOMEM; 2219 struct hfc_pci *card; 2220 struct _hfc_map *m = (struct _hfc_map *)ent->driver_data; 2221 2222 card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC); 2223 if (!card) { 2224 printk(KERN_ERR "No kmem for HFC card\n"); 2225 return err; 2226 } 2227 card->pdev = pdev; 2228 card->subtype = m->subtype; 2229 err = pci_enable_device(pdev); 2230 if (err) { 2231 kfree(card); 2232 return err; 2233 } 2234 2235 printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n", 2236 m->name, pci_name(pdev)); 2237 2238 card->irq = pdev->irq; 2239 pci_set_drvdata(pdev, card); 2240 err = setup_card(card); 2241 if (err) 2242 pci_set_drvdata(pdev, NULL); 2243 return err; 2244 } 2245 2246 static void 2247 hfc_remove_pci(struct pci_dev *pdev) 2248 { 2249 struct hfc_pci *card = pci_get_drvdata(pdev); 2250 2251 if (card) 2252 release_card(card); 2253 else 2254 if (debug) 2255 printk(KERN_DEBUG "%s: drvdata already removed\n", 2256 __func__); 2257 } 2258 2259 2260 static struct pci_driver hfc_driver = { 2261 .name = "hfcpci", 2262 .probe = hfc_probe, 2263 .remove = hfc_remove_pci, 2264 .id_table = hfc_ids, 2265 }; 2266 2267 static int 2268 _hfcpci_softirq(struct device *dev, void *unused) 2269 { 2270 struct hfc_pci *hc = dev_get_drvdata(dev); 2271 struct bchannel *bch; 2272 if (hc == NULL) 2273 return 0; 2274 2275 if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) { 2276 spin_lock(&hc->lock); 2277 bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1); 2278 if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */ 2279 main_rec_hfcpci(bch); 2280 tx_birq(bch); 2281 } 2282 bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2); 2283 if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */ 2284 main_rec_hfcpci(bch); 2285 tx_birq(bch); 2286 } 2287 spin_unlock(&hc->lock); 2288 } 2289 return 0; 2290 } 2291 2292 static void 2293 hfcpci_softirq(struct timer_list *unused) 2294 { 2295 WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, NULL, 2296 _hfcpci_softirq) != 0); 2297 2298 /* if next event would be in the past ... */ 2299 if ((s32)(hfc_jiffies + tics - jiffies) <= 0) 2300 hfc_jiffies = jiffies + 1; 2301 else 2302 hfc_jiffies += tics; 2303 hfc_tl.expires = hfc_jiffies; 2304 add_timer(&hfc_tl); 2305 } 2306 2307 static int __init 2308 HFC_init(void) 2309 { 2310 int err; 2311 2312 if (!poll) 2313 poll = HFCPCI_BTRANS_THRESHOLD; 2314 2315 if (poll != HFCPCI_BTRANS_THRESHOLD) { 2316 tics = (poll * HZ) / 8000; 2317 if (tics < 1) 2318 tics = 1; 2319 poll = (tics * 8000) / HZ; 2320 if (poll > 256 || poll < 8) { 2321 printk(KERN_ERR "%s: Wrong poll value %d not in range " 2322 "of 8..256.\n", __func__, poll); 2323 err = -EINVAL; 2324 return err; 2325 } 2326 } 2327 if (poll != HFCPCI_BTRANS_THRESHOLD) { 2328 printk(KERN_INFO "%s: Using alternative poll value of %d\n", 2329 __func__, poll); 2330 timer_setup(&hfc_tl, hfcpci_softirq, 0); 2331 hfc_tl.expires = jiffies + tics; 2332 hfc_jiffies = hfc_tl.expires; 2333 add_timer(&hfc_tl); 2334 } else 2335 tics = 0; /* indicate the use of controller's timer */ 2336 2337 err = pci_register_driver(&hfc_driver); 2338 if (err) { 2339 if (timer_pending(&hfc_tl)) 2340 del_timer(&hfc_tl); 2341 } 2342 2343 return err; 2344 } 2345 2346 static void __exit 2347 HFC_cleanup(void) 2348 { 2349 if (timer_pending(&hfc_tl)) 2350 del_timer(&hfc_tl); 2351 2352 pci_unregister_driver(&hfc_driver); 2353 } 2354 2355 module_init(HFC_init); 2356 module_exit(HFC_cleanup); 2357 2358 MODULE_DEVICE_TABLE(pci, hfc_ids); 2359