1 /*
2  *
3  * hfcpci.c     low level driver for CCD's hfc-pci based cards
4  *
5  * Author     Werner Cornelius (werner@isdn4linux.de)
6  *            based on existing driver for CCD hfc ISA cards
7  *            type approval valid for HFC-S PCI A based card
8  *
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil <kkeil@novell.com>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module options:
27  *
28  * debug:
29  *	NOTE: only one poll value must be given for all cards
30  *	See hfc_pci.h for debug flags.
31  *
32  * poll:
33  *	NOTE: only one poll value must be given for all cards
34  *	Give the number of samples for each fifo process.
35  *	By default 128 is used. Decrease to reduce delay, increase to
36  *	reduce cpu load. If unsure, don't mess with it!
37  *	A value of 128 will use controller's interrupt. Other values will
38  *	use kernel timer, because the controller will not allow lower values
39  *	than 128.
40  *	Also note that the value depends on the kernel timer frequency.
41  *	If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42  *	If the kernel uses 100 Hz, steps of 80 samples are possible.
43  *	If the kernel uses 300 Hz, steps of about 26 samples are possible.
44  *
45  */
46 
47 #include <linux/interrupt.h>
48 #include <linux/module.h>
49 #include <linux/pci.h>
50 #include <linux/delay.h>
51 #include <linux/mISDNhw.h>
52 #include <linux/slab.h>
53 
54 #include "hfc_pci.h"
55 
56 static const char *hfcpci_revision = "2.0";
57 
58 static int HFC_cnt;
59 static uint debug;
60 static uint poll, tics;
61 static struct timer_list hfc_tl;
62 static unsigned long hfc_jiffies;
63 
64 MODULE_AUTHOR("Karsten Keil");
65 MODULE_LICENSE("GPL");
66 module_param(debug, uint, S_IRUGO | S_IWUSR);
67 module_param(poll, uint, S_IRUGO | S_IWUSR);
68 
69 enum {
70 	HFC_CCD_2BD0,
71 	HFC_CCD_B000,
72 	HFC_CCD_B006,
73 	HFC_CCD_B007,
74 	HFC_CCD_B008,
75 	HFC_CCD_B009,
76 	HFC_CCD_B00A,
77 	HFC_CCD_B00B,
78 	HFC_CCD_B00C,
79 	HFC_CCD_B100,
80 	HFC_CCD_B700,
81 	HFC_CCD_B701,
82 	HFC_ASUS_0675,
83 	HFC_BERKOM_A1T,
84 	HFC_BERKOM_TCONCEPT,
85 	HFC_ANIGMA_MC145575,
86 	HFC_ZOLTRIX_2BD0,
87 	HFC_DIGI_DF_M_IOM2_E,
88 	HFC_DIGI_DF_M_E,
89 	HFC_DIGI_DF_M_IOM2_A,
90 	HFC_DIGI_DF_M_A,
91 	HFC_ABOCOM_2BD1,
92 	HFC_SITECOM_DC105V2,
93 };
94 
95 struct hfcPCI_hw {
96 	unsigned char		cirm;
97 	unsigned char		ctmt;
98 	unsigned char		clkdel;
99 	unsigned char		states;
100 	unsigned char		conn;
101 	unsigned char		mst_m;
102 	unsigned char		int_m1;
103 	unsigned char		int_m2;
104 	unsigned char		sctrl;
105 	unsigned char		sctrl_r;
106 	unsigned char		sctrl_e;
107 	unsigned char		trm;
108 	unsigned char		fifo_en;
109 	unsigned char		bswapped;
110 	unsigned char		protocol;
111 	int			nt_timer;
112 	unsigned char __iomem	*pci_io; /* start of PCI IO memory */
113 	dma_addr_t		dmahandle;
114 	void			*fifos; /* FIFO memory */
115 	int			last_bfifo_cnt[2];
116 	/* marker saving last b-fifo frame count */
117 	struct timer_list	timer;
118 };
119 
120 #define	HFC_CFG_MASTER		1
121 #define HFC_CFG_SLAVE		2
122 #define	HFC_CFG_PCM		3
123 #define HFC_CFG_2HFC		4
124 #define HFC_CFG_SLAVEHFC	5
125 #define HFC_CFG_NEG_F0		6
126 #define HFC_CFG_SW_DD_DU	7
127 
128 #define FLG_HFC_TIMER_T1	16
129 #define FLG_HFC_TIMER_T3	17
130 
131 #define NT_T1_COUNT	1120	/* number of 3.125ms interrupts (3.5s) */
132 #define NT_T3_COUNT	31	/* number of 3.125ms interrupts (97 ms) */
133 #define CLKDEL_TE	0x0e	/* CLKDEL in TE mode */
134 #define CLKDEL_NT	0x6c	/* CLKDEL in NT mode */
135 
136 
137 struct hfc_pci {
138 	u_char			subtype;
139 	u_char			chanlimit;
140 	u_char			initdone;
141 	u_long			cfg;
142 	u_int			irq;
143 	u_int			irqcnt;
144 	struct pci_dev		*pdev;
145 	struct hfcPCI_hw	hw;
146 	spinlock_t		lock;	/* card lock */
147 	struct dchannel		dch;
148 	struct bchannel		bch[2];
149 };
150 
151 /* Interface functions */
152 static void
153 enable_hwirq(struct hfc_pci *hc)
154 {
155 	hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
156 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
157 }
158 
159 static void
160 disable_hwirq(struct hfc_pci *hc)
161 {
162 	hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
163 	Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
164 }
165 
166 /*
167  * free hardware resources used by driver
168  */
169 static void
170 release_io_hfcpci(struct hfc_pci *hc)
171 {
172 	/* disable memory mapped ports + busmaster */
173 	pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
174 	del_timer(&hc->hw.timer);
175 	pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
176 	iounmap(hc->hw.pci_io);
177 }
178 
179 /*
180  * set mode (NT or TE)
181  */
182 static void
183 hfcpci_setmode(struct hfc_pci *hc)
184 {
185 	if (hc->hw.protocol == ISDN_P_NT_S0) {
186 		hc->hw.clkdel = CLKDEL_NT;	/* ST-Bit delay for NT-Mode */
187 		hc->hw.sctrl |= SCTRL_MODE_NT;	/* NT-MODE */
188 		hc->hw.states = 1;		/* G1 */
189 	} else {
190 		hc->hw.clkdel = CLKDEL_TE;	/* ST-Bit delay for TE-Mode */
191 		hc->hw.sctrl &= ~SCTRL_MODE_NT;	/* TE-MODE */
192 		hc->hw.states = 2;		/* F2 */
193 	}
194 	Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
195 	Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
196 	udelay(10);
197 	Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
198 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
199 }
200 
201 /*
202  * function called to reset the HFC PCI chip. A complete software reset of chip
203  * and fifos is done.
204  */
205 static void
206 reset_hfcpci(struct hfc_pci *hc)
207 {
208 	u_char	val;
209 	int	cnt = 0;
210 
211 	printk(KERN_DEBUG "reset_hfcpci: entered\n");
212 	val = Read_hfc(hc, HFCPCI_CHIP_ID);
213 	printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
214 	/* enable memory mapped ports, disable busmaster */
215 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
216 	disable_hwirq(hc);
217 	/* enable memory ports + busmaster */
218 	pci_write_config_word(hc->pdev, PCI_COMMAND,
219 			      PCI_ENA_MEMIO + PCI_ENA_MASTER);
220 	val = Read_hfc(hc, HFCPCI_STATUS);
221 	printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
222 	hc->hw.cirm = HFCPCI_RESET;	/* Reset On */
223 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
224 	set_current_state(TASK_UNINTERRUPTIBLE);
225 	mdelay(10);			/* Timeout 10ms */
226 	hc->hw.cirm = 0;		/* Reset Off */
227 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
228 	val = Read_hfc(hc, HFCPCI_STATUS);
229 	printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
230 	while (cnt < 50000) { /* max 50000 us */
231 		udelay(5);
232 		cnt += 5;
233 		val = Read_hfc(hc, HFCPCI_STATUS);
234 		if (!(val & 2))
235 			break;
236 	}
237 	printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
238 
239 	hc->hw.fifo_en = 0x30;	/* only D fifos enabled */
240 
241 	hc->hw.bswapped = 0;	/* no exchange */
242 	hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
243 	hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
244 	hc->hw.sctrl = 0x40;	/* set tx_lo mode, error in datasheet ! */
245 	hc->hw.sctrl_r = 0;
246 	hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE;	/* S/T Auto awake */
247 	hc->hw.mst_m = 0;
248 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
249 		hc->hw.mst_m |= HFCPCI_MASTER;	/* HFC Master Mode */
250 	if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
251 		hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
252 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
253 	Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
254 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
255 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
256 
257 	hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
258 		HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
259 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
260 
261 	/* Clear already pending ints */
262 	val = Read_hfc(hc, HFCPCI_INT_S1);
263 
264 	/* set NT/TE mode */
265 	hfcpci_setmode(hc);
266 
267 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
268 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
269 
270 	/*
271 	 * Init GCI/IOM2 in master mode
272 	 * Slots 0 and 1 are set for B-chan 1 and 2
273 	 * D- and monitor/CI channel are not enabled
274 	 * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
275 	 * STIO2 is used as data input, B1+B2 from IOM->ST
276 	 * ST B-channel send disabled -> continuous 1s
277 	 * The IOM slots are always enabled
278 	 */
279 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
280 		/* set data flow directions: connect B1,B2: HFC to/from PCM */
281 		hc->hw.conn = 0x09;
282 	} else {
283 		hc->hw.conn = 0x36;	/* set data flow directions */
284 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
285 			Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
286 			Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
287 			Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
288 			Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
289 		} else {
290 			Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
291 			Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
292 			Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
293 			Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
294 		}
295 	}
296 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
297 	val = Read_hfc(hc, HFCPCI_INT_S2);
298 }
299 
300 /*
301  * Timer function called when kernel timer expires
302  */
303 static void
304 hfcpci_Timer(struct timer_list *t)
305 {
306 	struct hfc_pci *hc = from_timer(hc, t, hw.timer);
307 	hc->hw.timer.expires = jiffies + 75;
308 	/* WD RESET */
309 /*
310  *	WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
311  *	add_timer(&hc->hw.timer);
312  */
313 }
314 
315 
316 /*
317  * select a b-channel entry matching and active
318  */
319 static struct bchannel *
320 Sel_BCS(struct hfc_pci *hc, int channel)
321 {
322 	if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
323 	    (hc->bch[0].nr & channel))
324 		return &hc->bch[0];
325 	else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
326 		 (hc->bch[1].nr & channel))
327 		return &hc->bch[1];
328 	else
329 		return NULL;
330 }
331 
332 /*
333  * clear the desired B-channel rx fifo
334  */
335 static void
336 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
337 {
338 	u_char		fifo_state;
339 	struct bzfifo	*bzr;
340 
341 	if (fifo) {
342 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
343 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
344 	} else {
345 		bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
346 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
347 	}
348 	if (fifo_state)
349 		hc->hw.fifo_en ^= fifo_state;
350 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
351 	hc->hw.last_bfifo_cnt[fifo] = 0;
352 	bzr->f1 = MAX_B_FRAMES;
353 	bzr->f2 = bzr->f1;	/* init F pointers to remain constant */
354 	bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
355 	bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
356 		le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
357 	if (fifo_state)
358 		hc->hw.fifo_en |= fifo_state;
359 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
360 }
361 
362 /*
363  * clear the desired B-channel tx fifo
364  */
365 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
366 {
367 	u_char		fifo_state;
368 	struct bzfifo	*bzt;
369 
370 	if (fifo) {
371 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
372 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
373 	} else {
374 		bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
375 		fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
376 	}
377 	if (fifo_state)
378 		hc->hw.fifo_en ^= fifo_state;
379 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
380 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
381 		printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
382 		       "z1(%x) z2(%x) state(%x)\n",
383 		       fifo, bzt->f1, bzt->f2,
384 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
385 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
386 		       fifo_state);
387 	bzt->f2 = MAX_B_FRAMES;
388 	bzt->f1 = bzt->f2;	/* init F pointers to remain constant */
389 	bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
390 	bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
391 	if (fifo_state)
392 		hc->hw.fifo_en |= fifo_state;
393 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
394 	if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
395 		printk(KERN_DEBUG
396 		       "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
397 		       fifo, bzt->f1, bzt->f2,
398 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
399 		       le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
400 }
401 
402 /*
403  * read a complete B-frame out of the buffer
404  */
405 static void
406 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
407 		   u_char *bdata, int count)
408 {
409 	u_char		*ptr, *ptr1, new_f2;
410 	int		maxlen, new_z2;
411 	struct zt	*zp;
412 
413 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
414 		printk(KERN_DEBUG "hfcpci_empty_fifo\n");
415 	zp = &bz->za[bz->f2];	/* point to Z-Regs */
416 	new_z2 = le16_to_cpu(zp->z2) + count;	/* new position in fifo */
417 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
418 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
419 	new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
420 	if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
421 	    (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
422 		if (bch->debug & DEBUG_HW)
423 			printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
424 			       "invalid length %d or crc\n", count);
425 #ifdef ERROR_STATISTIC
426 		bch->err_inv++;
427 #endif
428 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
429 		bz->f2 = new_f2;	/* next buffer */
430 	} else {
431 		bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
432 		if (!bch->rx_skb) {
433 			printk(KERN_WARNING "HFCPCI: receive out of memory\n");
434 			return;
435 		}
436 		count -= 3;
437 		ptr = skb_put(bch->rx_skb, count);
438 
439 		if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
440 			maxlen = count;		/* complete transfer */
441 		else
442 			maxlen = B_FIFO_SIZE + B_SUB_VAL -
443 				le16_to_cpu(zp->z2);	/* maximum */
444 
445 		ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
446 		/* start of data */
447 		memcpy(ptr, ptr1, maxlen);	/* copy data */
448 		count -= maxlen;
449 
450 		if (count) {	/* rest remaining */
451 			ptr += maxlen;
452 			ptr1 = bdata;	/* start of buffer */
453 			memcpy(ptr, ptr1, count);	/* rest */
454 		}
455 		bz->za[new_f2].z2 = cpu_to_le16(new_z2);
456 		bz->f2 = new_f2;	/* next buffer */
457 		recv_Bchannel(bch, MISDN_ID_ANY, false);
458 	}
459 }
460 
461 /*
462  * D-channel receive procedure
463  */
464 static int
465 receive_dmsg(struct hfc_pci *hc)
466 {
467 	struct dchannel	*dch = &hc->dch;
468 	int		maxlen;
469 	int		rcnt, total;
470 	int		count = 5;
471 	u_char		*ptr, *ptr1;
472 	struct dfifo	*df;
473 	struct zt	*zp;
474 
475 	df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
476 	while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
477 		zp = &df->za[df->f2 & D_FREG_MASK];
478 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
479 		if (rcnt < 0)
480 			rcnt += D_FIFO_SIZE;
481 		rcnt++;
482 		if (dch->debug & DEBUG_HW_DCHANNEL)
483 			printk(KERN_DEBUG
484 			       "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
485 			       df->f1, df->f2,
486 			       le16_to_cpu(zp->z1),
487 			       le16_to_cpu(zp->z2),
488 			       rcnt);
489 
490 		if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
491 		    (df->data[le16_to_cpu(zp->z1)])) {
492 			if (dch->debug & DEBUG_HW)
493 				printk(KERN_DEBUG
494 				       "empty_fifo hfcpci packet inv. len "
495 				       "%d or crc %d\n",
496 				       rcnt,
497 				       df->data[le16_to_cpu(zp->z1)]);
498 #ifdef ERROR_STATISTIC
499 			cs->err_rx++;
500 #endif
501 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
502 				(MAX_D_FRAMES + 1);	/* next buffer */
503 			df->za[df->f2 & D_FREG_MASK].z2 =
504 				cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
505 					    (D_FIFO_SIZE - 1));
506 		} else {
507 			dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
508 			if (!dch->rx_skb) {
509 				printk(KERN_WARNING
510 				       "HFC-PCI: D receive out of memory\n");
511 				break;
512 			}
513 			total = rcnt;
514 			rcnt -= 3;
515 			ptr = skb_put(dch->rx_skb, rcnt);
516 
517 			if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
518 				maxlen = rcnt;	/* complete transfer */
519 			else
520 				maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
521 			/* maximum */
522 
523 			ptr1 = df->data + le16_to_cpu(zp->z2);
524 			/* start of data */
525 			memcpy(ptr, ptr1, maxlen);	/* copy data */
526 			rcnt -= maxlen;
527 
528 			if (rcnt) {	/* rest remaining */
529 				ptr += maxlen;
530 				ptr1 = df->data;	/* start of buffer */
531 				memcpy(ptr, ptr1, rcnt);	/* rest */
532 			}
533 			df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
534 				(MAX_D_FRAMES + 1);	/* next buffer */
535 			df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
536 									      le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
537 			recv_Dchannel(dch);
538 		}
539 	}
540 	return 1;
541 }
542 
543 /*
544  * check for transparent receive data and read max one 'poll' size if avail
545  */
546 static void
547 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
548 			struct bzfifo *txbz, u_char *bdata)
549 {
550 	__le16	*z1r, *z2r, *z1t, *z2t;
551 	int	new_z2, fcnt_rx, fcnt_tx, maxlen;
552 	u_char	*ptr, *ptr1;
553 
554 	z1r = &rxbz->za[MAX_B_FRAMES].z1;	/* pointer to z reg */
555 	z2r = z1r + 1;
556 	z1t = &txbz->za[MAX_B_FRAMES].z1;
557 	z2t = z1t + 1;
558 
559 	fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
560 	if (!fcnt_rx)
561 		return;	/* no data avail */
562 
563 	if (fcnt_rx <= 0)
564 		fcnt_rx += B_FIFO_SIZE;	/* bytes actually buffered */
565 	new_z2 = le16_to_cpu(*z2r) + fcnt_rx;	/* new position in fifo */
566 	if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
567 		new_z2 -= B_FIFO_SIZE;	/* buffer wrap */
568 
569 	fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
570 	if (fcnt_tx <= 0)
571 		fcnt_tx += B_FIFO_SIZE;
572 	/* fcnt_tx contains available bytes in tx-fifo */
573 	fcnt_tx = B_FIFO_SIZE - fcnt_tx;
574 	/* remaining bytes to send (bytes in tx-fifo) */
575 
576 	if (test_bit(FLG_RX_OFF, &bch->Flags)) {
577 		bch->dropcnt += fcnt_rx;
578 		*z2r = cpu_to_le16(new_z2);
579 		return;
580 	}
581 	maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
582 	if (maxlen < 0) {
583 		pr_warning("B%d: No bufferspace for %d bytes\n",
584 			   bch->nr, fcnt_rx);
585 	} else {
586 		ptr = skb_put(bch->rx_skb, fcnt_rx);
587 		if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
588 			maxlen = fcnt_rx;	/* complete transfer */
589 		else
590 			maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
591 		/* maximum */
592 
593 		ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
594 		/* start of data */
595 		memcpy(ptr, ptr1, maxlen);	/* copy data */
596 		fcnt_rx -= maxlen;
597 
598 		if (fcnt_rx) {	/* rest remaining */
599 			ptr += maxlen;
600 			ptr1 = bdata;	/* start of buffer */
601 			memcpy(ptr, ptr1, fcnt_rx);	/* rest */
602 		}
603 		recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
604 	}
605 	*z2r = cpu_to_le16(new_z2);		/* new position */
606 }
607 
608 /*
609  * B-channel main receive routine
610  */
611 static void
612 main_rec_hfcpci(struct bchannel *bch)
613 {
614 	struct hfc_pci	*hc = bch->hw;
615 	int		rcnt, real_fifo;
616 	int		receive = 0, count = 5;
617 	struct bzfifo	*txbz, *rxbz;
618 	u_char		*bdata;
619 	struct zt	*zp;
620 
621 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
622 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
623 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
624 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
625 		real_fifo = 1;
626 	} else {
627 		rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
628 		txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
629 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
630 		real_fifo = 0;
631 	}
632 Begin:
633 	count--;
634 	if (rxbz->f1 != rxbz->f2) {
635 		if (bch->debug & DEBUG_HW_BCHANNEL)
636 			printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
637 			       bch->nr, rxbz->f1, rxbz->f2);
638 		zp = &rxbz->za[rxbz->f2];
639 
640 		rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
641 		if (rcnt < 0)
642 			rcnt += B_FIFO_SIZE;
643 		rcnt++;
644 		if (bch->debug & DEBUG_HW_BCHANNEL)
645 			printk(KERN_DEBUG
646 			       "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
647 			       bch->nr, le16_to_cpu(zp->z1),
648 			       le16_to_cpu(zp->z2), rcnt);
649 		hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
650 		rcnt = rxbz->f1 - rxbz->f2;
651 		if (rcnt < 0)
652 			rcnt += MAX_B_FRAMES + 1;
653 		if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
654 			rcnt = 0;
655 			hfcpci_clear_fifo_rx(hc, real_fifo);
656 		}
657 		hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
658 		if (rcnt > 1)
659 			receive = 1;
660 		else
661 			receive = 0;
662 	} else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
663 		hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
664 		return;
665 	} else
666 		receive = 0;
667 	if (count && receive)
668 		goto Begin;
669 
670 }
671 
672 /*
673  * D-channel send routine
674  */
675 static void
676 hfcpci_fill_dfifo(struct hfc_pci *hc)
677 {
678 	struct dchannel	*dch = &hc->dch;
679 	int		fcnt;
680 	int		count, new_z1, maxlen;
681 	struct dfifo	*df;
682 	u_char		*src, *dst, new_f1;
683 
684 	if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
685 		printk(KERN_DEBUG "%s\n", __func__);
686 
687 	if (!dch->tx_skb)
688 		return;
689 	count = dch->tx_skb->len - dch->tx_idx;
690 	if (count <= 0)
691 		return;
692 	df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
693 
694 	if (dch->debug & DEBUG_HW_DFIFO)
695 		printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
696 		       df->f1, df->f2,
697 		       le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
698 	fcnt = df->f1 - df->f2;	/* frame count actually buffered */
699 	if (fcnt < 0)
700 		fcnt += (MAX_D_FRAMES + 1);	/* if wrap around */
701 	if (fcnt > (MAX_D_FRAMES - 1)) {
702 		if (dch->debug & DEBUG_HW_DCHANNEL)
703 			printk(KERN_DEBUG
704 			       "hfcpci_fill_Dfifo more as 14 frames\n");
705 #ifdef ERROR_STATISTIC
706 		cs->err_tx++;
707 #endif
708 		return;
709 	}
710 	/* now determine free bytes in FIFO buffer */
711 	maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
712 		le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
713 	if (maxlen <= 0)
714 		maxlen += D_FIFO_SIZE;	/* count now contains available bytes */
715 
716 	if (dch->debug & DEBUG_HW_DCHANNEL)
717 		printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
718 		       count, maxlen);
719 	if (count > maxlen) {
720 		if (dch->debug & DEBUG_HW_DCHANNEL)
721 			printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
722 		return;
723 	}
724 	new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
725 		(D_FIFO_SIZE - 1);
726 	new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
727 	src = dch->tx_skb->data + dch->tx_idx;	/* source pointer */
728 	dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
729 	maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
730 	/* end fifo */
731 	if (maxlen > count)
732 		maxlen = count;	/* limit size */
733 	memcpy(dst, src, maxlen);	/* first copy */
734 
735 	count -= maxlen;	/* remaining bytes */
736 	if (count) {
737 		dst = df->data;	/* start of buffer */
738 		src += maxlen;	/* new position */
739 		memcpy(dst, src, count);
740 	}
741 	df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
742 	/* for next buffer */
743 	df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
744 	/* new pos actual buffer */
745 	df->f1 = new_f1;	/* next frame */
746 	dch->tx_idx = dch->tx_skb->len;
747 }
748 
749 /*
750  * B-channel send routine
751  */
752 static void
753 hfcpci_fill_fifo(struct bchannel *bch)
754 {
755 	struct hfc_pci	*hc = bch->hw;
756 	int		maxlen, fcnt;
757 	int		count, new_z1;
758 	struct bzfifo	*bz;
759 	u_char		*bdata;
760 	u_char		new_f1, *src, *dst;
761 	__le16 *z1t, *z2t;
762 
763 	if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
764 		printk(KERN_DEBUG "%s\n", __func__);
765 	if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
766 		if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
767 		    !test_bit(FLG_TRANSPARENT, &bch->Flags))
768 			return;
769 		count = HFCPCI_FILLEMPTY;
770 	} else {
771 		count = bch->tx_skb->len - bch->tx_idx;
772 	}
773 	if ((bch->nr & 2) && (!hc->hw.bswapped)) {
774 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
775 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
776 	} else {
777 		bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
778 		bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
779 	}
780 
781 	if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
782 		z1t = &bz->za[MAX_B_FRAMES].z1;
783 		z2t = z1t + 1;
784 		if (bch->debug & DEBUG_HW_BCHANNEL)
785 			printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
786 			       "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
787 			       le16_to_cpu(*z1t), le16_to_cpu(*z2t));
788 		fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
789 		if (fcnt <= 0)
790 			fcnt += B_FIFO_SIZE;
791 		if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
792 			/* fcnt contains available bytes in fifo */
793 			if (count > fcnt)
794 				count = fcnt;
795 			new_z1 = le16_to_cpu(*z1t) + count;
796 			/* new buffer Position */
797 			if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
798 				new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
799 			dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
800 			maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
801 			/* end of fifo */
802 			if (bch->debug & DEBUG_HW_BFIFO)
803 				printk(KERN_DEBUG "hfcpci_FFt fillempty "
804 				       "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
805 				       fcnt, maxlen, new_z1, dst);
806 			if (maxlen > count)
807 				maxlen = count;		/* limit size */
808 			memset(dst, bch->fill[0], maxlen); /* first copy */
809 			count -= maxlen;		/* remaining bytes */
810 			if (count) {
811 				dst = bdata;		/* start of buffer */
812 				memset(dst, bch->fill[0], count);
813 			}
814 			*z1t = cpu_to_le16(new_z1);	/* now send data */
815 			return;
816 		}
817 		/* fcnt contains available bytes in fifo */
818 		fcnt = B_FIFO_SIZE - fcnt;
819 		/* remaining bytes to send (bytes in fifo) */
820 
821 	next_t_frame:
822 		count = bch->tx_skb->len - bch->tx_idx;
823 		/* maximum fill shall be poll*2 */
824 		if (count > (poll << 1) - fcnt)
825 			count = (poll << 1) - fcnt;
826 		if (count <= 0)
827 			return;
828 		/* data is suitable for fifo */
829 		new_z1 = le16_to_cpu(*z1t) + count;
830 		/* new buffer Position */
831 		if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
832 			new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
833 		src = bch->tx_skb->data + bch->tx_idx;
834 		/* source pointer */
835 		dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
836 		maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
837 		/* end of fifo */
838 		if (bch->debug & DEBUG_HW_BFIFO)
839 			printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
840 			       "maxl(%d) nz1(%x) dst(%p)\n",
841 			       fcnt, maxlen, new_z1, dst);
842 		fcnt += count;
843 		bch->tx_idx += count;
844 		if (maxlen > count)
845 			maxlen = count;		/* limit size */
846 		memcpy(dst, src, maxlen);	/* first copy */
847 		count -= maxlen;	/* remaining bytes */
848 		if (count) {
849 			dst = bdata;	/* start of buffer */
850 			src += maxlen;	/* new position */
851 			memcpy(dst, src, count);
852 		}
853 		*z1t = cpu_to_le16(new_z1);	/* now send data */
854 		if (bch->tx_idx < bch->tx_skb->len)
855 			return;
856 		dev_kfree_skb(bch->tx_skb);
857 		if (get_next_bframe(bch))
858 			goto next_t_frame;
859 		return;
860 	}
861 	if (bch->debug & DEBUG_HW_BCHANNEL)
862 		printk(KERN_DEBUG
863 		       "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
864 		       __func__, bch->nr, bz->f1, bz->f2,
865 		       bz->za[bz->f1].z1);
866 	fcnt = bz->f1 - bz->f2;	/* frame count actually buffered */
867 	if (fcnt < 0)
868 		fcnt += (MAX_B_FRAMES + 1);	/* if wrap around */
869 	if (fcnt > (MAX_B_FRAMES - 1)) {
870 		if (bch->debug & DEBUG_HW_BCHANNEL)
871 			printk(KERN_DEBUG
872 			       "hfcpci_fill_Bfifo more as 14 frames\n");
873 		return;
874 	}
875 	/* now determine free bytes in FIFO buffer */
876 	maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
877 		le16_to_cpu(bz->za[bz->f1].z1) - 1;
878 	if (maxlen <= 0)
879 		maxlen += B_FIFO_SIZE;	/* count now contains available bytes */
880 
881 	if (bch->debug & DEBUG_HW_BCHANNEL)
882 		printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
883 		       bch->nr, count, maxlen);
884 
885 	if (maxlen < count) {
886 		if (bch->debug & DEBUG_HW_BCHANNEL)
887 			printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
888 		return;
889 	}
890 	new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
891 	/* new buffer Position */
892 	if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
893 		new_z1 -= B_FIFO_SIZE;	/* buffer wrap */
894 
895 	new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
896 	src = bch->tx_skb->data + bch->tx_idx;	/* source pointer */
897 	dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
898 	maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
899 	/* end fifo */
900 	if (maxlen > count)
901 		maxlen = count;	/* limit size */
902 	memcpy(dst, src, maxlen);	/* first copy */
903 
904 	count -= maxlen;	/* remaining bytes */
905 	if (count) {
906 		dst = bdata;	/* start of buffer */
907 		src += maxlen;	/* new position */
908 		memcpy(dst, src, count);
909 	}
910 	bz->za[new_f1].z1 = cpu_to_le16(new_z1);	/* for next buffer */
911 	bz->f1 = new_f1;	/* next frame */
912 	dev_kfree_skb(bch->tx_skb);
913 	get_next_bframe(bch);
914 }
915 
916 
917 
918 /*
919  * handle L1 state changes TE
920  */
921 
922 static void
923 ph_state_te(struct dchannel *dch)
924 {
925 	if (dch->debug)
926 		printk(KERN_DEBUG "%s: TE newstate %x\n",
927 		       __func__, dch->state);
928 	switch (dch->state) {
929 	case 0:
930 		l1_event(dch->l1, HW_RESET_IND);
931 		break;
932 	case 3:
933 		l1_event(dch->l1, HW_DEACT_IND);
934 		break;
935 	case 5:
936 	case 8:
937 		l1_event(dch->l1, ANYSIGNAL);
938 		break;
939 	case 6:
940 		l1_event(dch->l1, INFO2);
941 		break;
942 	case 7:
943 		l1_event(dch->l1, INFO4_P8);
944 		break;
945 	}
946 }
947 
948 /*
949  * handle L1 state changes NT
950  */
951 
952 static void
953 handle_nt_timer3(struct dchannel *dch) {
954 	struct hfc_pci	*hc = dch->hw;
955 
956 	test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
957 	hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
958 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
959 	hc->hw.nt_timer = 0;
960 	test_and_set_bit(FLG_ACTIVE, &dch->Flags);
961 	if (test_bit(HFC_CFG_MASTER, &hc->cfg))
962 		hc->hw.mst_m |= HFCPCI_MASTER;
963 	Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
964 	_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
965 		    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
966 }
967 
968 static void
969 ph_state_nt(struct dchannel *dch)
970 {
971 	struct hfc_pci	*hc = dch->hw;
972 
973 	if (dch->debug)
974 		printk(KERN_DEBUG "%s: NT newstate %x\n",
975 		       __func__, dch->state);
976 	switch (dch->state) {
977 	case 2:
978 		if (hc->hw.nt_timer < 0) {
979 			hc->hw.nt_timer = 0;
980 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
981 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
982 			hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
983 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
984 			/* Clear already pending ints */
985 			(void) Read_hfc(hc, HFCPCI_INT_S1);
986 			Write_hfc(hc, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
987 			udelay(10);
988 			Write_hfc(hc, HFCPCI_STATES, 4);
989 			dch->state = 4;
990 		} else if (hc->hw.nt_timer == 0) {
991 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
992 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
993 			hc->hw.nt_timer = NT_T1_COUNT;
994 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
995 			hc->hw.ctmt |= HFCPCI_TIM3_125;
996 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
997 				  HFCPCI_CLTIMER);
998 			test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
999 			test_and_set_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1000 			/* allow G2 -> G3 transition */
1001 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1002 		} else {
1003 			Write_hfc(hc, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3);
1004 		}
1005 		break;
1006 	case 1:
1007 		hc->hw.nt_timer = 0;
1008 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1009 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1010 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1011 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1012 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1013 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1014 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1015 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1016 		_queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1017 			    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1018 		break;
1019 	case 4:
1020 		hc->hw.nt_timer = 0;
1021 		test_and_clear_bit(FLG_HFC_TIMER_T3, &dch->Flags);
1022 		test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1023 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1024 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1025 		break;
1026 	case 3:
1027 		if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1028 			if (!test_and_clear_bit(FLG_L2_ACTIVATED,
1029 						&dch->Flags)) {
1030 				handle_nt_timer3(dch);
1031 				break;
1032 			}
1033 			test_and_clear_bit(FLG_HFC_TIMER_T1, &dch->Flags);
1034 			hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1035 			Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1036 			hc->hw.nt_timer = NT_T3_COUNT;
1037 			hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1038 			hc->hw.ctmt |= HFCPCI_TIM3_125;
1039 			Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1040 				  HFCPCI_CLTIMER);
1041 		}
1042 		break;
1043 	}
1044 }
1045 
1046 static void
1047 ph_state(struct dchannel *dch)
1048 {
1049 	struct hfc_pci	*hc = dch->hw;
1050 
1051 	if (hc->hw.protocol == ISDN_P_NT_S0) {
1052 		if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1053 		    hc->hw.nt_timer < 0)
1054 			handle_nt_timer3(dch);
1055 		else
1056 			ph_state_nt(dch);
1057 	} else
1058 		ph_state_te(dch);
1059 }
1060 
1061 /*
1062  * Layer 1 callback function
1063  */
1064 static int
1065 hfc_l1callback(struct dchannel *dch, u_int cmd)
1066 {
1067 	struct hfc_pci		*hc = dch->hw;
1068 
1069 	switch (cmd) {
1070 	case INFO3_P8:
1071 	case INFO3_P10:
1072 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1073 			hc->hw.mst_m |= HFCPCI_MASTER;
1074 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1075 		break;
1076 	case HW_RESET_REQ:
1077 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3);
1078 		/* HFC ST 3 */
1079 		udelay(6);
1080 		Write_hfc(hc, HFCPCI_STATES, 3);	/* HFC ST 2 */
1081 		if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1082 			hc->hw.mst_m |= HFCPCI_MASTER;
1083 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1084 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1085 			  HFCPCI_DO_ACTION);
1086 		l1_event(dch->l1, HW_POWERUP_IND);
1087 		break;
1088 	case HW_DEACT_REQ:
1089 		hc->hw.mst_m &= ~HFCPCI_MASTER;
1090 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1091 		skb_queue_purge(&dch->squeue);
1092 		if (dch->tx_skb) {
1093 			dev_kfree_skb(dch->tx_skb);
1094 			dch->tx_skb = NULL;
1095 		}
1096 		dch->tx_idx = 0;
1097 		if (dch->rx_skb) {
1098 			dev_kfree_skb(dch->rx_skb);
1099 			dch->rx_skb = NULL;
1100 		}
1101 		test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1102 		if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1103 			del_timer(&dch->timer);
1104 		break;
1105 	case HW_POWERUP_REQ:
1106 		Write_hfc(hc, HFCPCI_STATES, HFCPCI_DO_ACTION);
1107 		break;
1108 	case PH_ACTIVATE_IND:
1109 		test_and_set_bit(FLG_ACTIVE, &dch->Flags);
1110 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1111 			    GFP_ATOMIC);
1112 		break;
1113 	case PH_DEACTIVATE_IND:
1114 		test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
1115 		_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1116 			    GFP_ATOMIC);
1117 		break;
1118 	default:
1119 		if (dch->debug & DEBUG_HW)
1120 			printk(KERN_DEBUG "%s: unknown command %x\n",
1121 			       __func__, cmd);
1122 		return -1;
1123 	}
1124 	return 0;
1125 }
1126 
1127 /*
1128  * Interrupt handler
1129  */
1130 static inline void
1131 tx_birq(struct bchannel *bch)
1132 {
1133 	if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1134 		hfcpci_fill_fifo(bch);
1135 	else {
1136 		if (bch->tx_skb)
1137 			dev_kfree_skb(bch->tx_skb);
1138 		if (get_next_bframe(bch))
1139 			hfcpci_fill_fifo(bch);
1140 	}
1141 }
1142 
1143 static inline void
1144 tx_dirq(struct dchannel *dch)
1145 {
1146 	if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1147 		hfcpci_fill_dfifo(dch->hw);
1148 	else {
1149 		if (dch->tx_skb)
1150 			dev_kfree_skb(dch->tx_skb);
1151 		if (get_next_dframe(dch))
1152 			hfcpci_fill_dfifo(dch->hw);
1153 	}
1154 }
1155 
1156 static irqreturn_t
1157 hfcpci_int(int intno, void *dev_id)
1158 {
1159 	struct hfc_pci	*hc = dev_id;
1160 	u_char		exval;
1161 	struct bchannel	*bch;
1162 	u_char		val, stat;
1163 
1164 	spin_lock(&hc->lock);
1165 	if (!(hc->hw.int_m2 & 0x08)) {
1166 		spin_unlock(&hc->lock);
1167 		return IRQ_NONE; /* not initialised */
1168 	}
1169 	stat = Read_hfc(hc, HFCPCI_STATUS);
1170 	if (HFCPCI_ANYINT & stat) {
1171 		val = Read_hfc(hc, HFCPCI_INT_S1);
1172 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1173 			printk(KERN_DEBUG
1174 			       "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1175 	} else {
1176 		/* shared */
1177 		spin_unlock(&hc->lock);
1178 		return IRQ_NONE;
1179 	}
1180 	hc->irqcnt++;
1181 
1182 	if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1183 		printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1184 	val &= hc->hw.int_m1;
1185 	if (val & 0x40) {	/* state machine irq */
1186 		exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1187 		if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1188 			printk(KERN_DEBUG "ph_state chg %d->%d\n",
1189 			       hc->dch.state, exval);
1190 		hc->dch.state = exval;
1191 		schedule_event(&hc->dch, FLG_PHCHANGE);
1192 		val &= ~0x40;
1193 	}
1194 	if (val & 0x80) {	/* timer irq */
1195 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1196 			if ((--hc->hw.nt_timer) < 0)
1197 				schedule_event(&hc->dch, FLG_PHCHANGE);
1198 		}
1199 		val &= ~0x80;
1200 		Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1201 	}
1202 	if (val & 0x08) {	/* B1 rx */
1203 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1204 		if (bch)
1205 			main_rec_hfcpci(bch);
1206 		else if (hc->dch.debug)
1207 			printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1208 	}
1209 	if (val & 0x10) {	/* B2 rx */
1210 		bch = Sel_BCS(hc, 2);
1211 		if (bch)
1212 			main_rec_hfcpci(bch);
1213 		else if (hc->dch.debug)
1214 			printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1215 	}
1216 	if (val & 0x01) {	/* B1 tx */
1217 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1218 		if (bch)
1219 			tx_birq(bch);
1220 		else if (hc->dch.debug)
1221 			printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1222 	}
1223 	if (val & 0x02) {	/* B2 tx */
1224 		bch = Sel_BCS(hc, 2);
1225 		if (bch)
1226 			tx_birq(bch);
1227 		else if (hc->dch.debug)
1228 			printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1229 	}
1230 	if (val & 0x20)		/* D rx */
1231 		receive_dmsg(hc);
1232 	if (val & 0x04) {	/* D tx */
1233 		if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1234 			del_timer(&hc->dch.timer);
1235 		tx_dirq(&hc->dch);
1236 	}
1237 	spin_unlock(&hc->lock);
1238 	return IRQ_HANDLED;
1239 }
1240 
1241 /*
1242  * timer callback for D-chan busy resolution. Currently no function
1243  */
1244 static void
1245 hfcpci_dbusy_timer(struct timer_list *t)
1246 {
1247 }
1248 
1249 /*
1250  * activate/deactivate hardware for selected channels and mode
1251  */
1252 static int
1253 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1254 {
1255 	struct hfc_pci	*hc = bch->hw;
1256 	int		fifo2;
1257 	u_char		rx_slot = 0, tx_slot = 0, pcm_mode;
1258 
1259 	if (bch->debug & DEBUG_HW_BCHANNEL)
1260 		printk(KERN_DEBUG
1261 		       "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1262 		       bch->state, protocol, bch->nr, bc);
1263 
1264 	fifo2 = bc;
1265 	pcm_mode = (bc >> 24) & 0xff;
1266 	if (pcm_mode) { /* PCM SLOT USE */
1267 		if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1268 			printk(KERN_WARNING
1269 			       "%s: pcm channel id without HFC_CFG_PCM\n",
1270 			       __func__);
1271 		rx_slot = (bc >> 8) & 0xff;
1272 		tx_slot = (bc >> 16) & 0xff;
1273 		bc = bc & 0xff;
1274 	} else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1275 		printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1276 		       __func__);
1277 	if (hc->chanlimit > 1) {
1278 		hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1279 		hc->hw.sctrl_e &= ~0x80;
1280 	} else {
1281 		if (bc & 2) {
1282 			if (protocol != ISDN_P_NONE) {
1283 				hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1284 				hc->hw.sctrl_e |= 0x80;
1285 			} else {
1286 				hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1287 				hc->hw.sctrl_e &= ~0x80;
1288 			}
1289 			fifo2 = 1;
1290 		} else {
1291 			hc->hw.bswapped = 0;	/* B1 and B2 normal mode */
1292 			hc->hw.sctrl_e &= ~0x80;
1293 		}
1294 	}
1295 	switch (protocol) {
1296 	case (-1): /* used for init */
1297 		bch->state = -1;
1298 		bch->nr = bc;
1299 	case (ISDN_P_NONE):
1300 		if (bch->state == ISDN_P_NONE)
1301 			return 0;
1302 		if (bc & 2) {
1303 			hc->hw.sctrl &= ~SCTRL_B2_ENA;
1304 			hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1305 		} else {
1306 			hc->hw.sctrl &= ~SCTRL_B1_ENA;
1307 			hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1308 		}
1309 		if (fifo2 & 2) {
1310 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1311 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS |
1312 					   HFCPCI_INTS_B2REC);
1313 		} else {
1314 			hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1315 			hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS |
1316 					   HFCPCI_INTS_B1REC);
1317 		}
1318 #ifdef REVERSE_BITORDER
1319 		if (bch->nr & 2)
1320 			hc->hw.cirm &= 0x7f;
1321 		else
1322 			hc->hw.cirm &= 0xbf;
1323 #endif
1324 		bch->state = ISDN_P_NONE;
1325 		bch->nr = bc;
1326 		test_and_clear_bit(FLG_HDLC, &bch->Flags);
1327 		test_and_clear_bit(FLG_TRANSPARENT, &bch->Flags);
1328 		break;
1329 	case (ISDN_P_B_RAW):
1330 		bch->state = protocol;
1331 		bch->nr = bc;
1332 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1333 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1334 		if (bc & 2) {
1335 			hc->hw.sctrl |= SCTRL_B2_ENA;
1336 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1337 #ifdef REVERSE_BITORDER
1338 			hc->hw.cirm |= 0x80;
1339 #endif
1340 		} else {
1341 			hc->hw.sctrl |= SCTRL_B1_ENA;
1342 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1343 #ifdef REVERSE_BITORDER
1344 			hc->hw.cirm |= 0x40;
1345 #endif
1346 		}
1347 		if (fifo2 & 2) {
1348 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1349 			if (!tics)
1350 				hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1351 						  HFCPCI_INTS_B2REC);
1352 			hc->hw.ctmt |= 2;
1353 			hc->hw.conn &= ~0x18;
1354 		} else {
1355 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1356 			if (!tics)
1357 				hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1358 						  HFCPCI_INTS_B1REC);
1359 			hc->hw.ctmt |= 1;
1360 			hc->hw.conn &= ~0x03;
1361 		}
1362 		test_and_set_bit(FLG_TRANSPARENT, &bch->Flags);
1363 		break;
1364 	case (ISDN_P_B_HDLC):
1365 		bch->state = protocol;
1366 		bch->nr = bc;
1367 		hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1368 		hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1369 		if (bc & 2) {
1370 			hc->hw.sctrl |= SCTRL_B2_ENA;
1371 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1372 		} else {
1373 			hc->hw.sctrl |= SCTRL_B1_ENA;
1374 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1375 		}
1376 		if (fifo2 & 2) {
1377 			hc->hw.last_bfifo_cnt[1] = 0;
1378 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1379 			hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS |
1380 					  HFCPCI_INTS_B2REC);
1381 			hc->hw.ctmt &= ~2;
1382 			hc->hw.conn &= ~0x18;
1383 		} else {
1384 			hc->hw.last_bfifo_cnt[0] = 0;
1385 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1386 			hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS |
1387 					  HFCPCI_INTS_B1REC);
1388 			hc->hw.ctmt &= ~1;
1389 			hc->hw.conn &= ~0x03;
1390 		}
1391 		test_and_set_bit(FLG_HDLC, &bch->Flags);
1392 		break;
1393 	default:
1394 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1395 		return -ENOPROTOOPT;
1396 	}
1397 	if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1398 		if ((protocol == ISDN_P_NONE) ||
1399 		    (protocol == -1)) {	/* init case */
1400 			rx_slot = 0;
1401 			tx_slot = 0;
1402 		} else {
1403 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1404 				rx_slot |= 0xC0;
1405 				tx_slot |= 0xC0;
1406 			} else {
1407 				rx_slot |= 0x80;
1408 				tx_slot |= 0x80;
1409 			}
1410 		}
1411 		if (bc & 2) {
1412 			hc->hw.conn &= 0xc7;
1413 			hc->hw.conn |= 0x08;
1414 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1415 			       __func__, tx_slot);
1416 			printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1417 			       __func__, rx_slot);
1418 			Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1419 			Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1420 		} else {
1421 			hc->hw.conn &= 0xf8;
1422 			hc->hw.conn |= 0x01;
1423 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1424 			       __func__, tx_slot);
1425 			printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1426 			       __func__, rx_slot);
1427 			Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1428 			Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1429 		}
1430 	}
1431 	Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1432 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1433 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1434 	Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1435 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1436 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1437 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1438 #ifdef REVERSE_BITORDER
1439 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1440 #endif
1441 	return 0;
1442 }
1443 
1444 static int
1445 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1446 {
1447 	struct hfc_pci	*hc = bch->hw;
1448 
1449 	if (bch->debug & DEBUG_HW_BCHANNEL)
1450 		printk(KERN_DEBUG
1451 		       "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1452 		       bch->state, protocol, bch->nr, chan);
1453 	if (bch->nr != chan) {
1454 		printk(KERN_DEBUG
1455 		       "HFCPCI rxtest wrong channel parameter %x/%x\n",
1456 		       bch->nr, chan);
1457 		return -EINVAL;
1458 	}
1459 	switch (protocol) {
1460 	case (ISDN_P_B_RAW):
1461 		bch->state = protocol;
1462 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1463 		if (chan & 2) {
1464 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1465 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1466 			if (!tics)
1467 				hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1468 			hc->hw.ctmt |= 2;
1469 			hc->hw.conn &= ~0x18;
1470 #ifdef REVERSE_BITORDER
1471 			hc->hw.cirm |= 0x80;
1472 #endif
1473 		} else {
1474 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1475 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1476 			if (!tics)
1477 				hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1478 			hc->hw.ctmt |= 1;
1479 			hc->hw.conn &= ~0x03;
1480 #ifdef REVERSE_BITORDER
1481 			hc->hw.cirm |= 0x40;
1482 #endif
1483 		}
1484 		break;
1485 	case (ISDN_P_B_HDLC):
1486 		bch->state = protocol;
1487 		hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1488 		if (chan & 2) {
1489 			hc->hw.sctrl_r |= SCTRL_B2_ENA;
1490 			hc->hw.last_bfifo_cnt[1] = 0;
1491 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1492 			hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1493 			hc->hw.ctmt &= ~2;
1494 			hc->hw.conn &= ~0x18;
1495 		} else {
1496 			hc->hw.sctrl_r |= SCTRL_B1_ENA;
1497 			hc->hw.last_bfifo_cnt[0] = 0;
1498 			hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1499 			hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1500 			hc->hw.ctmt &= ~1;
1501 			hc->hw.conn &= ~0x03;
1502 		}
1503 		break;
1504 	default:
1505 		printk(KERN_DEBUG "prot not known %x\n", protocol);
1506 		return -ENOPROTOOPT;
1507 	}
1508 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1509 	Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1510 	Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1511 	Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1512 	Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1513 #ifdef REVERSE_BITORDER
1514 	Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1515 #endif
1516 	return 0;
1517 }
1518 
1519 static void
1520 deactivate_bchannel(struct bchannel *bch)
1521 {
1522 	struct hfc_pci	*hc = bch->hw;
1523 	u_long		flags;
1524 
1525 	spin_lock_irqsave(&hc->lock, flags);
1526 	mISDN_clear_bchannel(bch);
1527 	mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1528 	spin_unlock_irqrestore(&hc->lock, flags);
1529 }
1530 
1531 /*
1532  * Layer 1 B-channel hardware access
1533  */
1534 static int
1535 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1536 {
1537 	return mISDN_ctrl_bchannel(bch, cq);
1538 }
1539 static int
1540 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1541 {
1542 	struct bchannel	*bch = container_of(ch, struct bchannel, ch);
1543 	struct hfc_pci	*hc = bch->hw;
1544 	int		ret = -EINVAL;
1545 	u_long		flags;
1546 
1547 	if (bch->debug & DEBUG_HW)
1548 		printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1549 	switch (cmd) {
1550 	case HW_TESTRX_RAW:
1551 		spin_lock_irqsave(&hc->lock, flags);
1552 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1553 		spin_unlock_irqrestore(&hc->lock, flags);
1554 		break;
1555 	case HW_TESTRX_HDLC:
1556 		spin_lock_irqsave(&hc->lock, flags);
1557 		ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1558 		spin_unlock_irqrestore(&hc->lock, flags);
1559 		break;
1560 	case HW_TESTRX_OFF:
1561 		spin_lock_irqsave(&hc->lock, flags);
1562 		mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1563 		spin_unlock_irqrestore(&hc->lock, flags);
1564 		ret = 0;
1565 		break;
1566 	case CLOSE_CHANNEL:
1567 		test_and_clear_bit(FLG_OPEN, &bch->Flags);
1568 		deactivate_bchannel(bch);
1569 		ch->protocol = ISDN_P_NONE;
1570 		ch->peer = NULL;
1571 		module_put(THIS_MODULE);
1572 		ret = 0;
1573 		break;
1574 	case CONTROL_CHANNEL:
1575 		ret = channel_bctrl(bch, arg);
1576 		break;
1577 	default:
1578 		printk(KERN_WARNING "%s: unknown prim(%x)\n",
1579 		       __func__, cmd);
1580 	}
1581 	return ret;
1582 }
1583 
1584 /*
1585  * Layer2 -> Layer 1 Dchannel data
1586  */
1587 static int
1588 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1589 {
1590 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1591 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1592 	struct hfc_pci		*hc = dch->hw;
1593 	int			ret = -EINVAL;
1594 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1595 	unsigned int		id;
1596 	u_long			flags;
1597 
1598 	switch (hh->prim) {
1599 	case PH_DATA_REQ:
1600 		spin_lock_irqsave(&hc->lock, flags);
1601 		ret = dchannel_senddata(dch, skb);
1602 		if (ret > 0) { /* direct TX */
1603 			id = hh->id; /* skb can be freed */
1604 			hfcpci_fill_dfifo(dch->hw);
1605 			ret = 0;
1606 			spin_unlock_irqrestore(&hc->lock, flags);
1607 			queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1608 		} else
1609 			spin_unlock_irqrestore(&hc->lock, flags);
1610 		return ret;
1611 	case PH_ACTIVATE_REQ:
1612 		spin_lock_irqsave(&hc->lock, flags);
1613 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1614 			ret = 0;
1615 			if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1616 				hc->hw.mst_m |= HFCPCI_MASTER;
1617 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1618 			if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1619 				spin_unlock_irqrestore(&hc->lock, flags);
1620 				_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1621 					    MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
1622 				break;
1623 			}
1624 			test_and_set_bit(FLG_L2_ACTIVATED, &dch->Flags);
1625 			Write_hfc(hc, HFCPCI_STATES, HFCPCI_ACTIVATE |
1626 				  HFCPCI_DO_ACTION | 1);
1627 		} else
1628 			ret = l1_event(dch->l1, hh->prim);
1629 		spin_unlock_irqrestore(&hc->lock, flags);
1630 		break;
1631 	case PH_DEACTIVATE_REQ:
1632 		test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
1633 		spin_lock_irqsave(&hc->lock, flags);
1634 		if (hc->hw.protocol == ISDN_P_NT_S0) {
1635 			/* prepare deactivation */
1636 			Write_hfc(hc, HFCPCI_STATES, 0x40);
1637 			skb_queue_purge(&dch->squeue);
1638 			if (dch->tx_skb) {
1639 				dev_kfree_skb(dch->tx_skb);
1640 				dch->tx_skb = NULL;
1641 			}
1642 			dch->tx_idx = 0;
1643 			if (dch->rx_skb) {
1644 				dev_kfree_skb(dch->rx_skb);
1645 				dch->rx_skb = NULL;
1646 			}
1647 			test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
1648 			if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
1649 				del_timer(&dch->timer);
1650 #ifdef FIXME
1651 			if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1652 				dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1653 #endif
1654 			hc->hw.mst_m &= ~HFCPCI_MASTER;
1655 			Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1656 			ret = 0;
1657 		} else {
1658 			ret = l1_event(dch->l1, hh->prim);
1659 		}
1660 		spin_unlock_irqrestore(&hc->lock, flags);
1661 		break;
1662 	}
1663 	if (!ret)
1664 		dev_kfree_skb(skb);
1665 	return ret;
1666 }
1667 
1668 /*
1669  * Layer2 -> Layer 1 Bchannel data
1670  */
1671 static int
1672 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1673 {
1674 	struct bchannel		*bch = container_of(ch, struct bchannel, ch);
1675 	struct hfc_pci		*hc = bch->hw;
1676 	int			ret = -EINVAL;
1677 	struct mISDNhead	*hh = mISDN_HEAD_P(skb);
1678 	unsigned long		flags;
1679 
1680 	switch (hh->prim) {
1681 	case PH_DATA_REQ:
1682 		spin_lock_irqsave(&hc->lock, flags);
1683 		ret = bchannel_senddata(bch, skb);
1684 		if (ret > 0) { /* direct TX */
1685 			hfcpci_fill_fifo(bch);
1686 			ret = 0;
1687 		}
1688 		spin_unlock_irqrestore(&hc->lock, flags);
1689 		return ret;
1690 	case PH_ACTIVATE_REQ:
1691 		spin_lock_irqsave(&hc->lock, flags);
1692 		if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1693 			ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1694 		else
1695 			ret = 0;
1696 		spin_unlock_irqrestore(&hc->lock, flags);
1697 		if (!ret)
1698 			_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1699 				    NULL, GFP_KERNEL);
1700 		break;
1701 	case PH_DEACTIVATE_REQ:
1702 		deactivate_bchannel(bch);
1703 		_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1704 			    NULL, GFP_KERNEL);
1705 		ret = 0;
1706 		break;
1707 	}
1708 	if (!ret)
1709 		dev_kfree_skb(skb);
1710 	return ret;
1711 }
1712 
1713 /*
1714  * called for card init message
1715  */
1716 
1717 static void
1718 inithfcpci(struct hfc_pci *hc)
1719 {
1720 	printk(KERN_DEBUG "inithfcpci: entered\n");
1721 	timer_setup(&hc->dch.timer, hfcpci_dbusy_timer, 0);
1722 	hc->chanlimit = 2;
1723 	mode_hfcpci(&hc->bch[0], 1, -1);
1724 	mode_hfcpci(&hc->bch[1], 2, -1);
1725 }
1726 
1727 
1728 static int
1729 init_card(struct hfc_pci *hc)
1730 {
1731 	int	cnt = 3;
1732 	u_long	flags;
1733 
1734 	printk(KERN_DEBUG "init_card: entered\n");
1735 
1736 
1737 	spin_lock_irqsave(&hc->lock, flags);
1738 	disable_hwirq(hc);
1739 	spin_unlock_irqrestore(&hc->lock, flags);
1740 	if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1741 		printk(KERN_WARNING
1742 		       "mISDN: couldn't get interrupt %d\n", hc->irq);
1743 		return -EIO;
1744 	}
1745 	spin_lock_irqsave(&hc->lock, flags);
1746 	reset_hfcpci(hc);
1747 	while (cnt) {
1748 		inithfcpci(hc);
1749 		/*
1750 		 * Finally enable IRQ output
1751 		 * this is only allowed, if an IRQ routine is already
1752 		 * established for this HFC, so don't do that earlier
1753 		 */
1754 		enable_hwirq(hc);
1755 		spin_unlock_irqrestore(&hc->lock, flags);
1756 		/* Timeout 80ms */
1757 		set_current_state(TASK_UNINTERRUPTIBLE);
1758 		schedule_timeout((80 * HZ) / 1000);
1759 		printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1760 		       hc->irq, hc->irqcnt);
1761 		/* now switch timer interrupt off */
1762 		spin_lock_irqsave(&hc->lock, flags);
1763 		hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1764 		Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1765 		/* reinit mode reg */
1766 		Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1767 		if (!hc->irqcnt) {
1768 			printk(KERN_WARNING
1769 			       "HFC PCI: IRQ(%d) getting no interrupts "
1770 			       "during init %d\n", hc->irq, 4 - cnt);
1771 			if (cnt == 1)
1772 				break;
1773 			else {
1774 				reset_hfcpci(hc);
1775 				cnt--;
1776 			}
1777 		} else {
1778 			spin_unlock_irqrestore(&hc->lock, flags);
1779 			hc->initdone = 1;
1780 			return 0;
1781 		}
1782 	}
1783 	disable_hwirq(hc);
1784 	spin_unlock_irqrestore(&hc->lock, flags);
1785 	free_irq(hc->irq, hc);
1786 	return -EIO;
1787 }
1788 
1789 static int
1790 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1791 {
1792 	int	ret = 0;
1793 	u_char	slot;
1794 
1795 	switch (cq->op) {
1796 	case MISDN_CTRL_GETOP:
1797 		cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
1798 			 MISDN_CTRL_DISCONNECT | MISDN_CTRL_L1_TIMER3;
1799 		break;
1800 	case MISDN_CTRL_LOOP:
1801 		/* channel 0 disabled loop */
1802 		if (cq->channel < 0 || cq->channel > 2) {
1803 			ret = -EINVAL;
1804 			break;
1805 		}
1806 		if (cq->channel & 1) {
1807 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1808 				slot = 0xC0;
1809 			else
1810 				slot = 0x80;
1811 			printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1812 			       __func__, slot);
1813 			Write_hfc(hc, HFCPCI_B1_SSL, slot);
1814 			Write_hfc(hc, HFCPCI_B1_RSL, slot);
1815 			hc->hw.conn = (hc->hw.conn & ~7) | 6;
1816 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1817 		}
1818 		if (cq->channel & 2) {
1819 			if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1820 				slot = 0xC1;
1821 			else
1822 				slot = 0x81;
1823 			printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1824 			       __func__, slot);
1825 			Write_hfc(hc, HFCPCI_B2_SSL, slot);
1826 			Write_hfc(hc, HFCPCI_B2_RSL, slot);
1827 			hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1828 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1829 		}
1830 		if (cq->channel & 3)
1831 			hc->hw.trm |= 0x80;	/* enable IOM-loop */
1832 		else {
1833 			hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1834 			Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1835 			hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1836 		}
1837 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1838 		break;
1839 	case MISDN_CTRL_CONNECT:
1840 		if (cq->channel == cq->p1) {
1841 			ret = -EINVAL;
1842 			break;
1843 		}
1844 		if (cq->channel < 1 || cq->channel > 2 ||
1845 		    cq->p1 < 1 || cq->p1 > 2) {
1846 			ret = -EINVAL;
1847 			break;
1848 		}
1849 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1850 			slot = 0xC0;
1851 		else
1852 			slot = 0x80;
1853 		printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1854 		       __func__, slot);
1855 		Write_hfc(hc, HFCPCI_B1_SSL, slot);
1856 		Write_hfc(hc, HFCPCI_B2_RSL, slot);
1857 		if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1858 			slot = 0xC1;
1859 		else
1860 			slot = 0x81;
1861 		printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1862 		       __func__, slot);
1863 		Write_hfc(hc, HFCPCI_B2_SSL, slot);
1864 		Write_hfc(hc, HFCPCI_B1_RSL, slot);
1865 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1866 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1867 		hc->hw.trm |= 0x80;
1868 		Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1869 		break;
1870 	case MISDN_CTRL_DISCONNECT:
1871 		hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1872 		Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1873 		hc->hw.trm &= 0x7f;	/* disable IOM-loop */
1874 		break;
1875 	case MISDN_CTRL_L1_TIMER3:
1876 		ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1877 		break;
1878 	default:
1879 		printk(KERN_WARNING "%s: unknown Op %x\n",
1880 		       __func__, cq->op);
1881 		ret = -EINVAL;
1882 		break;
1883 	}
1884 	return ret;
1885 }
1886 
1887 static int
1888 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1889 	      struct channel_req *rq)
1890 {
1891 	int err = 0;
1892 
1893 	if (debug & DEBUG_HW_OPEN)
1894 		printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1895 		       hc->dch.dev.id, __builtin_return_address(0));
1896 	if (rq->protocol == ISDN_P_NONE)
1897 		return -EINVAL;
1898 	if (rq->adr.channel == 1) {
1899 		/* TODO: E-Channel */
1900 		return -EINVAL;
1901 	}
1902 	if (!hc->initdone) {
1903 		if (rq->protocol == ISDN_P_TE_S0) {
1904 			err = create_l1(&hc->dch, hfc_l1callback);
1905 			if (err)
1906 				return err;
1907 		}
1908 		hc->hw.protocol = rq->protocol;
1909 		ch->protocol = rq->protocol;
1910 		err = init_card(hc);
1911 		if (err)
1912 			return err;
1913 	} else {
1914 		if (rq->protocol != ch->protocol) {
1915 			if (hc->hw.protocol == ISDN_P_TE_S0)
1916 				l1_event(hc->dch.l1, CLOSE_CHANNEL);
1917 			if (rq->protocol == ISDN_P_TE_S0) {
1918 				err = create_l1(&hc->dch, hfc_l1callback);
1919 				if (err)
1920 					return err;
1921 			}
1922 			hc->hw.protocol = rq->protocol;
1923 			ch->protocol = rq->protocol;
1924 			hfcpci_setmode(hc);
1925 		}
1926 	}
1927 
1928 	if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1929 	    ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1930 		_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1931 			    0, NULL, GFP_KERNEL);
1932 	}
1933 	rq->ch = ch;
1934 	if (!try_module_get(THIS_MODULE))
1935 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1936 	return 0;
1937 }
1938 
1939 static int
1940 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1941 {
1942 	struct bchannel		*bch;
1943 
1944 	if (rq->adr.channel == 0 || rq->adr.channel > 2)
1945 		return -EINVAL;
1946 	if (rq->protocol == ISDN_P_NONE)
1947 		return -EINVAL;
1948 	bch = &hc->bch[rq->adr.channel - 1];
1949 	if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1950 		return -EBUSY; /* b-channel can be only open once */
1951 	bch->ch.protocol = rq->protocol;
1952 	rq->ch = &bch->ch; /* TODO: E-channel */
1953 	if (!try_module_get(THIS_MODULE))
1954 		printk(KERN_WARNING "%s:cannot get module\n", __func__);
1955 	return 0;
1956 }
1957 
1958 /*
1959  * device control function
1960  */
1961 static int
1962 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1963 {
1964 	struct mISDNdevice	*dev = container_of(ch, struct mISDNdevice, D);
1965 	struct dchannel		*dch = container_of(dev, struct dchannel, dev);
1966 	struct hfc_pci		*hc = dch->hw;
1967 	struct channel_req	*rq;
1968 	int			err = 0;
1969 
1970 	if (dch->debug & DEBUG_HW)
1971 		printk(KERN_DEBUG "%s: cmd:%x %p\n",
1972 		       __func__, cmd, arg);
1973 	switch (cmd) {
1974 	case OPEN_CHANNEL:
1975 		rq = arg;
1976 		if ((rq->protocol == ISDN_P_TE_S0) ||
1977 		    (rq->protocol == ISDN_P_NT_S0))
1978 			err = open_dchannel(hc, ch, rq);
1979 		else
1980 			err = open_bchannel(hc, rq);
1981 		break;
1982 	case CLOSE_CHANNEL:
1983 		if (debug & DEBUG_HW_OPEN)
1984 			printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1985 			       __func__, hc->dch.dev.id,
1986 			       __builtin_return_address(0));
1987 		module_put(THIS_MODULE);
1988 		break;
1989 	case CONTROL_CHANNEL:
1990 		err = channel_ctrl(hc, arg);
1991 		break;
1992 	default:
1993 		if (dch->debug & DEBUG_HW)
1994 			printk(KERN_DEBUG "%s: unknown command %x\n",
1995 			       __func__, cmd);
1996 		return -EINVAL;
1997 	}
1998 	return err;
1999 }
2000 
2001 static int
2002 setup_hw(struct hfc_pci *hc)
2003 {
2004 	void	*buffer;
2005 
2006 	printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2007 	hc->hw.cirm = 0;
2008 	hc->dch.state = 0;
2009 	pci_set_master(hc->pdev);
2010 	if (!hc->irq) {
2011 		printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2012 		return 1;
2013 	}
2014 	hc->hw.pci_io =
2015 		(char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2016 
2017 	if (!hc->hw.pci_io) {
2018 		printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2019 		return 1;
2020 	}
2021 	/* Allocate memory for FIFOS */
2022 	/* the memory needs to be on a 32k boundary within the first 4G */
2023 	pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2024 	buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2025 	/* We silently assume the address is okay if nonzero */
2026 	if (!buffer) {
2027 		printk(KERN_WARNING
2028 		       "HFC-PCI: Error allocating memory for FIFO!\n");
2029 		return 1;
2030 	}
2031 	hc->hw.fifos = buffer;
2032 	pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2033 	hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2034 	printk(KERN_INFO
2035 	       "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2036 	       (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2037 	       (u_long) hc->hw.dmahandle, hc->irq, HZ);
2038 	/* enable memory mapped ports, disable busmaster */
2039 	pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2040 	hc->hw.int_m2 = 0;
2041 	disable_hwirq(hc);
2042 	hc->hw.int_m1 = 0;
2043 	Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2044 	/* At this point the needed PCI config is done */
2045 	/* fifos are still not enabled */
2046 	timer_setup(&hc->hw.timer, hfcpci_Timer, 0);
2047 	/* default PCM master */
2048 	test_and_set_bit(HFC_CFG_MASTER, &hc->cfg);
2049 	return 0;
2050 }
2051 
2052 static void
2053 release_card(struct hfc_pci *hc) {
2054 	u_long	flags;
2055 
2056 	spin_lock_irqsave(&hc->lock, flags);
2057 	hc->hw.int_m2 = 0; /* interrupt output off ! */
2058 	disable_hwirq(hc);
2059 	mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2060 	mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2061 	if (hc->dch.timer.function != NULL) {
2062 		del_timer(&hc->dch.timer);
2063 		hc->dch.timer.function = NULL;
2064 	}
2065 	spin_unlock_irqrestore(&hc->lock, flags);
2066 	if (hc->hw.protocol == ISDN_P_TE_S0)
2067 		l1_event(hc->dch.l1, CLOSE_CHANNEL);
2068 	if (hc->initdone)
2069 		free_irq(hc->irq, hc);
2070 	release_io_hfcpci(hc); /* must release after free_irq! */
2071 	mISDN_unregister_device(&hc->dch.dev);
2072 	mISDN_freebchannel(&hc->bch[1]);
2073 	mISDN_freebchannel(&hc->bch[0]);
2074 	mISDN_freedchannel(&hc->dch);
2075 	pci_set_drvdata(hc->pdev, NULL);
2076 	kfree(hc);
2077 }
2078 
2079 static int
2080 setup_card(struct hfc_pci *card)
2081 {
2082 	int		err = -EINVAL;
2083 	u_int		i;
2084 	char		name[MISDN_MAX_IDLEN];
2085 
2086 	card->dch.debug = debug;
2087 	spin_lock_init(&card->lock);
2088 	mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2089 	card->dch.hw = card;
2090 	card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2091 	card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2092 		(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2093 	card->dch.dev.D.send = hfcpci_l2l1D;
2094 	card->dch.dev.D.ctrl = hfc_dctrl;
2095 	card->dch.dev.nrbchan = 2;
2096 	for (i = 0; i < 2; i++) {
2097 		card->bch[i].nr = i + 1;
2098 		set_channelmap(i + 1, card->dch.dev.channelmap);
2099 		card->bch[i].debug = debug;
2100 		mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2101 		card->bch[i].hw = card;
2102 		card->bch[i].ch.send = hfcpci_l2l1B;
2103 		card->bch[i].ch.ctrl = hfc_bctrl;
2104 		card->bch[i].ch.nr = i + 1;
2105 		list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2106 	}
2107 	err = setup_hw(card);
2108 	if (err)
2109 		goto error;
2110 	snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2111 	err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2112 	if (err)
2113 		goto error;
2114 	HFC_cnt++;
2115 	printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2116 	return 0;
2117 error:
2118 	mISDN_freebchannel(&card->bch[1]);
2119 	mISDN_freebchannel(&card->bch[0]);
2120 	mISDN_freedchannel(&card->dch);
2121 	kfree(card);
2122 	return err;
2123 }
2124 
2125 /* private data in the PCI devices list */
2126 struct _hfc_map {
2127 	u_int	subtype;
2128 	u_int	flag;
2129 	char	*name;
2130 };
2131 
2132 static const struct _hfc_map hfc_map[] =
2133 {
2134 	{HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2135 	{HFC_CCD_B000, 0, "Billion B000"},
2136 	{HFC_CCD_B006, 0, "Billion B006"},
2137 	{HFC_CCD_B007, 0, "Billion B007"},
2138 	{HFC_CCD_B008, 0, "Billion B008"},
2139 	{HFC_CCD_B009, 0, "Billion B009"},
2140 	{HFC_CCD_B00A, 0, "Billion B00A"},
2141 	{HFC_CCD_B00B, 0, "Billion B00B"},
2142 	{HFC_CCD_B00C, 0, "Billion B00C"},
2143 	{HFC_CCD_B100, 0, "Seyeon B100"},
2144 	{HFC_CCD_B700, 0, "Primux II S0 B700"},
2145 	{HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2146 	{HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2147 	{HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2148 	{HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2149 	{HFC_BERKOM_A1T, 0, "German telekom A1T"},
2150 	{HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2151 	{HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2152 	{HFC_DIGI_DF_M_IOM2_E, 0,
2153 	 "Digi International DataFire Micro V IOM2 (Europe)"},
2154 	{HFC_DIGI_DF_M_E, 0,
2155 	 "Digi International DataFire Micro V (Europe)"},
2156 	{HFC_DIGI_DF_M_IOM2_A, 0,
2157 	 "Digi International DataFire Micro V IOM2 (North America)"},
2158 	{HFC_DIGI_DF_M_A, 0,
2159 	 "Digi International DataFire Micro V (North America)"},
2160 	{HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2161 	{},
2162 };
2163 
2164 static const struct pci_device_id hfc_ids[] =
2165 {
2166 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_2BD0),
2167 	  (unsigned long) &hfc_map[0] },
2168 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B000),
2169 	  (unsigned long) &hfc_map[1] },
2170 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B006),
2171 	  (unsigned long) &hfc_map[2] },
2172 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B007),
2173 	  (unsigned long) &hfc_map[3] },
2174 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B008),
2175 	  (unsigned long) &hfc_map[4] },
2176 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B009),
2177 	  (unsigned long) &hfc_map[5] },
2178 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00A),
2179 	  (unsigned long) &hfc_map[6] },
2180 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00B),
2181 	  (unsigned long) &hfc_map[7] },
2182 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B00C),
2183 	  (unsigned long) &hfc_map[8] },
2184 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B100),
2185 	  (unsigned long) &hfc_map[9] },
2186 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B700),
2187 	  (unsigned long) &hfc_map[10] },
2188 	{ PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_B701),
2189 	  (unsigned long) &hfc_map[11] },
2190 	{ PCI_VDEVICE(ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1),
2191 	  (unsigned long) &hfc_map[12] },
2192 	{ PCI_VDEVICE(ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675),
2193 	  (unsigned long) &hfc_map[13] },
2194 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT),
2195 	  (unsigned long) &hfc_map[14] },
2196 	{ PCI_VDEVICE(BERKOM, PCI_DEVICE_ID_BERKOM_A1T),
2197 	  (unsigned long) &hfc_map[15] },
2198 	{ PCI_VDEVICE(ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575),
2199 	  (unsigned long) &hfc_map[16] },
2200 	{ PCI_VDEVICE(ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0),
2201 	  (unsigned long) &hfc_map[17] },
2202 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E),
2203 	  (unsigned long) &hfc_map[18] },
2204 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_E),
2205 	  (unsigned long) &hfc_map[19] },
2206 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A),
2207 	  (unsigned long) &hfc_map[20] },
2208 	{ PCI_VDEVICE(DIGI, PCI_DEVICE_ID_DIGI_DF_M_A),
2209 	  (unsigned long) &hfc_map[21] },
2210 	{ PCI_VDEVICE(SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2),
2211 	  (unsigned long) &hfc_map[22] },
2212 	{},
2213 };
2214 
2215 static int
2216 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2217 {
2218 	int		err = -ENOMEM;
2219 	struct hfc_pci	*card;
2220 	struct _hfc_map	*m = (struct _hfc_map *)ent->driver_data;
2221 
2222 	card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2223 	if (!card) {
2224 		printk(KERN_ERR "No kmem for HFC card\n");
2225 		return err;
2226 	}
2227 	card->pdev = pdev;
2228 	card->subtype = m->subtype;
2229 	err = pci_enable_device(pdev);
2230 	if (err) {
2231 		kfree(card);
2232 		return err;
2233 	}
2234 
2235 	printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2236 	       m->name, pci_name(pdev));
2237 
2238 	card->irq = pdev->irq;
2239 	pci_set_drvdata(pdev, card);
2240 	err = setup_card(card);
2241 	if (err)
2242 		pci_set_drvdata(pdev, NULL);
2243 	return err;
2244 }
2245 
2246 static void
2247 hfc_remove_pci(struct pci_dev *pdev)
2248 {
2249 	struct hfc_pci	*card = pci_get_drvdata(pdev);
2250 
2251 	if (card)
2252 		release_card(card);
2253 	else
2254 		if (debug)
2255 			printk(KERN_DEBUG "%s: drvdata already removed\n",
2256 			       __func__);
2257 }
2258 
2259 
2260 static struct pci_driver hfc_driver = {
2261 	.name = "hfcpci",
2262 	.probe = hfc_probe,
2263 	.remove = hfc_remove_pci,
2264 	.id_table = hfc_ids,
2265 };
2266 
2267 static int
2268 _hfcpci_softirq(struct device *dev, void *unused)
2269 {
2270 	struct hfc_pci  *hc = dev_get_drvdata(dev);
2271 	struct bchannel *bch;
2272 	if (hc == NULL)
2273 		return 0;
2274 
2275 	if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2276 		spin_lock(&hc->lock);
2277 		bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2278 		if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2279 			main_rec_hfcpci(bch);
2280 			tx_birq(bch);
2281 		}
2282 		bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2283 		if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2284 			main_rec_hfcpci(bch);
2285 			tx_birq(bch);
2286 		}
2287 		spin_unlock(&hc->lock);
2288 	}
2289 	return 0;
2290 }
2291 
2292 static void
2293 hfcpci_softirq(struct timer_list *unused)
2294 {
2295 	WARN_ON_ONCE(driver_for_each_device(&hfc_driver.driver, NULL, NULL,
2296 				      _hfcpci_softirq) != 0);
2297 
2298 	/* if next event would be in the past ... */
2299 	if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2300 		hfc_jiffies = jiffies + 1;
2301 	else
2302 		hfc_jiffies += tics;
2303 	hfc_tl.expires = hfc_jiffies;
2304 	add_timer(&hfc_tl);
2305 }
2306 
2307 static int __init
2308 HFC_init(void)
2309 {
2310 	int		err;
2311 
2312 	if (!poll)
2313 		poll = HFCPCI_BTRANS_THRESHOLD;
2314 
2315 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2316 		tics = (poll * HZ) / 8000;
2317 		if (tics < 1)
2318 			tics = 1;
2319 		poll = (tics * 8000) / HZ;
2320 		if (poll > 256 || poll < 8) {
2321 			printk(KERN_ERR "%s: Wrong poll value %d not in range "
2322 			       "of 8..256.\n", __func__, poll);
2323 			err = -EINVAL;
2324 			return err;
2325 		}
2326 	}
2327 	if (poll != HFCPCI_BTRANS_THRESHOLD) {
2328 		printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2329 		       __func__, poll);
2330 		timer_setup(&hfc_tl, hfcpci_softirq, 0);
2331 		hfc_tl.expires = jiffies + tics;
2332 		hfc_jiffies = hfc_tl.expires;
2333 		add_timer(&hfc_tl);
2334 	} else
2335 		tics = 0; /* indicate the use of controller's timer */
2336 
2337 	err = pci_register_driver(&hfc_driver);
2338 	if (err) {
2339 		if (timer_pending(&hfc_tl))
2340 			del_timer(&hfc_tl);
2341 	}
2342 
2343 	return err;
2344 }
2345 
2346 static void __exit
2347 HFC_cleanup(void)
2348 {
2349 	if (timer_pending(&hfc_tl))
2350 		del_timer(&hfc_tl);
2351 
2352 	pci_unregister_driver(&hfc_driver);
2353 }
2354 
2355 module_init(HFC_init);
2356 module_exit(HFC_cleanup);
2357 
2358 MODULE_DEVICE_TABLE(pci, hfc_ids);
2359